10th Eco-Energy and Materials Science and Engineering Symposium

On December 5-8, 2012
Sunee grand hotel,
Ubon-ratchathani

Organized by

Co-organized by
PREFACE:
Message from the President of
Rajamangala University of Technology Thanyaburi

Rajamangala University of Technology Thanyaburi (RMUTT), in conjunction with Kyoto University, is please to host the 10th Eco-Energy and Materials Science and Engineering Symposium (10th EMSES). This international conference is not only giving an opportunity for Thai and foreign researchers to present and discussion their research works and update their expertise but also to initially stimulate the development of research works on eco-energy and materials science and engineering. Our program consists of six research tasks: (1) Energy Technology, (2) Environmental and Social Impact, (3) Nanotechnology and Materials Science, (4) Energy Economics and Management, (5) New Energy Technology and (6) Nuclear Technology.

I would like to take this opportunity to express our sincere gratitude to our two distinguished Plenary Speakers for kindly accepting our invitation. I deeply appreciative of the very strong support given by Kyoto University. Thanks to the tireless works of the Organizing Committee, the Technical Program Committee, the invited speakers and paper and poster contributors, and excellent program been assembled to cover a broad spectrum of interesting topic.

We warmly welcome you to the 10th EMSES on December 5-8, 2012, Ubon Ratchathani, Thailand.

Numyoot SONGTHANAPITAK, Ph.D.
President of Rajamangala University of Technology Thanyaburi
and Conference Chairman of 10th EMSES 2012
It is my great pleasure to have the 10th Eco-Energy and Materials Science and Engineering Symposium (EMSES) with Rajamangala University of Technology Thanyaburi (RMUTT) under the long-term collaboration between RMUTT and Kyoto University. The 1st EMSES was held in 2001 in Thailand and the symposium has been expanded in its scientific contents as well as the academic network. I believe that the 10th EMSES gives a good opportunity to all participants to exchange their knowledge and idea to realize eco-friendly energy system in society. I would like to express my welcome to all participants and sincere thanks to the 10th EMSES organizing committee and all supporting organizations to make us having this symposium. I hope that the symposium will be successful and lead to further progress in energy science and technology and also in friendships of participants.

Professor Yukio Ogata, Ph.D.
Director of Institute of Advanced Energy, Kyoto University
PREFACE:
Message from the Former Dean of
Graduate School of Energy Science, Kyoto University
Program Leader,
Global COE “Energy Science in the Age of Global Warming”

I want to express my hearty welcome to all participants of Eco-Energy and Materials Science and Engineering Symposium (10th EMSES). This symposium is aiming the realization of importance of energy and materials technology through the academic, science and technology network among the world communities. The symposium gives an opportunity for researchers to discuss their research works and also to initially stimulate the development of research works on eco-energy and materials science and engineering. Once the cooperation among researchers has been created, the further cooperation work will be developed.

I would like also extend my sincere thanks to all who made the meeting possible, including the 10th EMSES organizers, the SEE forum committee members, and the Japanese Government, JSPS, for their kind support. I am looking forward to seeing you in Ubon Ratchathani, Thailand.

Professor Takeshi YAO, Ph.D.
Former Dean of Graduate School of Energy Science, Kyoto University
and Program Leader, Global COE “Energy Science in the Age of Global Warming”
Rajamangala University of Technology Thanyaburi (RMUTT), in conjunction with Kyoto University, is pleased to host the 10th Eco-Energy and Materials Science and Engineering Symposium (10th EMSES).

RMUTT has a major mission on encouraging and supporting all areas of research. One of the key reasons is to assist in developing capability in science and technology in order to cope with recent rapid change in this field. We have jointly set up an academic symposium on the 10th EMSES with the perception on the significance of exchanging knowledge and research experiences between researcher in the field of energy, materials technology and environmental science. This symposium is not only giving an opportunity for Thai and foreign researcher to present and discussion their research works and update their expertise but also to initially stimulate the development of research works on eco-energy and materials science and engineering. Once the cooperation among researchers has been created, the closer future cooperation incorporate with joint-research works will be developed. Thus, to support the aforesaid role, the symposium working committee would like to invite you to participate in this academic symposium.

I would like to express our sincere thanks to the organizing committee, participants and contributors for your kind corporation to this symposium. I wish this symposium proceeding will be a useful reference for future scientific research development.

Sommai PIVSA-ART, Ph.D.
Dean of Faculty of Engineering, RMUTT
Director of CoE on Sustainable Energy System (Thai-Japan)
Organizing Chairman of 10th EMSES 2012
International Scientific Advisory Committee:

General Chair:
Assoc.Prof.Dr. Namyoot SONGTHANAPITAK

General Co-Chair:
Prof. Dr. Kiyoshi YOSHIKAWA
Asst.Prof.Dr. Panpetch CHININTORN

Organizing Chair:
Asst. Prof. Dr. Sommai PIVSA-ART
Prof. Dr. Takeshi YAO

Organizing Co-Chair:
Prof. Dr. Hideaki OHGAKI

International Scientific Committees:
Prof. Dr. Susumu YOSHIKAWA
Prof. Dr. Phadungsak RATTANADECHO
Prof. Dr. Shiro SAKA
Prof. Dr. Hitomi OHARA
Prof. Dr.-Ing. Habil Ingo STADLER
Prof. Dr. Young S. CHAI
Prof. Dr. Nipon TANGTHAM
Prof. Dr. Masayoshi OKUBO
Prof. Dr. Somchai WONGWISES
Prof. Dr. Nadarajah MITHULANANTHAN
Prof. Dr. Yukio OGATA
Prof. Dr. Yuichi ANADA
Prof. Dr. Narongrit SOMBATSOMPOP
Assoc. Prof. Dr. Bandit FUNGTHAMMASAN
Assoc. Prof. Dr. K. Srinivas REDDY
Assoc. Prof. Dr. David Jan COWAN
Assoc. Prof. Dr. Per B ZETTERLUND
Assoc. Prof. Dr. Vijit KINNARES
Assoc. Prof. Dr. Yoshikazu SUZUKI
Assoc. Prof. Dr. Thawatch KERDCHUEUN
Assoc. Prof. Dr. Wakin PIYARAT
Assoc. Prof. Dr. Seiichi KAWAHARA
Assoc.Prof.Dr. Kawee SRIKULKIT
Asst. Prof. Dr. Somchai HIRANVAROMDOM
Asst. Prof. Dr. Wanchai SUBSINGHA
Asst. Prof. Dr. Thanapong SUWANNASRI
Asst. Prof. Dr. Napaporn PHUANGPORNPITAK
Asst. Prof. Dr. Boonrit PRASARTKAEW
Asst.Prof.Dr.Supakit SUTTIURUENGWONGSU
Asst. Prof. Dr. Vallpop PHUPA
Asst.Prof.Dr.Pramook UNAHALEKHAKA

RMUTT, Thailand
Kyoto Uni., Japan
RMUTT, Thailand
RMUTT, Thailand
Kyoto Uni., Japan
Kyoto Uni., Japan
Kyoto Uni., Japan
TU, Thailand
Kyoto Uni., Japan
Kyoto Uni., Japan
FH Koeln, Germany
Korea
KU, Thailand
Osaka Uni., Japan
KMITL, Thailand
UQ, Australia
Kyoto Uni., Japan
Hokkaido Info. Uni., Japan
KMITL, Thailand
KMITL, Thailand
IIT-Madras, India
IUPUI, USA
Australia
KMITL, Thailand
Japan
RMUTI, Thailand
SWU, Thailand
Nakaoga Uni., Japan
CU, Thailand
RMUTT, Thailand
RMUTT, Thailand
KMUTNB, Thailand
KU, Thailand
RMUTT, Thailand
RMUTP, Thailand
RMUTSB, Thailand
Dr.Arthit Sode-Yome
Dr. Sci-ichi AIBA
Dr. Wirachai ROYMARIN
Dr. Yuttana KAMSUWAN
Dr. Jakkree SIRINONCHAT
Dr. Chatchai SOPPAPITAKSAKUL
Dr. Pinit SRITHORN
Dr. Uthen KAMNAN
Dr. Cattariya SUWANNASRI

EGAT, Thailand
Japan
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTL, Thailand
KMUTNB, Thailand

ASEAN Committee:
Prof. Dr. Yoyok Wahyu Subroto
Prof. Dr. Wega TRISUNAYANTI
Prof. Dr. Tumiran
Prof. Dr. Jun LI
Prof. Dr. INTHAN
Prof. Dr. Khamphone NANTHAVONG
Prof. Dr. Kampui SOUTHISOMBHAT
Prof. Dr. Yew Wei LEONG
Prof. Dr. Nguyen Minh TAN

UGM, Indonesia
UGM, Indonesia
UGM, Indonesia
NYU, Singapore
ITB, Indonesia
NOL, Laos
NOL, Laos
NYU, Singapore
HU, Vietnam

General Secretary:
Asst. Prof. Dr. Krisophonme BHUMKITTIPICH
Dr. Sumonman NIAMLANG

RMUTT, Thailand
RMUTT, Thailand

Technical Program Chair:
Asst. Prof. Dr. Krisophonme BHUMKITTIPICH

RMUTT, Thailand

Area: Energy Technology (ET)
Dr. Wirachai ROYMARIN
Asst. Prof. Dr. Boonrit PRASARTKAEW
Dr. Sathapron THONGWIK
Dr. Nathabhat PHANKONG

RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand

Area: Environmental and Social Impact (ES)
Dr. Nithiwat CHOOSAKUL

RMUTT, Thailand

Area: Nanotechnology and Materials Science (NM)
Dr. Sorapong PAVASUPREE
Asst. Prof. Dr. Kitipong KIMAPONG
Asst. Prof. Dr. Sirichai TORSAKUL
Asst. Prof. Dr. Warunee ARHYAWIRIYANANT

RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand

Area: Energy Economic and Management (EM)
Assoc. Prof. Dr. Natha KUPTHASTHIEN
Dr. Surin NGAEMNGAM
Dr. Pimmapat IEMSONBOON
Dr. Boonyang PLANGLANG

RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand
RMUTT, Thailand

Area: New Energy Technology (NT)
Asst. Prof. Dr. Krisophonme BHUMKITTIPICH

RMUTT, Thailand
RMUTT, Thailand

Area: Nuclear Technology (NU)

RMUTT, Thailand
10th EMSES 2012

Exhibition Chair:
Dr. Amnoiy REUNGWAREE
Dr. Winai CHANPENG

Local Arrangement Chair
Dr. Sorapong PAVASUPREE
Dr. Natee SRISAWAT

Registration and Finance Chair
Dr. Sumonman NIAMLANG
Dr. Supaporn THOMSORN
Weeraporn PIVSA-ART

Publicity Chair
Asst.Prof.Dr. Krischonme BHUMKITTIPICH
Dr. Sumonman NIAMLANG
Dr. Montip LASURIYONTA
Somchai BIANSOONGNERN

Publication Chair:
Prof. Dr. Preecha P.YUPAPIN
Assoc.Prof.Dr.Takashi SAGAWA
Dr. Boonyang PLANGKLANG
Asst. Prof. Dr. Sonobe TARO

Website and Information System Chair:
Dr. Nathabhat PHANKONG
Phongsuk AMPHA
Deachrat JAITHAWIN
CONTENT

KEYNOTE SPEAKER

<table>
<thead>
<tr>
<th>KSO1</th>
<th>Japan Power Generation Mix and Energy Security after Fukushima Nuclear Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Katsuki N. Ishihara</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KSO2</th>
<th>Vertical Motions in Greater Bangkok Area after the 2004 Sumatra-Andaman Earthquake from GPS Observations and Its Prediction based on the Geophysical Modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chaiwunchai Suwankup</td>
</tr>
</tbody>
</table>

INVITED SPEAKER

<table>
<thead>
<tr>
<th>IN01</th>
<th>Relaxation Analysis of Electrode Crystal Materials for Secondary Lithium Ion Batteries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tatsuto Yon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN02</th>
<th>Renewable Energy in Thailand: Opportunity and Technology Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thawatcharoen Kerdhevan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN03</th>
<th>Numerical Simulation of Microwave Ablation Process using Single Slot Antenna in Two-Layered Porous Liver Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phisitprakob Ronnaudancheon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN04</th>
<th>Study on the Performance of Multi Evaporator and Pump Down Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chiala Kim, Hanuluk Chang</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN05</th>
<th>A Study on Improving the Reliability of a Heat Sink for COB LED Light Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bum Sik Seo, Young Sook Cho and Daehyeon Park</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN06</th>
<th>Distribution System Voltage Stability with DG Units Considering Load Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lin Qijian, N. Methamunthathan and A. Sato-Yone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN07</th>
<th>Recent Progress in Biobased Polymer Production Technology Seriuchi Abe</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>IN08</th>
<th>Hydrothermal Effects on Mechanical Properties and Weight Change Mechanism of Jute Fiber Reinforced Composites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ying Yu, Mengxuan Liao, Twitie Yang, and Hiroyuki Kamada</td>
</tr>
</tbody>
</table>

CONTENT

<table>
<thead>
<tr>
<th>IN09</th>
<th>Effect of Motion of Impurity Ions on Electrical Properties of Polymer materials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yuichi Araki</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN10</th>
<th>Effect of Tale Filler and Polymer Blends Contents on Properties of Recycled PET Injection Mouldings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K. Yamada, S. Tanaka, N. Kasumoto, and H. Hamada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN11</th>
<th>Characteristic Requirements of a Small Scale Squirrel Cage Induction Generator for Effective Electricity Generation from Wind Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V. Kimoto and R. S. K. Senwetaeblamon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN12</th>
<th>Supramolecular Self-Assembled Polymeric Systems for Biomaterials Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jien Li</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN13</th>
<th>New Energy Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Samao Yoshikawa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN14</th>
<th>Nuclear Security Technologies in Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hidehiko Ohgaki</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN15</th>
<th>Hierarchal Structure and Properties of Natural Rubber</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seiichi Kawahara</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN16</th>
<th>Fiber, Resin, Interphase Hybrid on Continuous Natural Fiber Reinforced Composites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asami Nihari</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN17</th>
<th>--Topic--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shigeru Nishi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN18</th>
<th>Production of Biobased Chemicals by Bacterial Process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Togi Aso</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN19</th>
<th>Influence of Pilla Molecular Weight and Pilla-B-Poss Molecular Architecture on Crystallization Kinetics and Thermal Stability during Stereocomplexation with Pilla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Long Yeow Wei</td>
</tr>
<tr>
<td>CONTENT</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>ET01</td>
<td>Application of Three-level Diode-clamped Converter on 10 kW Distribution Voltage Restorer</td>
</tr>
<tr>
<td>W. Chanshawan, K. Bhumikripich and N. Mohulananthan</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
</tr>
<tr>
<td>ET02</td>
<td>A Design of Single Phase Induction Generator for Waterfall Hydro Turbine</td>
</tr>
<tr>
<td>Srihut Dung-sam</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
</tr>
<tr>
<td>ET04</td>
<td>Key Cutting Algorithm Application to Measurement Placement for Power System State Estimation</td>
</tr>
<tr>
<td>Y. Kongpong, P. Iniawong, K. Buapai and T. Kendhuan</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
</tr>
<tr>
<td>ET05</td>
<td>Hydrolysis of Rice Husk and Sugarcane Bagasse by Reflux Method</td>
</tr>
<tr>
<td>K. Kumpersa and A. Nuruja</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>ET06</td>
<td>Analysis of Lightning Phenomena for Underground Petroleum Pipeline System</td>
</tr>
<tr>
<td>B. Tepradit, K. Bhumikripich and T. Sowanwari</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
</tr>
<tr>
<td>ET07</td>
<td>N, N-Dimethylpyrrolidinium Fluorohydrogenate Ionic Liquid - Polymer Composite Membranes for a Non-Humidified Fuel Cell</td>
</tr>
<tr>
<td>P. Klaatikul, R. Tuske, K. Mamansan, T. Nakira and K. Hagwa</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
<tr>
<td>ET09</td>
<td>Screening of bulk heterojunction polymer: fullerene based organic solar cells through simple mist spray coating</td>
</tr>
<tr>
<td>Jun-byong Le, Takashi Sagaawa and Susumu Yoshikawa</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
</tr>
<tr>
<td>ET10</td>
<td>Renewable Energy Based Active Cooling System</td>
</tr>
<tr>
<td>Boonrit Prasartkaw</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
</tr>
<tr>
<td>ET11</td>
<td>Improvement of Zinc-Air fuel cell performance by gelled KOH</td>
</tr>
<tr>
<td>A. Chompusukul, S. Therdthinwong, A. Therdthinwong and N. Wiangso</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
</tr>
<tr>
<td>ET12</td>
<td>Real-time Simulation of a Photovoltaic Cell/Module under the Single Diode Model</td>
</tr>
<tr>
<td>D. Impreza and W. Subsungba</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET13</td>
</tr>
<tr>
<td>Boonrit Prasartkaw</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>ET14</td>
</tr>
<tr>
<td>Pornchud Pharnrath, Boonyong Flangklang and Sompol Kohri</td>
</tr>
<tr>
<td>128</td>
</tr>
<tr>
<td>ET15</td>
</tr>
<tr>
<td>Wanit Tongtungkham and Benjamit Chetsrip</td>
</tr>
<tr>
<td>132</td>
</tr>
<tr>
<td>ET16</td>
</tr>
<tr>
<td>Assinan Bua-ir and Wanchai Subsungba</td>
</tr>
<tr>
<td>138</td>
</tr>
<tr>
<td>ET17</td>
</tr>
<tr>
<td>Wann Chana-as-ard, Srinawat Jindaraks, Chatchai Sirisumpunwong, Sarinwit Sonnarame</td>
</tr>
<tr>
<td>142</td>
</tr>
<tr>
<td>ET18</td>
</tr>
<tr>
<td>Nipon Kajjaya Navapa yongbapoon and Kongrit Manarsi</td>
</tr>
<tr>
<td>147</td>
</tr>
<tr>
<td>ET19</td>
</tr>
<tr>
<td>J.Chanasri and K. Bhumikripich</td>
</tr>
<tr>
<td>153</td>
</tr>
<tr>
<td>ET20</td>
</tr>
<tr>
<td>P. Premmin and W. Subsungba</td>
</tr>
<tr>
<td>158</td>
</tr>
<tr>
<td>ET21</td>
</tr>
<tr>
<td>H.D.S.S.Kammaratne and S. Wijepolage</td>
</tr>
<tr>
<td>163</td>
</tr>
<tr>
<td>ET22</td>
</tr>
<tr>
<td>Pisara Somchawong, Prachantri Thayumtir and Kudachai Punnthong</td>
</tr>
<tr>
<td>167</td>
</tr>
<tr>
<td>CONTENT</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ET23 Application of Artificial Neural Network in Materials Estimation of 22 kV Overhead Lines</td>
</tr>
<tr>
<td>K. Amphasophon and K. Ilumkritpisich</td>
</tr>
<tr>
<td>ET24 Performance Study and Analysis of Micro Hydro Turbine and PV for Electricity Generator Case Study: Hunnasopit School, Nan Province</td>
</tr>
<tr>
<td>Triattraphai, P. Isanayothin, and K. Ilumkritpisich</td>
</tr>
<tr>
<td>ET25 Performance analysis of a combined ejector-vapour compression refrigeration system for automotive air conditioning application</td>
</tr>
<tr>
<td>Nritthum Eerathayudhstigea, Thamrinn Siriprada, Nat Savarnath, Wongsin Sootham, and Kuladutee Praisong</td>
</tr>
<tr>
<td>ET26 The Performance Improvement of a Thick Electrode Solid Oxide Fuel Cell</td>
</tr>
<tr>
<td>P. Chinda</td>
</tr>
<tr>
<td>ET27 Modeling of Grid-Connected with Permanent Magnet Synchronous Generator (PMSG) using Voltage Vector Control</td>
</tr>
<tr>
<td>M. Soongwan, P. Nathibhat, K. Ilumkritpisich and Pradit Naksawat</td>
</tr>
<tr>
<td>ET28 Enhancement of Cassava Rhizome Gasification Using Mono-Metallic Cobalt Catalysts</td>
</tr>
<tr>
<td>Panchaleek Sorone, Duanjai Aongsongthai and Viboon Sricharoenwichai</td>
</tr>
<tr>
<td>ET29 Gasification of Peanut Shell Waste using a Modular Fix-Bed Gasifier</td>
</tr>
<tr>
<td>Jeerarat Nisananoen, Duanjai Aongsongthai and Viboon Sricharoenwichai</td>
</tr>
<tr>
<td>ET30 A Study of Integrating Renewable Energy in Smart Grid System</td>
</tr>
<tr>
<td>N. Phuaangpongpiak and S. Tua</td>
</tr>
<tr>
<td>ET31 Performance evaluation of 10 kWp photovoltaic power generator under hot climatic condition</td>
</tr>
<tr>
<td>Nipon Kejjoy/Chaichai Sirisanphawong and Natsawat Khaosaldd</td>
</tr>
</tbody>
</table>
CONTENT

ET43 Control of Parallel-Connected AC to DC Converters with Droop Technique for DC Microgrid Application
C. Tanasartrak V. Chenkag and P. Thounthong 262

ET45 Design of Matlab/Simulink Modeling of Fixed-Pitch Angle Wind Turbine Simulator
P. Janusma and T. Kamswan 268

ET46 Closed Loop Speed Control of Induction Generator with Scalar-Control Inverters
A. Upsoon and Y. Komswan 273

ET47 Study of Generator Reaction on Permanent Magnet Synchronous Motor for Energy Regenerative Applications
S. Kamswan, A. Noppakant and B. Piangklang 278

ET48 Ethanol Production from Rice Straw by Simultaneous Saccharification and Co-Fermentation
N. Seryasatch, V. Chompreda, N. Lacsirapojana, and P. Unreean 283

ET49 High Voltage Gain Interleaved DC Boost Converter Application for Photovoltaic Generation System
W. Khadnum and W. Schingha 286

ET50 Influence of Bath Temperature on the Properties of InS2 Films Grown by Chemical Bath Deposition
G.R. Gopinath, R.W. Miles and E.T. Ramakrishna Reddy 290

ET51 Unsteady Surface Pressures and Airload of a Pitching Airfoil Supalit Woraissachit Grant Ingram and Robert Donnay 294

ET52 Fast Pyrolysis of Jatropha Residue with Alumina Based Catalyst using Pyrolysis-Gas Chromatography/Mass Spectrometry Prangtip Kongpengkriee, Duanphum Arong and Viboon Sricharoenchaisil 300

ET54 Selective Synthesis of Monoglycerides in a Capillary Microreactor Mamee Siratsa, Chawalit Ngamcharumrivesich, Sirinat Poompradub 305

CONTENT

ET55 Numerical Analysis of Laminar Heat Transfer in a Square Duct with Incline diagonally angled – Ribs
W. Jedsadaramachai, J. Wongwong, A. Boonlai and P. Promvonge 310

ET56 Effect of V-orifice on Laminar Flow Structure and Heat Transfer in Square Duct
W. Jedsadaramachai, N. Vitayakul, A. Boonlai and P. Promvonge 316

ET57 Numerical Analysis of Turbulent Heat Transfer in a Square Duct with Diagonal V-Discrete Ribs
W. Jedsadaramachai, P. Promvhatsoong A. Boonlai and P. Promvonge 321

ET58 Numerical Study of Laminar Heat Transfer in a Circular Tube with Angled Orifices
W. Jedsadaramachai, R. Poosathed, A. Boonlai and P. Promvonge 327

ET59 Effect of Tube Aspect Ratios on Air Side Performance of the Cross Flow Heat Exchangers with the Flat Tubes Having Different Aspect Ratios
S. Toothsitsong and N. Kuangyaphanuad 333

ET60 Effect of Attack Angles on Air Side Thermal and Pressure drop of The Cross Flow Heat Exchangers with Staggered Tube Arrangement
S. Toothsitsong and N. Kuangyaphanuad 338

ET61 Sintering of an Aqueous-Based Tape Casted Samarium-Doped Ceria Electrolyte
P. Lekka, D. Wattanasiriruch and S. Wattanasirirutch 344

ET62 Design, Construction and Testing of a Thermoelectric System
R. Pongpoom, S. Jamjaiwao, K. Cheeprasertsuk, T. Chin-eye and M. Puangfong 349

ET63 Water Waste Treatment Stand Alone Photovoltaic System
O. Saitma and S. Hirunraksan 352

ET64 The effect of photon flux density and module temperature on power output of photovoltaic array
Channoi Srisripanthanong and Chaichai Srisripanthanong 356
<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET65 Electrochemical Performance of NixCo${3-x}$O$_y$-GDC Cermet Anodes for SOFCs J. Agarwala, Duramee Watanasiriwich, Suhee Watanasiriwich and Kiizumori Sato 360</td>
</tr>
<tr>
<td>ET69 Comparison of Two Scenarios for Maximizing CO$_2$ Reduction and Supply Energy for Bioethanol Production and Power Generation from Agro-Residues: A Case Study in Ecuador J.C. Garcia M., T. Machinuma and T. Idowu 366</td>
</tr>
<tr>
<td>ET70 CuO coating effect on photovoltaic performance of dye-sensitized solar cells based on SnO$_2$ nanowires Saraches Prasongphitikulboon, Danuwanee Wongnumnanaphisom, Archawanon Guardsawans and Supah Choopun 371</td>
</tr>
<tr>
<td>ET71 Assessing the energy savings potential in public buildings through retrofit measures in tropical climates – A case study in Mauritius Vichananee Orre and Oonochi Kumar Mohit 375</td>
</tr>
<tr>
<td>ET72 Three-Level Back-to-Back Converter Simulation for Wind Turbine Energy Source N. Yootanom, N. Phankong and K. Bhumkittipich 380</td>
</tr>
<tr>
<td>ET74 Fabrication of Samarium Doped Ceria Electrolyte on Rough Glass Substrate with High Electrical Conductivity by Electrostatic Spray Deposition for Intermediate Temperature Solid Oxide Fuel Cell Tanapol Chadermanit, Manusop Pampay and Bansarn Kepabhoor 391</td>
</tr>
<tr>
<td>ET75 Effect on Compressive Strength of Replacing Sand by Dolomite in Concrete Prachoon Khampa and Kittipong Sawarto 395</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET77 Renewable Energy Feasibility Study: Case Study for A Main Telephone Fixed-Line Exchange Unit in Thailand N. Kuprianhon, Sarawat Janaroon and D. Jatthern 398</td>
</tr>
<tr>
<td>ET78 Laboratory Study of Selected Trace Elements Behavior during Biomass Co-Combustion with Coal A. Kisiatu 402</td>
</tr>
<tr>
<td>ET79 Comparative Evaluation of Product Properties and Energy Consumption of Single Microwave Dryer and Combination of Microwave and Hot Air Dryer for Darijan Peel Particleboards Sarocha Charvornv, Wanchana Tungsom, Anchit Jicky, Phadungsak Ranawadecho and Somsak Fangrathachai 408</td>
</tr>
<tr>
<td>ET80 Effect of Activated Carbon Surface Treatment on Methane Adsorption for Natural Gas Storage Development Atudawath Shangsit, Boonnaruch Etrmann, Pramobch Rungpavanit and Santit Kulaprottipan 415</td>
</tr>
<tr>
<td>ET81 Hydrodynamic Behavior of a Fluidized Bed Containing Sun Flower Seed Phraatchh Chumneen, Siva Acharya Prachit and Are Acharyaviriy 419</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENVIRONMENTAL AND SOCIAL IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES09 Degradation Behaviors of Different Blends of Polyactic Acid Buried in Soil C. Chansangkan, C. Peayon and S. Srisaknakonst 424</td>
</tr>
<tr>
<td>ES11 Analysis of pesticide residues in tomatoes by using Gas Chromatography/Mass Spectroscopy D.M.S. Devaupada, K.K.D.S. Ramoneera, Nimal Pathmasti 435</td>
</tr>
<tr>
<td>ES12 Correlation between heat flux over the Indian Ocean and rainfalls in Coastal Thailand by using the MM5 numerical model P. Prabhakarini, A. Siripong, and D. Sukowat 440</td>
</tr>
</tbody>
</table>
CONTENT

ES14 Effect of Acid Treatment on Adsorption of Single-Walled Carbon Nanotubors for Tetracycline Removal from Aquous Solution
Kephi Shrestha, Kyozi Nakagawa, Tohatchai Charrapatpichai, and Kanae Kawashima

ES15 The Applied Geographic Information System and the Relation of Molusk with Water Quality in Ayuthaya Province, Thailand
D. Supasittwarm, N. Arcersrachai, and J. Pruksiripanom

ES16 Reproduced Solar Radiation Derived from Electric Current of Solar Cell for Daytime Meteorological Study
Nithiwatth Choocholak, Chawolwan Rangrong and Naris Barnthap

NANO TECHNOLOGY AND MATERIAL TECHNOLOGY

NM01	Surface Treatment of natural fibers with Flexible Epoxy Resin Nupawadee Khumpradip, Patimun Uwongswasan, Werasarn Piroo-Art and Hirokato Hamada	459
NM02	Poly (lactic acid) and Poly (butylene succinate) blend Fibers Prepared by Melt Spinning technique L. Samprang, N. Wong On, P. Surin, C. Apasai, T. Chaichalermwong, S. Thamson, N. Koottbuaathong, N. O-Charron, and N. Srisawat	463
NM03	Morphological and Impact Property of Flexible Epoxy Treated Natural Fibers Reinforced Poly (lactic acid) Composites Wightman Natech, Patimun Uwongswasan, Werasarn Piroo-Art, and Hirokato Hamada	465
NM04	Collector Thermal Efficiency of Solar Panel Made from Thermoplastics Tohatchai Mekwan, Warana Ariyapririya, Mame Yaphuang, Pongpichik Srisawat, Jaravwan Boonwan, Nokul Eceptionnuea, Pongpichit Methacharam and Supachai Chiangiasiripatan	468
NM05	Effect of Heat Seal Conditions on Heat Seal Characteristic of Poly (Lactic Acid)/Thermoplastic Starch Blend Films S. Thamson, K. Yamada, S. Piroo-Art, K. Miyasita and H. Hamada	472

CONTENT

NM06	Microstructural arrangement and densification of GDC10-3YTZ solid solutions S. Watanasiriwets, T. Bandapetch, and D. Watanasiriwets	473
NM07	Kinetic Study of Poly(L-lactic acid) Pre-polymer Synthesis in a 2-Steps Direct Polycondensation Process Sumonmon Namlang, Werasarn Piroo-Art, Nutchapon Santipate, Suparat Watchanawasawas, Tussamon Wongbong and Somtal Piroo-Art	477
NM09	Effect of Metal Additives on the Hydrogenation of Carbon Dioxide over Nickel Catalyst Prepared by Sol-gel Method Hisanori Ando	480
NM10	Effects of Fuel Contents and Surface Modification on the Sol-gel Combustion CoO, Gd2O3, Y2O3 Nanopowder Darunee Watanasiriwets and Suthas Watanasiriwets	484
NM11	Mechanical Properties of Bamboo Charcoal Reinforced PLA Composites Prayaph Pinarungpratan Patimun Uwongswasan, Werasarn Piroo-Art and Hirokato Hamada	489
NM12	Preparation of Poly(lactic acid) and Poly(trimethylene terephthalate) Blend Fibers for Textile Application S. Padke, J. Wong On, P. Surin, C. Apasai, T. Chaichalermwong, S. Thamson, N. Koottbuaathong, N. O-Charron and N. Srisawat	493
NM13	Poly (lactic acid)/Polycaprolactone Blends Compatibilized with Block Copolymer K. Charattapaniya and S. Phantansuree	494
NM14	Preparation of Polymer Blends Between Poly (lactic acid) and Poly (butylene adipate-co-terephthalate) and Biodegradable Polymers as Compatibilizers Werasarn Piroo-Art, Assorn Chaiypasit, Sommai Piroo-Art, Hideki Yamane and Hitomi Ohara	496
NM17	Effect of Molecular weight and Concentration of Chitosan on Poly (vinyl acetate) Encapsulation A. Jeelapan, S. Phantansuree	499
CONTENT

NM18 Hydrothermal Preparation and H2 Evolution from Water-Splitting Reaction of Nanotubes Constructed from Low-Cost White Pigment TiO2
S. Panaseree, T. Wirunmongkol, N. Tananon, S. Chauengchote, T. Sagawa, A. Simpamadipan and W. Pecharupa

503

NM19 Characterization of Flower-like Titania and Titania Nanowires on Titanium Plate Substrate
S. Panaseree, K. Onoda, S. Yoshikawa, A. Simpamadipan and W. Pecharupa

508

NM20 Effect of Filler Types on Thermal Property of Poly (butylene succinate) Composite Films
C. leem-engkij and S. Phanumardwee

512

NM21 Synthesis of L-Lactic Acid Oligomers Using Melt Polycondensation Process
Somsai Pansan-Art, Sumanan Niamlang, Weuropä Pansan-Art, Songpong Pansan-Art, Hideki Yamane and Hirono Ohara

516

NM22 Effect of Additives on Thermal and Mechanical Properties of Polymer Blends of Poly (lactic acid) and Poly (butylene succinate-co-adipate)
Somsai Pansan-Art, Songpong Pansan-Art, Narongyoth O-Chaow, Weuropä Pansan-Art, Sapaphorn Thamson and Hideki Yamane

517

NM25 Scintillation Properties of Ce-doped YAP and Lu2O3:Y3AP Single Crystals at 520 and 662 keV Gamma Rays
A. Phumprak, W. Chumpaditkhao, P. Phumprak and D. Aphiraj

518

NM26 Transparent Conductive TiO2 Films Deposition for Photovoltaic Application Using RF Sputtering Technique
Accurat Choowued, Teer-Woo Kim, Dong-Joo Kwak and Youn-Moon Sung

522

NM27 Synthesis of Titanium Oxide Nanotubes for Electrochemistry Application Using Anodizing Method
B. H. Juo, A. Chawonmood, M. W. Park and T. M. Sung

527

NM28 Comparison of TiO2 Films Characteristics Prepared by Sputtering, Sol Gel and Dip Coating Methods for Photovoltaic Application
Byung-Ho Moon, Soon-Hee Park, Chihwae Han and Youn-Moon Sung

531

NM29 TiO2 Films Fabrication for electron blocking layer of Photo-Electrochemical Cells using RF Magnetron Sputtering Method
Hee-Dae Park, In-Seok Choi, Dong-Joo Kwak and Youn-Moon Sung

535

NM30 Synthesis of Poly(D-lactic acid) Using a 2-Steps Direct Polycondensation Process
Paruchetnoi Wongnajjuk, Weuropä Pansan-Art, Thikanda Tong-ngok, Sapanas Jumgum, Somsai Pansan-Art, Hideki Yamane and Hirono Ohara

539

NM31 Nickel-Nickel spinel composite for an external SOFC support
A. Sumavan, D. Wanumaiyawich, S. Wanumaiyawich and P. Jangkavanin

540

NM32 Fine Tuning in Dimensions of ZnO Nanostructures and ZnO/Polymer Interface in Hybrid Solar Cells
Pipat Ruenthams, Takashi Sagawa and Susumu Yoshikawa

545

NM33 Pulsed Laser Ablation of Graphite Target in Dimethylformamide
V. Phumprak, A. Phumprak, P. Piriyawong, S. Limawan and P. Limawan

548

NM34 Characterisation of the Photoelectrochemical Properties of WO3 Thin Films Prepared by Electrodeposition
W.L. Kwong, H. Qin, A. Nakurak, P. Koshy, and C.C. Sorrell

552

NM35 Effect of Annealing Temperature on the Photocatalytic Activity of TiO2 Thin Films
C.P. Lin, H. Chen, P. Koshy, A. Nakurak, and C.C. Sorrell

556

NM36 Synthesis and Characterization of Al6061-Fly Ashy-SiO2 Composites by Stir Casting and Compoucasting Methods
David Baja Selvam, A. Robinson Smart, D.S. Donakkaran

560

xiii

CONTENT

NM28 Comparison of TiO2 Films Characteristics Prepared by Sputtering, Sol Gel and Dip Coating Methods for Photovoltaic Application
Byung-Ho Moon, Soon-Hee Park, Chihwae Han and Youn-Moon Sung

531

NM29 TiO2 Films Fabrication for electron blocking layer of Photo-Electrochemical Cells using RF Magnetron Sputtering Method
Hee-Dae Park, In-Seok Choi, Dong-Joo Kwak and Youn-Moon Sung

535

NM30 Synthesis of Poly(D-lactic acid) Using a 2-Steps Direct Polycondensation Process
Paruchetnoi Wongnajjuk, Weuropäische Pansan-Art, Thikanda Tong-ngok, Sapanas Jumgum, Somsai Pansan-Art, Hideki Yamane and Hirono Ohara

539

NM31 Nickel-Nickel spinel composite for an external SOFC support
A. Sumavan, D. Wanumaiyawich, S. Wanumaiyawich and P. Jangkavanin

540

NM32 Fine Tuning in Dimensions of ZnO Nanostructures and ZnO/Polymer Interface in Hybrid Solar Cells
Pipat Ruenthams, Takashi Sagawa and Susumu Yoshikawa

545

NM33 Pulsed Laser Ablation of Graphite Target in Dimethylformamide
V. Phumprak, A. Phumprak, P. Piriyawong, S. Limawan and P. Limawan

548

NM34 Characterisation of the Photoelectrochemical Properties of WO3 Thin Films Prepared by Electrodeposition
W.L. Kwong, H. Qin, A. Nakurak, P. Koshy, and C.C. Sorrell

552

NM35 Effect of Annealing Temperature on the Photocatalytic Activity of TiO2 Thin Films
C.P. Lin, H. Chen, P. Koshy, A. Nakurak, and C.C. Sorrell

556

NM36 Synthesis and Characterization of Al6061-Fly Ashy-SiO2 Composites by Stir Casting and Compoucasting Methods
David Baja Selvam, A. Robinson Smart, D.S. Donakkaran

560

xv
| CONTENT |
|------------------|---|
| NM81 The fabrication and mechanical Properties of Jute Spun Yarn-PLA Unidirection Composite by Compression Molding A. Meron and A. Nakat | 722 |
| NM82 Effect of Twisted Jute Fiber Bundle on Mechanical Property of Glass/jute/polypropylene Hybrid Composites P. Uawongwisan, T. Fang and H. Hamada | 726 |
| NM83 Impact Property of Flexible Epoxy Treated Natural Fiber Reinforced PLA Composites Niphawee Nuchong, Putman Uawongwisan, Wapirom Pino-Art and Hiroshi Kanada | 730 |
| NM84 Mechanical Property of Surface Modified Natural Fiber Reinforced PLA Bioocomposites Wannamon Suatitjan Putman Uawongwisan, Wapirom Pino-Art and Hiroshi Kanada | 734 |
| NM85 Mechanical properties of silk fiber reinforced PLA composite Kornkanok Manaphak, Putman Uawongwisan, Wapirom Pino-Art and Hiroshi Kanada | 738 |
| NM86 Effect of Flexible Epoxy Treated on Surface Morphology of Natural Fibers Nipawanlkes Khunhaya, Putman Uawongwisan, Wapirom Pino-Art and Hiroshi Kanada | 742 |
| NM87 Electron-Acceptor Nanomaterials Fabricated by Electrosprinning for Polymer Solar Cells Saranee Chumthongchoe and Tokshi Sengwa | 746 |
| NM88 Effects of Melt Spinning Conditions on Cross-sectional Features of Poly (Laetic acid) Fibers N. Rungpaisan, N. Ocharoen, N. Sriuran, C. Pornsri, S. Panugree | 749 |
| NM89 Nonstoichiometric Polymer Particles as Nanocoating and Catalytic Nanofilters with Unique Properties Md. Shahmid Islam, Won Su Chee, Han-Jin Lee | 753 |
| NM90 Investigation of Si-gel-NR interaction in Si-Gel/NR vulcanizate using Dynamic Mechanical Thermal Analysis C. Thongton and R. Rodossipha | 757 |

| CONTENT |
|------------------|---|
| NM96 Physico-Chemical Properties of Surface Modification of Silica Based on Rice Husk Ash Sources Phoorachan Writakham and Sayakjai Sutirangwong | 766 |
| NM97 CO2 Adsorption on MIP-, NMEA-, Piperazine-, K2CO3- Modified Activated Carbons T. Pichatchan, S. Kulpathipanitu, and P. Sengnavisit | 770 |
| NM99 An Investigation of Optimum Cutting Conditions in Face Milling Aluminum Semi Solid 2024 Using Carbide Tool Suwati Rawangwong, Amaprin Choukhong, Wapirom Boonchoyasant and Romaphorn Panana | 779 |
| NM100 Effect of Soaking Time on Crystalline Phase in Leadless Iron Oxide Crystalline Glaze S. Nokkare, A. Waewwaew and A. Nonnaya | 783 |

| ENERGY ECONOMIC AND MANAGEMENT |
|------------------------|---|
| EM02 Miscellaneous Electric Loads in Tropical Buildings - An Opportunity for Energy Conservation Improvement Qi Shu Kwek, Nor Mairab Adam, Shih Ho Chen and Vijay R. Raghavan | 788 |
| EM03 Legal and Institutional Framework Development for Measurable, Reportable and Verifiable System in Thai Energy Sector Tuknoporn Supagr, Chatuchawan Chatichana and Wongtat Wongnapavit | 794 |
| EM04 Project Based Measurable, Reportable, and Verifiable (MRV) Guideline Development for Greenhouse Gas Mitigation Projects in Thai Energy Sector Piyapong Muhammat, Chatuchawan Chatichana, and Wongtat Wongnapavit | 800 |
EM05 Non-humidified fuel cells using dimethylpyrrolidinium 804
Fluxicarbonate ionic liquid-polymer composite membranes
P. Khothintsuk, R. Tantik, K. Minamotyo, T. Nohara and R. Hagiwara

EM06 A Prediction of Banana Drying Behavior Using Empirical 808
Model and Artificial Neural Network Model
Parthav Warunth, Bundit Kritsashun, Nantawanat Weeraph, 813
Umeerak Teebonnan and Stephen Stessun

EM07 A Nation-wide Planning of Agro-residue Utility for Bioethanol 818
Production and Power Generation in Ecuador
J.C. Garcia M., T. Machinmura and T. Matsui

EM08 A Survey of Remote Household Energy Use In Rural Thailand
J. Tsangkej and T. Tezuka

NEW ENERGY TECHNOLOGY

NT01 Investigation of Electron Beam Parameter in Seeded THz-FEL 824
Amplifiers Using Photocathode RF Gun
T. Kumazumi, H. Inage, M. Omer, K. Yoshida, T. W. Choi, K. Kinjo,
K. Maruda, T. Kii, and H. Obuki

NT02 Hydrodesulfurization of Oil Derived from Waste Tire Pyrolysis 833
Nun Jantsaruk, Pattaraporn Prawansarbik, Napisa Hinchiran

NT03 Effect of surface treatment on properties of PBS/ocir fiber 839
biocomposites
Murari Kool麻痹, Nattakorn Hongsiriphan 845
and Chanchai Thongpin

NT04 Mechanical and Thermal Properties of PLA/PBS Co-continuous 849
Blends Adding Nucleating Agent
Rangsiman Homkin and Nattakorn Hongsiriphan

NT05 Dialkoxycarbonylazine-type Active Materials for Rechargeable 854
Lithium Batteries: the Effect of the Alkox-group Length on the
Cycle-stability
Masaru Tani, Hisanori Ando, and Teiji Kijiyohayashi
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT18</td>
<td>Simulations and Measurements of Dipole and Quadrupole Magnets for PBP-CMU Linac System</td>
<td>895</td>
</tr>
<tr>
<td></td>
<td>P. Boonpompromsart, S. Rimajen, J. Suisai, and C. Thongbai</td>
<td></td>
</tr>
<tr>
<td>NT19</td>
<td>Observation of high harmonic generation from SiC by MIRFEL irradiation</td>
<td>900</td>
</tr>
<tr>
<td>NT20</td>
<td>Effect of Equivalence Ratio on SI Engine Performance Fueled with Lean Air Gas Mixtures</td>
<td>903</td>
</tr>
<tr>
<td></td>
<td>G. Peraphya, A. Szabó, L. Ziółkowski</td>
<td></td>
</tr>
</tbody>
</table>
Hydrothermal Preparation and Photocatalytic Activity of Nanosheets from Natural Ilmenite Mineral

W. Charerntanon¹, T. Wirunmongkol¹, N. O-Charoen¹, S. Sakulkhaemarueuth¹, K. Sungsanit¹ and S. Pavalupree¹

¹Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani 12110
²Department of Chemistry, Faculty of Science, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani 12110
E-mail: sorapongp@yahoo.com

Abstract—Nanosheets were synthesized by a simple hydrothermal method using low-cost natural ilmenite mineral as the starting materials at temperature of 120 °C for 24 h. The shape and size of the prepared sample were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The prepared sample showed flower-like morphology with diameter of 3-5 μm. The nanosheets structure was slightly curved and approximately 100 nm to 2 μm in width and several nanometers in thickness. The as-synthesized nanosheets showed the highest photocatalytic activity than that of commercial nanoparticles TiO₂(P-25, JRC-01, JRC-03). This synthetic method provides a simple route for the nanosheets preparation from a low-cost natural mineral.

Keywords—Nanosheets; Ilmenite mineral; Hydrothermal; Titanate; TiO₂

1. INTRODUCTION

The titania materials (TiO₂) and TiO₂-related materials are important for utilizing solar energy and environmental purification. TiO₂ has been widely used for various applications such as a semiconductor in dye-sensitized solar cell, water treatment materials, catalysts and gas sensors [1-6]. The synthesis and characterization of nanostructured materials (nanotubes, nanorods, nanowires, and nanosheet) have been received considerably attended due to their unique properties and novel applications. Several methods were employed in the preparation of the TiO₂-derived nanomaterials such as sol-gel, electrodeposition, electrospinning, hydrogen treatment, anodic porous alumina templating, carbon nanotube inner templating, supramolecular assembly templating, anodic oxidation of a titanium sheet, and hydrothermal NaOH (aq.) treatment. Ilmenite (FeTiO₃) is a natural source of low titanium content TiO₂ (usually approximately 50-60 %) [7-26]. In our previous works, the hydrothermal method was selected to synthesize nanosheets from titanium butoxide [7] and nanofibers from ilmenite mineral [9].

In this study, the nanosheets were simply prepared by hydrothermal method using inexpensive natural ilmenite mineral as the starting material.

2. EXPERIMENTAL

2.1 Synthesis

Titanate nanosheets were synthesized by hydrothermal method using a natural ilmenite mineral (Sakorn Minerals Co., Ltd., Thailand) as the starting material. These materials are made from 16 g of the black granule of the ilmenite mineral (used without purification) are placed in a teflon-lined stainless steel autoclave (Fig. 1). To the autoclave was then added 2000 mL of 5 M NaOH (aq.), followed by heating at 120 °C for 24 h with stirring. After the autoclave was allowed to cool to room temperature, the resulting product was washed several times with an 0.1 M HCl (aq.) solution and then several times with distilled water, followed by drying with hot air at 100 °C for 12 h. The experimental procedure is schematically shown in Fig. 2.

2.2 Characterization

The shape and size of the as-synthesized sample were analyzed by scanning electron microscopy (SEM, JEM-6510, JEOL) with accelerating voltages of 5-20 kV and transmission electron microscopy (TEM, JEOL JEM-2010 Electron Microscope).

2.3. Photocatalytic activity measurement

Photocatalytic activity was measured through the concentration of I₂ that generated from photo oxidation reaction of I which transformed into I₂ in excess of I condition [5, 22] following Eqs. (1) and (2).

\[2I^- \rightarrow I_2 + 2e^- \quad (1) \]

\[I_2 + I^- \rightarrow I_3^- \quad (2) \]
The 50 mg of TiO₂ powders and potassium iodide solution were filled into a cylindrical vessel. After that, it was placed on obscure condition, and 15 W of UV light was illuminated with stirring condition at room temperature for 1 h then the solution was separated by centrifuge method and it was diluted for 10 times order to measured of ion by light absorption of 288 nm using UV-vis spectrometer, the coefficient of the intensity from the experimental was 4.0x10⁶ cm mol/l.

3. RESULTS AND DISCUSSION

3.1. Characterization

The as-synthesized sample was brown, whereas the starting ilmenite mineral was black (Fig. 3a-b). This result indicates that a large portion of Fe impurities were removed by NaOH (aq.) hydrothermal treatment and the neutralization/washing process [23]. An SEM image of the starting ilmenite mineral is shown in Fig. 4; this illustrates the granular structure of the material, with grain size of 150-200 μm. After the hydrothermal treatment, the as-synthesized sample exhibited flower-like morphology (Fig. 5).

Fig. 5(a-c) show the SEM images of the as-synthesized sample at 5,000x, 10,000x, and 20,000x magnification for the group of flower-like morphology. The flower-like structure had a diameter about 3 μm to 5 μm, the flower-like morphology composed of nanosheets. To confirm the formation of nanosheets, TEM analysis was used, and a representative image can be seen in Fig. 6. From the TEM images, it can be observed that the as-synthesized sample showed sheets-like structure. The nanosheets structure was slightly curved and approximately 100 nm to 2 μm in width and several nanometers in thickness. The sheets radiated in all directions to form flower-like morphology.

From the previous works, the size and morphology of TiO₂-derived nanotubes, nanowires or nanofibers depending on the starting materials (ST-01 and natural rutile sand), hydrothermal temperature and time (at 110–150 °C for 72–120 h) [27, 28]. Nanotubes (10 nm in diameter and 1 μm in length) were synthesized from ST-01 (particles size = 4–5 nm) by hydrothermal method at 110–120 °C for 72 h. Nanowires (10–50 nm in diameter and several μm in length) were synthesized from ST-01 (particles size = 4–5 nm) by hydrothermal method at 150 °C for 72 h [29]. Nanofibers (20–50 nm in diameter and 10–500 μm in length) were synthesized from natural rutile sand (particles size = 75–300 μm) by hydrothermal method at 150 °C for 120 h [30]. Nanofibers (20–50 nm in diameter and 10–100 μm in length) were synthesized from natural rutile sand (particles size = 75–300 μm) by hydrothermal method at 150 °C for 72 h [24]. The nanosheets TiO₂ growth under hydrothermal because nanotubes (from nanosheets rolling technique) can be synthesized at 110–120 °C for 48–72 h and dilute base treatment generates thin, curled sheet materials [8, 21].

3.2. Photocatalytic activity

The I⁻ concentration at 60 min of the irradiation period of the as-synthesized nanosheets was about 4.80 × 10⁻⁸ M. (Fig. 7) which is higher than that of the other synthesize(i.e., the white pigment TiO₂, the as-synthesized nanotube from white pigment TiO₂) and the commercial grade TiO₂ nanoparticles (i.e., P-25, JRC-01, and JRC-03) which exhibit I⁻ concentration about 0.15 ×10⁻⁸, 0.57x10⁻⁸, 1.14x10⁻⁸, 0.66×10⁻⁸, and 0.25×10⁻⁸ M, respectively. The introduction of mesopore into titania photocatalyst substantially improved the photocatalytic performance [6]. Jitpitti et al. synthesized flower-like titane nanosheets via hydrothermal method using titanium butoxide as the starting material. The results revealed that the use of the flower-like TiO₂ with unique structure could promote great H₂ evolution(photocatalytic
activity). Preliminary photocatalytic activity measurement showed that the flower-like titanate superstructure show high photocatalytic activity due to their unique structure [8]. The nanosheets have good crystallinity and well-defined chemical composition and exhibit distinctive physicochemical properties. Therefore, these nanosheets become a potential building block for the construction of nano materials in the fields of photocatalysis [31], photoluminescence [32], and photoelectrochemistry [33].

Fig. 3. Photo images of (a) the starting ilmenite mineral and (b) the as-synthesized sample.

Fig. 4. SEM image of the starting ilmenite mineral

Fig. 5. SEM images of the as-synthesized nanosheets at (a) 5,000x (b) 10,000x and (c) 20,000x magnification.

Fig. 6. TEM image of the as-synthesized nanosheets at 100,000x magnification.
4. CONCLUSION

Nanosheets were synthesized by hydrothermal method at temperature of 105 °C for 24 hours using a low-cost ilmenite mineral as the starting material. The flower-like nanosheets structure was slightly curved and approximately 100 nm to 2 μm in width and several nm in thickness. The as-synthesized nanosheets showed the highest photocatalytic activity than that of the commercial nanoparticle TiO₂ samples (P-25, JRC-01, JRC-03).

ACKNOWLEDGMENT

This work has been supported by the National Research Council of Thailand (NRCT). The authors would like to thank Sakorn Minerals Co., Ltd., Thailand, and the Nanotechnology for Textile and Polymer Research Group (NanoTeP) of the Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Thailand.

REFERENCES

