RCAEM-II 2012
Proceedings of
2nd Regional Conference on
Applied and Engineering
Mathematics 2012
30-31 May 2012
Eastern & Oriental Hotel, Penang Malaysia

"Mathematics Beyond Arithmetic:
Constructing the Future, Challenging the Past"

Editors:
W. Z. A. Wan Muhamad
Wan Sahana Wan Daud
Ahmad Kadir Junoh
Muhammad Zaini Ahmad
Mohd Syafaruddin Abu
Lin Eng Aik
Wan Mohd Ezary Adly Wan Zaina

Nursalastawi Rusli
Eliana Salleh
Nor Asifah Abi Baker
Nurhidayah Omar
Syedwari Ab Setak

Robhae Abdul Hamid
Faros Ahmad Amin
Alien Muhammad
Nor Ariffin Azahari
LIST OF REVIEWER

Reviewer
Professor Dato' Dr. Abdul Halim Nawawi
Professor Dr. Ishak Ab Ghani
Professor Dr. Ishak Hashim
Professor Dr. Mohd Salmi Md Noorani
Professor Maman A. Djauhari
Associate Professor Dr. Ang Miin Huey
Associate Professor Dr. Burairah Bin Hussin
Associate Professor Dr. Farrukh Mukhamedov
Associate Professor Dr. Hailiza Kamarulhaili
Associate Professor Dr. Haslinda Ibrahim
Associate Professor Dr. Ismail Abdullah
Associate Professor Dr. Jane Labadin
Associate Professor Dr. Maheran Mohamed Jaffar
Associate Professor Dr. Mohd Lazim Abdullah
Associate Professor Dr. Mohd Omar
Associate Professor Dr. Noor Hasnah Moin
Associate Professor Dr. Noor Shah Saad
Associate Professor Dr. Nor Haniza Sarmin
Associate Professor Dr. Norihan Md. Ariffin
Associate Professor Dr. Zainal Abdul Aziz
Dr. Ahmad Nazlim Yusoff
Dr. Aida Mauziah Benjamin
Dr. Azhar Bin Ahmad
Dr. Eddie Shahril Ismail
Dr. Fadhliah Ahmad
Dr. Fatimah Noor Harun
Dr. Goh Yong Kheng
Dr. Hamzah Sakidin
Dr. Mohd Kamal Mohd Nawawi
Dr. Mohd Uzi Dollah
Dr. Norizan Mohamed
Dr. Sharidan Shafie
Dr. Zahayu Md Yusof
Dr. Zailan Siri
Dr. Zaitul Marlizawati Zainuddin

University
Universiti Teknologi MARA
Universiti Teknologi MARA
Universiti Kebangsaan Malaysia
Universiti Kebangsaan Malaysia
Universiti Teknologi Malaysia
Universiti Sains Islam Malaysia
Universiti Teknologi Malaysia
Universiti Islam Antarabangsa Malaysia
Universiti Sains Islam Malaysia
Universiti Utara Malaysia
Universiti Sains Islam Malaysia
Universiti Malaysia Sarawak
Universiti Teknologi MARA
Universiti Malaysia Terengganu
Universiti Malaya
Universiti Malaya
Universiti Pendidikan Sultan Idris
Universiti Teknologi Malaysia
Universiti Putra Malaysia
Universiti Teknologi Malaysia
Universiti Kebangsaan Malaysia
Universiti Utara Malaysia
Universiti Pendidikan Sultan Idris
Universiti Kebangsaan Malaysia
Universiti Sultan Zainal Abidin
Universiti Malaysia Terengganu
Universiti Tunku Abdul Rahman
Universiti Teknikal Malaysia
Universiti Utara Malaysia
Universiti Pendidikan Sultan Idris
Universiti Malaysia Terengganu
Universiti Teknologi Malaysia
Universiti Utara Malaysia
Universiti Malaya
Universiti Teknologi Malaysia
ON THE DIOPHANTINE EQUATION OF FORM $A^z + B^y = C^z$

Alongkot Suvarnamani

Department of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Thanyaburi, Pathum Thani, 12110, THAILAND.

E-mail: kotmaster2@rmutth.ac.th

Abstract—In this paper, we study some diophantine equation $A^x + B^y = C^z$ where A, B and C are prime and x, y and z are non-negative integers.

Keywords—diophantine equations; exponential equations; Catalan’s conjecture

I. INTRODUCTION

D. J. Sander ([4] and [5]) studied two diophantine equations $3^x + 3^y = 6^z$ and $4^x + 18^y = 22^z$. Then, Singh and Chotchaisthit [8] found two solutions of the diophantine equation $2^x + 5^y = z^2$. They noted that this equation has exactly two solutions with positive integer $(x, y, z) \in \{(3, 0, 3), (2, 1, 3)\}$. In the same paper, Suvarnamani, Singta and Chotchaisthit [8] found two solutions of the diophantine equation $4^x + 7^y = z^2$ for $x = 1$. After that Suvarnamani [7] found two solutions of the diophantine equations $2^x + 13^y = z^2$ and $2^x + 17^y = z^2$. Then Suvarnamani [6] studied the diophantine equation $4^x + p^y = z^2$ where p is a prime number and x, y and z are non-negative integers.

In this research, we study the diophantine equation of form $A^x + B^y = C^z$ where A, B and C are prime and x, y and z are non-negative integers.

II. MAIN RESULTS

In this study, we use Catalan’s conjecture (see [2]). It is known that the only solution in integers $a > 1$, $b > 1$ and $y > 1$ of the equation $a^x - b^y = 1$ is $a = 3$ and $b = c = 2$. Now we have the following theorem.

Theorem 1. Consider the diophantine equation

$$p^x + p^y = q^z \tag{1}$$

where p and q are distinct prime numbers and x, y and z are non-negative integers. We get

(i) $(x, y, z) \in \{(0, 3, 2), (3, 0, 2)\}$ is a solution of the diophantine equation (1) for $p = 2$ and $q = 3$.

(ii) $(x, y, z) = (0, 0, 1)$ is a solution of the diophantine equation (1) for $q = 2$.

(iii) $(x, y, z) \in \{(0, k, 1)|k$ is a non-negative integer $\}$

$\cup \{(1, 0, k)|k$ is a non-negative integer $\}$ is a solution of the diophantine equation (1) for $p = q^k - 1$.

(iv) $(x, y, z) \in \{(0, 1, k)|k$ is a non-negative integer $\}$

$\cup \{(k, 0, 1)|k$ is a non-negative integer $\}$ is a solution of the diophantine equation (1) for $q = 1 + p^k$.

Proof: Consider the diophantine equation

$$p^x + p^y = q^z. \tag{2}$$

Suppose that p and q are distinct prime numbers.

Case 1: $x \leq y$. The diophantine equation (1) becomes $1 + p^{y-x} = q^2/p^x$. Thus q^2/p^x must be an integer. Then $x = 0$. It follows that $q^2 - p^y = 1$.

By Catalan’s conjecture, we get $(x, y, z) = (0, 3, 2)$ is a solution of the diophantine equation (1) where $p = 2$ and $q = 3$.

If $z = 1$, then $q = 1 + p^k$. So, $(x, y, z) = (0, k, 1)$ is a solution of the diophantine equation (1) where k is a non-negative integer such that $q = 1 + p^k$.

If $y = 0$, then $q^2 = 2$. So, $(x, y, z) = (0, 0, 1)$ is a solution of the diophantine equation (1) where $q = 2$.

If $y = 1$, then $p = q^k - 1$. So, $(x, y, z) = (1, 1, k)$ is a solution of the diophantine equation (1) where k is a non-negative integer such that $p = q^k - 1$.

Case 2: $x > y$. The diophantine equation (1) becomes $p^{y-x} + 1 = q^2/p^x$. So q^2/p^x must be an integer number. Then $y = 0$. It follows that $q^2 - p^x = 1$.

By Catalan’s conjecture, we get $(x, y, z) = (3, 0, 2)$ is a solution of the diophantine equation (1) where $p = 2$ and $q = 3$.

If $z = 1$, then $q = 1 + p^x$. So, $(x, y, z) = (k, 0, 1)$ is a solution of the diophantine equation (1) where k is a non-negative integer such that $q = 1 + p^x$.
non-negative integer such that \(q = 1 + p^k \).

If \(x = 0 \), then \(q^2 = 2 \). So, \((x, y, z) = (0, 0, 1)\) is a solution of the diophantine equation (1) where \(q = 2 \).

If \(x = 1 \), then \(p = q^k - 1 \). So, \((x, y, z) = (1, 0, k)\) is a solution of the diophantine equation (1) where \(k \) is a non-negative integer such that \(p = q^k - 1 \).

Theorem 2. Consider the diophantine equation

\[p^x + q^y = q^z \] \((2) \)

where \(p \) and \(q \) are distinct prime numbers and \(x, y \) and \(z \) are non-negative integers. We get

(i) \((x, y, z) = (3, 0, 2)\) is a solution of the diophantine equation (2) for \(p = 2 \) and \(q = 3 \).

(ii) \((x, y, z) = (0, 0, 1)\) is a solution of the diophantine equation (2) for \(q = 2 \).

(iii) \((x, y, z) \in \{(1, 0, k) | k \text{ is a non-negative integer}\}\) is a solution of the diophantine equation (2) for \(p = q^k - 1 \).

(iv) \((x, y, z) \in \{(k, 0, 1) | k \text{ is a non-negative integer}\}\) is a solution of the diophantine equation (2) for \(q = 1 + p^k \).

Proof: Consider the diophantine equation

\[p^x + q^y = q^z \]

where \(p \) and \(q \) are distinct prime numbers and \(x, y \) and \(z \) are non-negative integers.

Case 1: \(y \geq z \). We get \(q^y \geq q^z \) and \(p^x > 0 \). So, \(p^x + q^y > q^z \). That is the diophantine equation (2) has no solution.

Case 2: \(y < z \). Since \(q^z \equiv 0 \pmod{q} \) and \(p^x + q^y \equiv 0 \pmod{q} \) except when \(y = 0 \), so \(p^x + q^y = q^z \) is impossible except when \(y = 0 \).

If \(y = 0 \), the diophantine equation (2) becomes \(q^z = p^x \).

By Catalan's conjecture, we get \((x, y, z) = (3, 0, 2)\) is a solution of the diophantine equation (2) where \(p = 2 \) and \(q = 3 \).

If \(x = 0 \), then \(q^2 = 2 \). So, \((x, y, z) = (0, 0, 1)\) is a solution of the diophantine equation (2) where \(p = 2 \).

If \(x = 1 \), then \(p = q^k - 1 \). So, \((x, y, z) = (1, 0, k)\) is a solution of the diophantine equation (2) where \(k \) is a non-negative integer such that \(p = q^k - 1 \).

Theorem 3. If \(p, q \) and \(r \) are distinct primes which are not 2, then the diophantine equation

\[p^x + q^y = r^z \]

has no solution.

Proof: Consider the diophantine equation \(p^x + q^y = r^z \). Since \(p, q \) and \(r \) are odd, so \(p^x, q^y \) and \(r^z \) are too. Then, \(p^x + q^y \) is even. So, \(p^x + q^y \) can not be a prime. Hence the diophantine equation (3) has no solution.

ACKNOWLEDGMENT

This research was partly supported by the Department of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology (RMUTT), Pathum Thani, THAILAND.

REFERENCES

