10th Eco-Energy and Materials Science and Engineering Symposium

On December 5-8, 2012
Sunee grand hotel,
Ubon-ratchathani

Organized by

Co-organized by
PREFACE:
Message from the President of
Rajamangala University of Technology Thanyaburi

Rajamangala University of Technology Thanyaburi (RMUTT), in conjunction with Kyoto University, is pleased to host the 10th Eco-Energy and Materials Science and Engineering Symposium (10th EMSES). This international conference is not only giving an opportunity for Thai and foreign researchers to present and discuss their research works and update their expertise but also to initially stimulate the development of research works on eco-energy and materials science and engineering. Our program consists of six research tasks: (1) Energy Technology, (2) Environmental and Social Impact, (3) Nanotechnology and Materials Science, (4) Energy Economics and Management, (5) New Energy technology and (6) Nuclear Technology.

I would like to take this opportunity to express our sincere gratitude to our two distinguished Plenary Speakers for kindly accepting our invitation. I deeply appreciate of the very strong support given by Kyoto University. Thanks to the tireless works of the Organizing Committee, the Technical Program Committee, the invited speakers and paper and poster contributors, and excellent program been assembled to cover a broad spectrum of interesting topic.

We warmly welcome you to the 10th EMSES on December 5-8, 2012, Ubon Ratchathani, Thailand.

Numyoot SONGTHANAPITAK, Ph.D.
President of Rajamangala University of Technology Thanyaburi
and Conference Chairman of 10th EMSES 2012
PREFACE:
Message from the Director of
Institute of Advanced Energy, Kyoto University

It is my great pleasure to have the 10th Eco-Energy and Materials Science and Engineering Symposium (EMSES) with Rajamangala University of Technology Thanyaburi (RMUTT) under the long-term collaboration between RMUTT and Kyoto University. The 1st EMSES was held in 2001 in Thailand and the symposium has been expanded in its scientific contents as well as the academic network. I believe that the 10th EMSES gives a good opportunity to all participants to exchange their knowledge and idea to realize eco-friendly energy system in society. I would like to express my welcome to all participants and sincere thanks to the 10th EMSES organizing committee and all supporting organizations to make us having this symposium.

I hope that the symposium will be successful and lead to further progress in energy science and technology and also in friendships of participants.

Professor Yukio Ogata, Ph.D.
Director of Institute of Advanced Energy, Kyoto University
PREFACE:
Message from the Former Dean of
Graduate School of Energy Science, Kyoto University
Program Leader,
Global COE “Energy Science in the Age of Global Warming”

I want to express my hearty welcome to all participants of Eco-Energy and Materials Science and Engineering Symposium (10th EMSES). This symposium is aiming the realization of importance of energy and materials technology through the academic, science and technology network among the world communities. The symposium gives an opportunity for researchers to discuss their research works and also to initially stimulate the development of research works on eco-energy and materials science and engineering. Once the cooperation among researchers has been created, the further cooperation work will be developed.

I would like also extend my sincere thanks to all who made the meeting possible, including the 10th EMSES organizers, the SEE forum committee members, and the Japanese Government, JSPS, for their kind support. I am looking forward to seeing you in Ubon Ratchathani, Thailand.

Professor Takeshi YAO, Ph.D.
Former Dean of Graduate School of Energy Science, Kyoto University
and Program Leader, Global COE “Energy Science in the Age of Global Warming”
Rajamangala University of Technology Thanyaburi (RMUTT), in conjunction with Kyoto University, is pleased to host the 10th Eco-Energy and Materials Science and Engineering Symposium (10th EMSES).

RMUTT has a major mission on encouraging and supporting all areas of research. One of the key reasons is to assist in developing capability in science and technology in order to cope with recent rapid change in this field. We have jointly set up an academic symposium on the 10th EMSES with the perception on the significance of exchanging knowledge and research experiences between researcher in the field of energy, materials technology and environmental science. This symposium is not only giving an opportunity for Thai and foreign researcher to present and discussion their research works and update their expertise but also to initially stimulate the development of research works on eco-energy and materials science and engineering. Once the cooperation among researchers has been created, the closer future cooperation incorporate with joint-research works will be developed. Thus, to support the aforesaid role, the symposium working committee would like to invite you to participate in this academic symposium.

I would like to express our sincere thanks to the organizing committee, participants and contributors for your kind corporation to this symposium. I wish this symposium proceeding will be a useful reference for future scientific research development.

Sommai PIVSA-ART, Ph.D.
Dean of Faculty of Engineering, RMUTT
Director of CoE on Sustainable Energy System (Thai-Japan)
Organizing Chairman of 10th EMSES 2012
International Scientific Advisory Committee:

General Chair:
Assoc.Prof.Dr. Namyoot SONGTHANAPITAK

General Co-Chair:
Prof. Dr. Kiyoshi YOSHIKAWA
Asst.Prof.Dr. Panpetch CHININTORN

Organizing Chair:
Asst. Prof. Dr. Sommai PIVSA-ART
Prof. Dr. Takeshi YAO

Organizing Co-Chair:
Prof. Dr. Hideaki OHGAKI

International Scientific Committees:
Prof. Dr. Susumu YOSHIKAWA
Prof. Dr. Phadungsak RATTANADECHO
Prof. Dr. Shiro SAKA
Prof. Dr. Hitomi OHARA
Prof. Dr.-Ing. Habil Ingo STADLER
Prof. Dr. Young S. CHAI
Prof. Dr. Nipon TANGTHAM
Prof. Dr. Masayoshi OKUBO
Prof. Dr. Somchai WONGWISES
Prof. Dr. Nadarajah MITHULANANTHAN
Prof. Dr. Yukio OGATA
Prof. Dr. Yuichi ANADA
Prof. Dr. Narongrit SOMBATSOMPOP
Assoc. Prof. Dr. Bandit FUNGTAMMASAN
Assoc. Prof. Dr. K. Srinivas REDDY
Assoc. Prof. Dr. David Jan COWAN
Assoc. Prof. Dr. Per B ZETTERLUND
Assoc. Prof. Dr. Vijit KINNARES
Assoc. Prof. Dr. Yoshikazu SUZUKI
Assoc. Prof. Dr. Thawatch KERDCHEUN
Assoc. Prof. Dr. Wakin PIYARAT
Assoc. Prof. Dr. Seiichi KAWAHARA
Assoc.Prof.Dr. Kawee SRIKULKIT
Asst. Prof. Dr. Somchai HIRANVAROMDOM
Asst. Prof. Dr. Wanchai SUBSINGHA
Asst. Prof. Dr. Thanapong SUWANNASRI
Asst. Prof. Dr. Napaporn PHUANGPORNPITAK
Asst. Prof. Dr. Boonrit PRASARTKAEW
Asst.Prof.Dr.Supakit SUTTIRUENGWONGSU, Thailand
Asst. Prof. Dr. Vallop PHUPA
Asst.Prof.Dr.Pramook UNAHALEKHAKA, RMUTSB, Thailand

RMUTT, Thailand
Kyoto Uni., Japan
RMUTT, Thailand
RMUTT, Thailand
Kyoto Uni., Japan
Kyoto Uni., Japan
KU, Thailand
KU, Thailand
KMITL, Thailand
UQ, Australia
Kyoto Uni., Japan
Hokkaido Info. Uni., Japan
KMUUT, Thailand
KMUUT, Thailand
IIT-Madras, India
IUPUI, USA
Australia
KMITL, Thailand
Japan
RMUTI, Thailand
SWU, Thailand
Nakaoga Uni., Japan
CU, Thailand
RMUTT, Thailand
RMUTT, Thailand
KMUTNB, Thailand
KU, Thailand
RMUTT, Thailand
RMUTP, Thailand
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Arthit Sode-Yome</td>
<td>EGAT, Thailand</td>
</tr>
<tr>
<td>Dr. Sei-ichi AIBA</td>
<td>Japan</td>
</tr>
<tr>
<td>Dr. Wirachai ROYMARIN</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Dr. Yuttana KAMSUWAN</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Dr. Jakkree SRINONCHAT</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Dr. Chatchai SOPPAPITAKSAKUL</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Dr. Pinit SRITHORN</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Dr. Uthen KAMRAN</td>
<td>RMUTL, Thailand</td>
</tr>
<tr>
<td>Dr. Cattariya SUWANNA SRI</td>
<td>KMUTNB, Thailand</td>
</tr>
</tbody>
</table>

ASEAN Committee:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Yoyok Wahyu Subroto</td>
<td>UGM, Indonesia</td>
</tr>
<tr>
<td>Prof. Dr. Wega TRISUNAYANTI</td>
<td>UGM, Indonesia</td>
</tr>
<tr>
<td>Prof. Dr. Tumiran</td>
<td>UGM, Indonesia</td>
</tr>
<tr>
<td>Prof. Dr. Jun Li</td>
<td>NYU, Singapore</td>
</tr>
<tr>
<td>Prof. Dr. INTAN</td>
<td>ITB, Indonesia</td>
</tr>
<tr>
<td>Prof. Dr. Khamphone NANTHAVONG</td>
<td>NOL, Laos</td>
</tr>
<tr>
<td>Prof. Dr. Kamppi SOUTHSOMBHAT</td>
<td>NOL, Laos</td>
</tr>
<tr>
<td>Prof. Dr. Yew Wei LEONG</td>
<td>NYU, Singapore</td>
</tr>
<tr>
<td>Prof. Dr. Nguyen Minh TAN</td>
<td>HU, Vietnam</td>
</tr>
</tbody>
</table>

General Secretary:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asst. Prof. Dr. Krischonmee BHUMKITTIPICH</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Dr. Sumonman NIAMLANG</td>
<td>RMUTT, Thailand</td>
</tr>
</tbody>
</table>

Technical Program Chair:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asst. Prof. Dr. Krischonmee BHUMKITTIPICH</td>
<td>RMUTT, Thailand</td>
</tr>
</tbody>
</table>

Area: Energy Technology (ET):

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Wirachai ROYMARIN</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Asst. Prof. Dr. Boonrit PRASARTKAEW</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Dr. Sathapron THONGWIK</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Dr. Nathabhat PHANKONG</td>
<td>RMUTT, Thailand</td>
</tr>
</tbody>
</table>

Area: Environmental and Social Impact (ES):

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Nithiwat CHOOSAKUL</td>
<td>RMUTT, Thailand</td>
</tr>
</tbody>
</table>

Area: Nanotechnology and Materials Science (NM):

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Sorapong PAVASUPREE</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Asst. Prof. Dr. Kitipong KIMAPONG</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Asst. Prof. Dr. Sirichai TORSAKUL</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Asst. Prof. Dr. Warunee ARYAWIRYANANT</td>
<td>RMUTT, Thailand</td>
</tr>
</tbody>
</table>

Area: Energy Economic and Management (EM):

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assoc. Prof. Dr. Natha KUPTHASTHIEN</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Dr. Surin NGAEMNGAM</td>
<td>RMUTT, Thailand</td>
</tr>
<tr>
<td>Dr. Pimnapat IEMSOMBOON</td>
<td>RMUTT, Thailand</td>
</tr>
</tbody>
</table>

Area: New Energy Technology (NT):

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Boonyang PLANGKLANG</td>
<td>RMUTT, Thailand</td>
</tr>
</tbody>
</table>

Area: Nuclear Technology (NU):

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asst. Prof. Dr. Krischonmee BHUMKITTIPICH</td>
<td>RMUTT, Thailand</td>
</tr>
</tbody>
</table>
Exhibition Chair:
 Dr. Amnoiy REUNGWAREE RMUTT, Thailand
 Dr. Winai CHANPENG RMUTT, Thailand

Local Arrangement Chair:
 Dr. Sorapong PAVASUPREE RMUTT, Thailand
 Dr. Natee SRISAWAT RMUTT, Thailand

Registration and Finance Chair:
 Dr. Sumonman NIAMLANG RMUTT, Thailand
 Dr. Supaporn THOMSORN RMUTT, Thailand
 Weeraporn PIVSA-ART RMUTT, Thailand

Publicity Chair:
 Asst.Prof.Dr. Krischonme BHUMKITTIPICH RMUTT, Thailand
 Dr. Sumonman NIAMLANG RMUTT, Thailand
 Dr. Montip LASURIYONTA RMUTT, Thailand
 Somchai BIANSOONGNERN RMUTT, Thailand

Publication Chair:
 Prof. Dr. Preecha P.YUPAPIN KMITL, Thailand
 Assoc.Prof.Dr.Takashi SAGAWA Kyoto Uni., Japan
 Dr. Boonyang PLANGKLANG RMUTT, Thailand
 Asst. Prof. Dr. Sonobe TARO Kyoto Uni., Japan

Website and Information System Chair:
 Dr. Nathabhat PHANKONG RMUTT, Thailand
 Phongsuk AMPHA RMUTT, Thailand
 Deachrat JAITHAWIN RMUTT, Thailand
KEYNOTE SPEAKER
KS01 Japan Power Generation Mix and Energy Security after Fukushima Nuclear Accident
Katsue N. Ishihara

KS02 Vertical Motions in Greater Bangkok Area after the 2004 Sumatra-Andaman Earthquake from GPS Observations and Its Prediction based on the Geophysical Modelling
Chatirmohon Satrapud

INVITED SPEAKER
IN01 Relaxation Analysis of Electrode Crystal Materials for Secondary Lithium Ion Batteries
Takeshi Tan

IN02 Renewable Energy in Thailand: Opportunity and Technology Allocation
Tumothachi Kerdsukhon

IN03 Numerical Simulation of Microwave Ablation Process using Single Slot Antenna in Two-Layered Porous Liver Tissue
Phadungjai Ratanadecho

IN04 Study on the Performance of Multi Evaporator and Pump Down Operation
Chau-Za Kim, Hanshik Chang

IN05 A Study on Improving the Reliability of a Heat Sink for COB LED Light Source
Bum Sil Jeu, Young Seek Cho and Dae Hye Park

IN06 Distribution System Voltage Stability with DG Units Considering Load Models
Lin Qiyun, N. Methukasanan, J and A. Soda-Yone

IN07 Recent Progress in Bio-based Polymer Production Technology
Sri-ichi Aiba

IN08 Hydrothermal Effects on Mechanical Properties and Weight Change Mechanism of Jute Fiber Reinforced Composites
Ying Tu, Mengyuans Zhao, Turks Yang, and Hengyao Hanada

IN09 Effect of Motion of Impurity Ions on Electrical Properties of Polymer materials
Yasushi Tomikawa

IN10 Effect of Talc Filler and Polymer Blends Contents on Properties of Recycled PET Injection Mouldings
K. Yamada, S. Yamada, N. Kuwajima, and H. Hamada

IN11 Characteristic Requirements of a Small Scale Squirrel Cage Induction Generator for Effective Electricity Generation from Wind Energy
V. Klimares and B. Steversasbanoud

IN12 Supramolecular Self-Assembled Polymeric Systems for Biomaterials Applications
Jun Li

IN13 New Energy Initiative
Sakuma Yoshikawa

IN14 Nuclear Security Technologies in Japan
Hidoseki Ohgaki

IN15 Hierarchical Structure and Properties of Natural Rubber
Sakichi Kawahara

IN16 Fiber, Resin, Interphase Hybrid on Continuous Natural Fiber Reinforced Composites
Atsuki Nakai

IN17 "Topic-" Shigeru Niha

IN18 Production of Bio-based Chemicals by Bacterial Process
Yaji Aso

IN19 Influence of PdlA Molecular Weight and PdlA-B-Pass Molecular Architecture on Crystallization Kinetics and Thermal Stability during Stereocomplexation with PdlA
Loung Yew Wei
| CONTENT |
|-----------------|-----|
| **ET01** Application of Three-level Diode-clamped Converter on 10 kW Distribution Voltage Restorer | 82 |
| W. Chamhanvan, K. Bhunatkitsch and N. Mithikumaranthi |
| **ET02** A Design of Single Phase Induction Generator for Waterfall Hydro Turbine | 87 |
| Sirichai Dang-uan |
| **ET04** Key Cutting Algorithm Application to Measurement Placement for Power System State Estimation | 92 |
| Y. Kongkien, P. Jironwong, K. Hinawi and T. Kerelchan |
| **ET05** Hydrolysis of Rice Husk and Sugarcane Bagasse by Reflux Method | 95 |
| K. Kampopa and A. Nuntiya |
| **ET06** Analysis of Lightning Phenomena for Underground Petroleum Pipeline System | 98 |
| B. Topanalit, K. Bhunatkitsch and T. Suwanantri |
| **ET07** N,N-Dimethylpiperidinium Fluorohydrate Ionic Liquid - Polymer Composite Membranes for a Non-Humidified Fuel Cell | 102 |
| P. Kitsuktikul, R. Toomki, K. Mammon, T. Nokita and R. Hargpura |
| **ET09** Screening of bulk heterojunction polymer: fullerene based organic solar cells through simplemist spray coating | 106 |
| Jae-Hyoung Le’, Takuaki Sugawara and Seiwa Takeda |
| **ET10** Renewable Energy Based Active Cooling System | 109 |
| Boonlert Prasartkit |
| **ET11** Improvement of Zinc-Air fuel cell performance by gelled KOH | 114 |
| A. Puapatanakul, S. Therdthumrong, A. Therdthumrong and N. Wongso |
| **ET12** Real-time Simulation of a Photovoltaic Cell/Module under the Single Diode Model | 118 |
| D. Imprecida and W. Subingha |

CONTENT

<table>
<thead>
<tr>
<th>ET13</th>
<th>Numerical Simulation of a Solar-biomass Hybrid Cooling System: Model Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boonlert Prasartkit</td>
<td>123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ET14</th>
<th>Mathematic Model and Experiment of Temperature Effect on Discharge of Lead-Acid Battery for PV Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pornchat Pornhanadthiboon, Boonyong Plangklang and Supap khotr</td>
<td>128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ET15</th>
<th>Recycling CO₂ in Bio-gas by Green Microalgae for Lipid Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wassa Tongrawhun and Benjamia Chatirsilp</td>
<td>132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ET16</th>
<th>Double-Sided Linear Induction Motor Control Using Space Vector Pulse Width Modulation Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumnon Bo-wor and Wanschat Subingha</td>
<td>138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ET17</th>
<th>Performance Evaluation of the Desiccant Bed Solar Dryer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasa Chanaasen, Siritch Jindakuk, Chuchat Sirinumpawan, Sornsiti Somseree</td>
<td>142</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ET18</th>
<th>Performance Evaluation of 35 kW LiBr – H₂O Solar Absorption Cooling System in Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nupon Kojay Surapho, phongpaphone and Kongtri Manori</td>
<td>147</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ET19</th>
<th>Study to the Voltage Stability of 22kv Pea Bus Connected by Lamtakong Wind Turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.Channath and K. Bhunatkitsch</td>
<td>153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ET20</th>
<th>Modeling of PEM Fuel Cell with DC/DC Buck Converter by MATLAB/Simulink</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Prommin and W. Subingha</td>
<td>158</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ET21</th>
<th>Applicability of Pressure Retarded Osmosis Power Generation Technology in Sri Lanka</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.D.S.S.Karanaratne and S. Halpogala</td>
<td>163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ET22</th>
<th>Effect of Pilot Fuel Quantity on the Performance and Emission of a Dual Producer Gas – Diesel Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pisan Sombatwong, Prachumst Thapawit and Kelachai Phanphang</td>
<td>167</td>
</tr>
</tbody>
</table>
CONTENT

ET43 Control of Parallel-Connected AC to DC Converters with Droop Technique for DC Microgrid Application
C. Tanasatrithik Y. Chantug and P. Thoungthong 262

ET45 Design of Matlab/Simulink Modeling of Fixed-Pitch Angle Wind Turbine Simulator
P. Janooja and Y. Kommasaw 268

ET46 Closed Loop Speed Control of Induction Generator with Scalar-Control Inverters
A. Upasue and Y. Kommasaw 273

ET47 Study of Generator Reaction on Permanent Magnet Synchronous Motor for Energy Regenerative Applications
S. Kanawong, A. Noppakun and P. Pluangklaing 278

ET48 Ethanol Production from Rice Straw by Simultaneous Saccharification and Co-Fermentation
N. Suriyachai, V. Chumnrea, N. Laooneejae, and P. Uruean 283

ET49 High Voltage Gain Interleaved DC Boost Converter Application for Photovoltaic Generation System
W. Khadman and W. Sathisingha 286

ET50 Influence of Bath Temperature on the Properties of InSx Films Grown by Chemical Bath Deposition
G.R. Goopinath, R.W. Miles and K.T. Ramakrishna Reddy 290

ET51 Unsteady Surface Pressures and Airload of a Pitching Airfoil Supplied Worouschat Grant Ingram and Robert Emony 294

ET52 Fast Pyrolysis of Jatropha Residue with Alumina Based Catalysts using Pyrolysis-Gas Chromatography/Mass Spectrometry
Prangtip Kunwongkhong, Duangpairoj Aroon and Vichit Srivicharsakul 300

ET54 Selective Synthesis of Monoglycerides in a Capillary Microreactor
Mathe Sirsin, Chavalit Ngamcharusrivichai, Srithe Poomprapab 305
CONTENTS

NM18 Hydrothermal Preparation and H2 Evolution from Water-Splitting Reaction of Nanotubes Constructed from Low-Cost White Pigment TiO2
S. Pananugsa, T. Worinmonteek, N. Tonan, S. Chuanahote, Y. Sagawa, A. Sriponegud and W. Pechanpaisak

NM19 Characterization of Flower-like Titanate and Titania Nanowires on Titanium Plate Substrate
S. Pananugsa, K. Omada, S. Yothikheta, A. Sriponegud and W. Pechanpaisak

NM20 Effect of Filler Types on Thermal Property of Poly (butylene succinate) Composite Films
C. Joeng-angki and S. Phannasornrudee

NM21 Synthesis of L-Lactic Acid Oligomers Using Melt Polycondensation Process
Sornpipat Pana-Art, Sunowan Niamling, Wongsan Pana-Art, Sripong Pananugsa, Hideko Yamama and Hitomi Okura

NM22 Effect of Additives on Thermal and Mechanical Properties of Polyoxymethylene Blends of Poly (lactic acid) and Poly (butylene succinate-co-adipate)
Sornpipat Pana-Art, Sripong Pananugsa, Narongchom O-Chaowana, Wongsan Pana-Art, Sugphthim Thamsirom, Hideko Yamama and Hitomi Okura

NM25 Scintillation Properties of Ce-doped YAP and Lu2O3:Ce,AP Single Crystals at 320 and 662 kV Gamma Rays
A. Phumputt, W. Chermpholthai, Y. Thongsook, and D. Aphairaj

NM26 Transparent Conductive ITO Films Deposition for Photovoltaic Application Using RF Sputtering Technique
Accurat Chaownaad, Tae-Woo Kim, Dong-Joo Kwek and Tool-Moon Sung

NM27 Synthesis of Titanium Oxide Nanotubes for Electrochromic Luminescence Application Using Anodizing Method
B. H. Joo, A. Chaownaad, M. W. Park and Y. M. Sung

CONTENTS

NM28 Comparison of TiO2 Films Characteristics Prepared by Sputtering, Sol Gel and Dip Coating Methods for Photovoltaic Application
Byung-Ho Moon, Seon-Hee Park, Chi-Hwan Han and Youl-Moon Sung

NM29 TiO2 Films Fabrication for electron blocking layer of Photo-Electrochemical Cells using RF Magnetron Sputtering Method
Hee-Dae Park, In-Seok Choi, Dong-Joo Kwek and Youl-Moon Sung

NM30 Synthesis of Poly(D-Lactic acid) Using a 2-Steps Direct Polycondensation Process
Ratchanee Manowpraj, Wongsan Pana-Art, Thakana Fong-ego, Napanca Jungam, Sornpipat Pana-Art, Hideko Yamama and Hitomi Okura

NM31 Nickel-Nickel spinel composite for an external SOFC support
A. Setaawen, D. Watanasiriroj, S. Watanasiriroj and P. Amnagkhrattana

NM32 Fine Tuning in Dimensions of ZnO Nanostructures and ZnO/Polymer Interface in Hybrid Solar Cells
Pipta Senom, Takashi Sagawa and Sumito Yoshikawa

NM33 Pulsed Laser Ablation of Graphite Target in Dimethylcarbonide
V. Thongsook, A. Phumputt, V. Priyawong, S. Limawan and P. Limawan

NM34 Characterisation of the Photoelectrochemical Properties of WO3 Thin Films Prepared by Electrodeposition
W.L. Kwong, H. Qin, A. Nakaruk, P. Koshy, and C.C. Sorrell

NM35 Effect of Annealing Temperature on the Photocatalytic Activity of TiO2 Thin Films
C.P. Lin, H. Chen, P. Koshy, A. Nakaruk, and C.C. Sorrell

NM36 Synthesis and Characterization of Al6061-Fly Ash-SiO2 Composites by Stir Casting and Compocating Methods
David Raja Selvakumar, J. Holbrooke Smart, D.S. Lombekebanis, A
CONTENTS

NM41 Synthesis of Porous Carbon using Cashew Nut Shell Liquid as a Precursor
Parvath Sundar and Nattiporn Tonmann 564

NM42 Mechanical Properties of Silk Fiber Reinforced Poly (lactic Acid) Composites
Kornhong Manwattak, Puttanun Uawongwan, Wewaraporn Pissa-Art and Hirose Hamada 568

NM43 Effect of Film Thickness on the Properties of SiO2 Layers Deposited by Chemical Bath Deposition
G. Sreedevi, K.T. Ramakrishna Reddy and R.W. Miles 572

NM45 Electrospun Strontium Titanate Nanofibers from Two Different Types of Strontium Salts
L. Masarang, S. Chuangthoe, S. Yoshikawa and T. Sagawa 576

NM46 BiVO4 Nanopowder Prepared by the Solvothermal Method
Pomjap-Jiamthan, Pawip Poomchalam and Tolon Phanichchat 579

NM47 Crystallization Kinetic and Mechanical Proformance of Tale Filled Poly(Lactic Acid)/Poly(butylene succinate) Blend Composites
Wewaraporn Pissa-Art, Sugihara Tatsunori, Jurajina Ratanaosoth, Hidetsu Yamana and Hisami Ohara 584

NM50 Design of Support Insulator for L. T. Fuse Switch from Composite Material
N. Panklang, N. Phakong and K. Bhumkantisch 585

NM51 Preparation and Characterization of Magnetic Polymeric Composite Particles by Modified-Suspension Polymerization
Amorn Chaiyasat, Prempraj Chaiyasat, Bussabong Sirirojanawadi, Sangsuri Khumlada and Satibhorn Kongtom 589

NM52 Preparation of Nanotubes from Natural Illite Mineral by Hydrothermal Method
T. Wirunmongkol, K. Sangsuri, N. O-Charon, S. Sakulthunaramrimes and S. Panaupreep 594

CONTENTS

NM53 Preparation and Characterization of Natural Rubber/Poly (Iactic Acid) Blend with Natural rubber and Poly (methyl Methacrylate) Nano-composites by Prepolymerization
Sukarat Phonthong, Somphorn Phonthong, Prasongsri Chaiyasat, Amorn Chaiyasat 600

NM54 Preparation and Characterization of Titanate Nanofibers from Low-Cost Natural Illite Mineral Sand
A. Simpraditpan, T. Wirunmongkol, S. Panaupreep and W. Pecharupa 605

NM55 Preparation of Polylactic acid Microencapsulated Vitamin E
Prasongsri Chaiyasat, Amorn Chaiyasat, Pawaneta Teek, Sayawng Ngoppali and Usong Sriontetch 609

NM56 Morphological, Thermal, and Mechanical Properties of Poly (Iactic Acid) Blend with Natural rubber and Poly (methyl Methacrylate)
Winthipong Dechaolsong Wu Apatthaya and Sirichot Poompradub 614

NM57 Preparation of In-Situ Silica with Multi-Functional Groups via Sol-Gel process for Natural Rubber Reinforcement
Tawinath Thepradat, Pattaranan Prasereerkul and Sirichot Poompradub 618

NM58 Mechanical Property of Surface Modified Natural Fiber Reinforced Poly (lactic acid) Composites
Wassanan Sujarit, Puttanun Uawongwan, Wewaraporn Pissa-Art and Hirose Hamada 623

NM59 Electroactive Performances of Conductive Polythiophene/hydrogel Hybrid Artificial Muscle
Daichanee Pattanarakorn, Pomjap Yongga, Suwan Saeirichai, Siryong Thongbor and Pikuchong Chaijangkoh 627

NM60 Structural Properties of Co-Doped ZnO Nanopowder Synthesized by Co-Precipitation Method
N. Thawonsong, S. Suphanvis, W. Thachikorn and W. Pecharupa 632

NM61 Influence of Ti and Zn Dopants on Structural Properties and Electrochromic Performance of Sol-gel Derived WO3 Thin Films
K. Patpisar, W. Thachikorn, S. Pornsuthaphan and W. Pecharupa 635
<table>
<thead>
<tr>
<th>Article ID</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM62</td>
<td>The Electromechanical Properties of Crosslinked Natural Rubber</td>
<td>659</td>
</tr>
<tr>
<td>S. Niunng, S. Thongchai, N. Pawanam and A. Sirivat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM63</td>
<td>Thermal and Mechanical Properties of Biodegradable polyester/Silica Nanocomposites</td>
<td>643</td>
</tr>
<tr>
<td>Itzikhar Khanzada, Sommai Pinn-Art, Harada Hiroshi and Supalj Kittimongkon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM64</td>
<td>Preparation of NiO-YSZ Substrate for Electroplating Deposition of thin YSZ Film</td>
<td>648</td>
</tr>
<tr>
<td>M. K retirement, D. Wuttimaporn, S. Wuttimaporn and P. Aungs membranes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM65</td>
<td>Characterization and Photoreresponse properties of Sn-doped ZnO</td>
<td>652</td>
</tr>
<tr>
<td>K. Chongeri, C. Bangmat, W. Techidheera and W. Pecharup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM66</td>
<td>The Mechanical Properties of Vulcanized Deproteinized Natural Rubber</td>
<td>656</td>
</tr>
<tr>
<td>J. Nats, K. Sue-Aung, W. Ariyavitrojan and S. Kowitara</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM67</td>
<td>Optical absorbivity enhancement of SiO2 thin film by Ti and Ag additive</td>
<td>660</td>
</tr>
<tr>
<td>P. Santebut, S. Roosawang and W. Pecharup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM68</td>
<td>Synthesis of CuO Nanoparticles by Precipitation Method using Different Precursors</td>
<td>664</td>
</tr>
<tr>
<td>K. Phakdarung, S. Suphanit, W. Mekprasart and W. Pecharup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM69</td>
<td>A Study of Energy Saving in Building through Thermal Insulation with Plywood Inserted Honeycomb Sandwich Panels</td>
<td>667</td>
</tr>
<tr>
<td>A. Rungsawsar V. Premaroon and S. Torosal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM70</td>
<td>Hydrothermal Preparation and Photocatalytic Activity of Nanosheets from Natural Illinite Mineral</td>
<td>672</td>
</tr>
<tr>
<td>W. Charunratanon, T. Wirunmongkol, N. O-Chaeron, S. Sothdenaornrath, T. Songsiam and S. Pongsrune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM71</td>
<td>Effect of Nitrogen doping on optical and photocatalytic properties of TiO2 Thin Film Prepared by Tyco Coating Process</td>
<td>677</td>
</tr>
<tr>
<td>W. Mekprasart, T. Khumong, J. Nattanakul, W. Techidheera and W. Pecharup</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10th Eco-Energy and Materials Science and Engineering 2012 December 5-6, 2012 Ubon Ratchathani, Thailand
NM81 The fabrication and mechanical Properties of Jute Yarn/PLA Unidirectional Composite by Compression Molding
A. Moron and A. Naka
722

NM83 Effect of Twisted Jute Fiber Bundle on Mechanical Property of Glass/jute/polypropylene Hybrid Composites
P. Uawangsum, Y. Yang and H. Hamada
726

NM88 Impact Property of Flexible Epoxy Treated Natural Fiber Reinforced PLA Composites
Wipasawee Nudthong, Pattima Uawangsum, Weeraporn Pisan-Art and Hiyoshi Hamada
730

NM89 Mechanical Property of Surface Modified Natural Fiber Reinforced PLA Biocomposites
Wassanmon Suparntjan Pattima Uawangsum, Weeraporn Pisan-Art and Hiyoshi Hamada
734

NM90 Mechanical properties of silk fiber reinforced PLA composite
Kornkanok Manaphak, Pattima Uawangsum, Weeraporn Pisan-Art and Hiyoshi Hamada
738

NM91 Effect of Flexible Epoxy Treated on Surface Morphology of Natural Fibers
Napawadee Komkhaiyaya Pattima Uawangsum, Weeraporn Pisan-Art and Hiyoshi Hamada
742

NM92 Electron-Acceptor Nanomaterials Fabricated by Electrospinning for Polymer Solar Cells
Surawat Chaungchoke and Takashi Sugawara
746

NM93 Effects of Melt Spinning Conditions on Cross-sectional Features of Poly (lactic acid) Fibers
N. Roungnatsan, N. Ocharoen, N. Srivastav, C. Prabha, S. Pussing
e
749

NM94 Nonstoichiometric Polymer Particles as Nanocatalysts and Catalytic Nanofilters with Unique Properties
Md. Shahidul Islam, Won San Chol, Ha-Jin Lee
753

NM95 Investigation of Si-gel-NR interaction in Si-gel/NR vulcanizate using Dynamic Mechanical Thermal Analysis
C. Theeran and R. Rodzienrucha
761

XIX

NM96 Physico-Chemical Properties of Surface Modification of Silica Based on Rice Husk Ash Sources
Phochariya Wavakanjana and Supakit Saitungsangworng
766

NM97 CO₂ Adsorption on MIPA-, NMEA-, Piperazine-, K₂CO₃- Modified Activated Carbons
T. Pichatchatvor, S. Kulpreejapanich, and P. Rangsurngtrit
770

NM98 Characteristic of the High Performance Biomass Plastic (Effect of Wood Powder Diameter and Compounding Screw Geometry)
T. Pu, Y. Yang, M. Morakot, T. Ona, T. Unseenwatt, K. Hata, M. Nomura and H. Hamada
775

NM99 An Investigation of Optimum Cutting Conditions in Face Milling Aluminum Semi Solid 2024 Using Carbide Tool
Sranutt Ratangowa, Johnarit Chutchung, Warupa Kovachuangpany and Homdern Butsu
779

NM100 Effect of Soaking Time on Crystalline Phase in Leadless Iron Oxide Crystalline Glaze
S. Silakan, A. Wannagon and A. Namtaya
785

ENERGY ECONOMIC AND MANAGEMENT

EM02 Miscellaneous Electric Loads in Tropical Buildings – An Opportunity for Energy Conservation Improvement
Q. Jie Kwang, Nor Marisah Adam, Siti Hasri Goh and Vijay R. Raghavan
788

EM03 Legal and Institutional Framework Development for Measurable, Reportable and Verifiable System in Thai Energy Sector
Tisaporn Supapart, Chatuchawan Chatichai and Wongkeo Wongyapap
794

EM04 Project Based Measurable, Reportable, and Verifiable (MRV) Guideline Development for Greenhouse Gas Mitigation Projects in Thai Energy Sector
Piyapong Mahanati, Charanawan Chatichai, and Wongkeo Wongyapap
800

XX
| CONTENT |
|------------------|-----------|
| NT18 Simulations and Measurements of Dipole and Quadrupole Magnets for PBP-CMU Linac System |
| P. Bouanpongprassert, S. Runjane, J. Sivarin, and C. Thongbai |
| NT19 Observation of high harmonic generation from SiC by MIR-FEL irradiation |
| NT20 Effect of equivalence ratio on SI engine Performance fueled with lean air gas mixtures |
| G. Przybyla, A. Szlecz, L. Ziolekowski |
Preparation and Characterization of Natural Rubber/Poly [styrene-co-2-(methacryloyloxy) ethyl trimethylammonium chloride] Nanocomposites by Heterocoagulation

Supaporn Promdorn¹, Somporn Mommuangnee², Preeyaporn Chaiyasat¹, Amorn Chaiyasat¹*
¹Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani 12110, Thailand
²Thailand Institute of Scientific and Technological Research Klong 5, Klong Luang, Pathumthani 12120, Thailand
E-mail: a.chaiyasat@mail.rmutt.ac.th

Abstract – The simple technique as heterocoagulation was used to prepare natural rubber (NR) with poly[styrene-co-2-(methacryloyloxy) ethyl trimethylammonium chloride] (P(S-QDM)) nanocomposites (NR/P(S-QDM)). P(S-QDM) particle was prepared by emulsion polymerization at 80°C using azobisisobutyramid dihydrochloride as initiator. Under the alkaline condition, NR latex (NRL) surface represents negative charge deriving from protein adsorbed on its surface while strong positive charge deriving from QDM structure is obtained. The assembly via electrostatic interaction between NRL and P(S-QDM) particles in the emulsion state is then taken place with pH adjustable from 2 to 8. The particle surface, particle size and charge of the polymer nanocomposites were measured by scanning electron microscope, dynamic light scattering and zeta potential, respectively, to compare those with the original properties.

Keywords: Natural Rubber, Nanoparticle, Nanocomposite, Electrostatic interaction, Heterocoagulation

1. INTRODUCTION

Natural rubber latex (NRL) is one of the most important economic products of Thailand. Because it is able to comfortably improve the properties with the addition of appropriate amount of fillers to benefit the application concerned [1], it is widely used in various applications such as medical glove and tubing [2-4]. Polymer nanocomposites as only small amount of nanometer size filler dispersed inside the polymer exhibit markedly improved properties compared to the original or their traditional composites. They represent an alternative and a powerful technique to improve various polymer properties including increased modulus and strength, outstanding barrier properties, improved solvent and heat resistance and decreased flammability [5]. To improve natural rubber (NR) properties, various techniques have been done as adding inorganic and organic materials such as carbon black [6] ultra-fine calcium carbonate [7] and modified montmorillonite [8]. The heterocoagulation is a simple and interesting technique to prepare composite materials. The materials as the small and large particles in the emulsion state are blended by various forces such as electrostatic and hydrophobic interactions. It can be used to prepare various composite materials such as inorganic-inorganic [9], inorganic-organic [10] and organic-organic [11-15] composites.

In our previous work [16], NR/poly(styrene-methacrylic acid) (P(S-MAA)) and NR/poly(styrene (PS) nanocomposites were successfully prepared by heterocoagulation using electrostatic interaction. NRL and vinyl polymer (PS and P(S-MAA)) particles were blended in the emulsion state at pH of 1 where the opposite charges between those polymers were obtained. P(S-MAA) and PS represent negative charge (mainly derived from potassium persulfate initiator) on their surfaces while NRL surface showed the positive charge. The mechanical properties of the obtained polymer nanocomposites are dramatically improved. However, less positive charge of NRL (+17.1 mV) leading to less dynamic to interact with the negative charge of the polymer nanoparticles resulting in the formation of unstable polymer nanocomposites. To overcome this problem, pH of the blending condition was changed from acidic (pH of 1) to alkaline (pH of 8) condition to introduce highly negative charge on NRL surface. In addition, poly[styrene-co-2-(methacryloyloxy) ethyl trimethylammonium chloride] (P(S-QDM)) particle having strong positive charge was used instead of PS and P(S-MAA) particles[17]. The obtained NRL/P(S-QDM) nanocomposite represents good colloidal property with long term storage. In this work, the extension study including NRL and P(S-QDM) ratios and pH of pre-blending in the heterocoagulation step were optimized.

2. EXPERIMENT

Materials

High ammonia NR latex (ca. 60% dry rubber content; donated from Thai Rubber Latex Co., Ltd., Bangkok, Thailand) was used as received. Styrene (S; Aldrich; purity, 99%) was purified by pass through the column packed with basic aluminium oxide. 2-(methacryloyloxy) ethyl trimethylammonium chloride (QDM; Aldrich) was used as received. Azobisisobutyramid dihydrochloride (AIBA; Wako) was used as received. The chemical structures of QDM and AIBA are shown in Fig. 1. Analytical grade of sodium hydroxide (NaOH; BDH Prolabo), hydrochloric acid (HCl; Ajax Fineschem) and polyoxyethylene (20) sorbitan monooleate (Tween 80; Aldrich) and cetyltrimethyl ammonium bromide (CTAB; Fluka) were used as received.
Fig. 1. The chemical structures of 2(Methacryloxyloxy) ethyltrimethyl ammonium chloride (a) and AIBA (b)

Preparation of polymer nanoparticles

(P(S-QDM)) nanoparticles were prepared by emulsion polymerization under the conditions listed in Table 1. The water (129 g) containing surfactant (1 g of Tween80) was charged into the reactor. After the addition of monomers (15 g of S and QDM), the reaction was purged with \(\text{N}_2 \) for 30 min. Consequently, the polymerization was initiated by the addition (5 g) of AIBA aqueous solution (1.2 wt % of monomer) and carried out at 80°C with a stirring rate of 200 rpm for 8 hours.

Table 1. Recipe for the preparation of styrene (S)- 2- (methyleneoxyloxy) ethyltrimethyl ammonium chloride [P(S-QDM)] nanoparticles by emulsion polymerization

<table>
<thead>
<tr>
<th>Ingredients</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Styrene (g)</td>
<td>13.50</td>
</tr>
<tr>
<td>QDM (g)</td>
<td>1.50</td>
</tr>
<tr>
<td>AIBA (mg)</td>
<td>60.00</td>
</tr>
<tr>
<td>Tween80 (g)</td>
<td>1.00</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}) (g)</td>
<td>134.00</td>
</tr>
</tbody>
</table>

200 rpm, 80°C, 8 hr., purged by \(\text{N}_2 \)

Preparation of NRL/P(S-QDM) nanocomposites

The nanocomposites of NR/P(S-QDM) were prepared using electrostatically driven heterocoagulation technique (Fig. 2) according to the following procedures. The pH of NRL aqueous dispersion (solid content about 10 %wt) containing Tween 80 emulsifier (6 %wt of NR) was firstly adjusted from approximately 10 to 2 with 0.3 M HCl. The P(S-QDM) nanoparticle aqueous dispersion (10 %wt solid content at pH of 2) was gradually dropped into the NR solution with mechanical stirring rate of 200 rpm. The polymer composites of NR/P(S-QDM) were obtained when the pH of the mixture solutions were gradually adjusted to 8 by the addition of 0.3 M NaOH. The blending ratio was determined relating to the theoretical number (\(N_{\text{max}} \)) which is the maximum number of small particle [P(S-QDM)] to form a closely packed particulate in a monolayer on a large particle (NRL) as given by Equation (1) shown below [18].

\[
N_{\text{max}} = \frac{2\pi}{3} \left[\frac{R_L + R_S}{R_S} \right]^2
\]

\(R_L \) radius of large particle

\(R_S \) radius of small particle

Characterizations

pH were measured by pH meter multi parameter analyser (pH meter; Consort C831, Belgium) Particle diameters and zeta potential were measured by dynamic light scattering (DLS; Delsa nanoc, Beckman, USA) at 25 °C. Polymer emulsion samples (approximately 10 %wt) withdrawn from the reactor were directly measured by dilution mode of DLS. Scanning electron microscope (SEM; JSM-6340, Jeol Ltd., Japan) were used to investigate the morphology of the P(S-QDM) and NR/P(S-QDM) nanocomposite. For SEM observation, one drop of the polymer dispersion was placed on a nickel SEM stub and dried before Au-coating.

Fig. 2. Schematic of nanocomposite preparation using electrostatically driven heterocoagulation
3. RESULTS AND DISCUSSION

P(S-QDM) nanoparticles were selected to be the small particles having positive charge on their surfaces at alkaline condition (pH of 8). Generally, the obtained positive charge was derived from initiator as AIBA (weak positive charge) and QDM monomer (strong positive charge). However, at the alkaline condition amino group in polymer chain derived from AIBA would be deprotonated. Therefore, the main positive charge represented at the blending condition caused only from QDM monomer. It is according to the above assumption that the prepared P(S-QDM) gives positive charge (> +30 mV) throughout the pH range (1-14) as shown in Fig. 3b. A few additional charges at acidic condition would derive from the protonation of amino group of AIBA. P(S-QDM) nanoparticles (76 nm as shown in Table 2) with narrow particle size distribution (Fig. 4) prepared by emulsion polymerization were the spherical particles as SEM micrograph shown in Fig. 5.

The particles are usually maintain colloidal stability via their surface charges having either lower of -30 or higher of +30 mV [17]. To successfully prepare NR/P(S-QDM) nanocomposites, NRL (particle size of 142 nm as shown in the Table 2) surface should present negative charge in the alkaline condition. Therefore, NRL surface charge was measured at various pHs in order to obtain the information of charge behavior with pH. Before charge measurement, nonionic emulsifier (Tween 80) was added to NRL emulsion to maintain the colloidal stability of NRL throughout the experiment [16, 17]. The charges on its surface varied with the pH from positive to negative charges at acidic to alkaline conditions, respectively as shown in Fig. 3a. Generally, the surface of the NRL was covered with protein molecules. They contain both carboxyl and amino groups showing different charges depending on the pH. At the pH of 8, the negative charge seems to be stable and reached to the maximum (approximately -57 mV). On the other hand, at the same pH, strong positive charge (approximately +40 mV) still obtained on the P(S-QDM) surface. Therefore, pH 8 is selected for the blending condition of both polymer particles. At this condition, they are able to avoid the self coagulation and have sufficient dynamic for the opposite charges interaction. However, in the step of pre-blending, both polymer particles should represent the same (positive) charge to avoid large coalescence of both polymers as mentioned in the previous works [14-16]. Therefore, pH of the system is firstly adjusted to the acidic condition in order to gain positive charge on NRL surface. It is well known that NRL is easily to coagulate and precipitate in the acidic condition. Although, NRL was pre-adsorbed by nonionic emulsifier as Tween 80 to protect the coalescence, some of larger particles or precipitation of NRL with long term storage were still found. The main reason is that the amount of Tween 80 is limited in order to avoid the obstruction of electrostatic interaction of both NRL and P(S-QDM). To successfully prepare NR/P(S-QDM) nanocomposites pH of pre-blending is an important parameter. Therefore, it is further optimized.

![Fig. 3. Zeta potential of NRL adsorbed with nonionic emulsifier (a) and P(S-QDM) (b) at various pH](image)

Table 2. Particle size distributions and Zeta potential of P(S-QDM) nanoparticle prepared by emulsion polymerization and NRL

<table>
<thead>
<tr>
<th>Particle size (nm)</th>
<th>Zeta potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(S-QDM)</td>
<td>75.80</td>
</tr>
<tr>
<td>NR-Tween80</td>
<td>142.30</td>
</tr>
</tbody>
</table>

![Fig. 4. Particle size distributions of (——) P(S-QDM) nanoparticle prepared by emulsion polymerization (——) NR-Tween80 and (——) NR/P(S-QDM) prepared by heterocoagulation](image)
Pre-blending condition was studied at various pHs (1-4). The size of NR/P(S-QDM) nanocomposites was increased with the pH as shown in Fig. 6. In the case of pH of 3 and 4, much larger particles (299 and 2,766 nm, for pH of 3 and 4, respectively) were obtained. This seems to the occurrence of NRL self coagulation during the blending competition to electrostatic interaction between NRL and P(S-QDM). In contrast, the size of polymer nanocomposites (175 and 229 nm, for pH of 1 and 2, respectively) is reasonable according to the original polymer particles. Because of less acid, pH of 2 is selected to use for the further study.

Fig. 5. SEM micrograph of P(S-QDM) nanoparticle prepared by emulsion polymerization

Fig. 6. Particle size distributions of polymer nanocomposites at various pHs

To obtain the appropriate amount of P(S-QDM) to form a close-packed monolayer covering the NRL, the ratios of both polymer particles base on N_max were studied. Table 3 represent the particle size and zeta potential of NR/P(S-QDM) nanocomposites at the different ratios of both polymers. The size of the nanocomposites increased with amount of P(S-QDM) from N_max/2 (163.9 nm) to N_max (228.7 nm) and then decreased at the twice of N_max (93.9 nm). This result may accord to the theory that at the N_max the particle size is the largest where P(S-QDM) completely covered NRL by monolayer. In contrast, some of free P(S-QDM) particles were remained in the case of twice of N_max, resulting in the reduction of the average particle size of the nanocomposites. Moreover, the zeta potentials of the nanocomposites at various blending ratios (N_max/2, N_max and, 2N_max) were also measured. It increased with the amount of P(S-QDM) polymer. In the case of the lowest amount of P(S-QDM), the lowest net positive charge (8.74 mV) was obtained because the NRL surface was incompletely covered by P(S-QDM) particles resulting in low colloidal stability. The zeta potential of 23.60 mV was obtained at N_max giving more colloidal stability. Because free of P(S-QDM) particles were presented, the much more positive charge (33.74 mV) was represented. Moreover, NR/P(S-QDM) nanocomposites as nano-cluster in all ratios were found in the SEM micrographs (Fig. 7). The smallest amount of nano-cluster was found in the case of N_max/2 (Fig. 7a) due to insufficient amount of P(S-QDM) particle to envelope the NRL while the others were more observed. The closed-pack monolayer seemed to be formed for N_max without any free P(S-QDM) particles (Fig. 7b). Some of free P(S-QDM) particles were observed in the case of the twice of N_max (Fig. 7c) according to the particle size and zeta potential data. These results indicated that NR/P(S-QDM) nanocomposites were successfully prepared by heterocoagulation technique.

Table 3. Particle size distributions of polymer composites at various blending ratios

<table>
<thead>
<tr>
<th>Particle size (nm)</th>
<th>zeta potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_max/2</td>
<td>163.9</td>
</tr>
<tr>
<td>N_max</td>
<td>228.7</td>
</tr>
<tr>
<td>2N_max</td>
<td>93.9</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

The NRL/P(S-QDM) was successfully prepared with a simply blending as heterocoagulation via electrostatics interaction. pH of 2 was selected as the pre-blending condition where both NRL and P(S-QDM) represented positive charge. The P(S-QDM) particles were gradually adsorbed on the NRL when pH changed from 2 to 8 resulting in the formation of nanocomposite of NR/P(S-QDM). The nanocomposite seemed to be more stable in the case of N_max than N_max/2 relative to much more positive charge. The additional positive charge of the twice of N_max would derive from free P(S-QDM) particles. Nano-clusters were observed in all cases of NRL and P(S-QDM) ratio. The smallest amount of nano-cluster was observed in the case of N_max/2 while it seemed to be similar in the others. However, more amount of free P(S-QDM) particles was found in the twice of N_max than in N_max.
ACKNOWLEDGEMENTS

This work was supported by The National Research Council, Thailand and partially supported by Thailand Institute of Scientific and Technological Research (given to Ms.Supaporn Promdsorn).

REFERENCES