THE 7TH ANNUAL CONFERENCE OF THE THAI PHYSICS SOCIETY

PROCEEDINGS

SIAM PHYSICS CONGRESS
Past, Present and Future of Physics 2012

May 9-12, 2012
Phra Nakhon Si Ayutthaya, Thailand
SIAM PHYSICS CONGRESS 2012
MAY 9-12, 2012
Krungsri River Hotel, Phra Nakhon Si Ayutthaya, Thailand

Conference Organizing Committee

Advisory Committee:
Kitti Tirasesth
Thiraphat Vilaithaong
Prasart Suebka
Boonraeks Suonthorntham
Weerapong Pairsuwan
Vittaya Amornkitiramrungr
Jiti Nukaew
Ekaphan Swatsitang
Sirapat Pratontep
Thutiaporn Thiawong
Wirat Jareenboon
Winadda Wongwiriyan

KMITL
ThEP
SUT
NARIT
MOST
KKU
KMITL
KKU
KMITL
KMITL

Conference Chair:
Local Organizing Chair:
Executive Secretary:
Secretary Team:

Members:
Anuchit Jaruwanawat
Wisasu Pecharapa
Sutee Chutipajjitt
Supagorn Rungmai
Tosawat Seetawan
Worawut Meenasana
Nopparat Poodant
Kannika Tummarukkattana
Pitiporn Thanomngam
Kanokporn Sompoompailin
Wanwilai Wittayakorn
Saroj Rujiawat
Anek Charoenphakdee
Worawarong Rakreungdet
Anna Thanomngam
Benchapol Tunhoo
Darinee Phromyothin
Apiluck Eiad-ua
Prapong Klysubun
Nattapon Chattham
Wijitra Thengtang
Kittipa Choosree

Scientific Program Committee

Virulh Sayakanit
Sukit Limpijumnong
Prayoon Somsinirithigul
Wijit Senghaphan
Kajornyod Yoodee
Kwan Arayathanitkul
Thiti Bovornratanarak
Prapat Pongkiatkul
Worawarong Rakreungdet
CU
SUT
SRJ
POSN
CU
CU
KMITT
KMITT

Pichet Limsuwan
Yupeng Yan
Pikul Wanchanapichat
Suwan Kusamran
Tanakorn Osathan
Supab Choopun
Wan Dee Onreabroy
Tosawat Seetawan
KMITT
SUT
PSU
POSN
MU
CMU
KMITT
SRNU

Supported by
Thai Physics Society (TPS)
King Mongkut's Institute of Technology Ladkrabang (KMITL)
Thailand Center of Excellence in Physics (ThEP)
Synchrotron Light Research Institute (SLRI)
National Astronomical Research Institute of Thailand (NARIT)
The Space-Time Transformation in Feynman Propagator for a Time-Dependent Harmonic Oscillator

S. Pepore *, and B. Sukbot

Department of Physics, Faculty of Science, Rajamangala University of Technology, Thanyaburi, Pathumthani 12110, Thailand
*Corresponding author. E-mail: surapepore@gmail.com

Abstract

We demonstrate that the use of space-time transformation in path integration can simplify the calculation of the Feynman propagator for a harmonic oscillator with time-dependent mass and frequency. We show that such a propagator can be easily obtained from the unit mass and frequency propagator in the new space-time coordinate systems.

Keywords: Path Integration, Propagator, Time-Dependent Harmonic Oscillator

Introduction

Recently there has been considerable interest in the theory of time-dependent Hamiltonians systems [1-5]. The system with the time-dependent Hamiltonians were investigated using various method. The various applications in many area of physics, such as quantum optics, cosmology, and nanotechnology are the main reasons for intensive interesting. The example of application for time-dependent harmonic oscillator are the model of expanding universe and the motion of an ion in solid state trap. S.Pepore and et.al. [6-8], applied both Feynman path integral and Schwinger method to study the propagator and wave function for a harmonic oscillator with time-dependent mass and frequency. The aim of this paper is to derive the propagator for a harmonic oscillator with time-dependent mass and frequency as described by the Hamiltonian

\[H(t) = \frac{p^2}{2m(t)} + \frac{1}{2} m(t) w^2(t) x^2, \]

where \(m(t) \) and \(w(t) \) are the time-dependent mass and frequency, respectively. Our method is not based on the directly calculating of path integration but base on the using of a space-time transformation to simplify the path integration.

Materials and Methods

This section is the calculation of a harmonic oscillator with time-dependent mass and frequency described the Lagrangian [6]

\[L(t) = \frac{1}{2} m(t) \dot{x}^2 - \frac{1}{2} m(t) w^2(t) x^2, \]

where \(m(t) \) is the time-dependent mass and \(w(t) \) is the time-dependent frequency. By using the Euler-Lagrange equation for the Lagrangian in Eq.(1), the equation of motion can be written as

\[\ddot{x} + 2 \frac{\dot{w}}{w} \dot{x} + w^2(t) x = 0, \]

where we define \(\rho(t) = \sqrt{m(t)} \).

By using the Pinney equation

\[\ddot{a} + \frac{m(t)}{m(t)} \dot{a}(t) + w^2(t) a(t) = \frac{1}{m^2(t) \rho^2(t)} \]

the Lagrangian in Eq.(1) can be modified to

\[L(t) = \frac{\rho m(t)}{a(t)} \dot{x}^2 + L_0, \]

where \(L_0 \) is

\[L_0 = \frac{1}{2} \rho^2(t) \dot{x}^2 - \frac{1}{2} \dot{a}(t)^2 - \frac{1}{2} \rho^2(t) \dot{\rho}^2(t) \]

The next step is try to find a transformation that can transform the system with Lagrangian \(L_0 \) in Eq.(5) into the harmonic oscillator with unit mass and frequency. Let us consider the following transformation, which is the space and time transformation,

\[y(t) = \frac{\dot{x}(t)}{a(t)}, \]

\[dt = \frac{a(t)}{\rho(t)^2(t)} \]

By using space and time transformation, the Lagrangian \(L_0 \) in Eq. (5) can be written as

\[\text{Atomic Physics} \]
The Feynman propagator \(K(x',t',x',t') \) is defined as the path integral [11],

\[
K(x',t',x',t') = \int \exp \left(\frac{i}{\hbar} \int_{t'}^{t} L \, dt \right) \, Dx(t),
\]

where \(Dx(t) \) is the path differential measure indicating that integrations are over all possible paths beginning at \(x(t') = x' \) and terminating at \(x(t') = x' \).

By substituting the Lagrangian in Eq.(4) into Eq.(9), the propagator reads as

\[
K(x',t',x',t') = K_0 \exp \left(\frac{i}{\hbar} \left[m' \frac{a'}{a} x'^2 - \frac{m}{a} x^2 \right] \right),
\]

where \(K_0 \) is the new propagator corresponding to the new Lagrangian

\[
K_0 = \int \exp \left(\frac{i}{\hbar} \int_{t'}^{t} L_0 \, dt \right) \, Dx(t).
\]

If we now introduce a new time \(\tau \) in Eq. (7)

\[
\tau(t) = \int_{t'}^{t} \frac{1}{m(s)} \frac{ds}{a^2(s)},
\]

the action integral in Eq.(11) takes the form

\[
\int_{t'}^{t} L_0 \, dt = \int_{t'}^{t} L_0 \, d\tau,
\]

where \(L_0 \) is the unit mass and frequency oscillator Lagrangian in Eq. (8).

Using a process similar to Lawande and Dhara, we obtain the transformation of the action as follows

\[
Dx(t) = \frac{1}{\sqrt{\alpha a}} Dy(\tau).
\]

So, the propagator in Eq. (10) can be written as

\[
K(x',t',x',t') = \frac{1}{\sqrt{\alpha a}} \exp \left(\frac{i}{2\hbar} m' \frac{a'}{a} x'^2 - \frac{m}{a} x^2 \right) \left[\frac{m'}{m} \frac{a}{a'} \right] K_0(y',\tau',y',\tau'),
\]

where \(K_0(y',\tau',y',\tau') \) is the propagator for harmonic oscillator with unit mass and frequency described by [11].

\[
K_0(y',\tau',y',\tau') = \int \exp \left(\frac{i}{\hbar} \int_{\tau'}^{\tau} L_0 \, d\tau \right) \, Dy(\tau)
= \left(\frac{1}{2 \sqrt{2 \sin \left(\tau - \tau' \right)}} \right)^{\frac{1}{2}} \exp \left(\frac{i}{2 \sqrt{2 \sin \left(\tau - \tau' \right)}} \left[\frac{y'^2}{2} + y'^2 \cos \left(\tau - \tau' \right) - 2y'y' \right] \right).
\]

Substituting Eq. (16) into Eq. (15), the result is

\[
K(x',t',x',t') = \left(\frac{1}{2 \sqrt{2 \sin \left(\tau - \tau' \right)}} \right)^{\frac{1}{2}} \exp \left(\frac{i}{2 \sqrt{2 \sin \left(\tau - \tau' \right)}} \left[\frac{y'^2}{2} + y'^2 \cos \left(\tau - \tau' \right) - 2y'y' \right] \right).
\]

The final step is rewriting Eq. (17) into the original variables as

\[
K(x',t',x',t') = \left(\frac{1}{2 \sqrt{2 \sin \left(\tau - \tau' \right)}} \right)^{\frac{1}{2}} \exp \left(\frac{i}{2 \sqrt{2 \sin \left(\tau - \tau' \right)}} \left[\frac{y'^2}{2} + \frac{y'^2}{2} \cos \left(\tau - \tau' \right) - y'y' \right] \right).
\]

This result is the same form as the report of S. Pepore and B. Sukbot by using of Schwinger method [7].

Results and Discussion

In this article we have successfully calculated the Feynman propagator for a harmonic oscillator with time-dependent mass and frequency by the path integral method connecting with a space-time transformation. The resulting propagator in Eq.(18) is the same as in the report of Pepore et.al. [6-8]. The important step in this paper is to find the space-time Transformations in Eq.(6) and Eq.(7) and to write the Lagrangian interms of a unit mass and frequency oscillator in Eq.(6). The advantage of our method in this paper is that it can transform complicated system into a simplified problem. We have conclude here that our method is the effective method for solving the time-dependent problems because it requires some basic integration. Finally, it may be suggested that the methods in this paper can be applied to complicated problems, such as a time-dependent linear potential and a charged harmonic oscillator in a time-dependent electromagnetic field.

References