10th Eco-Energy and Materials Science and Engineering Symposium

On December 5-8, 2012
Suenee grand hotel,
Ubon-ratchathani

Organized by

Co-organized by
PREFACE:
Message from the President of Rajamangala University of Technology Thanyaburi

Rajamangala University of Technology Thanyaburi (RMUTT), in conjunction with Kyoto University, is please to host the 10th Eco-Energy and Materials Science and Engineering Symposium (10th EMSES). This international conference is not only giving an opportunity for Thai and foreign researchers to present and discussion their research works and update their expertise but also to initially stimulate the development of research works on eco-energy and materials science and engineering. Our program consists of six research tasks: (1) Energy Technology, (2) Environmental and Social Impact, (3) Nanotechnology and Materials Science, (4) Energy Economics and Management, (5) New Energy Technology and (6) Nuclear Technology.

I would like to take this opportunity to express our sincere gratitude to our two distinguished Plenary Speakers for kindly accepting our invitation. I deeply appreciate of the very strong support given by Kyoto University. Thanks to the tireless works of the Organizing Committee, the Technical Program Committee, the invited speakers and paper and poster contributors, and excellent program been assembled to cover a broad spectrum of interesting topic.

We warmly welcome you to the 10th EMSES on December 5-8, 2012, Ubon Ratchathani, Thailand.

Numyoot SONGTHANAPITAK, Ph.D.
President of Rajamangala University of Technology Thanyaburi and Conference Chairman of 10th EMSES 2012
PREFACE:
Message from the Director of
Institute of Advanced Energy, Kyoto University

It is my great pleasure to have the 10th Eco-Energy and Materials Science and Engineering Symposium (EMSES) with Rajamangala University of Technology Thanyaburi (RMUTT) under the long-term collaboration between RMUTT and Kyoto University. The 1st EMSES was held in 2001 in Thailand and the symposium has been expanded in its scientific contents as well as the academic network. I believe that the 10th EMSES gives a good opportunity to all participants to exchange their knowledge and idea to realize eco-friendly energy system in society. I would like to express my welcome to all participants and sincere thanks to the 10th EMSES organizing committee and all supporting organizations to make us having this symposium. I hope that the symposium will be successful and lead to further progress in energy science and technology and also in friendships of participants.

Professor Yukio Ogata, Ph.D.
Director of Institute of Advanced Energy, Kyoto University
PREFACE:
Message from the Former Dean of
Graduate School of Energy Science, Kyoto University
Program Leader,
Global COE “Energy Science in the Age of Global Warming”

I want to express my hearty welcome to all participants of Eco-Energy and Materials Science and Engineering Symposium (10th EMSES). This symposium is aiming the realization of importance of energy and materials technology through the academic, science and technology network among the world communities. The symposium gives an opportunity for researchers to discuss their research works and also to initially stimulate the development of research works on eco-energy and materials science and engineering. Once the cooperation among researchers has been created, the further cooperation work will be developed.
I would like also extend my sincere thanks to all who made the meeting possible, including the 10th EMSES organizers, the SEE forum committee members, and the Japanese Government, JSPS, for their kind support. I am looking forward to seeing you in Ubon Ratchathani, Thailand.

Professor Takeshi YAO, Ph.D.
Former Dean of Graduate School of Energy Science, Kyoto University
and Program Leader, Global COE “Energy Science in the Age of Global Warming”
Rajamangala University of Technology Thanyaburi (RMUTT), in conjunction with Kyoto University, is pleased to host the 10th Eco-Energy and Materials Science and Engineering Symposium (10th EMSES).

RMUTT has a major mission on encouraging and supporting all areas of research. One of the key reasons is to assist in developing capability in science and technology in order to cope with recent rapid change in this field. We have jointly set up an academic symposium on the 10th EMSES with the perception on the significance of exchanging knowledge and research experiences between researcher in the field of energy, materials technology and environmental science. This symposium is not only giving an opportunity for Thai and foreign researcher to present and discuss their research works and update their expertise but also to initially stimulate the development of research works on eco-energy and materials science and engineering. Once the cooperation among researchers has been created, the closer future cooperation incorporate with joint-research works will be developed. Thus, to support the aforesaid role, the symposium working committee would like to invite you to participate in this academic symposium.

I would like to express our sincere thanks to the organizing committee, participants and contributors for your kind corporation to this symposium. I wish this symposium proceeding will be a useful reference for future scientific research development.

Sommai PIVSA-ART, Ph.D.
Dean of Faculty of Engineering, RMUTT
Director of CoE on Sustainable Energy System (Thai-Japan)
Organizing Chairman of 10th EMSES 2012
International Scientific Advisory Committee:

General Chair:
Assoc.Prof.Dr. Namyoot SONGTHANAPITAK
RMUTT, Thailand

General Co-Chair:
Prof. Dr. Kiyoshi YOSHIKAWA
Kyoto Uni., Japan
Asst.Prof.Dr. Panpetch CHININTORN
RMUTT, Thailand

Organizing Chair:
Asst. Prof. Dr.Sommai PIVSA-ART
RMUTT, Thailand
Prof. Dr. Takeshi YAO
Kyoto Uni., Japan

Organizing Co-Chair:
Prof. Dr. Hideaki OHGAKI
Kyoto Uni., Japan

International Scientific Committees:
Prof. Dr. Susumu YOSHIKAWA
TU, Thailand
Prof. Dr. Phadungsak RATTANADECHO
Kyoto Uni., Japan
Prof. Dr. Shiro SAKA
Kyoto Uni., Japan
Prof. Dr. Hitomi OHARA
FH Koeln, Germany
Prof. Dr.-Ing. Habil Ingo STADLER
Korea
Prof. Dr. Young S. CHAI
KU, Thailand
Prof. Dr. Nipon TANGTHAM
Osaka Uni., Japan
Prof. Dr. Masayoshi OKUBO
KMITL, Thailand
Prof. Dr. Somchai WONGWISES
UQ, Australia
Prof. Dr. Nadarajah MITHULANANTHAN
Kyoto Uni., Japan
Prof. Dr. Yukio OGATA
Hokkaido Info. Uni., Japan
Prof. Dr. Yuichi ANADA
KMU, Thailand
Prof.Dr. Narongrit SOMBATSOMPOP
IUPEI, USA
Assoc. Prof. Dr. Bandit FUNGTAMMASAN
Australia
Assoc. Prof. Dr. K. Srinivas REDDY
KMITL, Thailand
Assoc. Prof. Dr. David Jan COWAN
IIT-Madras, India
Assoc. Prof. Dr. Per B ZETTERLUND
IUPUI, USA
Assoc. Prof. Dr. Vijit KINNARES
Australia
Assoc. Prof. Dr. Yoshikazu SUZUKI
KMITL, Thailand
Assoc. Prof. Dr. Thawatch KERDCHEUN
Japan
Assoc. Prof. Dr. Wakin PIYARAT
RMUTI, Thailand
Assoc. Prof. Dr. Seiichi KAWAHARA
SWU, Thailand
Assoc.Prof.Dr. Kawee SRIKULKIT
Nakaoga Uni., Japan
Asst. Prof. Dr. Somchai HIRANVAROMDOM
CU, Thailand
Asst. Prof. Dr. Wanchai SUBSINGHA
RMUTT, Thailand
Asst. Prof. Dr. Thanapong SUWANNASRI
RMUTT, Thailand
Asst. Prof. Dr. Napaporn PHUANGPORNPIKAK
KMUTNB, Thailand
Asst. Prof. Dr.Boonrit PRASARTKAEW
KU, Thailand
Asst.Prof.Dr.Supakit SUTTIRUENGWONGSU, Thailand
RMUTT, Thailand
Asst. Prof. Dr.Vallop PHUPA
Asst.Prof.Dr.Pramook UNAHALEKHAKA RMUTSB, Thailand
RMUTP, Thailand
Dr. Arthit Sode-Yome
Dr. Sei-ichi AIBA
Dr. Wirachai ROYNARIN
Dr. Yuttana KAMSUWAN
Dr. Jakkree SRINONCHAT
Dr. Chatcahi SOPPAPITAKSAKUL
Dr. Pinit SRITHORN
Dr. Uthen KAMNAN
Dr. Cattariya SUWANNASRI

EGAT, Thailand
Japan
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTL, Thailand
KMU NB, Thailand

ASEAN Committee:
Prof. Dr. Yoyok Wahyusubroto
Prof. Dr. Wega TRISUNAYANTI
Prof. Dr. Tumiran
Prof. Dr. Jun LI
Prof. Dr. INTHAN
Prof. Dr. Khamphone NANTHAVONG
Prof. Dr. Kampui SOUTHSISOMBHAT
Prof. Dr. Yew Wei LEONG
Prof. Dr. Nguyen Minh TAN

UGM, Indonesia
UGM, Indonesia
UGM, Indonesia
NYU, Singapore
ITB, Indonesia
NOL, Laos
NOL, Laos
NYU, Singapore
HU, Vietnam

General Secretary:
Asst.Prof. Dr. Krischonne BHUMKITTIPICH
Dr. Sumonman NIAMLANG

RMUTT, Thailand
RMUTT, Thailand

Technical Program Chair:
Asst.Prof. Dr. Krischonne BHUMKITTIPICH

Area: Energy Technology (ET)
Dr. Wirachai ROYNARIN
Asst. Prof. Dr. Boonrit PRASARTKAEW
Dr. Sathapron THONGWIK
Dr. Nathabhat PHANKONG

RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand

Area: Environmental and Social Impact (ES)
Dr. Nithiwat CHOOSAKUL

RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand

Area: Nanotechnology and Materials Science (NM)
Dr. Sorapong PAVASUPREE
Asst. Prof. Dr. Kitipong KIMAPONG
Asst. Prof. Dr. Sirichai TORSAKUL
Asst. Prof. Dr. Warumee ARYAWIRIYANANT

RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand

Area: Energy Economic and Management (EM)
Assoc.Prof. Dr. Natha KUPTHASTHIEN
Dr. Surin NGAE MNGAM
Dr. Pinmanat IEBSOMBOON

RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand

Area: New Energy Technology (NT)
Dr. Boonyang PLANGKLANG

RMUTT, Thailand

Area: Nuclear Technology (NU)
Asst. Prof. Dr. Krischonne BHUMKITTIPICH

RMUTT, Thailand
Exhibition Chair:
 Dr. Amnoiy REUNGWAREE
 Dr. Winai CHANPENG

Local Arrangement Chair
 Dr. Sorapong PAVASUPREE
 Dr. Natee SRISAWAT

Registration and Finance Chair
 Dr. Sumonman NIAMLANG
 Dr. Supaporn THOMSORN
 Weeraporn PIVSA-ART

Publicity Chair
 Asst.Prof.Dr. Krischonme BHUMKITTIPIPICH
 Dr. Sumonman NIAMLANG
 Dr. Montip LASURIYONTA
 Somchai BIANSOONGNERN

Publication Chair:
 Prof. Dr. Preecha P.YUPAPIN
 Assoc.Prof.Dr.Takashi SAGAWA
 Dr. Boonyang PLANGKLANG
 Asst. Prof. Dr. Sonobe TARO

Website and Information System Chair:
 Dr. Nathabhat PHANKONG
 Phongsuk AMPHA
 Deachrat JAITHAWIN
KEYNOTE SPEAKER
KS01 Japan Power Generation Mix and Energy Security after Fukushima Nuclear Accident
Keishi N. Ishihara
K-1
KS02 Vertical Motions in Greater Bangkok Area after the 2004 Sumatra-Andaman Earthquake from GPS Observations and Its Prediction based on the Geophysical Modelling
Chalermchoen Sattayapoll
K-2

INVITED SPEAKER
IN01 Relaxation Analysis of Electrode Crystal Materials for Secondary Lithium Ion Batteries
Takeshi Fosu
1
IN02 Renewable Energy in Thailand: Opportunity and Technology Allocation
Thawatch Kerdsornsorn
5
IN03 Numerical Simulation of Microwave Ablation Process using Single Slot Antenna in Two-Layered Porous Liver Tissue
Phutthongkun Ratanaoedcho
11
IN04 Study on the Performance of Multi Evaporator and Pump Down Operation
Chaitha Kim, Hanulsik Chung
13
IN05 A Study on Improving the Reliability of a Heat Sink for COB LED Light Source
Bum Sik Seo, Young Suk Cho and Dae Hee Park
19
IN06 Distribution System Voltage Stability with DG Units Considering Load Models
Lin Qijun, N.Mitubulananthan and A. Sode-Yone
21
IN07 Recent Progress in Bio-based Polymer Production Technology
Sen-ichi Abe
35
IN08 Hydrothermal Effects on Mechanical Properties and Weight Change Mechanism of Jute Fiber Reinforced Composites
Ying Tu, Mengyuan Liu, Yuqin Yang, and Hiroaki Hamada
37

CONTENT
IN09 Effect of Motion of Impurity Ions on Electrical Properties of Polymer Materials
Yasuta Amada
45
IN10 Effect of Filler and Polymer Blends Contents on Properties of Recycled PET Injection Molding
K. Yashoda, S. Yashoda, N. Kastum, and H. Hamada
50
IN11 Characteristic Requirements of a Small Scale Squirrel Cage Induction Generator for Effective Electricity Generation from Wind Energy
V. Kanaiar and B. Sivaramakrishnan
56
IN12 Supramolecular Self-Assembled Polymeric Systems for Biomaterials Applications
Jun Li
69
IN13 New Energy Initiative
Susumu Yoshikawa
71
IN14 Nuclear Security Technologies in Japan
Hideshi Ohgaki
72
IN15 Hierarchical Structure and Properties of Natural Rubber
Seitichi Kimura
73
IN16 Fiber, Resin, Interphase Hybrid on Continuous Natural Fiber Reinforced Composites
Asumi Nakai
74
IN17 -Topic-
Shigero Niko
75
IN18 Production of Bio-based Chemicals by Bacterial Process
Yoji Aso
76
IN19 Influence of Pdla Molecular Weight and Pdla-B-Pdla Molecular Architecture on Crystallization Kinetics and Thermal Stability during Stereocomplexation with Pdla
Laiyong Yan, Wei
77
ENERGY TECHNOLOGY

ET01 Application of Three-level Diode-clamped Converter on 10 kW Distribution Voltage Restorer
W. Chankhunthara, R. Bhuntiktipch and N. Mithulananthan 82

ET02 A Design of Single Phase Induction Generator for Waterfall Hydro Turbine
Sriruchai Dang-ewm 87

ET04 Key Cutting Algorithm Application to Measurement Placement for Power System State Estimation
Y. Kongtan, P. Intawong, K. Buagati and T. Kerdsuk 92

ET05 Hydrolysis of Rice Husk and Sugar cane Bagasse by Reflux Method
K. Kongtra and A. Nuntaya 95

ET06 Analysis of Lightning Phenomena for Underground Petroleum Pipeline System
B. Toperadik, K. Bhunthiktipch and Y. Sursawat 98

ET07 N, N-Dimethylpyrroolidinum Fluorohydrogenate Ionic Liquid - Polymer Composite Membranes for a Non-Humidified Fuel Cell
P. Kientakul, R. Tawki, K. Matsumoto, T. Nohra and B. Hagisawa 102

ET09 Screening of bulk heterojunction polymer: fullerene based organic solar cells through simple mist spray coating
Jun-hyeong Lee, Takashi Sugoawa and Susumu Yoshikawa 106

ET10 Renewable Energy Based Active Cooling System
Bunrei Prasarakan 109

ET11 Improvement of Zn-In Air fuel cell performance by gelled KOH
A. Puwatanaobul, S. Therdhamsawang, A. Therdhamsawang and N. Wongso 114

ET12 Real-time Simulation of a Photovoltaic Cell/Module under the Single Diode Model
D. Improzea and W. Subsingha 118

ET13 Numerical Simulation of a Solar-biomass Hybrid Cooling System: Model Validation
Bunrei Prasarakan 123

ET14 Mathematic Model and Experiment of Temperature Effect on Discharge of Lead-Acid Battery for PV Systems
Porchaik Pornkammaloon, Phongphong Pongklang and Somporn Kukrit 128

ET15 Recycling CO2 in Bio-gas by Green Microalgae for Lipid Production
Wassa Thongrojanun and Bunnum Chomphuprow 132

ET16 Double-Sided Linear Induction Motor Control Using Space Vector Pulse Width Modulation Technique
Amnuan Bua-ew and Wanchai Subsingha 138

ET17 Performance Evaluation of the Desiccant Bed Solar Dryer
Wised Chantawatr, Srithep Jirunwata, Chonbhu Sirituationwong, Sorviri Santavee 142

ET18 Performance Evaluation of 35 kW LiBr – H2O Solar Absorption Cooling System in Thailand
Nipon Kerjumrattaphong and Kongrit Mantri 147

ET19 Study to the Voltage Stability of 22kv Pea Bus Connected by Lamangkong Wind Turbine
J.Chamasiri and K. Bhunthiktipch 153

ET20 Modeling of PEM Fuel Cell with DC/DC Buck Converter by MATLAB/Simulink
P. Prommin and W. Subsingha 158

ET21 Applicability of Pressure Retarded Osmosis Power Generation Technology in Sri Lanka
H.D.S.K. Kumpurawathie and S. Weligala 163

ET22 Effect of Pilot Fuel Quantity on the Performance and Emission of a Dual Producer Gas – Diesel Engine
Pisarat Sombatwong, Prachawat Thayapong and Kurlakhtu Phiatthong 167
| CONTENT |
|------------------|------|---|
| ET23 Application of Artificial Neural Network in Materials Estimation of 22 kV Overhead Lines K. Anakulphorn and K. Bhunjitsirikul | 172 |
| ET24 Performance Study and Analysis of Micro Hydro Turbine and PV for Electricity Generator Case Study: Bunnanopit School, Nan Province Tittthan Pati, P. Jaisamarn, and K. Bhunjitsirikul | 175 |
| ET25 Performance analysis of a combined ejector-vapour compression refrigeration system for automotive air conditioning application Naksarin Kerdtrisudad et al., Thamarat Siriveotsakul, Nok Sawangkha, Wirapan Sechanom, and Klaosath Phaiphong | 179 |
| ET26 The Performance Improvement of a Thick Electrode Solid Oxide Fuel Cell P. Chomda | 185 |
| ET27 Modeling of Grid-Connected with Permanent Magnet Synchronous Generator (PMSG) using Voltage Vector Control M.Seniyap, P. Naihehm, K. Bhunjitsirikul and Pitchaya Nakrawat | 194 |
| ET28 Enhancement of Cassava Rhizome Gasification Using Mono - Metallic Cobalt Catalysts Panchalek Sorndode, Duangkhone Attong and Vihoom Sricharoenchaisil | 199 |
| ET29 Gasification of Peanut Shell Waste using a Modular Fix-Bed Gasifier Jaturat Nisanamaneeto, Duangkhone Attong and Vihoom Sricharoenchaisil | 204 |
| ET30 A Study of Integrating Renewable Energy in Smart Grid System N. Phuangporpisuk and S. Tu | 208 |
| ET31 Performance evaluation of 10 kW, photovoltaic power generator under hot climatic condition Nipoen Kejor Chaichai Srisamprasong and Nitarat Khaisantr | 214 |
CONTENTS

ET43 Control of Parallel-Connected AC to DC Converters with Droop Technique for DC Microgrid Application 262
C. Tantearunrat, P. Chankaj and P. Thawonthong

ET45 Design of Matlab/Simulink Modeling of Fixed-Pitch Angle Wind Turbine Simulator 268
P. Ammao and Y. Komseen

ET46 Closed Loop Speed Control of Induction Generator with Scalar-Control Inverters 273
A. Upson and Y. Komseen

ET47 Study of Generator Reaction on Permanent Magnet Synchronous Motor for Energy Regenerative Applications 278
S. Kanitwong, A. Noppakorn and B. Puangkhiang

ET48 Ethanol Production from Rice Straw by Simultaneous Saccharification and Co-Fermentation 283
N. Suriyachai, V. Champa, N. Laksriphana, and P. Unseen

ET49 High Voltage Gain Interleaved DC Boost Converter Application for Photovoltaic Generation System 286
W. Khudman and W. Sihungha

ET50 Influence of Bath Temperature on the Properties of In$_5$S$_3$ Films Grown by Chemical Bath Deposition 290
G.R. Gopinath, R.P. Meets and K.T. Ramakrishna Reddy

ET51 Unsteady Surface Pressures and Air Load of a Pitching Airfoil Supaki Woroonsamchai Grant Ingwall and Robert Dominy 294

ET52 Fast Pyrolysis of Jatropha Residue with Alumina Based Catalysts using Pyrolysis-Gas Chromatography/Mass Spectrometry 300
Pratap Kumar Bhunian, Duanzheh Ai and Vijayan Srinivasan

ET54 Selective Synthesis of Monoglycerides in a Capillary Microreactor 305
Mann Srisong, Ponlao Ngamcharusritrikiat, Sirika Poomrungsab

ET55 Numerical Analysis of Laminar Heat Transfer in a Square Duct with Incline Diagonally angled - Ribs 310
W. Jedsadarananouchi, J, Wongwong, A. Boonlai and P. Promvonge

ET56 Effect of V-echice on Laminar Flow Structure and Heat Transfer in Square Duct 316
W. Jedsadarananouchi, N. Vinayakul, A. Boonlai and P. Promvonge

ET57 Numerical Analysis of Turbulent Heat Transfer in a Square Duct with Diagonal V-Discrete Ribs 321
W. Jedsadarananouchi, P. Pranaphatnong, A. Boonlai and P. Promvonge

ET58 Numerical Study of Laminar Heat Transfer in a Circular Tube with Angled Orifices 327
W. Jedsadarananouchi, R. Poommold, A. Boonlai and P. Promvonge

ET59 Effect of Tube Aspect Ratio on Air Side Performance of the Cross Flow Heat Exchangers with the Flat Tubes Having Different Aspect Ratios 333
S. Toohtatsong and N. Kasappanum

ET60 Effect of Attack Angles on Air Side Thermal and Pressure drop of the Cross Flow Heat Exchangers with Staggered Tube Arrangement 338
S. Toohtatsong and N. Kasappanum

ET61 Sintering of an Aqueous-Based Tape Casted Samarium-Doped Ceria Electrolyte 344
P. Teeluk, D. Wananwiwongsak and S. Wananwiwongsak

ET62 Design, Construction and Testing of a Thermocoustic System 349
R. Pampoon, S. Janpudaka, K. Eaprasitporn, T. Chai-ya and M. Puangfonng

ET63 Water Waste Treatment Stand Alone Photovoltaic System 352
O. Salini and S. Hirunvaradom

ET64 The effect of photon flux density and module temperature on power output of photovoltaic array 356
Chantasit Sirisanphawong and Chatchai Sirisanphawong

ET65
CONTENT

ET65 Electrochemical Performance of Ni₀.₅Co₀.₅-GDC Cermet Anodes for SOFCs
J. Ayovisco, Daranee Wattanapornwich, Suheer Wattanapornwich and Ekvason Sano

ET69 Comparison of Two Scenarios for Maximizing CO₂ Reduction and Supply Energy for Bioethanol Production and Power Generation from Agro-Residues: A Case Study in Ecuador
J.C. García M., T. Machimura and T. Munoz

ET70 CuO coating effect on photovoltaic performance of dye-sensitized solar cells based on SnO₂ nanowires
Sirachai Phudsangkholdboon, Duangmaee Wongsawathiphan, Achutiranon Gongsuwan, and Supap Choopun

ET71 Assessing the energy savings potential in public buildings through retrofits measures in tropical climates – A case study in Mauritius
Vidhyasree Ore and Omesh Kumar Mohri

ET72 Three-Level Back-to-Back Converter Simulation for Wind Turbine Energy Source
N. Tuksan, N. Phakhlong and K. Bhumitrajitch

P. Saiwip, N. Choldekoop, M. Tongpoon, Y. Laoon and J. Pongrathanasawat

ET74 Fabrication of Samarium Doped Ceria Electrolyte on Rough Glass Substrate with High Electrical Conductivity by Electrospay Spray Deposition for Intermediate Temperature Solid Oxide Fuel Cell
Tampol Chalermitik, Manop Panapong and Bussaro Kauphanarb

ET75 Effect on Compressive Strength of Replacing Sand by Dolomite in Concrete
Prachom Khungsi and Kittipong Sawasero

ix

CONTENT

ET77 Renewable Energy Feasibility Study: Case Study for A Main Telephone Fixed-Line Exchange Unit in Thailand
N. Kaptathien, Sarutut Jaturapan and D. Jareava

ET78 Laboratory Study of Selected Trace Elements Behavior during Biomass Co-Burntions with Coal
A. Kivos

ET79 Comparative Evaluation on Product Properties and Energy Consumption of Single Microwave Dryer and Combination of Microwave and Hot Air Dryer for Durian Peel Particulates
Suradech Charoenru, Wanchana Yingpon, Amnchat Jeywee, Phudsangkholdboon and Somloong Vongpranichchat

ET80 Effect of Activated Carbon Surface Treatment on Methane Adsorption for Natural Gas Storage Development
Arudra Vinayak, Boonvorakット Kittisom, Pramukh Rungsaritijit, and Santi Kalapunigkanjan

ET81 Hydrodynamic Behavior of a Fluidized Bed Containing Sun Flower Seed
Phawoth Chaudire, Sita Acharya and Aree Acharya

ENVIRONMENTAL AND SOCIAL IMPACT

ES89 Degradation Behaviors of Different Blends of Polyactic Acid Buried in Soil
C. Thiriyasige, C. sreevigny and S. Sirisumonsaacsil

ES10 Fixed bed Adsorption Column Studies for the Removal of Aqueous Phenol from Activated Carbon Prepared from Sugarcane Bagasse
H.D.S.S.Kumawat and B.M.W.P.K. Amarasiriwita

ES11 Analysis of pesticide residues in tomatoes by using Gas Chromatography/Mass Spectrometry
D.J.C. Dinamakule, K.K.R.S. Rumowo, Nimal Pathmasiri

ES13 Correlation between heat flux over the Indian Ocean and rainfalls in Coastal Thailand by using the MM5 numerical model
P. Prakhunanont, A. Sripong, and D. Sukawat
CONTENT

ES14 Effect of Acid Treatment on Adsorption of Single-Walled Carbon Nanotubes for Tetrazycline Removal from Aqueous Solution
Konti Shrestha, Kinya Nakagawa, Tanatchai Charitpanich, and Kanokwan Sovichat

ES15 The Applied Geographic Information System and the Relation of Mollusk with Water Quality in Ayutthaya Province, Thailand
D. Supattamorn, N. Anuwuchai, and J. Poomongkon

ES16 Reproduced Solar Radiation Derived from Electric Current of Solar Cell for Daytime Meteorological Study
Nishinaweta Choosakul, Chanoksan Rangising and Nirits Barnsoph

NANOTECHNOLOGY AND MATERIAL TECHNOLOGY

NM01 Surface Treatment of natural fibers with Flexible Epoxy Resin Nupawan Klinlarday, Putman Navongwongvan, Werscop Prin-Art and Hirokiki Hamada

NM02 Poly(lactic acid) and Poly(butylene succinate) blend Fibers Prepared by Melt Spinning technique
L. Jampang, J. Wong On, P. Surin, C. Apawat, T. Chaiakulwong, S. Thanom, N. Kaokhunthong, N. G-Charan, and N. Sriwat

NM03 Morphological and Impact Property of Flexible Epoxy Treated Natural Fibers Reinforced Poly (lactic acid) Composites
Wipawee Nathong, Pattum Navongwongvan, Werscop Prin-Art, and Hirokiki Hamada

NM04 Collector Thermal Efficiency of Solar Panel Made from Thermoplastics
Tanatchai Mekhan, Waranee Ariyawanjanu, Mrose Yenphang, Pornpichai Timsupa, Jakawan Buwis, Nokul Eiphantsop, Pornpichai Muangcharoen, and Supachai Chongsuriptanu

NM05 Effect of Heat Seal Conditions on Heat Seal Characteristic of Poly (Lactic Acid)/Thermoplastic Starch Blend Films
S. Thanom, K. Tamada, S. Prin-Art, K. Miyata and H. Hamada

xi

CONTENT

NM06 Microstructural arrangement and densification of GDC/YSZ solid solutions
S. Wattanasingh, T. Jansapoch, and D. Wattanasingh

NM07 Kinetic Study of Poly(lactic acid) Pre-polymer Synthesis in a 2-Steps Direct Polycondensation Process
Somawan Nimman, Werscop Prin-Art, Natchaporn Supinee, Supawan Wuacharansanusorn, Tassanom Wongpang, and Sommai Prin-Art

NM09 Effect of Metal Additives on the Hydrogenation of Carbon Dioxide over Nickel Catalyst Prepared by Sol-gel Method
Hosners A. And

NM10 Effects of Fuel Contents and Surface Modification on the Sol-Gel Combustion C0.66Gd0.34O1.56 on Nanopowder
Darunee Wattanasingh and Sudhee Wattanasingh

NM11 Mechanical Properties of Bamboo Charcoal Reinforced PLA Composites
Phraepoom Limparungsooe Putman Navongwongvan, Werscop Prin-Art and Hirokiki Hamada

NM12 Preparation of Poly(lactic acid) and Poly(trimethylene terephthalate) Blend Fibers for Textile Application
S. Padet, J. Wong On, P. Surin, C. Apawat, T. Chaiakulwong, S. Thanom, N. Kaokhunthong, N. G-Charan, and N. Sriwat

NM13 Poly(lactic acid)/Polyacrylate Blends Compatibilized with Block Copolymer
K. Chavalitwongs and S. Phonnarundee

NM14 Preparation of Polymer Blends Between Poly (lactic acid) and Poly (butylene adipate-co-terephthalate) and Biodegradable Polymers as Compatibilizers
Werscop Prin-Art, Amorn Chatyatur, Sommai Prin-Art, Hitoshi Yamae and Hitomi Ohara

NM17 Effect of Molecular weight and Concentration of Chitosan on Poly (vinyl acetate) Encapsulation
A. Jellupan, S. Phatonanuwat
CONTENTS

NM18 Hydrothermal Preparation and H2 Evolution from Water-Splitting Reaction of Nanotubes Constructed from Low-Cost White Pigment TiO2
S. Punnathan, T. Wutworawong, N. Tomman, S. Chuanchoke, S. Sagesa, A. Suprapatpim and W. Pecharupsa

NM19 Characterization of Flower-like Titania and Titania Nanowires on Titanium Plate Substrate
S. Punnathan, K. Ono, S. Yoshikawa, A. Suprapatpim and W. Pecharupsa

NM20 Effect of Filler Types on Thermal Property of Poly (butylene succinate) Composite Films
C. Iom-ewong and S. Photunarawee

NM21 Synthesis of L-Lactic Acid Oligomers Using Melt Polycondensation Process
Soomal Pree-Art, Naninam Niamlang, Waranporn Pisa-Art, Surapong Pree-Art, Hideki Yamane and Hitomi Ohara

NM22 Effect of Additives on Thermal and Mechanical Properties of Polymer Blends of Poly (lactic acid) and Poly (butylene succinate-co-adipate) Sommal Pree-Art, Surapong Pree-Art, Narongsak OsChamnong, Waranporn Pisa-Art, Supaphorn Thummon, Hideki Yamane and Hitomi Ohara

NM25 Scintillation Properties of Ce-doped YAP and Li3La2Si3AP
Singh Crystals at 120 and 662 keV Gamma Rays
A. Phanouw, W. Cheewadiluk, V. Thongpue, and D. Aiphasraj

NM26 Transparent Conductive ITIO Films Deposition for Photovoltaic Application Using RF Sputtering Technique
Acanto Chawangond, Tien-Woo Kim, Dong-Joo Kwak and Yool-Moon Sung

NM27 Synthesis of Titanium Oxide Nanotubes for Electrochromic Luminescence Application Using Anodizing Method
B. H. Joo, A. Charomead, M. W. Park and Y. M. Sung

CONTENTS

NM28 Comparison of TiO2 Films Characteristics Prepared by Sputtering, Sol Gel and Dip Coating Methods for Photovoltaic Application
Byung-Ho Moon, Soon-Hye Park, CheolHean Han and Yool-Amoon Sung

NM29 TiO2 Films Fabrication for electron blocking layer of Photo-Electrochemical Cells using RF Magnetron Sputtering Method
Hee-Dae Park, In-Seek Choi, Dong-Joo Kwak and Yool-Amoon Sung

NM30 Synthesis of PolyD-lactic acid) Using a 2-Steps Direct Polycondensation Process
Ruchanaweekorn Wongsawang, Waranporn Pisa-Art, Tikkanda Tong-ngok, Sapana Jumgam, Sommal Pisa-Art, Hideki Yamane and Hitomi Ohara

NM31 Nickel-Nickel spinel composite for an external SOFC support
A. Situatwan, D. Wattanastittritiek, S. Wattanastittritiek and P. Amnaghawattan

NM32 Fine Tuning in Dimensions of ZnO Nanostructures and ZnO/Polymer Interface in Hybrid Solar Cells
Papit Bantham, Takashi Sagesa and Susumu Yoshikawa

NM33 Pulsed Laser Ablation of Graphite Target in Dimethylformamide
V. Thongpue, A. Phanouw, V. Piyachuang, S. Limsawan, and P. Limsviwan

NM34 Characterisation of the Photoelectrochemical Properties of WO3 Thin Films Prepared by Electrodeposition
W.E. Kwang, H. Qin, A. Nakark, P. Koshy, and C.C. Sorrell

NM35 Effect of Annealing Temperature on the Photocatalytic Activity of TiO2 Thin Films
C.P. Lin, H. Chen, P. Koshy, A. Nakark, and C.C. Sorrell

NM36 Synthesis and Characterization of Al6061-Fly Ashy-Si3n4 Composites by Stir Casting and Compocasting Methods
David Raja Selvan, J. Rothein Smart, D.S. Donakaran
CONTENT

NM41 Synthesis of Porous Carbon using Cashew Nut Shell Liquid as a Precursor
Parinuth Sudyo and Nantaporn Tanoman 564

NM42 Mechanical Properties of Silk Fiber Reinforced Poly (lactic Acid) Composite
Kornkanok Manupak, Puttanun Lueangwong, and Nantaporn Priva-Art and Hiroaki Hamada 568

NM43 Effect of Film Thickness on the Properties of SnS2 Layers Deposited by Chemical Bath Deposition
G. Sreedhar, E.T. Ramakrishna Reddy and J.W. Miles 572

NM44 Electrospun Strontium Titanate Nanofibers from Two Different Types of Strontium Salts
L. Macalalag, S. Chuangchote, S. Yoshikawa and T. Saitou 576

NM45 BVO3 Nanopowder Prepared by the Solvothermal Method
Pongpich Janamarnthi, Panit Poosamran and Sukon Phanthumchaisri 579

NM46 Crystallization Kinetic and Mechanical Performance of Tale Filled Poly(Lactic Acid)/Poly(butylene succinate) Blend Composites
Waruporn Priva-Art, Supaphorn Thanomsorn, Jirasit Ranamangol, Hideki Yamane and Hitomi Ohara 584

NM50 Design of Support Insulator for L.T. Fuse Switch from Composite Material
N. Panklang, N. Phanphong and K. Bhunakachich 585

NM51 Preparation and Characterization of Magnetic Polymeric Composite Particles by Modified Suspension Polymerization
Amorn Chatjaasat, Preeyporn Chatjaasat, Boonlue Tangsup, Rangsri Khunladd and Sattithorn Kongsun 589

NM52 Preparation of Nanotubes from Natural Illinite Mineral by Hydrothermal Method
T. Wirunmangol, K. Supansri, N. O-Chaovan, S. Supaphorncharas and S. Panvanpras 594

XV

CONTENT

NM53 Preparation and Characterization of Natural Rubber/Polylactide Polymer and ethyl trimethylammonium chloride Nanocomposites by Heterocoagulation
Suporn Premdeos, Suporn Meecharoo, Preeyporn Chatjaasat, Amorn Chatjaasat 600

NM54 Preparation and Characterization of Titania Nanofibers from Low-Cost Natural Illnite Sand
A. Supaphorncharas, T. Wirunmangol, S. Panvanpras and W. Pecharee 605

NM55 Preparation of Poly(L-lactic acid) Microencapsulated Vitamin E
Amorn Chatjaasat, Preeyporn Chatjaasat, Praweena Thoska, Suyong Noppali and Uaporn Sromach 609

NM56 Morphological, Thermal, and Mechanical Properties of Poly(lactic acid) Blend with Natural rubber and Poly (methyl Methacrylate)
Wanlukkadeechawong, N. Apaphatya and Sriwut Poompradub 614

NM57 Preparation of In-Situ Silica with Multi-Functional Groups via Sol-Gel process for Natural Rubber Reinforcement
Thaweenon Thapprudd, Panklang Praorasrerk and Sriwut Poompradub 618

NM58 Mechanical Property of Surface Modified Natural Fiber Reinforced Poly(Lactic acid) Composites
Wasana Suntruisan, Puttanun Lueangwong, Waruporn Priva-Art and Hiroaki Hamada 623

NM59 Electroactive Performances of Conductive Polythiophene/hydrogel Hybrid Artificial Muscle
Daichao Pantocarakorn, Pongpaj Tongza, Natasawat Jaerattchai, Sirpon Thongbor and Piliksung Chanthongkell 627

NM60 Structural Properties of Cu-Doped ZnO Nanopowder Synthesized by Co-Precipitation Method
N. Thaweoneeng, S. Sukphakdi, W. Techidiharee and W. Pecharee 632

NM61 Influence of Ti and Zn Dopants on Structural Properties and Electrochromic Performance of Sol-gel Derived WO3 Thin Films
K. Paipat, W. Techidiharee, S. Porntheparat and W. Pecharee 635

xvi
<table>
<thead>
<tr>
<th>CONTENT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM62 The Electromechanical Properties of Crosslinked Natural Rubber</td>
<td>659</td>
</tr>
<tr>
<td>S. Mumlung, S. Thongchai, N. Panwarmanee and A. Sirivat</td>
<td></td>
</tr>
<tr>
<td>NM63 Thermal and Mechanical Properties of Biodegradable Polyesters/Silica Nanocomposites</td>
<td>643</td>
</tr>
<tr>
<td>Runkhare Khunkru, Somsai Jin-Air, Homada Hiroshi and Supakaj Sirirungvorng</td>
<td></td>
</tr>
<tr>
<td>NM64 Preparation of NiO-YSZ Substrate for Electrophoretic Deposition of thin YSZ Film</td>
<td>648</td>
</tr>
<tr>
<td>M. Mepho, D. Watsansiratreech, S. Watsansiratreech and P. Amnongkornzana</td>
<td></td>
</tr>
<tr>
<td>NM65 Characterization and Photoresponse properties of Sn-doped ZnO</td>
<td>652</td>
</tr>
<tr>
<td>K. Chongori, C. Banghok, W. Techatdheer and W. Pechanupa</td>
<td></td>
</tr>
<tr>
<td>NM66 The Mechanical Properties of Vulcanized Deoxidized Natural Rubber</td>
<td>656</td>
</tr>
<tr>
<td>J. Nims, K. Sue-hung, W. Ariyavijiyavan and S. Kawahara</td>
<td></td>
</tr>
<tr>
<td>NM67 Optical absorptivity enhancement of SiO2 thin film by Ti and Ag additive</td>
<td>660</td>
</tr>
<tr>
<td>P. Jantub, S. Beccmann and W. Pechanupa</td>
<td></td>
</tr>
<tr>
<td>NM68 Synthesis of CuO Nanoparticles by Precipitation Method using Different Precursors</td>
<td>664</td>
</tr>
<tr>
<td>K. Phoedang, S. Suphankaj, W. Methrotart and W. Pechanupa</td>
<td></td>
</tr>
<tr>
<td>NM69 A Study of Energy Saving in Building through Thermal Insulation with Plywood Inserted Honeycomb Sandwich Panels</td>
<td>667</td>
</tr>
<tr>
<td>A. Reungvaree V. Premamond and S. Tornah</td>
<td></td>
</tr>
<tr>
<td>NM70 Hydrothermal Preparation and Photocatalytic Activity of Nanosheets from Natural Ilmenite Mineral</td>
<td>672</td>
</tr>
<tr>
<td>W. Charomaman, T. Wiramongkol, N. O-Charoen, S. Sahudchana, K. Sangwine and S. Pathrapree</td>
<td></td>
</tr>
<tr>
<td>NM71 Effect of Nitrogen doping on optical and photocatalytic properties of TiO2 Thin Films Prepared by Spin Coating Process</td>
<td>677</td>
</tr>
<tr>
<td>W. Methrotart, T. Khumong, J. Ratanawar, W. Techatdheer and W. Pechanupa</td>
<td></td>
</tr>
</tbody>
</table>

CONTENTS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM72 Photocatalytic of N-doped TiO2 Nanofibers prepared by electrosprining</td>
<td>680</td>
</tr>
<tr>
<td>S. Suphankaj, W. Methrotart and W. Pechanupa</td>
<td></td>
</tr>
<tr>
<td>NM73 Nanostructure Investigation of Particle Emission by using TEM Image Processing Method</td>
<td>683</td>
</tr>
<tr>
<td>Preechar Kanan, Teethana Sangunnagan, Songtao Luonwan, Chinda Charchwongphonchan, Nongch Cholacoon and Ratanmi Ranama</td>
<td></td>
</tr>
<tr>
<td>NM74 An Investigation of Weldline Strength in Injection Molded</td>
<td>689</td>
</tr>
<tr>
<td>Rubber Parts</td>
<td></td>
</tr>
<tr>
<td>W. Cheekw, Jinchatr Mengjujerdak, Patrave Jitbom, Nuchanit Sa Ramong and Somjut Panchuphan</td>
<td></td>
</tr>
<tr>
<td>NM75 Preparation of PVP/MHEC Blended Hydrogels via Gamma Irradiation and Calcium ion Uptaking/Releasing Behavior</td>
<td>693</td>
</tr>
<tr>
<td>K. Phangsongngam, K. Kuyamukth, A. Kewutalai, N. Noosuwon, P. Kewirawan and A. Laukthuez</td>
<td></td>
</tr>
<tr>
<td>NM76 Effect of Thermal Treatment on Intermetallic Phases of Fe/Al Structural Transition Joints</td>
<td>697</td>
</tr>
<tr>
<td>S. Fotsa and A. Hodhantarwan</td>
<td></td>
</tr>
<tr>
<td>NM77 Structural Characteristics and Dielectric Properties of</td>
<td>701</td>
</tr>
<tr>
<td>La2-xCoxFe3O7 and LaFe1-xCoxO Synthesized via Metal Organic Complexes</td>
<td></td>
</tr>
<tr>
<td>Wankasamat Hiron, Thammamoon Thaweechat, Wirawar Watsanapong, Aprat Laukthuez, Ratbahrun Munasaho, Chatthai Veratinisig and Nattawor Koonsaeng</td>
<td></td>
</tr>
<tr>
<td>NM78 Simple Hydrothermal Preparation of Zine Oxide Powders using Thai Autoclave Unit</td>
<td>707</td>
</tr>
<tr>
<td>T. Wiramongkol, N. O-Charoen, and S. Pathrapree</td>
<td></td>
</tr>
<tr>
<td>NM79 Thermal and mechanical properties of polypropylene/boron nitride composites</td>
<td>711</td>
</tr>
<tr>
<td>W. Cheewavannongping, D. Fioka, S. Tumaa, H. Uemuma, and Y. Inumo</td>
<td></td>
</tr>
<tr>
<td>NM80 Mechanical Properties of Jade Spun Yarn/PLA Tubular Braided Composite by Pultrusion Molding</td>
<td>717</td>
</tr>
<tr>
<td>A. Minon and A. Naka</td>
<td></td>
</tr>
<tr>
<td>CONTENT</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>NM81</td>
<td>The fabrication and mechanical Properties of Jute Span Yarn/PLA Unidirectional Composite by Compression Molding A. Memon and A. Nizai 272</td>
</tr>
<tr>
<td>NM83</td>
<td>Effect of Twisted Jute Fiber Bundle on Mechanical Property of Glass/jute/polypropylene Hybrid Composites P. Uawongwun, T. Yang and H. Hamada 276</td>
</tr>
<tr>
<td>NM88</td>
<td>Impact Property of Flexible Epoxy Treated Natural Fiber Reinforced PLA Composites Wiphavee Thanhong, Puttman Uawongwun, Woraporn Pivsa-Ard and Hiresuki Hamada 730</td>
</tr>
<tr>
<td>NM89</td>
<td>Mechanical Property of Surface Modified Natural Fiber Reinforced PLA Biocomposites Wassanan Sojatiphat Puttman Uawongwu, Woraporn Pivsa-Ard and Hiresuki Hamada 734</td>
</tr>
<tr>
<td>NM90</td>
<td>Mechanical properties of silk fiber reinforced PLA composite Kroonkorn Manephat, Puttman Uawongwu, Woraporn Pivsa-Ard and Hiresuki Hamada 738</td>
</tr>
<tr>
<td>NM91</td>
<td>Effect of Flexible Epoxy Treated on Surface Morphology of Natural Fibers Niponwadee Klokhlyuy, Puttman Uawongwu, Woraporn Pivsa-Ard and Hiresuki Hamada 742</td>
</tr>
<tr>
<td>NM92</td>
<td>Electro-Acceptor Nanomaterials Fabricated by Electrospinning for Polymer Solar Cells Suraweew Chanyachote and Takashi Sugaue 746</td>
</tr>
<tr>
<td>NM93</td>
<td>Effects of Melt Spinning Conditions on Cross-sectional Features of Poly (lactide) Fibers N. Reungsaroj, N. Ochawen, N. Sirasuw, C. Pruesan, S. Pansongree 749</td>
</tr>
<tr>
<td>NM94</td>
<td>Nonstoichiometric Polymer Particles as Nanosensors and Catalytic Nanofilters with Unique Properties Mdd. Shaimul Islam, Won Seh Choi, Kyo Jin Lee 755</td>
</tr>
<tr>
<td>NM95</td>
<td>Investigation of Si-gel-NR interaction in Si-Gel/NR vulcanizate using Dynamic Mechanical Thermal Analysis C. Thongwut and R. Rodsanghu 761</td>
</tr>
</tbody>
</table>

xx
XXI

CONTENTS

EM05 Non-humidified fuel cells using dimethylpyrrolidinum fluoroxydronetehtrium ionic-liquid-polymer composite membranes
 P. Koontratul, R. Tanke, K. Matanoun, T. Nohra and R. Hupwara

EM06 A Prediction of Banana Drying Behavior Using Empirical Model and Artificial Neural Network Model
 Panphatee Warumiti, Bandu Kritianom, Nantasuktha Warumiti,
 Unpapik Theroomsa and Sophon Sisoun

EM07 A Nation-wide Planning of Agro-residue Utility for Bioethanol Production and Power Generation in Ecuador
 J.C. Garcia M., T. Machimura and T. Ishikai

EM08 A Survey of Remote Household Energy use In Rural Thailand
 J. Younger and T. Ishakai

NEW ENERGY TECHNOLOGY

NT01 Investigation of Electron Beam Parameter in Seeded THz-FEL Amplifier Using Photocathode RF Gun
 K. Shimada, H. Yen, K. Okumura, M. Shukits, H. Sato,
 T. Katsuram, H. Naga, M. Omer, K. Yoshida, Y. W. Chai, R. Kinjo,
 K. Murata, T. Kit and H. Ohgaki

NT02 Hydrodesulfurization of Oil Derived from Waste Tire Pyrolysis
 Nai Santavak, Puanpum Prasasartak, Naphon Hincharnun

NT03 Effect of surface treatment on properties of PBS/coir fiber bicomposites
 Masiti KooliKajong, Nantakarn Hongpredhan and Chuchat Thongtia

NT04 Mechanical and Thermal Properties of PLA/PBS Co-continuous Blends Adding Nucleating Agent
 Rungroo Romkhum and Nantakarn Hongpredhan

NT05 Diazokyanemorpholine-type Active Materials for Rechargeable Lithium Batteries: the Effect of the Alkoy Group Length on the Cycle-stability
 Masano Tao, Hironoti Ando, and Yotoshi Kiyohara

XXII

CONTENTS

NT06 The Effect of Rubber on Morphology, Thermal Properties and Mechanical properties of PLACNR and PLA/EENR blende
 K. Pongtawat, A. Chaijan and O. Samutwatt

NT07 Moisture absorption and fertilizer release of poly (butylene succinate) blended with fertilizer loaded superabsorbent polymer for using in agriculture application
 Matine Sikkharaokul and Nantakarn Hongpredhan

NT09 Ductility Enhancement of Poly (butylene succinate)/Poly (lactic acid) Blend by the Use of Glycidyl Methacrylate
 Chomcha Chintaa and Nantakarn Hongpredhan

NT10 Effects of γ-Al2O3 on carbonization of oil palm shell
 Uporat Kanduk, Prapa Weechonthee, Sirirat Poongpradub

NT11 Separation of D, L-Lactic Acid by Filtration Process
 Anit Boungam, Soamai Pruaywati, Siridha Pongprad,
 Thadeaw Atsumaritsuk and Pyoman Srisuanwong

NT12 Production of Bio Oil from Para rubber seed by Pyrolysis Process
 Chaitan Chataya and Prasert Runbhpoycharoen

NT13 Investigation of Radiation Heat Flux from the Gas Opened-cell Foam Porous Burner
 B. Kriincon, S. Simuang, P. Warusith and R. Peemawan

NT14 Optimization of Longitudinal Electron Beam Properties for Linac-based Infrared Free-electron Laser at Chiang Mai University
 S. Saphakh, S. Changjaroen, C. Thongph, and S. Ronja

NT15 Status and Application of Mid Infrared Free Electron Laser in Kyoto University
 Kyosho Yoshida

NT16 Linac-based THz Radiation Sources at Chiang Mai University
 S. Ronja, P. Boonpraeprasit, S. Changjaroen, K. Krujaanaraka,
 M. Rhodes, J. Saiti, S. Saphakh, P. Thumvown, and C. Thongphai

xvii
<table>
<thead>
<tr>
<th>NT18</th>
<th>Simulations and Measurements of Dipole and Quadrupole Magnets for PBH-CMU Linac System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. Bortolommesso, S. Rinjewars, J. Saatat, and C. Thongbai</td>
</tr>
<tr>
<td>NT19</td>
<td>Observation of high harmonic generation from SiC by MIR-FFEL irradiation</td>
</tr>
<tr>
<td></td>
<td>H. Imai, H. Negi, T. Konstantinou, M. Omer, R. Kinjo, T. W. Choi, T. Kii, K. Masuda,</td>
</tr>
<tr>
<td></td>
<td>and H. Ohgaki</td>
</tr>
<tr>
<td>NT20</td>
<td>Effect of Equivalence Ratio on SI Engine Performance Fueled with Lean Air Gas Mixture</td>
</tr>
<tr>
<td></td>
<td>G. Pryzyjko, A. Sekak, L. Zaslavskowski</td>
</tr>
</tbody>
</table>
Preparation of Nanotubes from Natural Ilmenite Mineral by Hydrothermal Method

T. Wirunmongkol¹, K. Sungsanit¹, N. O-Charoen¹, S. Sakulkhamaaruethai² and S. Pavasupree¹*
¹Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani 12110
²Department of Chemistry, Faculty of Science, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani 12110
E-mail: sorapongp@yahoo.com*

Abstract—Titanate nanotubes have been successfully prepared by adopting ilmenite mineral and sodium hydroxide (NaOH) as the starting material via the simple hydrothermal method at 105 °C for 24 h using Thai autoclave unit. The chemical composition, shape, size, crystalline structures and specific surface area of the as-prepared samples were characterized by x-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface area. The prepared titanate nanotubes had an average inner diameter around 6-8 nm and outer diameter around 10-20 nm. The length of the prepared titanate nanotubes was approximately 0.1-0.5 μm. The BET specific surface area and pore volume of the prepared titanate nanotubes were about 96.198 m²/g and 0.990 cm³/g, respectively. This preparation method provides a simple route to fabricate nanotubes with low-cost mineral using Thai autoclave unit.

Keywords—Nanotubes, Ilmenite mineral, Hydrothermal, Titanate, TiO₂.

1. INTRODUCTION

Titanium dioxide (TiO₂) is one of the most important materials. TiO₂ as n-type II-VI compound semiconductor with a wide direct-band gap of 3.2 eV, has attracted more and more attention over the past few years because it can fine application in various fields, such as a semiconductor in dye-sensitized solar cell, water treatment materials, catalysts, transducers gas sensor, transparent high power electronics, piezoelectric transducers, and so on [1-7]. However, in order to obtain TiO₂ powders with appropriate chemical, electrical and optical properties specific for their intended applications, purity and particle size during their synthesizing process is important. Up to now, TiO₂ is known to exist in three natural polymorphs, i.e., rutile, anatase, and brookite, with different properties and so three, had been prepared via different synthesis method or under different preparation conditions [8]. Different routes such as sol-gel, electrodeposition, electrospinning and hydrothermal process have been utilized for preparing TiO₂ powder [9-11]. The hydrothermal synthetic route has advantages to obtain high-crystallized powders with narrow grain size-distribution and high purity without the expensive precursors, elaborate apparatus and heat treatment at low temperature [9-16].

This study was aimed at the preparation of nanotubes by hydrothermal method using inexpensive-natural ilmenite mineral as the starting material. The use of ilmenite mineral in this study is < US$ 1/kg, which is 1/50 - 1/100 of other works [30]. The characterization of the prepared nanotubes will be reported.

2. EXPERIMENTAL PROCEDURE

2.1 Synthesis

The hydrothermal method was basically similar to that in the previous reports for preparation nanofibers, nanotubes and nanowires [17-33]. In the typical manner, 8 gram natural ilmenite granules 90-250 μm (Fig. 1) was added into NaOH aqueous solution (10 M, 2,000 ml). Then, the solution was stirred at room temperature for 5 min. After kept stirring, the solution was put into a teflon-lined stainless steel autoclave (Fig. 2). The autoclave was heated at 105 °C for 24 h with stirring condition. After the autoclave was allowed to cool to room temperature. There existed some redder membrane-like float on the NaOH solution and brownish hard precipitate at the bottom of the vessel, which were not observed for the hydrothermal process using pure TiO₂ source [26-27]. The float and precipitate, presumably caused by the impurities in natural ilmenite, can be easily separated from the main product, i.e., This phenomenon implies the hydrothermal treatment for natural rutile may be used not only as a reaction step but also as a purification step. The resulting product was washed several times with an HCl (aq.) solution and then several times with distilled water, followed by drying with hot air. The experimental procedure is schematically shown in Figure 3.

2.2 Characterization

The chemical composition of the ilmenite mineral was analyzed by x-ray fluorescence (XRF, PW-2404, Philips, Netherlands). The shape and size of the prepared samples were observed by scanning electron microscope (SEM, JSM-6510, JEOL, Japan) and transmission electron microscope (TEM, JEM-2100, JEOL, Japan). The phase and crystallinity of the samples were characterized by x-ray diffraction (XRD, X'Pert PRO MPD, PANalytical, Netherlands). The Brunauer-Emmett-Teller (BET, BELSORP-Mini, Rubotherm) specific surface area and pore structure of the samples were characterized by the nitrogen adsorption-desorption isotherm.

This work was supported by National Research Council of Thailand (NRCT).
2.3 Photocatalytic activity measurement

The photocatalytic activity was measured through the formation rate of \(I_3^- \) due to the oxidation photo reaction of \(I^- \) to \(I_2 \) in excess \(I^- \) conditions [6, 34]. A reaction system was set up by adding 50 mg of a sample powder into 10 ml of 0.2M of potassium iodide (KI) aqueous solution then stirred and irradiated with UV light with a maximum emission at about 365 nm at room temperature. After the irradiation of 15, 30, 45, and 60 min, the suspension was withdrawn and centrifuged. After the clear supernatant was diluted 10 times, the concentration of liberated \(I_3^- \) ions was monitored by the absorbance at 288 nm, using an UV–vis spectrophotometer (Shimadzu UV 2450). The molar extinction coefficient was determined to be \(4.0 \times 10^4 \) (cm mol/l)\(^{-1}\). For reference, four different commercially available nanoparticles \(\text{TiO}_2 \) powders such as P-25 (Nippon Aerosil Co., Ltd., Japan), JRC-01, JRC-03 (The Catalysis Society of Japan), and white pigment \(\text{TiO}_2 \) were tested.

![Fig. 1 SEM image of natural ilmenite granules with the size of 90-250 µm](image)

![Fig. 2 Teflon-lined stainless steel autoclave unit.](image)

Fig. 3 Schematic representation of the hydrothermal method of the nanotubes preparation.

3. RESULTS AND DISCUSSION

The as-synthesized sample was brown-colored while as the starting ilmenite mineral was black-colored (Fig. 4).

![Fig. 4 (a) Photo images of the natural ilmenite mineral and (b) the as-synthesized sample.](image)
This result indicates that a large portion of Fe impurities were removed by the NaOH (aq.) hydrothermal treatment and the neutralization/washing processes [30]. The chemical compositions of the ilmenite mineral and of the as-synthesized samples found using X-ray fluorescence are shown in Table 1. During the hydrothermal process, the quantities of impurities, such as Fe₂O₃, Al₂O₃, SiO₂, and MnO, decreased while the TiO₂ content increased from 66.99 to 70.58%wt. This may be due to higher solubility of the impurities in the NaOH and HCl aqueous solutions during the preparation process [35-36]. The doping of Fe³⁺ in the nanotubes matrix leads to a significant red shift in the optical response towards the visible spectrum caused by a reduction in the band gap energy [37], resulting in the brown-color of the as-synthesized samples. The nanotubes doped with Fe³⁺ could be an alternative, economically efficient material used as a photocatalyst in hydrogen and biogas production, dye-sensitized solar cells, water purification and decomposition of organic dyes.

Table 1 Chemical analysis of the natural ilmenite mineral and the as-synthesized sample.

<table>
<thead>
<tr>
<th>Oxide</th>
<th>Ilmenite mineral (%wt)</th>
<th>As-synthesized sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂</td>
<td>66.99</td>
<td>70.58</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>24.01</td>
<td>21.17</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.38</td>
<td>0.43</td>
</tr>
<tr>
<td>SiO₂</td>
<td>2.11</td>
<td>0.46</td>
</tr>
<tr>
<td>MnO</td>
<td>0.82</td>
<td>0.86</td>
</tr>
<tr>
<td>ThO₂</td>
<td>0.64</td>
<td>0.04</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>0.62</td>
<td>0.37</td>
</tr>
<tr>
<td>MgO</td>
<td>0.27</td>
<td>0.11</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.26</td>
<td>0.20</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.25</td>
<td>0.05</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.15</td>
<td>0.03</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>ZnO</td>
<td><0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td>0.24</td>
<td>0.11</td>
</tr>
<tr>
<td>CaO</td>
<td>0.16</td>
<td>0.26</td>
</tr>
<tr>
<td>Na₂O</td>
<td><0.01</td>
<td>4.38</td>
</tr>
</tbody>
</table>

Fig. 5 shows the X-ray diffraction pattern of the prepared samples. The peaks of starting ilmenite mineral were rather sharp, which indicated the rutile phase (Fig. 5a). After synthesized at 105 °C for 24 h the sample showed titanate phase (H₂Ti₃O₇−x−y) probably trititanate (H₂Ti₃O₇), indicating the hydrogen (from water) in the prepared nanotubes [8, 30, 31, 38]. TiO₂ crystals become amorphous by the Ti-O is broken and form to the Ti-O-Na or Ti-OH bonds following treatment in aqueous NaOH, and nanotubes titanate are generated after the treatment of TiO₂ acidic solution and water. In addition, the layers of titanate nanotubes are formed depending on the synthesis conditions and residual Na which could be H₂Ti₂O₇ or Na₂H₂Ti₃O₇ and no crystallization of contaminants such as sodium chloride (NaCl) and rutile (Fig. 5b). In addition, it is expected that a new type of titanate nanotube having new properties will be formed by controlling the amount of residual Na⁺ ions and by replacing residual Na⁺ ions with other ions [39].

Fig. 5 XRD patterns of (a) the natural ilmenite mineral and (b) the as-synthesized sample.

Fig. 6 SEM images of the as-synthesized nanotubes at (a) × 5,000 magnified (b) × 10,000 magnified and (c) × 20,000 magnified.
was used, and the images can be seen in Fig. 7 at difference magnified. From the TEM images, it can be observed that the as-synthesized sample showed tubular structure. The prepared nanotubes had the lengths from 0.1 - 0.5 μm with inner and outer diameter of 6-8 and 10-20 nm, respectively (Fig. 7). The nanotubes formation can be explained as follows: Firstly, the crystallites are exfoliated into layered crystalline sheets when treated the raw ilmenite mineral in NaOH aqueous solution at 105 °C, and then the single sheets formed along with the (010) lattice planes and paralleled to the sheet surfaces. Secondly, the sheets gradually rolled up to reduce the number of surface dangling bonds and decrease system energy (both sides of these single-layer sheets have many dangling bonds that should be saturated in the solution). As a result, the single sheet rolled up into tubular shape. This process is in accord with the reported of B.D. Yao et al. [17-18, 40].

The BET specific surface area of the as-synthesized nanotubes was approximately 96.198 m²/g, while the BET surface area of the starting ilmenite mineral was very low at approximately 0 m²/g (Table 2). The BET specific surface area of the starting ilmenite mineral was similar to that of leucoxene [8] and rutile minerals [30-31]. The increasing in the BET specific surface area is a result of the starting ilmenite mineral being completely converted into hydrogen titanate nanotubes during the hydrothermal process [17-22].

![Fig. 8 N₂ adsorption–desorption isotherms of the as-synthesized sample.](image)

Table 2 The BET specific surface area of the starting ilmenite mineral and the as-synthesized samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>BET surface area (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilmenite mineral</td>
<td>~ 0</td>
</tr>
<tr>
<td>Nanofibers titanate</td>
<td>49</td>
</tr>
<tr>
<td>Nanotubes titanate</td>
<td>96</td>
</tr>
<tr>
<td>Commercial TiO₂ (P25)</td>
<td>50</td>
</tr>
</tbody>
</table>

Fig. 8 shows the N₂ adsorption isotherms of the as-prepared samples which is a typical IV isotherm according to the IUPAC classification [42, 43]. An absorption-desorption hysteresis loop is observed at P/P_0.
\[\approx 0.65, \text{ indicating capillary condensation of the liquid N}_2 \text{ inside the samples. The pore volume from the total amount absorbed at related pressures is } 0.5531 \text{ cm}^3\text{g}^{-1}. \]

![Graph showing photocatalytic activity (Iᵢ₃ concentration) of the as-synthesized nanotubes, the calcined nanotubes, commercial TiO₂ nanoparticles (P-25, JRC-01, JRC-03 and White pigment)](image)

Fig. 9 Photocatalytic activity (Iᵢ₃ concentration) of the as-synthesized nanotubes, the calcined nanotubes, commercial TiO₂ nanoparticles (P-25, JRC-01, JRC-03 and White pigment)

The photocatalytic activity (Iᵢ₃ concentration) of the as-synthesized nanotubes, nanotubes calcined at 300 °C for 2 h and commercially grade nanoparticles TiO₂ P-25, JRC-01, JRC-03 and white pigment is shown in Fig. 9. It was found that the photocatalytic activity of the as-synthesized nanotubes almost equal to P-25 but higher than JRC-01 and JRC-03, because of large specific surface area of the as-synthesized nanotubes [8], and the photocatalytic activity was almost proportionnal to the BET specific surface area. However the nanotubes calcined at 300 °C was higher than these, (Iᵢ₃ concentration) of as-synthesized, nanofibers form ilmenite mineral, commercially grade nanoparticles TiO₂ i.e., P-25, JRC-01, JRC-03 and white pigment due to the high specific surface area with TiO₂ (B) structure [8, 28].

4. CONCLUSION

In summary, titanian nanotubes were synthesized by a hydrothermal method using a low-cost natural ilmenite mineral as the starting material. After the hydrothermal treatment, the as-synthesized sample exhibited a uniform tubular-like morphology and showing an increased TiO₂ content were obtained. Analysis of the crystalline structure of the as-synthesized nanotubes demonstrated a layered titanian H₂Ti₄O₁₁ structure, most likely in the form of trittitanate (H₂Ti₄O₁₁). The prepared nanotubes showed lengths of 0.1-0.5 μm with inner and outer diameter of 6-8 and 10-20 nm, respectively, and a corresponding BET specific surface area of approximately 96.198 m²/g. These Fe⁺⁺ doped nanotubes may show utility as a novel photocatalyst material for hydrogen production, dye-sensitized solar cells, transducers gas sensor, water treatment catalysts, catalyst and the decomposition of organic dyes.

ACKNOWLEDGMENT

This work has been supported by the National Research Council of Thailand (NRCT). The authors would like to thank Sakorn Minerals Co., Ltd., Thailand, and the Nanotechnology for Textile and Polymer Research Group (NanoTeP) of the Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Thailand.

REFERENCES

