10th Eco-Energy and Materials Science and Engineering Symposium

On December 5-8, 2012
Sunee grand hotel,
Ubon-ratchathani

Organized by

Co-organized by
PREFACE:
Message from the President of
Rajamangala University of Technology Thanyaburi

Rajamangala University of Technology Thanyaburi (RMUTT), in conjunction with Kyoto University, is pleased to host the 10th Eco-Energy and Materials Science and Engineering Symposium (10th EMSES). This international conference is not only giving an opportunity for Thai and foreign researchers to present and discuss their research works and update their expertise but also to initially stimulate the development of research works on eco-energy and materials science and engineering. Our program consists of six research tasks: (1) Energy Technology, (2) Environmental and Social Impact, (3) Nanotechnology and Materials Science, (4) Energy Economics and Management, (5) New Energy technology and (6) Nuclear Technology.

I would like to take this opportunity to express our sincere gratitude to our two distinguished Plenary Speakers for kindly accepting our invitation. I deeply appreciate of the very strong support given by Kyoto University. Thanks to the tireless works of the Organizing Committee, the Technical Program Committee, the invited speakers and paper and poster contributors, and excellent program been assembled to cover a broad spectrum of interesting topic.

We warmly welcome you to the 10th EMSES on December 5-8, 2012, Ubon Ratchathani, Thailand.

Numyoot SONGTHANAPITAK, Ph.D.
President of Rajamangala University of Technology Thanyaburi andConference Chairman of 10th EMSES 2012
PREFACE:
Message from the Director of
Institute of Advanced Energy, Kyoto University

It is my great pleasure to have the 10th Eco-Energy and Materials Science and Engineering Symposium (EMSES) with Rajamangala University of Technology Thanyaburi (RMUTT) under the long-term collaboration between RMUTT and Kyoto University. The 1st EMSES was held in 2001 in Thailand and the symposium has been expanded in its scientific contents as well as the academic network. I believe that the 10th EMSES gives a good opportunity to all participants to exchange their knowledge and idea to realize eco-friendly energy system in society. I would like to express my welcome to all participants and sincere thanks to the 10th EMSES organizing committee and all supporting organizations to make us having this symposium. I hope that the symposium will be successful and lead to further progress in energy science and technology and also in friendships of participants.

Professor Yukio Ogata, Ph.D.
Director of Institute of Advanced Energy, Kyoto University
I want to express my hearty welcome to all participants of Eco-Energy and Materials Science and Engineering Symposium (10th EMSES). This symposium is aiming the realization of importance of energy and materials technology through the academic, science and technology network among the world communities. The symposium gives an opportunity for researchers to discuss their research works and also to initially stimulate the development of research works on eco-energy and materials science and engineering. Once the cooperation among researchers has been created, the further cooperation work will be developed.

I would like also extend my sincere thanks to all who made the meeting possible, including the 10th EMSES organizers, the SEE forum committee members, and the Japanese Government, JSPS, for their kind support. I am looking forward to seeing you in Ubon Ratchathani, Thailand.

Professor Takeshi YAO, Ph.D.
Former Dean of Graduate School of Energy Science, Kyoto University
and Program Leader, Global COE “Energy Science in the Age of Global Warming”
Rajamangala University of Technology Thanyaburi (RMUTT), in conjunction with Kyoto University, is pleased to host the 10th Eco-Energy and Materials Science and Engineering Symposium (10th EMSES).

RMUTT has a major mission on encouraging and supporting all areas of research. One of the key reasons is to assist in developing capability in science and technology in order to cope with recent rapid change in this field. We have jointly set up an academic symposium on the 10th EMSES with the perception on the significance of exchanging knowledge and research experiences between researcher in the field of energy, materials technology and environmental science. This symposium is not only giving an opportunity for Thai and foreign researcher to present and discussion their research works and update their expertise but also to initially stimulate the development of research works on eco-energy and materials science and engineering. Once the cooperation among researchers has been created, the closer future cooperation incorporate with joint-research works will be developed. Thus, to support the aforesaid role, the symposium working committee would like to invite you to participate in this academic symposium.

I would like to express our sincere thanks to the organizing committee, participants and contributors for your kind corporation to this symposium. I wish this symposium proceeding will be a useful reference for future scientific research development.

Sommai PIVSA-ART, Ph.D.
Dean of Faculty of Engineering, RMUTT
Director of CoE on Sustainable Energy System (Thai-Japan)
Organizing Chairman of 10th EMSES 2012
International Scientific Advisory Committee:

General Chair:
Assoc.Prof.Dr. Namyoot SONGTHANAPITAK

General Co-Chair:
Prof. Dr. Kiyoshi YOSHIKAWA
Asst.Prof.Dr. Panpetch CHININTORN

Organizing Chair:
Asst. Prof. Dr. Sommai PIVSA-ART
Prof. Dr. Takeshi YAO

Organizing Co-Chair:
Prof. Dr. Hideaki OHGAKI

International Scientific Committees:
Prof. Dr. Susumu YOSHIKAWA
Prof. Dr. Phadungsak RATTANADECHO
Prof. Dr. Shiro SAKA
Prof. Dr. Hitomi OHARA
Prof. Dr.-Ing. Habil Ingo STADLER
Prof. Dr. Young S. CHAI
Prof. Dr. Nipon TANGTHAM
Prof. Dr. Masayoshi OKUBO
Prof. Dr. Somchai WONGWISES
Prof. Dr. Nadarajah MITHULANANTHAN
Prof. Dr. Yukio OGATA
Prof. Dr. Yuichi ANADA
Prof. Dr. Narongrit SOMBATSOMPOP
Assoc. Prof. Dr. Bandit FUNGTAMMASAN
Assoc. Prof. Dr. K. Srinivas REDDY
Assoc. Prof. Dr. David Jan COWAN
Assoc. Prof. Dr. Per B ZETTERLUND
Assoc. Prof. Dr. Vijit KINNARES
Assoc. Prof. Dr. Yoshikazu SUZUKI
Assoc. Prof. Dr. Thawatch KERDCHEUN
Assoc. Prof. Dr. Wakin PIYARAT
 Assoc. Prof. Dr. Seiichi KAWAHARA
Assoc.Prof.Dr. Kawee SRILULKIT
Asst. Prof. Dr. Somchai HIRANVAROMDOM
Asst. Prof. Dr. Wanchai SUBSINGHA
Asst. Prof. Dr. Thanapong SUWANNASRI
Asst. Prof. Dr. Napapon PHUANGPORNPITAK
Asst. Prof. Dr. Boonrit PRASARTKAEW
Asst.Prof.Dr.Supakit SUWIRUENGWONGSU, Thailand
Asst. Prof. Dr. Vallop PHUPA
Asst.Prof.Dr. Pramook UNAHALEKHAKA, RMUTSB, Thailand

RMUTT, Thailand
Kyoto Uni., Japan
RMUTT, Thailand
RMUTT, Thailand
Kyoto Uni., Japan
Kyoto Uni., Japan
TU, Thailand
Kyoto Uni., Japan
Kyoto Uni., Japan
FH Koeln, Germany
Korea
KU, Thailand
Osaka Uni., Japan
KMITL, Thailand
UQ, Australia
Kyoto Uni., Japan
Hokkaido Info. Uni., Japan
KMUTT, Thailand
KMUTT, Thailand
IIT-Madras, India
IUPUI, USA
Australia
KMITL, Thailand
Japan
RMUTI, Thailand
SWU, Thailand
Nakaoga Uni., Japan
CU, Thailand
RMUTT, Thailand
RMUTT, Thailand
KMUTNB, Thailand
KU, Thailand
RMUTT, Thailand
RMUTP, Thailand
Dr. Arthit Sode-Yome
Dr. Sei-ichi AIBA
Dr. Wirachai ROYNARIN
Dr. Yuttana KAMSUWAN
Dr. Jakkree SRINONCHAT
Dr. Chatchai SOPPAPITAKSAKUL
Dr. Pinit SRITHORN
Dr. Uthen KAMNAN
Dr. Cattariya SUWANNASRI

ASEAN Committee:
Prof. Dr. Yoyok Wahyu Subroto
Prof. Dr. Wega TRISUNAYANTI
Prof. Dr. Tumiran
Prof. Dr. Jun LI
Prof. Dr. INTHAN
Prof. Dr. Khamphone NANTHAVONG
Prof. Dr. Kampui SOUTHISOMBHA\nProf. Dr. Yew Wei LEONG
Prof. Dr. Nguyen Minh TAN

General Secretary:
Asst. Prof. Dr. Kriscononne BHUMKITIPICH
Dr. Sumonman NIAMLANG

Technical Program Chair:
Asst. Prof. Dr. Kriscononne BHUMKITIPICH

Area: Energy Technology (ET)
Dr. Wirachai ROYNARIN
Asst. Prof. Dr. Boonrit PRASARTKAEW
Dr. Sathapron THONGWI\nDr. Nathabhat PHANKONG

Area: Environmental and Social Impact (ES)
Dr. Nithiwat CHOOSAKUL

Area: Nanotechnology and Materials Science (NM)
Dr. Sorapong PAVASUPREE
Asst. Prof. Dr. Kitipong KIMAPONG
Asst. Prof. Dr. Sirichai TORSAKUL
Asst. Prof. Dr. Warunee ARIYAWIRIYANANT

Area: Energy Economic and Management (EM)
Assoc. Prof. Dr. Natha KUPTHASTHIE\nAssoc. Prof. Dr. Surin NGAEMNGAM
Dr. Pinnapat IEMSOMBOON

Area: New Energy Technology (NT)
Dr. Boonyang PLANGKLANG

Area: Nuclear Technology (NU)
Asst. Prof. Dr. Kriscononne BHUMKITIPICH

EGAT, Thailand
Japan
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTL, Thailand
KMUTNB, Thailand
UGM, Indonesia
UGM, Indonesia
UGM, Indonesia
NYU, Singapore
ITB, Indonesia
NOL, Laos
NOL, Laos
NYU, Singapore
HU, Vietnam
RMUTT, Thailand
<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhibition Chair</td>
<td>Dr. Amnoiy REUNGWAREE</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td></td>
<td>Dr. Winai CHANPENG</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Local Arrangement Chair</td>
<td>Dr. Sorapong PAVASUPREE</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td></td>
<td>Dr. Natee SRISAWAT</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Registration and Finance Chair</td>
<td>Dr. Sumonman NIAMLANG</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td></td>
<td>Dr. Supaporn THOMSORN</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td></td>
<td>Weeraporn PIVSA-ART</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Publicity Chair</td>
<td>Asst.Prof. Dr. Krisconome BHUMKITTIPICH</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td></td>
<td>Dr. Sumonnan NIAMLANG</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td></td>
<td>Dr. Montip LASURIYONTA</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td></td>
<td>Somchay BANSONONGNERN</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Publication Chair</td>
<td>Prof. Dr. Preecha P.YUPAPIN</td>
<td>KMITL, Thailand</td>
</tr>
<tr>
<td></td>
<td>Assoc.Prof. Dr. Takashi SAGAWA</td>
<td>Kyoto Univ., Japan</td>
</tr>
<tr>
<td></td>
<td>Dr. Boonyang PLANGKLANG</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td></td>
<td>Asst. Prof. Dr. Sonobe TARO</td>
<td>Kyoto Univ., Japan</td>
</tr>
<tr>
<td>Website and Information System Chair</td>
<td>Dr. Nathabhat PHANKONG</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td></td>
<td>Phongsuk AMPHA</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td></td>
<td>Deachrat JAITHAWIN</td>
<td>RMUTT, Thailand</td>
</tr>
</tbody>
</table>
KEYNOTE SPEAKER

KS01 Japan Power Generation Mix and Energy Security after Fukushima Nuclear Accident
Katsuki N. Ishihara

KS02 Vertical Motions in Greater Bangkok Area after the 2004 Sumatra-Andaman Earthquake from GPS Observations and Its Prediction based on the Geophysical Modelling
Chulamorn Sirivong

INVITED SPEAKER

IN01 Relaxation Analysis of Electrode Crystal Materials for Secondary Lithium Ion Batteries
Takanori Tano

IN02 Renewable Energy in Thailand: Opportunity and Technology Allocation
Theowatch Kornraks

IN03 Numerical Simulation of Microwave Ablation Process using Single Slot Antenna in Two-Layered Porous Liver Tissue
Phuapong Ruamudchoo

IN04 Study on the Performance of Multi Evaporator and Pump Down Operation
ChulSu Kim, HanShik Chang

IN05 A Study on Improving the Reliability of a Heat Sink for COB LED Light Source
Bum Sik Seo, Young Seok Cho and Dai Hye Park

IN06 Distribution System Voltage Stability with DG Units Considering Load Models
Liu Qing, Ramathatmahapai and A. Sudo-Tome

IN07 Recent Progress in Biobased Polymer Production Technology
Sei-ichi Akita

IN08 Hydrothermal Effects on Mechanical Properties and Weight Change Mechanism of Jute Fiber Reinforced Composites
Ying Yu, Menguan Liao, Tuyin Yang, and Hisayuki Hamada

CONTENTS

IN09 Effect of Motion of Impurity Ions on Electrical Properties of Polymer materials
Yuchi Aoda

IN10 Effect of Talc Filler and Polymer Blend Contents on Properties of Recycled PET Injection Moldings
K. Tamada, S. Tamada, N. Kojimine, and H. Hamada

IN11 Characteristic Requirements of a Small Scale Squirrel Cage Induction Generator for Effective Electricity Generation from Wind Energy
V. Kinnarats and B. Suvanatsakul

IN12 Supramolecular Self-Assembled Polymeric Systems for Biomaterials Applications
Jen Li

IN13 New Energy Initiative
Satoshi Yoshikawa

IN14 Nuclear Security Technologies in Japan
Hidesaki Ogishi

IN15 Hierarchical Structure and Properties of Natural Rubber
Seiichi Kawahara

IN16 Fiber, Resin, Interphase Hybrid on Continuous Natural Fiber Reinforced Composites
Atsami Nozaki

IN17 -Topic- Shigreki Niki

IN18 Production of Biobased Chemicals by Bacterial Process
Taji Aso

IN19 Influence of PdlA Molecular Weight and PdlA-B-Poss Molecular Architecture on Crystallization Kinetics and Thermal Stability during Stereocomplexation with Pilla
Long Yue Wu
ENERGY TECHNOLOGY

ET01 Application of Three-level Diode-clamped Converter on 10 kW Distribution Voltage Restorer
W. Chamvaniran, R. Bhumiskipich and N. Mittulanusorn
82

ET02 A Design of Single Phase Induction Generator for Waterfall Hydro Turbine
Srisut Dannguem
87

ET04 Key Cutting Algorithm Application to Measurement Placement for Power System State Estimation
D. Song, J. Kim, J. Hwang, K. Bong and J. Kerchbaum
92

ET05 Hydrolysis of Rice Husk and Sugarcane Bagasse by Reflux Method
K. Kumprao and A. Nantyas
95

ET06 Analysis of Lightning Phenomena for Underground Petroleum Pipeline System
B. Toprakhid, K. Bhumiskipich and T. Suansurat
98

ET07 N, N-Dimethylpyrrolidinium Fluorohydrogenate Ionic Liquid - Polymer Composite Membranes for a Non-Humidified Fuel Cell
P. Klaikritkal, R. Tantik, K. Mamうま, T. Nohira and R. Hagiwara
102

ET09 Screening of bulk heterojunction polymer: fullerene based organic solar cells through simple mist spray coating
Jareepong Le, Takehle Segawa and Susumu Yoshikawa
106

ET10 Renewable Energy Based Active Cooling System
Boonrit Prasarnkarn
109

ET11 Improvement of Zirc-Air fuel cell performance by gelled KOH
A. Punpatumakul, S. Therdthamwong, A. Therdthamwong and N. Wonguss
114

ET12 Real-time Simulation of a Photovoltaic Cell/Module under the Single Diode Model
D. Impreeds and W. Subingha
118

CONTENT

ET13 Numerical Simulation of a Solar-biomass Hybrid Cooling System: Model Validation
Boonrit Prasarnkarn
123

ET14 Mathematical Model and Experiment of Temperature Effect on Discharge of Lead-Acid Battery for PV Systems
Pornsith Pongsakul, Boonyong Phalakams and Susop Kohiri
128

ET15 Recycling CO2 in Bio-gas by Green Microalgae for Liquid Production
Wassana Tongkham and Boonsanga Chairity
132

ET16 Double-Sided Linear Induction Motor Control Using Space Vector Pulse Width Modulation Technique
Aumon Buero and Wanchai Subingha
138

ET17 Performance Evaluation of the Desiccant Bed Solar Dryer
Wisse Chomman-ard, Smmich Jindarakia, Chanchai Sirusampunwong, Sorawit Suesuk
142

ET18 Performance Evaluation of 35 kW LiBr – H₂O Solar Absorption Cooling System in Thailand
Nipen Kajee Yenupo yongheysen and Kongre Mansiri
147

ET19 Study to the Voltage Stability of 22kv Pea Bus Connected by Lamamong Wind Turbine
J.Chansith and K. Bhumiskipich
153

ET20 Modeling of PEM Fuel Cell with DC/DC Buck Converter by MATLAB/Simulink
P. Prommeen and W. Subingha
158

ET21 Applicability of Pressure Retarded Osmosis Power Generation Technology in Sri Lanka
H.D.R.K.Karnawad and S. Welupelage
163

ET22 Effect of Pilot Fuel Quantity on the Performance and Emission of a Dual Producer Gas – Diesel Engine
Pisarn Sombhatwong, Prachasam Thayanan and Kullachee Prasongsiri
167
CONTENT

ET23 Application of Artificial Neural Network in Materials Estimation of 22 kV Overhead Lines
K. Anudinthron and K. Bhakumpitch 172

ET24 Performance Study and Analysis of Micro Hydro Turbine and PV for Electricity Generator Case Study: Bunnasopit School, Nan Province
Triunch Patt, P. Kemsubhowever, and K. Bhakumpitch 175

ET25 Performance analysis of a combined ejector-vapour compression refrigeration system for automotive air conditioning application
Nutthanan Koonchaprakako, Thamasrith Sriratsadul, Narasirawana Woonpon, and Kadakot Phiramthong 179

ET26 The Performance Improvement of a Thick Electrode Solid Oxide Fuel Cell
P. Chinds 185

ET27 Modeling of Grid-Connected with Permanent Magnet Synchronous Generator (PMSG) using Voltage Vector Control
M. Suwana, P. Nantharat, K. Bhakumpitch and Poorkit Nakawat 194

ET28 Enhancement of Cassava Rhiomone Gasification Using Mono-Metallic Cobalt Catalysts
Panchaphak Somsak, Duangbua Atong and Viboon Stricharonchaisilp 199

ET29 Gasification of Peanut Shell Waste using a Modular Fix-Bed Gasifier
Jarapor Nisnamanee, Duangbua Atong and Viboon Stricharonchaisilp 204

ET30 A Study of Integrating Renewable Energy in Smart Grid System
N. Phuangprongthai and T. Tia 208

ET31 Performance evaluation of 10 kWp photovoltaic power generator under hot climatic condition
Niran Kejpi Phuchakul Sirisamphawan and Nustawut Khamsan 214

v

CONTENT

ET32 Monitoring of 120 kWp PV Microgrid System
Wassavit Srisakul and Niran Kejpi 217

ET33 Design of Real Time Management Unit for Power Battery in PV-Hybrid Power Supply by Application of Coulomb Counting Method
A. Ausuwarayuk and B. Plengklang 220

ET34 A Technique of Heat Pipe Filling with R-134a
Thanesrol Sukcharn, Naris Pratithong 225

ET35 Effect of Filling Ratios and Adiabatic Length on Thermal Efficiency of Long Heat Pipe Filled with R-134a
Thanesrol Sukcharn, Chayan Jatboonsa 229

ET36 Optimal Distributed Generation Placement and Sizing for Power Loss Reduction Using Particle Swarm Optimization
W. Phuangprongthai and K. Bhakumpitch 234

ET37 A Computer Program for Evaluating the Risk of Lightning and Designing Installation of Lightning Rod for Photovoltaic System
S. Siratt S. Hiranyakdarn and B. Plengklang 239

ET38 Speed and Power Control a Slip Energy Recovery Drive Using Voltage-Source PWM Converter with Current Controlled Technique
S. Sanyoora and V. Kinsares 243

ET39 Study of Energy Saving from Elevator Energy Regenerative Unit (EERU) Case Study: RMUTT, Thailand
Thana Pnumponyot and Boonjung Plengklang 249

ET41 Experimental Investigation of the Effect of Adiabatic Length on the Efficiency of Thermosyphon Heat Pipe Filled with R-134a
Thanesrol Sukcharn and Naris Pratithong 253

ET42 Voltage Control by DQ Frame Technique of SVPWM AC-DC Converter
N. Muangkham and W. Subrungsa 258
CONTENTS

ET65 Electrochemical Performance of Ni$_3$Co$_2$GDC Cermet Anodes for SOFCs
J. Aoyama, Damesse Wannasristreew, Suheek Wannasristreew and Kaznorn Sato

ET66 Comparison of Two Scenarios for Maximizing CO$_2$ Reduction and Supply Energy for Bioethanol Production and Power Generation from Agro-Residues: A Case Study in Ecuador
J.C. Garcia M., T. Machmora and T. Matsu

ET70 CoO coating effect on photovoltaic performance of dye-sensitized solar cells based on SnO$_2$ nanowires
Sunasri Phadungkhanthawat, Suwannee Wongrungrungphol, Ascharavan Gerdharibon, and Suwai Choopun

ET71 Assessing the energy savings potential in public buildings through retrofit measures in tropical climates – A case study in Mauritius
Pandimaniree Guv and Omesh Kumar Mohit

ET72 Three-Level Back-to-Back Converter Simulation for Wind Turbine Energy Source
N. Taksan, N. Phuklong and K. Bhukkantipich

P. Saistrat, N. Choltakoop, M. Tongroon, Y. Lousmal and J. Phongthongparak

ET74 Fabrication of Samarium Doped Ceria Electrolyte on Rough Glass Substrate with High Electrical Conductivity by Electrostatic Spray Deposition for Intermediate Temperature Solid Oxide Fuel Cell
Tanapat Charemkit, Maunee Panpavy and Bussarin Kasapvan

ET75 Effect on Compressive Strength of Replacing Sand by Dolerite in Concrete
Prachon Khunpat and Kittipong Sawaco

IX

CONTENTS

ET77 Renewable Energy Feasibility Study: Case Study for A Main Telephone Fixed-Line Exchange Unit in Thailand
N. Koonsath, Sarawut Jaraonchoo and D. Sathit

ET78 Laboratory Study of Selected Trace Elements Behavior during Biomass Co-Combustion with Coal
A. Kistad

ET79 Comparative Evaluation on Production Properties and Energy Consumption of Single Microwave Dyer and Combination of Microwave and Hot Air Dyer for Dorian Peel Particleboards
Sarasri Charoentaw, Wanrudee Yingyuen, Anuchit Juree, Phadungkhan Rattanapach and Sommak Vongsapraditchat

ET80 Effect of Activated Carbon Surface Treatment on Methane Adsorption for Natural Gas Storage Development
Arudetaw Sumyoi, Boonprasert Kittanak, Promchok Bangantivit, and Samit Kulaph這thanapasi

ET81 Hydrodynamic Behavior of a Fluidized Bed Containing Sun Flower Seed
Phraochai Chonsawat, Siva Acharya and Anvee Acharya

ENVIRONMENTAL AND SOCIAL IMPACT

ES09 Degradation Behaviors of Different Blends of Polyacrylic Acid Buried in Soil
C. Chaungmuang, C. Prebytes and S. Nousanamaneeyakul

ES10 Fixed bed Adsorption Column Studies for the Removal of Aqueous Phenol from Activated Carbon Prepared from Sugarcane Bagasse

ES11 Analysis of pesticide residues in tomatoes by using Gas Chromatography/Mass Spectroscopy
D. M.E.C. Dinowati, K.C.D.S. Rameswara, Nimal Pathmasiri

ES13 Correlation between heat flux over the Indian Ocean and rainfalls in Coastal Thailand by using the MM5 numerical model
P. Pradhamnantr, A. Srijong, and D. Sukwatt
CONTENT

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES14</td>
<td>Effect of Acid Treatment on Adsorption of Single-Walled Carbon Nanotubes for Tetacycline Removal from Aqueous Solution</td>
<td>444</td>
</tr>
<tr>
<td>ES15</td>
<td>The Applied Geographic Information System and the Relation of Meliluk with Water Quality in Ayutthaya Province, Thailand</td>
<td>449</td>
</tr>
<tr>
<td>ES16</td>
<td>Reproduced Solar Radiation Derived from Electric Current of Solar Cell for Daytime Meteorological Study</td>
<td>454</td>
</tr>
</tbody>
</table>

NANOTECHNOLOGY AND MATERIAL TECHNOLOGY

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM01</td>
<td>Surface Treatment of natural fibers with Flexible Epoxy Resin</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>Nopawanee Khunthadon, Puimun Lamtong, and Hiroki Yamada</td>
<td></td>
</tr>
<tr>
<td>NM02</td>
<td>Poly (lactic acid) and Poly (butylene succinate) blend Fibers</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Prepared by Melt Spinning technique</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. Jongsong, J. Wong On, P. Surin, C. Apwet,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. Chaiuchairom, S. Thamsorn, N. Kaebnaethong, N. O-Chaoren, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. Siriwan</td>
<td></td>
</tr>
<tr>
<td>NM03</td>
<td>Morphological and Impact Property of Flexible Epoxy Treated</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>Natural Fiber Reinforced Poly (lactic acid) Composites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wiphayan Nakhon, Puimun Lamtong, and Hiroki Yamada</td>
<td></td>
</tr>
<tr>
<td>NM04</td>
<td>Collector Thermal Efficiency of Solar Panel Made from Thermoplastics</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>Tawanta Chaiwet, Waramee Arjosairajana, Manop Yompanyang,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pongpich Tumpana, Ateekorn Booman, Nakul Eamphanan,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pongsit Phantuchareon and Supaporn Chongnaphasana</td>
<td></td>
</tr>
<tr>
<td>NM05</td>
<td>Effect of Heat Seal Conditions on Heat Seal Characteristic of Poly</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>(Lactic Acid)/Thermoplastic Starch Blend Films</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Thamsorn, K. Yamada, S. Pirun-Art, K. Myayu, and H. Hamada</td>
<td></td>
</tr>
</tbody>
</table>

CONTENT

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM06</td>
<td>Microstructural arrangement and densification of GDC10-3YTZ solid</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>solutions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Wanasanitwong, T. Andapun, and D. Wattanavithawat</td>
<td></td>
</tr>
<tr>
<td>NM07</td>
<td>Kinetic Study of Poly(L-lactic acid) Pre-polymers Synthesis in a</td>
<td>479</td>
</tr>
<tr>
<td></td>
<td>2-Steps Direct Polycondensation Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suparman Nianlung, Wepapor Pirun-Art, Nuchaporn Santipave,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supawan Wattanavithawat, Tasawon Wongyong, and Sommai Pirun-Art</td>
<td></td>
</tr>
<tr>
<td>NM09</td>
<td>Effect of Metal Additives on the Hydrogenation of Carbon</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>Dioxide over Nickel Catalyst Prepared by Sol-gel Method</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hisanori Ando</td>
<td></td>
</tr>
<tr>
<td>NM10</td>
<td>Effects of Fuel Contents and Surface Modification on the Sol-Gel</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>Combustion C6H6/Gd2O3-Nanosil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durang Wattanavithawat and Sutee Wattanavithawat</td>
<td></td>
</tr>
<tr>
<td>NM11</td>
<td>Mechanical Properties of Bamboo Charcoal Reinforced PLA</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>Composites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pratapru Nopawanee Puttan Lamtong, and Hiroki Yamada</td>
<td></td>
</tr>
<tr>
<td>NM12</td>
<td>Preparation of Poly(lactic acid) and Poly(trimethylene terephthalate)</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>Blend Fibers for Textile Application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Pakdee, J. Wong On, P. Surin, C. Apwet, T. Chaiuchairom,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Thamsorn, N. Kaebnaethong, N. O-Chaoren and N. Siriwan</td>
<td></td>
</tr>
<tr>
<td>NM13</td>
<td>Poly (lactic acid)/Poly(caprolactone) Blends Compatibilized with</td>
<td>494</td>
</tr>
<tr>
<td></td>
<td>Block Copolymers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. Chavalitpatras and S. Phatusanuwadee</td>
<td></td>
</tr>
<tr>
<td>NM14</td>
<td>Preparation of Polymer Blends Between Poly (lactic acid) and Poly</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>(butylene adipate-co-terephthalate) and Biodegradable Polymers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>as Compatibilizers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wepapor Pirun-Art, Anorn Chaiyachat, Sommai Pirun-Art,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huldu Yamane and Hisanori Ando</td>
<td></td>
</tr>
<tr>
<td>NM17</td>
<td>Effect of Molecular weight and Concentration of Chitosan on Poly</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>(vinyl acetate) Eencapsulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Jellapai, S. Phatusanuwadee</td>
<td></td>
</tr>
</tbody>
</table>
CONTENT

NM41 Synthesis of Porous Carbon using Cashew Nut Shell Liquid as a Precursor Ponrath Sadayod and Nattaporn Timanom 564

NM42 Mechanical Properties of Silk Fiber Reinforced Poly(lactic Acid) Composite Kornkarn Masaphak, Puttman Leangsaow, Wengporn Phanart and Hirokazu Hamada 568

NM43 Effect of Film Thickness on the Properties of SnS2 Layers Deposited by Chemical Bath Deposition G. Strelecki, K.T. Ramakrishna Reddy and R.W. Miles 572

NM45 Electrosprun Strontium Titanate Nanofibers from Two Different Types of Strontium Salts L. Mecacreg, S. Chugsongchon, S. Yushakawa and T. Sagawa 576

NM46 BiVO4 Nanopowder Prepared by the Solvothermal Method Pongthep Janiamohn, Poot Panconmanee and Sukon Phumsapphan 579

NM47 Crystallization Kinetic and Mechanical Performance of TaC Filled Poly(Lactic Acid)/Poly(butylene succinate) Blend Composites Wengporn Phanart, Sagaphorn Thamsorn, Jaraviset Ratuangpit, Hokkai Yamane and Hirotsi Ohara 584

NM50 Design of Support Insulator for L.T. Fuse Switch from Composite Material N. Faklung, N. Phankong and E. Bhunkeitsip 585

NM51 Preparation and Characterization of Magnetic Polymeric Composite Particles by Modified-Suspension Polymerization Amorn Chatupata, Preeprom Chuajawat, Banchong Sirisom, Rangana Khetrah and Southorn Konghan 589

NM52 Preparation of Nanotubes from Natural Ilmenite Mineral by Hydrothermal Method T. Wiriamongkol, K. Songsant, N. G-Charoen, S. Saheilbharmarnsai and S. Pasaprapree 594

xv

CONTENT

NM53 Preparation and Characterization of Natural Rubber/Poly [Styrene-co-2-(methacryloyloxy) ethyl trimethylammonium chloride] Nanocomposites by Heterocoagulation Supaporn Phoonlaw, Somporn Moemungwong, Preeprom Chuajawat, Amorn Chatupata 600

NM54 Preparation and Characterization of Titanate Nanofibers from Low-Cost Natural Ilmenite Sand A. Soprapadip, T. Wiriamongkol, S. Phanwupree and W. Pecharupa 605

NM55 Preparation of Poly(lactic acid) Microencapsulated Vitamin E Preeprom Chuajawat, Amorn Chatupata, Pawee Paekdee, Prayung Noppakit and Wengporn Sirimuckchan 609

NM56 Morphological, Thermal, and Mechanical Properties of Poly (lactic Acid) Blend with Natural rubber and Poly (methyl Methacrylate) Wuthiphong Dechatiwong No Ayutthaya and Sritat Poomprawat 614

NM57 Preparation of In-Situ Silica with Multi-Functional Groups via Sol-Gel process for Natural Rubber Reinforcement Thawisan Thuptrudi, Patpanom Prasatsawad and Sritat Poomprawat 618

NM58 Mechanical Property of Surface Modified Natural Fiber Reinforced Poly (lactic acid) Composites Wassaman Sajjartjan, Puttan Phoonsangsun, Wengporn Phanart and Hirokazu Hamada 623

NM59 Electromagnetic Performances of Conductive Polyethylene/hydrogel Hybrid Artificial Muscle Detchane Punnawirikorn, Pompon Youngta, Sultana Jastreschat, Siripong Thongbor and Pikitdthong Chamnongkol 627

NM60 Structural Properties of Co-Doped ZrO Nanopowder Synthesized by Co-Precipitation Method N. Thanaseenang, S. Sathraphi, W. Te GLOBAL and W. Pecharupa 632

NM61 Influence of Ti and Zn Dopsants on Structural Properties and Electrochromic Performance of Sol-gel Derived WO3 Thin Films K. Phaijaa, W. Te GLOBAL, S. Pornthepnaphat and W. Pecharupa 635

xvi
CONTENTS

NM62 The Electromechanical Properties of Crosslinked Natural Rubber
S. Niumlang, S. Thongchai, N. Pawanatam and A. Sirivat 639

NM63 Thermal and Mechanical Properties of Biodegradable polyester/Silica Nanocomposites
Ratrun Khamkun, Somrat Prasai-Art, Hamada Hiroshi and Supakdi Susinawong 643

NM64 Preparation of NIO-YSZ Substrate for Electrophotorectic Deposition of thin YSZ Film
M. Meepho, D. Watusanitisreew, S. Watusanitisreew and P. Amrakasatana 648

NM65 Characterization and Photoresponses properties of Sn-doped ZnO
K. Chongtri, C. Bangrat, W. Techitsuea and W. Pechapan 652

NM66 The Mechanical Properties of Vulcanized Deplaying Natural Rubber
J. Nant, K. Soo-hang, W. Ariyawiriyarun and S. Kawakara 656

NM67 Optical absorptivity enhancement of SiO2 thin film by Ti and Ag additive
P. Ankachhet, S. Boonruang and W. Pechapan 660

NM68 Synthesis of CuO Nanoparticles by Precipitation Method using Different Precursors
K. Plotvong, S. Suphanaj, W. Mekprasert and W. Pechapan 664

NM69 A Study of Energy Saving in Building through Thermal Insulation with Plywood Inserted Honeycomb Sandwich Panels
A. Reengwarow V. Premamond and S. Torukat 667

NM70 Hydrothermal Preparation and Photocatalytic Activity of Nanocones from Natural Ilmenite Mineral
W. Charanamorn, T. Wirunontongkul, N. O-Charron, S. Subthpaunarwath, K. Sungsin and S. Pawaseree 672

NM71 Effect of Nitrogen doping on optical and photocatalytic properties of TiO2 Thin Film Prepared by Spin Coating Process
W. Mekprasert, T. Khunmang, J. Ratanasuk, W. Techitsuea and W. Pechapan 677

CONTENTS

NM72 Photocatalytic of N-doped TiO2 Nanofibers prepared by electrospinning
S. Suphanaj, W. Mekprasert and W. Pechapan 680

NM73 Nanosstructure Investigation of Particle Emission by using TEM Image Processing Method
Preecor Karin, Yuthika Songraecharn, Songtam Lausawan, Chouda Chomphuekpanich, Nawung Chatchoop and Kanaorn Nongkarn 684

NM74 An Investigation of Weldline Strength in Injection Molded Rubber Parts
W. Cheerkas, Suracha Mhongjerdh, Pratchit Jitpheap, Nuchamat Ne Rung and Somjai Pacharaphun 689

NM75 Preparation of PVP/MHEC Blended Hydrogels via Gamma Irradiation and Calcium ion Uptaking/Releasing Behavior

NM76 Effect of Thermal Treatment on Intermetallic Phases of Fe/Al Structural Transition Joints
S. Pornsakul and A. Rodchamroonwan 697

NM77 Structural Characteristics and Dielectric Properties of Li2-xCoFeO3 and LaFeO3+Co2O3 Synthesized via Metal Organic Complexes
Wannahuma Haroon, Thanommanon Thaweechat, Wirawat Wutanatham, Apirat Luchhadee, Hathakarn Manaprasit, Chutiks Vararangput and Natthawat Komthong 701

NM78 Simple Hydrothermal Preparation of Zinc Oxide Powders using Thial Autoclave Unit
T. Wirunontongkul, N. O-Charron, and S. Pawaseree 707

NM79 Thermal and mechanical properties of polypropylene/boron nitride composites
W. Cheewasutaipong, D. Paoka, S. Tamor, H. Uemura, and T. Jemoto 711

NM80 Mechanical Properties of Jute Spun Yarn/PLA Tubular Braided Composite by Pulltrusion Molding
A. Memen and A. Nuket 717
CONTENTS

NM31 The fabrication and mechanical properties of Jute Spun Yarn/PLA Unidirectional Composite by Compression Molding
A. Menton and A. Nuki
722

NM33 Effect of Twisted Jute Fiber Bundle on Mechanical Property of Glass/jute/polypropylene Hybrid Composites
P. Uawongwatan, Y. Tang and H. Hamada
726

NM88 Impact Property of Flexible Epoxy Treated Natural Fiber Reinforced PLA Composites
Wiphawan Noithong, Puttman Uawongwatan, Wasporn Piroo-art and Hiroshi Hamada
730

NM89 Mechanical Property of Surface Modified Natural Fiber Reinforced PLA Biocomposites
Wassawan Sjakritjan, Puttman Uawongwatan, Wasporn Piroo-art and Hiroshi Hamada
734

NM90 Mechanical properties of silk fiber reinforced PLA composite
Kornkanok Manaphuk, Puttman Uawongwatan, Wasporn Piroo-art and Hiroshi Hamada
738

NM91 Effect of Flexible Epoxy Treated on Surface Morphology of Natural Fibers
Nairnawalka Kromhady, Puttman Uawongwatan, Wasporn Piroo-art and Hiroshi Hamada
742

NM92 Electron-Acceptor Nanomaterials Fabricated by Electrospinning for Polymer Solar Cells
Sorawat Chaisongkhot and Takehiro Sayara
746

NM93 Effects of Melt Spinning Conditions on Cross-sectional Features of Poly (lactic acid) Fibers
N. Roungpatom, N. Ochansorn, N. Struanaw, C. Prahsaun, S. Patarapree
749

NM94 Nonstoichiometric Polymer Particles as Nanoclusters and Catalytic Nanofilters with Unique Properties
Md. Shokied Islam, Won Seo Choi, He-In Lee
755

NM95 Investigation of Si-gel-NR interaction in Si-Gel/NR vulcanize using Dynamic Mechanical Thermal Analysis
C. Thongpin and R. Rodsuthida
761

XIX

CONTENTS

NM96 Physico-Chemical Properties of Surface Modification of Silica Based on Rice Husk Ash Sources
Phechit Kaew Than and Supakjit Sritrungwong
766

NM97 CO2 Adsorption on MIPA-, NMEA-, Piperazine-, K2CO3-Modified Activated Carbons
T. Pichaisanklert, S. Kelprasitpani, and P. Ramaswqti
770

NM98 Characteristic of the High Performance Biomass Plastic (Effect of Wood Powder Diameter and Compounding Screw Geometry)
T. Th, Y. Tang, M. Murahami, T. Ota, T. Umemura, K. Haru, M. Nomura and H. Hamada
775

NM99 An Investigation of Optimum Cutting Conditions in Face Milling Aluminum Semi Solid 2024 Using Carbide Tool
Sarutri Ranwangrong, Jaturasri Chantong, Wasporn Boonmahongg and Rukamorn Bupupa
779

NM100 Effect of Soaking Time on Crystalline Phase in Leadless Iron Oxide Crystalline Glaze
S. Sidhakat, A. Warmangen and A. Nuitiya
785

ENERGY ECONOMIC AND MANAGEMENT

EM02 Miscellaneous Electric Loads in Tropical Buildings – An Opportunity for Energy Conservation Improvement
Q. Jie Kwong, Nor Marah Adam, Siew Hui Goh and Vijay R. Bagherian
788

EM03 Legal and Institutional Framework Development for Measurable, Reportable and Verifiable System in Thai Energy Sector
Tanarat Suparto, Chatchawarn Chatichana and Wongke Wungsupai
794

EM04 Project Based Measurable, Reportable, and Verifiable (MRV) Guideline Development for Greenhouse Gas Mitigation Projects in Thai Energy Sector
Phapong Mahanai, Chatchawarn Chatichana, and Wongke Wungsupai
800

XX
CONTENT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| EM05 | Non-humidified fuel cells using dimethylpyrrolidinium fluorehydrogenate ionic liquid-polymer composite membranes
P. Kiuchi, R. Towri, K. Matsumoto, T. Nishita and R. Hagiyama | 804 |
| EM06 | A Prediction of Banana Drying Behavior Using Empirical Model and Artificial Neural Network Model
Pathirat Warump, Rinthoat Krittrat, Nontimaporn Weerapap, Uniphuk Teewanwana and Suphan Sitnang | 808 |
| EM07 | A Nation-wide Planning of Agro-residue Utility for Bioethanol Production and Power Generation in Ecuador
J.C. Garcia M., T. Machimura and T. Matsui | 813 |
| EM08 | A Survey of Remote Household Energy Use in Rural Thailand
J. Youngke and T. Ittrik | 818 |

NEW ENERGY TECHNOLOGY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| NT01 | Investigation of Electron Beam Parameter in Seeded THz-FEL Amplifier Using Photocathode RF Gun
| NT02 | Hydrosalzteurization of Oil Derived from Waste Tire Pyrolysis
Nas Anamrak, Nutrupan Prasattrakul, Naglae Hinichiraman | 829 |
| NT03 | Effect of surface treatment on properties of PBS/coir fiber biocomposites
Maanit Kosalpoom, Natthakarn Hongprapal and Champut Thongtun | 833 |
| NT04 | Mechanical and Thermal Properties of PLA/PBS Co-continuous Blends Adding Nucleating Agent
Rungsimo Honklin and Natthakarn Hongprapal | 839 |
| NT05 | Disalkoxybenzoquinone-type Active Materials for Rechargeable Lithium Batteries: the Effect of the Alkoxyl Group Length on the Cycle-stability
Masaru Tso, Hisami Ando, and Tetsum Kyoyaishi | 845 |

10th Eco-Energy and Materials Science and Engineering 2012
December 5-8, 2012: Ubon Ratchathani, Thailand

CONTENT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| NT06 | The Effect of Rubber on Morphology, Thermal Properties and Mechanical properties of PLA/NR and PLA/ENR blends
K. Pongampon, C. Thongpu and O. Sarawitray | 849 |
| NT07 | Moisture absorption and fertilizer release of poly (butylene succinate) blended with fertilizer loaded superabsorbent polymer for using in agriculture application
Meenrat Srikulrakul and Natthakarn Hongprapal | 854 |
| NT09 | Deuterium Enhancement of Poly (butylene succinate)/Poly (lactic acid) Blend by the Use of Glycidyl Methacrylate Chonomics Chode and Natthakarn Hongprapal | 860 |
| NT10 | Effects of γ-Al2O3 on carbonization of oil palm shell
Umarat Kandoh, Prapan Kuchathana, Sirinut Poongprad | 866 |
| NT11 | Separation of D, L-Lactice Acid by Filtration Process
Anan Boonpan, Suporn Praeiart, Sirikate Pongwatt, Attawat Andresirak and Piyama Sritangvarang | 871 |
| NT12 | Production of Bio Oil from Para rubber seed using Pyrolysis Process
Chaiyan Chatian and Prasert Phukprathasri | 874 |
| NT13 | Investigation of Radiation Heat Flux from the Gas Opened-cell Foam Porous Burner
B. Krittrat, S. Srisung, P. Warunut and R. Paunirawan | 878 |
| NT14 | Optimization of Longitudinal Electron Beam Properties for Linac-based Infrared Free-electron Laser at Chiang Mai University
S. Supakul, S. Chansane, C. Thongthai, and S. Rianjan | 885 |
| NT15 | Status and Application of Mid Infrared Free Electron Laser in Kyoto University
Kyoshi Yoshida | 890 |
| NT16 | Linac-based THz Radiation Sources at Chiang Mai University
<table>
<thead>
<tr>
<th>NT18</th>
<th>Simulations and Measurements of Dipole and Quadrupole Magnets for PBP-CMU Linac System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. Boonpragnawat, S. Rimjaem, J. Sairat, and C. Thongbai</td>
</tr>
<tr>
<td></td>
<td>895</td>
</tr>
<tr>
<td>NT19</td>
<td>Observation of high harmonic generation from SiC by MIR-FEL irradiation</td>
</tr>
<tr>
<td></td>
<td>Inoue, H. Naga, T. Konmantin, Md. Omer, R. Kinjo, Y.W. Choi, T. Kit, K. Masuda, and</td>
</tr>
<tr>
<td></td>
<td>H. Ogawa</td>
</tr>
<tr>
<td></td>
<td>900</td>
</tr>
<tr>
<td>NT20</td>
<td>Effect of Equivalence Ratio on SI Engine Performance Fueled with Lean Air Gas Mixtures</td>
</tr>
<tr>
<td></td>
<td>G. Prephule, A. Atek, L. Zelekowska</td>
</tr>
<tr>
<td></td>
<td>903</td>
</tr>
</tbody>
</table>
Scintillation Properties of Ce-doped YAP and Lu$_{0.3}$Y$_{0.7}$AP Single Crystals at 320 and 662 keV Gamma Rays

A. Phunpuek1, W. Chewpraditkul2, V. Thongpool1, and D. Aphairaj1

1Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani 12110
E-mail: aumam18@hotmail.com
2Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140
E-mail: weerapong.che@kmutt.ac.th

Abstract—Scintillation properties of YAlO$_3$:Ce (YAP:Ce) and Lu$_{0.3}$Y$_{0.7}$AlO$_3$:Ce (Lu$_{0.3}$Y$_{0.7}$AP:Ce) single crystals were investigated for gamma ray energies at 320 and 662 keV. The light yield and energy resolution were measured with a Photonis XP5200B PMT. For 320 keV gamma rays (57Co source), the YAP:Ce showed the light yield of 31,800 ph/MeV, which is much higher than that of 14,800 ph/MeV obtained for Lu$_{0.3}$Y$_{0.7}$AP:Ce. The energy resolution of 6.1% obtained with YAP:Ce is much better than that value of 11.1% obtained with Lu$_{0.3}$Y$_{0.7}$AP:Ce. For 662 keV gamma rays (137Cs source), the YAP:Ce showed the light yield of 32,000 ph/MeV, which is much higher than that of 15,100 ph/MeV obtained for Lu$_{0.3}$Y$_{0.7}$AP:Ce. The energy resolution of 4.4% obtained with YAP:Ce is much better than that value of 9.2% obtained with Lu$_{0.3}$Y$_{0.7}$AP:Ce. Superior energy resolution for YAP:Ce is due to its much higher light yield and lower contribution of intrinsic resolution. The scintillation light loss of tested crystals at both gamma ray energies was also presented. The estimated photofraction was determined for both crystals and compared with the cross-sections ratio calculated using WinXCom program.

Keywords—gamma-ray detectors, Lu$_{0.3}$Y$_{0.7}$AP:Ce, scintillators, YAP:Ce

1. INTRODUCTION

The study of scintillation properties of inorganic scintillation crystal is important in many scientific, industrial and biological applications for their potential use in radiation physics, medical physics and dosimetry, industry, and radiation shielding. Scintillation materials play an important role in detection and spectroscopy of energetic photons. Important requirements for the scintillation crystals used in these applications include high light yield, fast response time, high stopping power, good energy resolution, good proportionality of the light yield, minimal afterglow, and low production costs. Good reviews on development of inorganic-scintillators and development of scintillation crystals for gamma ray spectrometry have been published by van Eijk[1], Moszynski[2], and recently by Lecq et al.[3].

In the last decade, there has been the introduction of several new scintillators for medical imaging, in particular cerium-doped crystals as YAP:Ce or LSO:Ce exhibit better luminescence and scintillation properties compared to the classical ones (BGO, NaI:Tl, CsI:Tl). During last years many efforts were devoted to the development of heavy scintillators based on cerium-doped crystals, especially, crystals of perovskite type (Lu$_x$Y$_{1-x}$AP:Ce) were developed for x = 0-1.

The aim of this work is to study scintillation properties for YAlO$_3$:Ce (YAP:Ce) and Lu$_{0.3}$Y$_{0.7}$AlO$_3$:Ce (Lu$_{0.3}$Y$_{0.7}$AP:Ce) single crystal scintillators at 320 and 662 keV gamma rays. The light yield and energy resolution for 320 and 662 keV gamma rays were measured using PMT readout and the intrinsic energy resolution of both crystals was calculated. The scintillation light loss of tested crystals at both gamma ray energies was presented. The estimated photofractions for both crystals were also determined and compared with the results with cross-sections ratio values, calculated using WinXCom program.

2. METHODOLOGY

Two cerium-doped scintillation crystals, YAP:Ce and Lu$_{0.3}$Y$_{0.7}$AP:Ce, with the size of 10x10x5 and 5x5x9 mm3, respectively, were supplied by Crytur Ltd.(Czech republic).

Each crystal was optically coupled to a Photonis XP5200B photomultiplier tube (PMT) using silicone grease. The 320 and 662 keV gamma sources were positioned along the cylindrical axis of the scintillator and the PMT. The signal from the PMT anode was passed to a CANBERRA2005 preamplifier and was sent to a Tenelec TC244 spectroscopy amplifier. A shaping time constant of 4 μs was used with both crystals. The energy spectra were recorded using a Tukan PC-based multichannel analyzer (MCA)[4].

The photoelectron yield, expressed as a number of photoelectrons per MeV (pMeV), was measured by Bertolacini method [5,6]. In this method the number of photoelectrons is measured by comparing the position of a full energy peak of gamma ray detected in the crystals with that of the single photoelectron peak from the photodiode, which determines the gain of PMT.

3. RESULTS AND DISCUSSION

Energy Spectra and Light Yield

Fig. 1 presents a comparison of the energy spectra for 320 keV gamma rays from a 57Cr source measured with
YAP:Ce and Lu0.3Y0.7AP:Ce crystals. The energy resolution of 6.1% obtain for YAP:Ce is better than that of 11.1% for Lu0.3Y0.7AP:Ce. Note a higher photoation in the spectrum measured with Lu0.3Y0.7AP:Ce, as would be expected due to a higher effective atomic number \(Z_{\text{eff}}\) and density of the Lu0.3Y0.7AP:Ce crystal.

Table 1. Light Yield and Energy Resolution at 320 keV Gamma Rays for Both Crystals

<table>
<thead>
<tr>
<th>Crystal</th>
<th>YAP:Ce</th>
<th>Lu0.3Y0.7AP:Ce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoelectron yield [phe/MeV]</td>
<td>8,430 ± 420</td>
<td>4,400 ± 220</td>
</tr>
<tr>
<td>Light yield [ph/MeV]</td>
<td>31,800 ± 3,200</td>
<td>14,800 ± 1,500</td>
</tr>
<tr>
<td>(\Delta E/E) [%]</td>
<td>6.1 ± 0.3</td>
<td>11.1 ± 0.6</td>
</tr>
</tbody>
</table>

Table 2 summarizes comparative measurements of photoelectron yield and energy resolution at 662 keV gamma rays for the tested crystals. The YAP:Ce showed a photoelectron yield of 8,480 phe/MeV. This value corresponds to about 32,000 ph/MeV at the QE of 26.5% for peak emission at 360 nm. The tested Lu0.3Y0.7AP:Ce showed the photoelectron yield of 4,500 phe/MeV. This value corresponds to about 15,100 ph/MeV at the QE of 29.8% for peak emission at 375 nm.

Table 2. Light Yield and Energy Resolution at 662 keV Gamma Rays for Both Crystals

<table>
<thead>
<tr>
<th>Crystal</th>
<th>YAP:Ce</th>
<th>Lu0.3Y0.7AP:Ce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoelectron yield [phe/MeV]</td>
<td>8,480 ± 420</td>
<td>4,500 ± 230</td>
</tr>
<tr>
<td>Light yield [ph/MeV]</td>
<td>32,000 ± 3,200</td>
<td>15,100 ± 1,500</td>
</tr>
<tr>
<td>(\Delta E/E) [%]</td>
<td>4.4 ± 0.2</td>
<td>9.2 ± 0.5</td>
</tr>
</tbody>
</table>

Note a significantly higher light yield of 32,000 ph/MeV for the test YAP:Ce crystal, by about 190% compared with a same sized sample in Ref [7].

Energy Resolution

The energy resolution \(\Delta E/E\) of a full energy peak measured with a scintillator coupled to a PMT can be written as [8]

\[
(\Delta E/E)^2 = (\delta_{\text{c}})^2 + (\delta_{\text{p}})^2 + (\delta_{\text{m}})^2,
\]

(1)

where \(\delta_{\text{c}}\) is the intrinsic resolution of the crystal, \(\delta_{\text{p}}\) is the transfer resolution and \(\delta_{\text{m}}\) is the statistical contribution of PMT to the resolution. The statistical uncertainty of the signal from the PMT can be described as

\[
\delta_{\text{m}} = 2.355 \times \frac{1}{\sqrt{N}} \times (1 + \epsilon)^{1/2},
\]

(2)

where \(N\) is the number of the photoelectrons and \(\epsilon\) is the variance of the electron multiplier gain, equal to 0.1 for an XP5200B PMT.

The transfer component depends on the quality of optical coupling of the crystal and PMT, homogeneity of quantum efficiency of the photocathode and efficiency of photoelectron collection at the first dynode. The transfer component is negligible compared to the other components of the energy resolution, particularly in the dedicated experiments [8].

The intrinsic resolution of a crystal is mainly associated with the non-proportional response of the scintillator [8,9] and many effects such as inhomogeneities in the
scintillator which can cause local variations in the scintillation light output and non-uniform reflectivity of the reflecting cover of the crystal.

Overall energy resolution and PMT resolution can be determined experimentally. If δ_i is negligible, intrinsic resolution δ_{ic} of a crystal can be written as follows

$$ (\delta_{ic})^2 = (\Delta E/E)^2 - (\delta_i)^2. \quad (3) $$

<table>
<thead>
<tr>
<th>Detector</th>
<th>YAP:Ce + XP5200B</th>
<th>Lu${0.3}$Y${0.7}$AP:Ce + XP5200B</th>
</tr>
</thead>
<tbody>
<tr>
<td>N [electrons]</td>
<td>2,700</td>
<td>1,410</td>
</tr>
<tr>
<td>$\Delta E/E$ [%]</td>
<td>6.1 \pm 0.3</td>
<td>11.1 \pm 0.6</td>
</tr>
<tr>
<td>δ_i [%]</td>
<td>4.7 \pm 0.2</td>
<td>6.6 \pm 0.3</td>
</tr>
<tr>
<td>δ_{ic} [%]</td>
<td>3.8 \pm 0.2</td>
<td>9.0 \pm 0.5</td>
</tr>
</tbody>
</table>

Table 3. Analysis of the 320 keV Energy Resolution for YAP:Ce and Lu$_{0.3}$Y$_{0.7}$AP:Ce Crystals.

<table>
<thead>
<tr>
<th>Detector</th>
<th>YAP:Ce + XP5200B</th>
<th>Lu${0.3}$Y${0.7}$AP:Ce + XP5200B</th>
</tr>
</thead>
<tbody>
<tr>
<td>N [electrons]</td>
<td>5,610</td>
<td>2,970</td>
</tr>
<tr>
<td>$\Delta E/E$ [%]</td>
<td>4.4 \pm 0.2</td>
<td>9.2 \pm 0.5</td>
</tr>
<tr>
<td>δ_i [%]</td>
<td>3.3 \pm 0.2</td>
<td>4.5 \pm 0.2</td>
</tr>
<tr>
<td>δ_{ic} [%]</td>
<td>2.9 \pm 0.2</td>
<td>8.0 \pm 0.4</td>
</tr>
</tbody>
</table>

Table 4. Analysis of the 662 keV Energy Resolution for YAP:Ce and Lu$_{0.3}$Y$_{0.7}$AP:Ce Crystals.

Table 3 and 4 show the energy resolution of the studied crystals in 320 and 662 keV gamma ray spectrometry, respectively, the contribution of various components to the overall energy resolution was analyzed for 320 and 662 keV photopeak. The second row gives N, the number of photoelectrons produced in the PMT. The third row gives $\Delta E/E$, the overall energy resolution at 320 and 662 keV photopeak. The PMT contribution (δ_i) was calculated using (2). From the values of $\Delta E/E$ and δ_i, the intrinsic resolution (δ_{ic}) was calculated using Eq.3. The superior energy resolution of YAP:Ce in both gamma ray energies as compared to Lu$_{0.3}$Y$_{0.7}$AP:Ce is mainly due to a small contribution of both δ_i and δ_{ic}, which seems to follow a high light output (almost a factor of two) and good proportionality of the light yield, [10], respectively, for YAP:Ce crystal.

Scintillation Light Loss in Thick Crystals

Dujardin et al.[11] observed scintillation light yield depend mostly on the crystal height (the higher the crystal, the lower the light yield), not on length or width. Therefore the most interesting conclusion of key importance for the model to be presented by Wojtowicz et al.[12]. They proposed a simple two-ray ("2R") model. The scintillation light yield $Y(h)$ of the crystal as a function of the height of the crystal can be expressed as

$$ Y(h) = Y_0[1-exp(-2\mu h)]/2\mu h, \quad (4) $$

where h stands for the height of the crystal, μ is the loss parameter (including absorption and scattering), and Y_0 represents the intrinsic yield which would be observed in the absence of scintillation light loss inside the material by optical absorption and photon scattering.

The points in Fig. 3 and 4 represent scintillation light yields of all tested crystals measured horizontally and vertically. Solid curves have been calculated from the two-ray formula (Eq.4).

Fig.3. Scintillation Light Yield versus Height of the Samples at 320 keV Gamma Ray Energy

Fig.4. Scintillation Light Yield versus Height of the Samples at 662 keV Gamma Ray Energy

Table 5. Intrinsic Yield, Loss Parameter and Energy Resolution at 320 keV Gamma Rays for Tested Crystals.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Y_0 [phe/MeV]</th>
<th>μ [cm$^{-1}$]</th>
<th>$\Delta E/E$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAP:Ce</td>
<td>8,670 \pm 860</td>
<td>0.27 \pm 0.03</td>
<td>6.1 \pm 0.3</td>
</tr>
<tr>
<td>Lu${0.3}$Y${0.7}$AP:Ce</td>
<td>4,730 \pm 470</td>
<td>0.30 \pm 0.03</td>
<td>11.1 \pm 0.6</td>
</tr>
</tbody>
</table>

Table 6. Intrinsic Yield, Loss Parameter and Energy Resolution at 662 keV Gamma Rays for Tested Crystals.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Y_0 [phe/MeV]</th>
<th>μ [cm$^{-1}$]</th>
<th>$\Delta E/E$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAP:Ce</td>
<td>8,680 \pm 870</td>
<td>0.26 \pm 0.03</td>
<td>4.4 \pm 0.2</td>
</tr>
<tr>
<td>Lu${0.3}$Y${0.7}$AP:Ce</td>
<td>4,840 \pm 480</td>
<td>0.32 \pm 0.03</td>
<td>9.2 \pm 0.5</td>
</tr>
</tbody>
</table>
Table 5 summarizes comparative measurements of the intrinsic yield, loss parameter and energy resolution at 320 keV gamma rays for the tested crystals. The intrinsic yield and loss parameter (8.570 phe/MeV, 0.27 cm⁻¹) obtained for YAP:Ce are better than the values (4.730 phe/MeV, 0.3 cm⁻¹) measured for Lu₂₀.₆₇Y₂₀.₃₇AP:Ce. Table 6 shows comparative measurements of μₐ, μ and ΔE/E at 662 keV gamma rays for both crystals. The intrinsic yield and loss parameter (8.680 phe/MeV, 0.26 cm⁻¹) obtained for YAP:Ce are better than the values (4840 phe/MeV, 0.32 cm⁻¹) measured for Lu₂₀.₆₇Y₂₀.₃₇AP:Ce. However, this can not be directly compared because of the different shape and size of the samples. Nevertheless, the higher intrinsic yield together with the small value of μ obtained for YAP:Ce and Lu₂₀.₆₇Y₂₀.₃₇AP:Ce seems to be promising.

Photofraction

The photofraction is defined here as the ratio of counts under the photopulse to the total counts of the spectrum as measured at a specific gamma ray energy. The photofraction for YAP:Ce and Lu₂₀.₆₇Y₂₀.₃₇AP:Ce at 320 and 662 keV gamma rays is collected in Table 7. For a comparison, the ratio of the cross-sections for the photoelectric effect to the total one calculated using WinXCom program [13] are given too. The data indicate that Lu₂₀.₆₇Y₂₀.₃₇AP:Ce shows much higher photofraction than YAP:Ce in a same trend with the cross-section ratio (σ-ratio) obtained from WinXCom program. The reason is due to much higher effective atomic number and density of the Lu₂₀.₆₇Y₂₀.₃₇AP:Ce crystal.

Table 7. Photofraction at 320 and 662 keV Gamma
Peak for YAP:Ce and Lu₂₀.₆₇Y₂₀.₃₇AP:Ce Crystals.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>YAP:Ce</th>
<th>Lu₂₀.₆₇Y₂₀.₃₇AP:Ce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm²)</td>
<td>5.4</td>
<td>6.2</td>
</tr>
<tr>
<td>Z_eff</td>
<td>34</td>
<td>53</td>
</tr>
<tr>
<td>Photofraction (%)</td>
<td>320 keV</td>
<td>18.1 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>662 keV</td>
<td>5.3 ± 0.5</td>
</tr>
<tr>
<td>σ-ratio (%)</td>
<td>320 keV</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>662 keV</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Note a much higher value of the photofraction compared with the cross-section ratio for the both studied crystals due to the thickness of the samples. It is the contribution of multiple Compton scattering to create a full energy peak.

4. CONCLUSION

In this work, interaction of 320 and 662 keV gamma rays with YAP:Ce and Lu₂₀.₆₇Y₂₀.₃₇AP:Ce crystals were studied. The energy resolution of YAP:Ce is superior than that of Lu₂₀.₆₇Y₂₀.₃₇AP:Ce due to a high light output and small contribution from its intrinsic resolution. Moreover, inhomogeneities of Ce-doped and some defects in the Lu₂₀.₆₇Y₂₀.₃₇AP:Ce crystal could affect the energy resolution, and the crystalline quality of this sample could be further improved. Lu₂₀.₆₇Y₂₀.₃₇AP:Ce showed much higher photofraction than YAP:Ce due to its much higher effective atomic number and density. Lu₂₀.₆₇Y₂₀.₃₇AP:Ce is suitable for high-energy gamma-ray detection. The experimental results of photofraction are in a same trend with the cross-section ratio obtained from WinXCom program.

ACKNOWLEDGMENT

This work was supported by Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi and Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi.

REFERENCES