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In this paper, a microgrid hierarchical control scheme is proposed which includes primary and secondary
control levels. The primary level comprises distributed generators (DGs) local controllers. The local
controller mainly consists of active and reactive power controllers, voltage and current controllers, and
virtual impedance loop. A novel virtual impedance structure is proposed to achieve proper sharing of non-
fundamental power among the microgrid DGs. The secondary level is designed to manage compensation of
voltage harmonics at the microgrid load bus (LB) to which the sensitive loads may be connected. Also,
restoration of LB voltage amplitude and microgrid frequency to the rated values is directed by the secondary
level. These functions are achieved by sending proper control signals to the local controllers. The simulation
results show the effectiveness of the proposed control scheme.

130 Comparative Evaluation of Harmonic Compensation Capability of Active Power Filter with
Conventional and Bacterial Foraging Based Control

S. 8. Patnaik and Prof. A. K. Panda )

Department of Electrical Engineering, National Institute of Technology, Rourkela, India

Optimizing the performance of power system networks using conventional methods is quite difficult because
of the complex nature of systems that are highly non-linear and nonstationary. In this paper, it is proposed to
implgment Bacterial, foraging (BF) optimization to the conventional shunt active power filter (APF). A
comparative analysis,of the APF performance is carried out for BF based and conventional approach under
unbalanced supply ‘voltage. The instantaneous active and reactive current components (ig-iy) method of
reference compensation current generation; having greater sensitivity to harmonics and unbalances has been
utilized here. Extensive MATLAB simulations are carried out and results demonstrate that the APF with
proposed implementation of BF algorithm outperforms the conventional APF in terms of both convergence
rate and current harmonic compensation.

186 { An Improvement of Synchronously Rotating Reference Frame Based Voltage Sag Detection
i or Voltage Sag Compensation Applications under Distorted Grid Voltages

X Sillapawicharn, Y. Kumsuwan

Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200
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An improvement of synchronously rotating reference frame based voltage sag detection for voltage sag
compensation applications under distorted grid voltages is proposed. The voltage sag detection is the one of
important parts in the voltage sag compensation processes. In the past, the conventional synchronously
rotating reference frame (CSRRF) based voltage sag detection is widely used in the voltage sag
compensation applications. Its disadvantage is a long delay of detection time. This means the next process
initiation of voltage sag compensation is also delayed, and then the load voltage can be affected from voltage
sag. The modified synchronously rotating reference frame (MSRRF) based voltage sag detection is able to
detect the voltage sag in a short delay of detection time by differentiator employment. However, its operation
under the distorted grid voltages condition is unavailable because of the sensitivity of differentiator action to
the high frequency components that caused by voltage harmonic. This paper proposed the improvement of
MSRRF based voltage sag detection under distorted grid voltages. The operation of proposed improved
MSRRF, MSRRF, and CSRRF based voltage sag detections are investigated via computer simulation to
verify the advantage of proposed voltage sag detection.
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Welcome Message from Conference Chairman

With the exponential growth of energy usage, rapid depletion of fossil-fuel and rising cost of non-
renewable energy resources, the energy security and access, the environmental impacts of energy
usage and at the same time with distributed and clean energy generation becoming widespread and
important. Power Electronics is the enabling technology that deals with the conversion and control
of electrical energy and supports a wide range of application energy related areas such as
transportation, power supplies, renewable energy, energy harvesting, energy scavenging, lighting,
displays, photovoltaics, wind turbines, fuel cell, and energy saving systems etc.

In view of the growing importance of power electronic technology, the international biennial
conference on Power Electronics and Drive Systems was originated in Singapore in 1995. Since
then the PEDS Conference series has been running successfully on a biennial basis in the Asia and
Pacific region. I am happy that it has come back to Singapore almost after an interval of 8 years (the
last one held in Singapore was in 2003) and will be the 9" PEDS Conference. It tries to bring
together professionals and executives in the power electronics and electric drives and energy sector,
electrical power companies, manufacturing-industries, research institutes and educational bodies to
share and exchange ideas and information pertaining to power electronics and electric drive
technologies.

In the 3-day'tcchnic'igl sessions, we will have 216 paper presentations coming from 38 countries.
Besides technical paper presentations, there will also be one full-day for tutorials with four different
topics, a plenary keynote session and an exhibition.

Singapore is only one of two cities in the world to have a significant area of primary rainforest (at
the Bukit Timah Hill) within its boundaries. The walk in the rain forest can be a relaxing experience.
Qr, another good choice will be to visit the National Orchid Garden, which is perhaps the best
orchid garden in Singapore. With its friendly and welcoming people, state-of-the-art infrastructure
and something new happening almost every day, Singapore will definitely provide an enjoyable
_experience during your stay.

We hope you enjoy the visit to Singapore and have a pleasant conference.

Sanjib K. Panda
Conference Chairman



Message from Technical Programme Chairman

Power Electronics as a cutting edge technology has come a long way since the first PEDS
conference in 1995. Although it may be now regarded as a mature technology, there are still many
areas where improvements and innovations are frequently produced. These are in many ways due to
the up-tick in applications such as renewable energy systems, smart grids, electro-mobility and
green buildings. Hence it is important for power electronics conferences such as the PEDS to
continue to provide regular forums for industrial and academic researchers to report their latest
contributions to knowledge capital in power electronics and drives systems, and to network with
each other.

PEDS has returned to its venue of origin of Singapore in 2011, and I am pleased to serve as its
Technical Program Chair again. We look forward to the presentations of over 200 high quality
papers in the 3-day conference. The technical program is made possible through the hard work of
the numerous peer reviewers and I would like to take this opportunity to thank all of them. Most of
all, T should also thank and congratulate all the authors of these papers, many of them have been
loyal and consistent supporters of the PEDS series of conferences. I wish all PEDS-2011 conference
delegates an enjoyable experience in this Uniquely Singapore.
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King-Jet Tseng

Technical Programme Chairman
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An Improvement of Synchronously Rotating
Reference Frame Based Voltage Sag Detection for
Voltage Sag Compensation Applications under
Distorted Grid Voltages

14

Department of Electrical Engineering, Faculty

Abstract-An improvement of synchronously rotating reference
frame based voltage sag detection for voltage sag compensation
Opp!ications under distorted grid voltages is proposed. The
voltage sag detection is the one of important parts in the voltage
ag compensation processes. In the past, the conventional
synchronously rotating reference frame (CSRRF) based voltage
sag detection is widely used in the voltage sag compensation
applicatiops. Its disadvantage is a long delay of detection time,
This means the next-process nitiation of voltage sag compensation
is also delayed, and then the’load voltage can be affected from
voltage sag. The modified synchronously rotating reference frame
(MSRRF) based voltage sag detection is able to detect the voltage
sag in a short delay of detection time by differentiator
employment. However, its operation under the distorted grid
voltages condition is unavailable because of the sensitivity of
differentiator action to the high frequency components that
caused by voltage harmonic. This paper proposed the
improvement of MSRRF based voltage sag detection under
distorted grid voltages. The operation of proposed improved
" MSRRF, MSRRF, and CSRRF based voltage sag detections are
investigated "via computer simulation to verify the advantage of
proposed voltage sag detection.

L 4

I.  INTRODUCTION

q‘ In recent years, the voltage sag is one of the major factors
at affects the quality of power supply which occurs in a
'wer system. Voltage sag is short duration decrements
oetween 0.1pu-0.9pu) in voltage amplitude from one-half to
several seconds. Several studies report that 92% of all
disturbances in electrical power distribution systems are due to
voltage sags [1]. It has a significant influence on electronic
equipments such as computers, programmable logic
controllers, variable speed drives, or process control devices.
Voltage sag problem can be compensated by several
compensation methods [2]-[4]. Since the voltage sag detection
plays an important role of voltage sag compensation system,
then the shortest delay time of voltage detection is required. An
employment of CSRRF based voltage sag detection causes the
longer delay time which caused by low cut-off frequency of
low pass filter (LPF) is introduced. The shorter delay time can
be gained by using of MSRRF based voltage sag detection [5].
In practice, the grid voltages may contain harmonics and be
distorted then the operation of MSRRF based voltage sag

978-1-4577-0001-9/11/$26.00 ©2011 |IEEE

m.
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Chiang Mai University, Chiang Mai, 50200 Thailand

detection can be affected by these distorted grid voltages and
failed detection may occur. However, the issue of distorted
grid voltage sag detection was not discussed in [5]. This paper
proposed an improvement of MSRRF based voltage sag
detection for voltage sag compensation applications that can be
operated under distorted grid voltages with a short delay of
detection time when comparing to conventional methods.

II.  SYNCHRONOUSLY ROTATING REFERENCE FRAME BASED

VOLTAGE SAG DETECTION CONTROL STRATEGIES

A Conventional Synchronously Rotating Reference Frame
(CSRRF) Based Voltage Sag Detection.

yfabe Ve g Vg Vig,s Jop )
vr |y Sgqrt|—»| LPF.—Comp. "4
4—‘ PLI—%{Sqr

Fig. 1. CSRRF based voltage sag detection,

The CSRRF based voltage detection is shown in Fig. 1. This

voltage sag detection method utilizes the abe-dg
transformation that gives dc quantities (V4,V,) proportion to
ac quantities of the grid voltages(V,,V;,V.) can be expressed as
Vﬂ
Vil ofcoswt —sinwt)(1 —1/2 -1/2 b
=—] . b (l
V) 3|sinwt coswt [l0 3 /2 3 /2 v )

From Fig. 1,V, = [(V? + V2 , this voltage varies with the
g dy d q

grid voltages then the voltage sags can be detected from value
of Vg, . This V,, is filtered by low-pass filter (LPF) for 2w or

100-Hz component elimination (for 50-Hz distribution
systems). The filtered Vy, or Vi, s 1s finally compared to a dc

reference in comparator (i.e. 0.9 pu). The comparator output is
a sag signal, which initiates a voltage sag compensation
process when the voltage sag occurs.

B. Modified  Synchronously Rotating  Reference Frame
(MSRRF) Based Voltage Sag Detection.

In Fig. 2, the MSRRF based voltage detection is shown.
This voltage sag detection method also utilizes the abc-dg

100
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transformation, which the..-ﬂi}fﬁ_:rentiator is an additional part.
The operation of MSRRF"based voltage ‘sag detection is based
on 2w component cancellation‘as shown in Fig. 3.

In Fig. 3, the example waveforms of V, and V, in the case
of 0.5pu single-phase voltage sag are illustrated. It can be seen
that both of V, and Vq contain the same amplitude of
2w tomponents but in different phase. The differential result of

' '-{f (when using phase of V,as reference) is Vq' which is
following _
'.’j; = 2wl

qm

sin(2wt). (2)
And constant value of 1/2w is used to obtain the 54

normalization value, V),

’ t_ 1l o,

o Van =V, [ 2w. (3)
It can be noticed that the differentiator is actually used for
iase shifting of V,, then both of V,, and V, have the same

amplitude and 180° out-of-phase of 2w components, Finally,
these 2w components are eliminated by summing of v,
and Vq’“, then V. is obtained as follows

Vg = Va + V. 4

The V., signal is filtered by LPF with high cut-off

frequency and then it is compared with a dc reference (0.9 pu)
to generate the sag signal. It presents that this has no the delay
of detection time due to no using of low cut-off frequency of
LPF.

C. Improvement of MSRRF Based Voltage Sag Detection.
Although the MSRRF based voltage sag detection provides

the short delay of detection time, in the case of operation under

distorted grid voltages, the differentiator is influenced by

harmonic components due to the action of differentiator is
more sensitive with high frequency components.

In MSRRF based voltage sag detection, the main function of
LPF is filtering the component of differential result. This

differential resultant component (V,,in (4)) contains only a

high frequency component, then the high cut-off frequency of
LPF can be used (2 kHz for example). However, in practical
case, having the harmonic component from grid voltages,
which in practical distribution system, the most existent
harmonic components are the fifth harmonic (i.e. 250 Hz) in
negative sequence and the seventh harmonic (i.e. 350 Hz) in
positive sequence and then they appear as the sixth order
harmonic (i.e. 300 Hz) [6] in synchronously rotating reference
frame.

Therefore the differential resultant component is highly
increased (differential result of high frequency component is
larger than differential result of low frequency component) and
therefore the sag signal is invalid. To figure out from this
problem then the cut-off angular frequency of LPF (w,)
around a half of the sixth order harmonic is chosen as (5) and
then the effect of grid voltages distortion or harmonic can be
avoided while the fast detection operation of sag voltage still
exists. The cut-off angular frequency w, is designed as

w = 6w /2. (3)
For example in the case of 50-Hz distribution systems, the cut-
off angular frequency w.of LPF is designed at 942.47
radian/second or 150 Hz.

III. RESULTS AND DISCUSSION

The model of the voltage sag detection of Fig.1 and 2 are
built using Matlab/Simulink  simulation software. The
simulation model are developed based on voltage sag
detections under distorted grid voltages in both of single-phase
voltage sag condition and three-phase voltage sag condition.
The total harmonic distortion (THD) of the grid voltage under
proposed is set to 5% which consists of 4% of fifth harmonic
and 3% of seventh harmonic. These conditions are based on
harmonic limits standard of IEC standard 61000-3-6 and PRC-
PQG-01/1998 (Harmonic regulation in Thailand). It can be
seen that the simulation condition is more serious than IEEE
standard 519-1992 to ensure the worse case of proposed
voltage sag detection operation. The system parameters for
simulation of the voltage sag detections are given in Table I.

Table I PARAMETERS OF VOLTAGE SAG DETECTION SYSTEM

Grid phase voltages, Viabe 220 Vrms, 50 Hz
Grid voltages distortion, THDv 5% THD.
(hd5 = 4%, hd7 = 3%)

Voltage sags Single-phase, 0.5pu.
Three-phase, 0.5pu.

Point-on-wave of voltage sags 0 degree

Cut-off frequency of low pass filters, CSRRF =50 Hz

£ MSRRF =2 kHz

Improved MSRRF = 150 Hz
Lower limit=0.9

Upper limit = 0.95

Comparator hysteresis band
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Fig. 4 Simulation results for operation under distorted grid voltages of MSRRF
based voltage sag detection with single-phase voltage sag (a) Grid phase
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Fig. 5 Simulation results for operation under distorted grid voltages of

proposed improved MSRRF based voltage sag with single-phase voltage sag

(a) Grid phase voltages (V; 44.) . (b) Differential \ealue{de}, (c) Filtered
differential value ‘aiff,¢) - and (d) Sag signal.
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Fig’ 4 and 5 show the simulated waveforms of the grid
7, voltage (V, ,.), differential voltage (V. ), filtered differential

voltage (1-':;51}__}}, and sag signal for 0.5pu single-phase voltage

sag detection with 5% THD of the grid voltage when sag
duration is At = 37T, respectively. It can be seen that the
waveform of Vi and Vayrs in Fig. 4 (b) and (c) contain large

00-Hz component and high frequency component due to
diﬁ'ercntiator action. This 300-Hz component is caused by

armonic and amplified by differentiator action. In Fig. 4 (d),
e failed sag signal is taken place because of high cut-off
frequency of LPF in MSRRF based voltage sag detection,
which is unacceptable.

The simulation results for proposed improved MSRRF based
voltage sag detection are shown in Fig.5. Having the suitable
cut-off frequency of LPF, then the high frequency component
from differentiator action and 300-Hz component in Fig. 5(b)
are mitigated as illustrated in Fig. 5 (c). The valid sag signal is
finally obtained as seen in Fig.5 (d). It can be noticed that the
300-Hz component is heavily attenuated with a short delay
time which introduced by this 150-Hz cut-off frequency LPF.,

Fig. 6 depicts the simulated waveforms of the grid
voltage (V, ;) , V4, » Vys » and sag signal with the same

conditions of Fig. 4 and 5. This voltage sag detection method is
impacted from 100-Hz component of abe-dg transformation
outputs as Fig. 6 (b), then the low cut-off frequency (50Hz)

Sag signal Vdq,t{pu) Vdq(pu) Vs,abc

(d)

W W o
; : ; . Time (ms)

Fig. 6 Simulation results for operation under distorted grid voltages of CSRRF

based voltage sag detection with single-phase voltage sag, (a) Grid phase

voltages (V, ,;.) , (b) Viy value, (c) Filtered Viay value(Vy, ¢), and (d) Sag

o0 100

signal.
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Fig. 7 Voltage sag detection time comparison for single-phase voltage sag, A:
MSRRF based with ideal grid voltages, B: proposed improved MSRRF based
with distorted grid voltages, and C: CSRRF based with distorted grid voltages.

LPF is used and the result is shown in Fig. 6 (c). It can be
distinctly noticed in Fig. 6 (d) that the longer delay time is
occurred.

The detection time of MSRRF based voltage sag detection
under ideal grid voltages is 170 s, while the detection time
under distorted grid voltages of proposed improved MSRRF
based voltage sag detection, and CSRRF based voltage sag
detection are 2.01 ms and 5.81 ms respectively as illustrated in
Fig. 7. It can be seen that this is a distinct improvement of
voltage sag detection that be able to operate in distorted grid
voltages and a short delay of detection time is accomplished.

Fig. 8 and 9 show the simulated waveforms of the grid
voltage (V, ;) , differential voltage Vi » filtered differential

voltage de. s » and sag signal for 0.5pu three-phase voltage sag

detection with 5% THD of the grid voltage when sag duration
is At = 3T , respectively.

In Fig. 8 (b) and (c), it can be seen that the waveform of
Vi and Viir,; of MSRRF based voltage sag detection contain

large 300-Hz component and high frequency component due to
differentiator action. Even the sag signal is valid in the existing
of voltage sag, it is invalid in stage of normal grid voltages as
seen in Fig. 8 (d).

The simulation results for proposed improved MSRRF based
voltage sag detection are shown in Fig.9. It can be seen that
300-Hz component in Fig. 9 (b) is attenuated as shown in Fig.
9 (c). The true sag signal is finally achieved with a brief delay
time as seen in Fig. 9 (d).

Fig. 10 illustrates the simulated waveforms of the grid
voltage (V, ,,.) , Vig » Vigs sand sag signal with the same

conditions of Fig. 8 and 9. In the case of three-phase voltage
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Fig. 8 Simulation results for operation under distorted grid voltages of MSRRF
based voltage sag detection with three-phase voltage sag (a) Grid phase
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Fig. 9 Simulation results for operation under distorted grid voltages of
proposed improved MSRRF based voltage sag detection with three-phase
voltage sag. (a) Grid phase voltages (V; ;) , (b) Differential value (Vaigr) » ()

Filtered differential value (Vi ¢) . and (d) Sag signal,

sag, the abc-dg transformation outputs are free from 100-Hz
» component as shown in Fig. 10 (b). However, using of low cut-
off frequency LPF, the delay of detection time still exists as
seen in Fig.10(c) and (d).
The comparison of detection times in this case is depicted in
Fig. 11. The detection time of MSRRF based voltage sag
detection under ideal grid voltages is 65 s , while the
ggictection time under distorted grid voltages of proposed
dproved MSRRF based voltage sag detection and CSRRF
“ased voltage sag detection are 0.9 ms and 2.45 ms
spectively. It can be noticed that this is an obvious
improvement of voltage sag detection that is able to operate in
distorted grid voltages and a small delay of detection time is
fulfilled.

IV. CONCLUSION

An improvement of synchronously rotating reference frame
based voltage sag detection for voltage sag compensation
applications under distorted grid voltages is proposed in this
paper. While CSRRF based voltage sag detection is widely
used in voltage sag compensation, the long delay of detection
time is introduced. The MSRRF based voltage sag detection is
able to work with short delay of detection time but it can not be
used in distorted grid voltages due to the action of
differentiator with high frequency voltage components. The
investigation of proposed improved MSRRF based voltage sag

Sagsignal Vdiff, t{pu) Vdift(pu) Vs,abc
&
Sag signal Vdq, Hpu) Vdq(pu) Vs,abc

ﬂ@]’[ﬂ‘iﬂ (d)
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Fig. 10 Simulation results for operation under distorted grid voltages of

CSRRF based voltage sag detection with three-phase voltage sag. (a) Grid

phase voltages (V; 4;.) , (b) Viag value, (c) Filtered Va, value(Vy, 7). and (d)

Sag signal.

-]

2
CERIS e o e L Y e e g i i i R
2 Sag occurs he
LS S S
o Al B c
[ JPY ASm—— P S U e i

P R . . i i :

17 18 19 20 21 22 23 24 28 268 27

Time (ms)

Fig. 11 Voltage sag detection time comparison for three-phase voltage sag, A
MSRRF based with ideal grid voltages, B: proposed improved MSRRF based
with distorted grid voltages, and C: CSRRF based with distorted grid voltages.

detection is taken place by reconsideration of its operation
under distorted grid voltages. The operation of this proposed
improved MSRRF based voltage sag detection is verified by
simulation in condition of 0.5pu sag, 5% THDv with both
single-phase voltage sag and three-phase voltage sag. As seen
on the simulation results, this proposed improved MSRRF
based voltage sag detection can detect the voltage sag in very
short delay time when comparing to CSRRF based voltage sag
detection,
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BSTRACT
dﬁ improvement of synchronously rotating reference frame based voltage sag detection for voltage 5ag compensation applications under
h istorted grid voltages is proposed. The voltage sag detection is the one of important parts in the voltage sag compensation processes. In the
ast, the conventional synchronously rotati ng reference frame (CSRRF) based voltage sag detection is widely used in the voltage sag
compensation applications. Its disadvantage is a long delay of detection time. This means the next process initiation of voltage sag compensation
is also delayed, and then the lgad voltage can be affected from voltage sag. The modified synchronously rotati ng reference frame (MSRRF)
based voltdge sag defgction isk;:rie to detect the voltage sag in a short delay of detection time by differentiator employment. However, its
operation under the distorted gfid voltages condition is unavailable because of the sensitivity of differentiator action to the high frequency
components that caused by vo tagg' harmonic. This paper proposed the improvement of MSRRF based voltage sag detection under distorted grid

voltages. The operation of proposed improved MSRRF, MSRRF, and CSRRF based voltage sag detections are investigated via computer simulation
to verify the advantage of proposed voltage sag detection.
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