10th Eco-Energy and Materials Science and Engineering Symposium

On December 5-8, 2012
Sunee grand hotel,
Ubon-ratchathani

Organized by

Co-organized by
PREFACE:
Message from the President of
Rajamangala University of Technology Thanyaburi

Rajamangala University of Technology Thanyaburi (RMUTT), in conjunction with Kyoto University, is pleased to host the 10th Eco-Energy and Materials Science and Engineering Symposium (10th EMSES). This international conference is not only giving an opportunity for Thai and foreign researchers to present and discuss their research works and update their expertise but also to initially stimulate the development of research works on eco-energy and materials science and engineering. Our program consists of six research tasks: (1) Energy Technology, (2) Environmental and Social Impact, (3) Nanotechnology and Materials Science, (4) Energy Economics and Management, (5) New Energy Technology and (6) Nuclear Technology.

I would like to take this opportunity to express our sincere gratitude to our two distinguished Plenary Speakers for kindly accepting our invitation. I deeply appreciative of the very strong support given by Kyoto University. Thanks to the tireless works of the Organizing Committee, the Technical Program Committee, the invited speakers and paper and poster contributors, and excellent program been assembled to cover a broad spectrum of interesting topics.

We warmly welcome you to the 10th EMSES on December 5-8, 2012, Ubon Ratchathani, Thailand.

Numyoot SONGTHANAPITAK, Ph.D.
President of Rajamangala University of Technology Thanyaburi
and Conference Chairman of 10th EMSES 2012
PREFACE:
Message from the Director of
Institute of Advanced Energy, Kyoto University

It is my great pleasure to have the 10th Eco-Energy and Materials Science and Engineering Symposium (EMSES) with Rajamangala University of Technology Thanyaburi (RMUTT) under the long-term collaboration between RMUTT and Kyoto University. The 1st EMSES was held in 2001 in Thailand and the symposium has been expanded in its scientific contents as well as the academic network. I believe that the 10th EMSES gives a good opportunity to all participants to exchange their knowledge and idea to realize eco-friendly energy system in society. I would like to express my welcome to all participants and sincere thanks to the 10th EMSES organizing committee and all supporting organizations to make us having this symposium. I hope that the symposium will be successful and lead to further progress in energy science and technology and also in friendships of participants.

Professor Yukio Ogata, Ph.D.
Director of Institute of Advanced Energy, Kyoto University
PREFACE:
Message from the Former Dean of Graduate School of Energy Science, Kyoto University Program Leader, Global COE “Energy Science in the Age of Global Warming”

I want to express my hearty welcome to all participants of Eco-Energy and Materials Science and Engineering Symposium (10th EMSES). This symposium is aiming the realization of importance of energy and materials technology through the academic, science and technology network among the world communities. The symposium gives an opportunity for researchers to discuss their research works and also to initially stimulate the development of research works on eco-energy and materials science and engineering. Once the cooperation among researchers has been created, the further cooperation work will be developed.
I would like also extend my sincere thanks to all who made the meeting possible, including the 10th EMSES organizers, the SEE forum committee members, and the Japanese Government, JSPS, for their kind support. I am looking forward to seeing you in Ubon Ratchathani, Thailand.

Yours sincerely,

Professor Takeshi YAO, Ph.D.
Former Dean of Graduate School of Energy Science, Kyoto University
and Program Leader, Global COE “Energy Science in the Age of Global Warming”
Rajamangala University of Technology Thanyaburi (RMUTT), in conjunction with Kyoto University, is pleased to host the 10th Eco-Energy and Materials Science and Engineering Symposium (10th EMSES).

RMUTT has a major mission on encouraging and supporting all areas of research. One of the key reasons is to assist in developing capability in science and technology in order to cope with recent rapid change in this field. We have jointly set up an academic symposium on the 10th EMSES with the perception on the significance of exchanging knowledge and research experiences between researcher in the field of energy, materials technology and environmental science. This symposium is not only giving an opportunity for Thai and foreign researcher to present and discussion their research works and update their expertise but also to initially stimulate the development of research works on eco-energy and materials science and engineering. Once the cooperation among researchers has been created, the closer future cooperation incorporate with joint-research works will be developed. Thus, to support the aforesaid role, the symposium working committee would like to invite you to participate in this academic symposium.

I would like to express our sincere thanks to the organizing committee, participants and contributors for your kind corporation to this symposium. I wish this symposium proceeding will be a useful reference for future scientific research development.

Sommai PIVSA-ART, Ph.D.
Dean of Faculty of Engineering, RMUTT
Director of CoE on Sustainable Energy System (Thai-Japan)
Organizing Chairman of 10th EMSES 2012
International Scientific Advisory Committee:

General Chair:
Assoc.Prof.Dr. Namyoot SONGTHANAPITAK

General Co-Chair:
Prof. Dr. Kiyoshi YOSHIKAWA
Asst.Prof.Dr. Panpetch CHINITORN

Organizing Chair:
Asst. Prof. Dr. Sommai PIVSA-ART
Prof. Dr. Takeshi YAO

Organizing Co-Chair:
Prof. Dr. Hideaki OHGAKI

International Scientific Committees:
Prof. Dr. Susumu YOSHIKAWA
Prof. Dr. Phadungsak RATTANADECHO
Prof. Dr. Shiro SAKA
Prof. Dr. Hitomi OHARA
Prof. Dr.-Ing. Habil Ingo STADLER
Prof. Dr. Young S. CHAI
Prof. Dr. Nipon TANGTHAM
Prof. Dr. Masayoshi OKUBO
Prof. Dr. Somchai WONGWISES
Prof. Dr. Nadarajah MITHULANANTHAN
Prof. Dr. Yukio OGATA
Prof. Dr. Yuichi ANADA
Prof. Dr. Narongrit SOMBATSOMPOP
Assoc. Prof. Dr. Bandit FUNG TAMMASAN
Assoc. Prof. Dr. K. Srinivas REDDY
Assoc. Prof. Dr. David Jan COWAN
Assoc. Prof. Dr. Per B ZETTERLUND
Assoc. Prof. Dr. Vijit KINNARES
Assoc. Prof. Dr. Yoshikazu SUZUKI
Assoc. Prof. Dr. Thawatch KERCHEUN
Assoc. Prof. Dr. Wakin Piyarat
Assoc. Prof. Dr. Seiichi KAWAHARA
Assoc.Prof.Dr. Kawee SRIKULKIT
Asst. Prof. Dr. Somchai HIRANVAROMDOM
Asst. Prof. Dr. Wanchai SUBSINGHA
Asst. Prof. Dr. Thanapon SUWANASRI
Asst. Prof. Dr. Napaporn PHUANGPORNPI Tak
Asst. Prof. Dr. Boonrit PRASARTKA EW
Asst.Prof.Dr.Supakit SUTTIRUENGWONGSU, Thailand
Asst. Prof. Dr. Vallop PHUPA
Asst.Prof.Dr.Pramook UNAHALEKHAKA RMUTSB, Thailand

RMUTT, Thailand
Kyoto Uni., Japan
RMUTT, Thailand
RMUTT, Thailand
Kyoto Uni., Japan
Kyoto Uni., Japan
Kyoto Uni., Japan
TU, Thailand
Kyoto Uni., Japan
Kyoto Uni., Japan
FH Koeln, Germany
Korea
KU, Thailand
Osaka Uni., Japan
KMITL, Thailand
UQ, Australia
Kyoto Uni., Japan
Hokkaido Info. Uni., Japan
KMUTT, Thailand
KMUTT, Thailand
IIT-Madras, India
IUPUI, USA
Australia
KMITL, Thailand
Japan
RMUTI, Thailand
SWU, Thailand
Nakaoga Uni., Japan
CU, Thailand
RMUTT, Thailand
RMUTT, Thailand
KMUTNB, Thailand
KU, Thailand
RMUTT, Thailand
RMUTP, Thailand
Dr. Arthit Sode-Yome
Dr. Sei-ichi AIBA
Dr. Wirachai ROYNARIN
Dr. Yuttana KAMSUWAN
Dr. Jakkree SRINONCHAT
Dr. Chatchai SOPPAPITAKSAKUL
Dr. Pinit SRITHORN
Dr. Uthen KAMNAN
Dr. Cattariya SUWANNASRI

EGAT, Thailand
Japan
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTI, Thailand
RMUTL, Thailand
KMUTNB, Thailand

ASEAN Committee:
Prof. Dr. Yoyok Wahyu Subroto
Prof. Dr. Wega TRISUNAYANTI
Prof. Dr. Tuniran
Prof. Dr. Jun LI
Prof. Dr. INTHAN
Prof. Dr. Khamphone NANTHAVONG
Prof. Dr. Kampui SOUTHISOMBHAH
Prof. Dr. Yew Wei LEONG
Prof. Dr. Nguyen Minh TAN

UGM, Indonesia
UGM, Indonesia
UGM, Indonesia
NYU, Singapore
ITB, Indonesia
NOL, Laos
NOL, Laos
NYU, Singapore
HU, Vietnam

General Secretary:
Asst. Prof. Dr. Krischonme BHUMKITTIPIICH
Dr. Sumonman NIAMLANG

RMUTT, Thailand
RMUTT, Thailand

Technical Program Chair:
Asst. Prof. Dr. Krischonme BHUMKITTIPIICH

RMUTT, Thailand

Area: Energy Technology (ET)
Dr. Wirachai ROYNARIN
Asst. Prof. Dr. Boonrit PRASARTKAEW
RMUTT, Thailand
Dr. Sathapron THONGWIK
Dr. Nathabhat PHANKONG

Area: Environmental and Social Impact (ES)
Dr. Nithiwat CHOOSAKUL

RMUTT, Thailand

Area: Nanotechnology and Materials Science (NM)
Dr. Sarapong PAVASUPREE
Asst. Prof. Dr. Kitipong KIMAPONG
RMUTT, Thailand
Asst. Prof. Dr. Sirichai TORSAKUL
Asst. Prof. Dr. Warunee ARIYAWIRIYANANT
RMUTT, Thailand

Area: Energy Economic and Management (EM)
Assoc. Prof. Dr. Natha KUPTHASTHIEN
RMUTT, Thailand
Dr. Surin NGAEMNGAM
RMUTT, Thailand
Dr. Pinnapat IEMSONMOON
RMUTT, Thailand

Area: New Energy Technology (NT)
Dr. Boonyang PLANGKLANG
RMUTT, Thailand

Area: Nuclear Technology (NU)
Asst. Prof. Dr. Krischonme BHUMKITTIPIICH
RMUTT, Thailand
Exhibition Chair:
Dr. Amnoy REUNGWAREE
Dr. Winai CHANPENG

Local Arrangement Chair
Dr. Sorapong PAVASUPREE
Dr. Natee SRISAWAT

Registration and Finance Chair
Dr. Sumonman NIAMLANG
Dr. Supaporn THOMSORN
Weeraporn PIVSA-ART

Publicity Chair
Asst.Prof.Dr. Krischonme BHUMKITTIPICH
Dr. Sumonman NIAMLANG
Dr. Montip LASURIYONTA
Somchai BIANSOONGNERN

Publication Chair:
Prof. Dr. Preecha P.YUPAPIN
Assoc.Prof.Dr.Takashi SAGAWA
Dr. Boonyang PLANGKLANG
Asst. Prof. Dr. Sonobe TARO

Website and Information System Chair:
Dr. Nathabhat PHANKONG
Phongsuk AMPHA
Deachrat JAITHAWIN

RMUTT, Thailand
KMITL, Thailand
Kyoto Uni., Japan
RMUTT, Thailand
Kyoto Uni., Japan
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
KEYNOTE SPEAKER
KS01 Japan Power Generation Mix and Energy Security after Fukushima Nuclear Accident
Kenichi Nishihara
K-1
KS02 Vertical Motions in Greater Bangkok Area after the 2004 Sumatra-Andaman Earthquake from GPS Observations and Its Prediction based on the Geophysical Modelling
Chatanchon Surawipool
K-2

INVITED SPEAKER
IN01 Relaxation Analysis of Electrode Crystal Materials for Secondary Lithium Ion Batteries
Takehide Yao
IN02 Renewable Energy in Thailand: Opportunity and Technology Allocation
Thawatch Kerdechaun
IN03 Numerical Simulation of Microwave Ablation Process using Single Slot Antenna in Two-Layered Porous Liver Tissue
Phadungsak Ratatusadecho
IN04 Study on the Performance of Multi Evaporator and Pump Down Operation
Chuai Kim, Hansoh Chung
IN05 A Study on Improving the Reliability of a Heat Sink for COB LED Light Source
Bum Suk Seo, Young Seok Cho and Dae Hee Park
IN06 Distribution System Voltage Stability with DG Units Considering Load Models
Lin Qin, N.Moholananthar and A. Sada-Tony
IN07 Recent Progress in Bio-based Polymer Production Technology
Seiichi Aiba
IN08 Hydrothermal Effects on Mechanical Properties and Weight Change Mechanism of Jute Fiber Reinforced Composites
Ying Fu, Morigouchi Hiroyuki, Yui Sun, and Maruyama Kinya

IN09 Effect of Motion of Impurity Ions on Electrical Properties of Polymer materials
Yasushi Amada
IN10 Effect of Talc Filler and Polymer Blends Contents on Properties of Recycled PET Injection Mouldings
K. Yoshida, S. Yamada, M. Kusumoto, and H. Hamada
IN11 Characteristic Requirements of a Small Scale Squirrel Cage Induction Generator for Effective Electricity Generation from Wind Energy
V. Kumanan and B. Sureshkrishnam
IN12 Supramolecular Self-Assembled Polymeric Systems for Biomaterials Applications
Jun Li
IN13 New Energy Initiative
Summe Yoshikawa
IN14 Nuclear Security Technologies in Japan
Hidesake Ohgaki
IN15 Hierarchical Structure and Properties of Natural Rubber
Seiichi Kawahara
IN16 Fiber, Resin, Interphase Hybrid on Continuous Natural Fiber Reinforced Composites
Asumi Nishide
IN17 -Topic-
Shigemori Niki
IN18 Production of Biobased Chemicals by Bacterial Process
Yuki Aso
IN19 Influence of Pd/B Molecular Weight and Pd/B-Poss Molecular Architecture on Crystallization Kinetics and Thermal Stability during Stereocomplexation with Plla
Leung Yew Wei
<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET01</td>
</tr>
<tr>
<td>ET02</td>
</tr>
<tr>
<td>ET04</td>
</tr>
<tr>
<td>ET05</td>
</tr>
<tr>
<td>ET09</td>
</tr>
<tr>
<td>ET10</td>
</tr>
<tr>
<td>ET11</td>
</tr>
<tr>
<td>ET12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET14</td>
</tr>
<tr>
<td>ET15</td>
</tr>
<tr>
<td>ET20</td>
</tr>
</tbody>
</table>
CONTENT

ET23 Application of Artificial Neural Network in Materials Estimation of 22 kV Overhead Lines K. Ananoibhonpon and K. Bhumpisich 172

ET24 Performance Study and Analysis of Micro Hydro Turbine and PV for Electricity Generator Case Study: Bunnasopit School, Nan Province Thuanh Phat, P. Jaroensboon, and K. Bhumpisich 175

ET26 The Performance Improvement of a Thick Electrode Solid Oxide Fuel Cell P. Chinda 185

ET27 Modeling of Grid-Connected with Permanent Magnet Synchronous Generator (PMSG) using Voltage Vector Control M. Soniaya, P. Nathakhat, K. Bhumpisich and Podditar Sukhinawat 194

ET28 Enhancement of Cassava Rhizome Gasification Using Mono-Metallic Cobalt Catalysts Pancharak Sereenroong, Chuangiren Aung and Viboen Sricharoonchaisil 199

ET29 Gasification of Peanut Shell Waste using a Modular Fix-Bed Gasifier Surajit Nimsanammanapun, Chuangiren Aung and Viboen Sricharoonchaisil 204

ET30 A Study of Integrating Renewable Energy in Smart Grid System N. Phuangporpsak and S. Tiu 208

ET31 Performance evaluation of 10 kWp photovoltaic power generator under hot climatic condition Nipon Keprayanuchit, Surasat Srisuwancharong, and Narawat Khaosakat 214
<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET43 Control of Parallel-Connected AC to DC Converters with Droop Technique for DC Microgrid Application</td>
</tr>
<tr>
<td>C. Tanasunvirak, P. Chuenag and P. Thasuvan</td>
</tr>
<tr>
<td>ET45 Design of Matlab/Simulink Modeling of Fixed-Pitch Angle Wind Turbine Simulator</td>
</tr>
<tr>
<td>P. Jansoy and Y. Kunsawan</td>
</tr>
<tr>
<td>ET46 Closed Loop Speed Control of Induction Generator with Scalar-Control Inverters</td>
</tr>
<tr>
<td>A. Upasam and Y. Kunsawan</td>
</tr>
<tr>
<td>ET47 Study of Generator Reaction on Permanent Magnet Synchronous Motor for Energy Regenerative Applications</td>
</tr>
<tr>
<td>S. Khamnum, A. Ngaphak and B. Phuangphong</td>
</tr>
<tr>
<td>ET48 Ethanol Production from Rice Straw by Simultaneous Saccharification and Co-Fermentation</td>
</tr>
<tr>
<td>N. Surachai, V. Chunsupa, N. Laosatruyaj, and P. Unratan</td>
</tr>
<tr>
<td>ET49 High Voltage Gain Interleaved DC Boost Converter Application for Photovoltaic Generation System</td>
</tr>
<tr>
<td>W. Khudsi and W. Suhingha</td>
</tr>
<tr>
<td>ET50 Influence of Bath Temperature on the Properties of InOx Films Grown by Chemical Bath Deposition</td>
</tr>
<tr>
<td>G.R. Cogswell, R.W. Miles and K.T. Ramakrishna Reddy</td>
</tr>
<tr>
<td>ET51 Unsteady Surface Pressures and Airload of a Pitching Airfoil</td>
</tr>
<tr>
<td>Supakit Wrotrachalin, Great Ingram and Robert Dominy</td>
</tr>
<tr>
<td>ET52 Fast Pyrolysis of Jatropha Residue with Alumina Based Catalysts using Pyrolysis-Gas Chromatography/Mass Spectrometry</td>
</tr>
<tr>
<td>Prangpat Kawipongkran, Daowatcheson Asong and Viboon Srithanaresukkul</td>
</tr>
<tr>
<td>ET54 Selective Synthesis of Monoglycerides in a Capillary Microreactor</td>
</tr>
<tr>
<td>Masamitsu Kimura, Chaowalit Ngamcharusritwadee, Siriluk Poompimook</td>
</tr>
</tbody>
</table>

CONTENT

| ET55 | Numerical Analysis of Laminar Heat Transfer in a Square Duct with Inclined Diagonally Angled – Ribs | 310 |
| W. Judadtra traumatic, I. Wongwong, A. Boonlai and P. Promvonge |
| **ET56** Effect of V-orifice on Laminar Flow Structure and Heat Transfer in Square Duct | 316 |
| W. Judadtra traumatic, N. Nitaipakul, A. Boonlai and P. Promvonge |
| **ET57** Numerical Analysis of Turbulent Heat Transfer in a Square Duct with Diagonal V-Dycrete Ribs | 321 |
| W. Judadtra traumatic, P. Promthatsong, A. Boonlai and P. Promvonge |
| **ET58** Numerical Study of Laminar Heat Transfer in a Circular Tube with Angled Orifices | 327 |
| W. Judadtra traumatic, R. Poomsuk, A. Boonlai and P. Promvonge |
| **ET59** Effect of Tube Aspect Ratios on Air Side Performance of the Cross Flow Heat Exchangers with the Flat Tubes Having Different Aspect Ratios | 333 |
| S. Tothatsong and N. Kongsanumand |
| **ET60** Effect of Attack Angles on Air Side Thermal and Pressure drop of The Cross Flow Heat Exchangers with Staggered Tube Arrangement | 338 |
| S. Tothatsong and N. Kongsanumand |
| **ET61** Sintering of an Aqueous-Based Tape Casted Samarium-Doped Ceria Electrode | 344 |
| P. Lekkha, D. Yatincharin and S. Watamartworach |
| **ET62** Design, Construction and Testing of a Thermoelectric System | 349 |
| R. Pungngrou, S. Jamsawadee, K. Ekprasongsak, Y. Chim-joy and M. Phuanglogy |
| **ET63** Water Waste Treatment Stand Alone Photovoltaic System | 352 |
| O. Sadmu and S. Hirsanurmat |
| **ET64** The effect of photon flux density and module temperature on power output of photovoltaic array | 356 |
| Chutraya Sirimaprathawong and Chatchai Sirisophonwong |
CONTENT

ET65 Electrochemical Performance of Ni$_x$Co$_{1-x}$-GDC Cermet Anodes for SOFCs
J. Ayumimina, Daranie Wunnae, Nakhonwich Sathasivam, and Kazunori Sato

ET69 Comparison of Two Scenarios for Maximizing CO$_2$ Reduction and Supply Energy for Bioethanol Production and Power Generation from Agro-Residues: A Case Study in Ecuador
J.C. Garcia M., T. Machinena, and T. Mariscal

ET70 CuO coating effect on photovoltaic performance of dye-sensitized solar cells based on SnO$_2$ nanowires
Saruchet Phadungkhot, Luangkham Xaysouvan, and Suphak Choesan

ET71 Assessing the energy savings potential in public buildings through retrofit measures in tropical climates – A case study in Mauritius
Vishwaamitra Orce and Onesh Kumar Mehla

ET72 Three-Level Back-to-Back Converter Simulation for Wind Turbine Energy Source
N. Wachirat, N. Phongsangerp, and W. Khuntrakul

P. Suterer, N. Chalina, N. Tongrung, Y. Laoamdeo, and J. Pongphasukawat

ET74 Fabrication of Samarium Doped Ceria Electrolyte on Rough Glass Substrate with High Electrical Conductivity by Electrophoretic Deposition for Intermediate Temperature Solid Oxide Fuel Cell
Tanapat Chidamarn, Muneer Panapayit, and Boonvirat Kaipasaree

ET75 Effect on Compressive Strength of Replacing Sand by Dolomite in Concrete
Phuchoom Khumprasit and Kittipong Saweroo

ix

CONTENT

ET77 Renewable Energy Feasibility Study: Case Study for A Main Telephone Fixed-Line Exchange Unit in Thailand
N. Kaikraithan, Sarawut Jaturawoot, and D. Jatkhet

ET78 Laboratory Study of Selected Trace Elements Behavior during Biomass Co-Combustion with Coal
A. Kisitd

ET79 Comparative Evaluation on Product Properties and Energy Consumption of Single Microwave Dryer and Combination of Microwave and Hot Air Dryer for Durian Peel Particleboards
Sarocha Charoenwit, Wuthichat Tungyuen, Anuchit Junya, Phadungkhot Nantakoon, and Somchai Yongrungsuchat

ET80 Effect of Activated Carbon Surface Treatment on Methane Adsorption for Natural Gas Storage Development
Anawadith Sangsai, Konsapichatk Eakjamnan, Pranom Phongsawasdi, and Sunil Kalsuprathipanna

ET81 Hydrodynamic Behavior of a Fluidized Bed Containing Sun Flower Seed
Phichai Suksaen, Sirivat Achariyaviriyakul, and Avee Achariyaviriyakul

ENVIRONMENTAL AND SOCIAL IMPACT

ES09 Degradation Behaviors of Different Blends of Polyactic Acid Buried in Soil
C. Chomsuangjun, C. Pechy, and S. Siriswanasenaoyoth

ES10 Fixed bed Adsorption Column Studies for the Removal of Aqueous Phenol from Activated Carbon Prepared from Sugarcane Bagasse
H.D.S.S. Kirumawathne and B.M.W.F.K Amarasinghe

ES11 Analysis of pesticide residues in tomatoes by using Gas Chromatography/Mass Spectroscopy
D.M.S.C. Dixamayale, K.E.D.S. Ranaweera, Nimal Pathmaroti

ES13 Correlation between heat flux over the Indian Ocean and rainfalls in Coastal Thailand by using the MM5 numerical model
P. Prakasamintarn, A. Siripong, and D. Sukawat

402

419

424

430

435

440
CONTENT

ES14 Effect of Acid Treatment on Adsorption of Single-Walled Carbon Nanotubers for Teracycline Removal from Aqueous Solution
Kong Sitarat, Kyoun Nakagawa, Tanwachai Chareongpanich, and Kamruvan Jowitas 444

ES15 The Applied Geographic Information System and the Relation of Mollusk with Water Quality in Ayutthaya Province, Thailand
D. Supatsaraw, N. Ae rawra, and J. Poomrakpan 449

ES16 Reproduced Solar Radiation Derived from Electric Current of Solar Cell for Daytime Meteorological Study
Nitisawat Chinnakul, Channawut Bangfeng and Nutee Barnship 454

NANO TECHNOLOGY AND MATERIAL TECHNOLOGY

NM01 Surface Treatment of natural fibers with Flexible Epoxy Resin Nawanvar Klinthaiya, Patian Unrawongwatt, Wongsir Prasrinart and Hiroypu Hamada 459

NM02 Poly (lactic acid) and Poly (butylene succinate) blend Fibers Prepared by Melt Spinning technique
L. Jungsam, J. Wong Chai, P. Sutin, C. Apwat, T. Chai Schneidermung, S. Thamisorn, N. Kandhbuabong, N. O-Charon, and N. Sritwatt 463

NM03 Morphological and Impact Property of Flexible Epoxy Treated Natural Fibers Reinforced Poly (lactic acid) Composites
Wiphatree Nothong, Patian Unrawongwatt, Wongsir Prasrinart, and Hiroypu Hamada 464

NM04 Collector Thermal Efficiency of Solar Panel Made from Thermoplastics
Tanwachai Memhon, Warane Aranyiriryan, Manop Yampang, Pongpipat Tuarmsap, Jakanavan Booboon, Nudel Echinphayavisaad, Pongpipat Muangchanon and Supachat Chongpaisalvutana 468

NM05 Effect of Heat Seal Conditions on Heat Seal Characteristic of Poly (Lactic Acid)/Thermoplastic Starch Blend Films
S. Thamisorn, K. Yamada, S. Prasrinart, K. Miyata and H. Hamada 472

NM06 Microstructural arrangement and densification of GDC10-3YTZ solid solutions
S. Wattanawatee, T. Andaguch, and D. Wattanawatee 473

NM07 Kinetic Study of Poly(L-lactic acid) Pre-polymers Synthesis in a 2-Step Direct Polycondensation Process
Summaiwan Niamling, Wongsir Prasrinart, Nutaphon Sompase, Supapat Wischarawasansree, Tussawan Wongbong and Summai Prasrinart 479

NM09 Effect of Metal Additives on the Hydrogenation of Carbon Dioxide over Nickel Catalyst Prepared by Sol-gel Method
Hirame Ards 480

NM10 Effects of Fuel Contents and Surface Modification on the Sol-Gel Combustion C60,Gd0.05,Al Nanopowder
Damne Watthananuwatee and Sudheer Wantsawatee 483

NM11 Mechanical Properties of Bamboo Charcoal Reinforced PLA Composites
Pradudporn Limnapeepoon Patian Unrawongwatt, Wongsir Prasrinart and Hiroypu Hamada 489

NM12 Preparation of Poly(lactic acid) and Poly (trimethylene terephthalate) Blend Fibers for Textile Application
S. Padua, J. Wong Chai, P. Sutin, C. Apwat, T. Chai Schneidermung, S. Thamisorn, N. Kandhbuabong, N. O-Charon and N. Sritwatt 493

NM13 Poly (lactic acid)/Polyacrylaactone Blends Compatibilized with Block Copolymer
S. Chularatpan and S. Phusawattana 494

NM14 Preparation of Polymer Blends Between Poly (lactic acid) and Poly (butylene adipate-co-terephthalate) and Biodegradable Polymers as Compatibilizers
Wongprap Prasrinart, Amorn Chalayanu, Songmu Prasrinart, Hitami Yamane and Hitomi Ohara 496

NM17 Effect of Molecular weight and Concentration of Chitosan on Poly (vinyl acetate) Encapsulated A. Jullapan, S. Phusawattana 499
<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM41</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM42</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM43</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM45</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM46</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM47</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM50</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM51</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM52</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

XV

<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM53</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM54</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM55</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM56</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM57</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM58</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM59</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM60</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NM61</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

xvi
CONTENT

NM62 The Electromechanical Properties of Crosslinked Natural Rubber
S. Niamlang, S. Thongvatt, N. Pawanartnunt and A. Siriwat
639

NM63 Thermal and Mechanical Properties of Biodegradable polyurea/Silica Nano composites
Rattihum Kattan, Samuttri Pong-Art, Hamada Hiroshi and Suppijai Suwansang
643

NM64 Preparation of NiO-YSZ Substrate for Electro photore ectric Deposition of thin YSZ Film
M. Mirzupa, D. Wattanaparin, S. Wattanaprinruch and P. Anukaravutana
648

NM65 Characterization and Photo responses properties of Sn-doped ZnO
K. Chongki, C. Bangkai, W. Techudthes and W. Pechanup
652

NM66 The Mechanical Properties of Vulcanized Dehydrated Natural Rubber
J. Naim, K. Sae-hung, W. Ariyavinijnon and S. Karesara
656

NM67 Optical absorptivity enhancement of SiO2 thin film by Ti and Ag additive
P. Atnakivit, S. Socsmung and W. Pechanup
660

NM68 Synthesis of CuO Nanoparticles by Precipitation Method using Different Precursors
K. Phdung, S. Suphaskit, W. Makrosart and W. Pechanup
664

NM69 A Study of Energy Saving in Building through Thermal Insulation with plywood Inserted Honeycomb Sandwich Panels
A. Reengwarre V. Prasarnnd and S. Tornshai
671

NM70 Hydrothermal Preparation and Photocatalytic Activity of Nanosheets from Natural Illimite Mineral
W. Chaemnaree, T. Wiraungkongkorn, N. O-Choman, S. Saithanawarat, K. Sangsat' and S. Pasawpee
672

NM71 Effect of Nitrogen doping on optical and photocatalytic properties of TiO2 Thin Film Prepared by Spin Coating Process
W. Aekprasart, T. Khumng, J. Rattanarak, W. Techudthens and W. Pechanup
677

CONTENT

NM72 Photocatalytic of N-doped TiO2 Nanofibers prepared by electrospinning
S. Suphaskit, W. Makrosart and W. Pechanup
680

NM73 Nanostructure Investigation of Particle Emission by using TEM Image Processing Method
Preecar Karin, Yithana Songsangnon, Somsan Lounswan, Chinda Charunanthapsan, Nowong Choklabb and Kasatniru Honnawar
683

NM74 An Investigation of Weldline Strength in Injection Molded Rubber Parts
W. Choowon, Srachai Mbang桐jakdak, Patnnone Jirush, Nanussat No Banong and Songmae Panchawatan
689

NM75 Preparation of PVP/MHIC Blended Hydrogels via Gamma Irradiation and Calcium ion Uptaking/Releasing Behavior
K. Pluangpong, K. Koyamuk, A. Kaewwiwit, N. Nontawan, P. Kuwiasn and A. Luebthee
693

NM76 Effect of Thermal Treatment on Intermetallic Phases of Fe Al Structural Transition Joints
S. Pruksae and A. Rodchomamurwan
697

NM77 Structural Characteristics and Dielectric Properties of LixCoFeO3 and LaFeO3•Co2O3 Synthesized via Metal Organic Complexes
Wansukkura Hanon, Thanomasu Thanwech, Wuesuwat Wattanathana, Apyr Lifbthee, Huthakarn Manasop, Chatuchai Varunsinh and Natsorn Konnoong
701

NM78 Simple Hydrothermal Preparation of Zine Oxide Powders using Thai Autoclave Unit
T. Wiraungkongkorn, N. O-Choman and S. Pansawpee
707

NM79 Thermal and mechanical properties of polypropylene/boron nitride composites
W. Cheawwarnprong, D. Fuchhe, S. Tamone, H. Uematsu, and Y. Imoto
711

NM80 Mechanical Properties of Jute Spun Yarn/PLA Tubular Braided Composite by Pultrusion Molding
A. Memom and A. Nakat
717
<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM81</td>
</tr>
<tr>
<td>NM83</td>
</tr>
<tr>
<td>NM88</td>
</tr>
<tr>
<td>NM89</td>
</tr>
<tr>
<td>NM90</td>
</tr>
<tr>
<td>NM91</td>
</tr>
<tr>
<td>NM92</td>
</tr>
<tr>
<td>NM93</td>
</tr>
<tr>
<td>NM94</td>
</tr>
<tr>
<td>NM95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM96</td>
</tr>
<tr>
<td>NM97</td>
</tr>
<tr>
<td>NM99</td>
</tr>
<tr>
<td>NM100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENERGY ECONOMIC AND MANAGEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM03</td>
</tr>
<tr>
<td>EM04</td>
</tr>
<tr>
<td>NT18</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NT19</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NT20</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Reproduced Solar Radiation Derived from Electric Current of Solar Cell for Daytime Meteorological Study

Nithiwatthn Choosakul*, Chanoknan Banglieng* and Naris Barmthip*

1Division of Physics, Faculty of Science and Technology,
Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani 12110
E-mail: cnwatthn@rmutt.ac.th

Abstract—During the day, the electric current were generated by the incidental sunlight onto the solar cell. The current variation was linearly depended on the variation of solar radiation of each day. The linear relationship between the solar cell-generated electric current and the incidental solar radiation can successfully be used as an index to convert back the current to the solar radiation in term of the used of solar radiation for meteorological purpose in the area that had no any solar instrument except the solar cell. In the 6 months experiment period from January 1st to June 30th, 2012, it was demonstrated that the relationship between the variation of the electric current and solar radiation was the linear relationship with mean of $R^2 = 0.913$. The linear relationship index was different on each month based on the monthly solar radiation. The mean overall index was 0.107. By using the index, we were successfully reproduced the solar radiation from the electric current generated by solar cell. The results showed good agreement with $R^2 = 0.95$ of the relationship between the reproduce solar radiation and the original one. The case study of June 7th, 2012 shows good results of the use of the reproduced solar radiation in the study of the cloud covering the sky. In the morning from around 7.00 LT to 12.30 LT, the reproduced solar radiation showed the slightly increase with small variation indicated that it was in the normal sunny condition. After 12.30 LT, the reproduced solar radiation was dropped down to the low level of solar radiation until the end of the day at around 17.30 LT. It was indicated this area was cover by cloud from around 13.00 LT to around 17.30 LT. This result agrees quite well with the satellite image that illustrated the cloud was cover this area at the same time of the dropdown reproduced solar radiation.

Keywords—Reproduced Solar radiation, Solar cell, Cloud cover, Meteorology.

1. INTRODUCTION

Solar cell is the one of the suitable instruments for the clean energy that used in the present day. The electricity will generates when the solar radiation is incident onto the solar cell during the daytime [1-4]. Amount of the electricity that solar cell can generated was directly depended on the intensity of the incidentally solar radiation onto the solar cell. Also the weather condition of the day could control the intensity of solar radiation [5]. Cloud and rain are the main influence factors to the variation of solar radiation. In the cloudy or rainy condition, the electric current that solar cell can produced was in the low level when compare with the electric current generated in the sunny condition. These phenomena of the variation of electric current was depended on the variation of weather condition served the very useful technique to use solar cell as the meteorological tool for the daytime weather study especially for the variation of solar radiation in the area that has no any solar radiation devices but solar cell. In this paper, we illustrated the relationship between the electric current obtained from the solar cell and the solar radiation as well as the reproduced solar radiation computed from its relationship. Moreover, we also showed the used of reproduced solar radiation for the study of cloud cover duration in meteorological purpose.

2. EXPERIMENTAL SETUP

In the experiment, we used the data from two instruments, solar radiation sensor and solar cell, respectively. The solar radiation data was from the Silicon pyranometer solar radiation sensor which was installed on the top of the Faculty of Science and Technology building, Rajamangala University of Technology Thanyaburi as shown in Figure 1.

Figure 1 Silicon Pyranometer solar radiation Sensor (in the circle)
The solar radiation data was recorded by the HOBO U30 weather station in every 15 minutes. We setup the experimental time period of ten-hour daytime from around 7.00 LT to around 17.00 LT. 40 solar radiation data per day were collected. The example plotted of solar radiation on March 20th, 2012 was illustrated in Figure 2.

Figure 2 The solar radiation of March 20th, 2012

The solar cell was also installed nearby the solar radiation sensor where was no any shadow from anything affected to it as shown in Figure 3. The photovoltaic current (Ipv) was directly generated by the solar cell every day in the period of the experiment. Its sampling interval was 24 data per hour. Then 240 Ipv data per day were collected.

Figure 3 Solar cell used in the experiment

Choosakul et al. [5] suggests that Ipv was generated when solar radiation was incident onto the solar cell. Generally, the generated Ipv slightly increased in the morning. The maximum Ipv is at noon and slightly decreased in the afternoon.

Because the sampling data of solar radiation are smaller than the sampling data of solar cell, we designed to select the Ipv data from the solar cell with corresponding to solar radiation time interval. Thus 40 Ipv data were selected. Figure 4 Ipv with corresponding to solar radiation time interval on March 20th, 2012 illustrated well-correlation tendency. Both of the data slightly increased in the morning. The maximum values of both data reached at the same time of about 11.15 LT. The other data shown in Figure 5b to Figure 5d were also illustrated well-correlation tendency respectively. To investigate how well of the correlation tendency, we compared both solar radiation and the Ipv of over all 6 months data in the period of the experiment. Figure 6 illustrated the correlation between both data on the overall 6 months data. It was shown in the overall data plot that both data had good agreement of its correlation with $R^2 = 0.913$. We also made an investigation on the correlation between both data of each month. We found that they had good agreement among their correlations.

Based on the well-correlation tendency of both data, we could analyze the linear relationship index from the correlation between them from each month.

<table>
<thead>
<tr>
<th>Month</th>
<th>Index</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.104</td>
<td>0.976</td>
</tr>
<tr>
<td>2</td>
<td>0.105</td>
<td>0.942</td>
</tr>
<tr>
<td>3</td>
<td>0.102</td>
<td>0.882</td>
</tr>
<tr>
<td>4</td>
<td>0.102</td>
<td>0.847</td>
</tr>
<tr>
<td>5</td>
<td>0.097</td>
<td>0.662</td>
</tr>
<tr>
<td>6</td>
<td>0.089</td>
<td>0.609</td>
</tr>
<tr>
<td>Overall</td>
<td>0.107</td>
<td>0.913</td>
</tr>
</tbody>
</table>

Table 1: The relation Index of 6 months experiment

Table 1 demonstrated that the Index slightly decreased from January to June. It should be noted that the number of rainy and cloudy day have increase from January to June and the net solar radiation of each month is dependent on the orbit of the earth.
Figure 5. The comparison between the solar radiation data and Ipv data on January 12 to 15, 2012

Figure 6. The comparison between Ipv and solar radiation on overall 6 months of the experiment.

The index from the experiment period illustrated that the Ipv data which were generated by the solar cell and solar radiation data observed by the solar radiation sensor could have linear relationship. By using the overall index, we computed the solar radiation from Ipv data, and compared the solar radiation with the reproduced solar radiation as shown in Figure 7. The reproduced solar radiation obtained from Ipv was agreed quite well to the solar radiation obtained from solar radiation sensor. It could be confirmed that the solar radiation was successfully reproduced from Ipv obtained from solar cell.

Figure 7. An example of the comparison between the reproduced solar radiation and the original solar radiation on June 6th, 2012

Based on the variation of net solar radiation of each month, the used of the index of each month could suitable compute the solar radiation than the used of the overall index. To investigate them we make 2 set of the plot, first plotted of the correlation between the reproduced solar radiations with using the monthly index and the original one, second plotted of the correlation between the reproduced solar radiations with using the overall index and the original one as showed in Figure 8.

Figure 8a showed that correlation with $R^2 = 0.956$ of the reproduced solar radiation using overall index and Figure 8b showed that the correlation with $R^2 = 0.925$ of the reproduced solar radiation using monthly index.

\[y = 0.1075x + 19.486 \\
R^2 = 0.9132 \]
For the other months in the experiment (not showed in this article) we found that the R^2 of the both quit similar to each other. By this result we might suggested that we can used the overall index as well as the used of the monthly index.

![Reproduced Solar radiation with overall index](image)

\[
y = 1.0502x - 22.749 \\
R^2 = 0.9555
\]

![Reproduced solar radiation with index 0.089](image)

\[
y = 0.8806x - 13.199 \\
R^2 = 0.9252
\]

Figure 8 An example of the correlation between the reproduced solar radiation and solar radiation on June 6th, 2012. a) using overall index. b) using monthly index

4. METEOROLOGICAL CASE STUDY

Cloud cover detected by solar cell: Experiment day 07/06/2012

We used the Reproduced solar radiation to study the cloud cover the study area on June 7th, 2012. Based on the Ipv data with 240 data per day, we used the overall index to compute the Reproduced solar radiation as showed in Figure 9. The Reproduced solar radiation slightly increased in the morning section from around 7.00 LT to around 12.50 LT with some dropdown interval around 9.00 LT when the cloud move over the solar cell. The dropdown interval caused by cloud move over the solar cell area can be seen in the satellite image of MTSAT-2 IR1, JAM at 12060702GMT as showed in Figure 10 (http://weather.is.kochi-u.ac.jp)

In the afternoon section from around 13.00 LT to around 17.00 LT, the Reproduced solar radiation dropped to around 100 W/m^2 caused by the cloud move over the solar cell area.

![Reproduced solar radiation 07 June 2012](image)

Figure 9 Reproduced solar radiation of June 7th, 2012.

![Reproduced solar radiation with index 0.089](image)

Figure 10 satellite images at 12060702GMT

The cloud move over the solar cell area in these time interval could confirmed by the satellite image of MTSAT-2 IR1, JAM at 12060706GMT with corresponded to around 13.00 LT in Figure 11. The image of cloud covers Bangkok area. The cloud still covers Bangkok area and central of Thailand until the end of observation time at around 17.00 LT as showed in Figure 12 and 13 respectively. These were corresponded to the value of Reproduced solar radiation of around 100 W/m^2 from 13.00 LT to 17.00 LT in Figure 9.

![Reproduced solar radiation with index 0.089](image)

Figure 11 satellite images at 12060706GMT
5. CONCLUSION

The amount of generated electric current from the solar cell depended on the incident solar radiation. From the experiment, the linear relationship between the generated electric current and solar radiation was found. Because of the linear relationship, it is capable to use its linearization index to reproduce the solar radiation from the electric current. The results from the experiment were showed that we were successful to reproduce the solar radiation from the Ipv. This might be the useful application of the solar cell in the area where is no any solar radiation instrument but solar cell for daytime meteorological study.

ACKNOWLEDGMENT

This work is supported by the Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi.

REFERENCES

