CONFERENCE TOPICS

GROUP 1 (PE)
Power Electronics, Electric Machines, Motor Control and Drive, Measurement, Control and Robotics.

GROUP 2 (PW)

GROUP 3 (RE)

GROUP 4 (TE)
Telecommunication, Electronics, Information and Communication Technologies, Antennas, Microwave Theory and Techniques.

GROUP 5 (CP)

GROUP 6 (GN)
Education in Electrical Engineering, Simulation Software and Design tools, Related Topics in Electrical Engineering.
ยินดีต้อนรับ / Welcome to EENET2012

EENET เป็นศูนย์รวมความรู้ด้านวิศวกรรมไฟฟ้าของกลุ่มมหาวิทยาลัยเทคโนโลยีราชมงคล โดยมีสมาชิกในเครือข่ายประกอบด้วยมหาวิทยาลัยเทคโนโลยีราชมงคล 9 แห่ง ที่จัดการประชุมวิชาการระดับชาติในสาขาวิชาการวิศวกรรมและอิเล็กทรอนิกส์ เกี่ยวกับด้านการศึกษาทางไฟฟ้า

การประชุมวิชาการระดับชาติ EENET2012 มีการจัดขึ้นเป็นครั้งที่ 4 ซึ่งยังคงมีการจัดทำได้สำเร็จมาตั้งแต่ปี 2555 ได้สำเร็จผลการจัดทำในครั้งนี้ พร้อมกับการประชุมวิชาการระดับโลกในสาขาทางไฟฟ้าที่มีความเป็นอย่างยิ่ง

EENET จัดตั้งเป็นศูนย์กลางในการดำเนินงานวิจัยที่เกี่ยวกับศาสตร์ทางการศึกษาและการประชุมวิชาการระดับโลกในสาขาวิชาการวิศวกรรมไฟฟ้า ซึ่งจะสามารถแสดงได้ในปัจจุบันได้

EENET คือศูนย์รวมความรู้ทางวิศวกรรมไฟฟ้าของกลุ่มมหาวิทยาลัยเทคโนโลยีราชมงคล

EENET จัดตั้งเป็นศูนย์รวมความรู้ทางวิศวกรรมไฟฟ้าของกลุ่มมหาวิทยาลัยเทคโนโลยีราชมงคล

EENET จัดตั้งเป็นศูนย์รวมความรู้ทางวิศวกรรมไฟฟ้าของกลุ่มมหาวิทยาลัยเทคโนโลยีราชมงคล
กลุ่มบทความ / Conference Topics

<table>
<thead>
<tr>
<th>กลุ่ม / Group</th>
<th>เนื้อหาบทความเกี่ยวกับ / Topics about</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (PE)</td>
<td>Power Electronics, Electric Machines, Motor Control and Drive, Measurement, Control and Robotics.</td>
</tr>
<tr>
<td>4 (TE)</td>
<td>Telecommunication, Electronics, Information and Communication Technologies, Antennas, Microwave Theory and Techniques.</td>
</tr>
<tr>
<td>6 (GN)</td>
<td>Education in Electrical Engineering, Simulation Software and Design tools, Related Topics in Electrical Engineering.</td>
</tr>
</tbody>
</table>

กำหนดการ / Importance Dates

<table>
<thead>
<tr>
<th>หมายเหตุช่วงเวลา / Event Dates</th>
<th>รายละเอียด / Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>หนังสือรับบทความ / Full Paper Submission Deadline</td>
<td>29 มกราคม 2555 (29 January 2012)</td>
</tr>
<tr>
<td>ประกาศผลการพิจารณา / Notification of Acceptance</td>
<td>15 กุมภาพันธ์ 2555 (15 February 2012)</td>
</tr>
<tr>
<td>หนังสือรับบทความฉบับสมบูรณ์ / Revised Full Paper Submission Due</td>
<td>22 กุมภาพันธ์ 2555 (22 February 2012)</td>
</tr>
<tr>
<td>วันฟ้องร้องและสืบเรื่อง / Registration</td>
<td>15-29 กุมภาพันธ์ 2555 (15-29 February 2012)</td>
</tr>
<tr>
<td>วันจัดประชุมวิชาการ / Conference Date</td>
<td>3-5 เมษายน 2555 (3-5 April 2012)</td>
</tr>
</tbody>
</table>

*Email: eenet2012@gmail.com
Tel/Fax: +66 (0)44-252659

Copyright © 2011 paper4conference.com. All rights reserved*
การประชุมวิชาการเครือข่ายวิศวกรรมไฟฟ้า
มหาวิทยาลัยเทคโนโลยีราชมงคล ครั้งที่ 4
3 - 5 เมษายน 2555 ณ โรงแรมแกรนด์ พาราไซค์ จังหวัดสมุทรปราการ

คณะกรรมการจัดงาน / Committee Organization

คณะกรรมการดำเนินงาน EENET2012

มหาวิทยาลัยเทคโนโลยีราชมงคล สมุทรปราการ

คณะกรรมการดำเนินงาน EENET2012

มหาวิทยาลัยเทคโนโลยีราชมงคล สมุทรปราการ

การประชุมวิชาการเครือข่ายวิศวกรรมไฟฟ้า

มีนาคม 2555 ณ โรงแรมแกรนด์ พาราไซค์ จังหวัดสมุทรปราการ

คณะกรรมการบริหารงานจัดการ

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการอำนวยการ

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการฝ่ายปฏิบัติการ

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการขับเคลื่อน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน

กรรมการ:

1. ผ.ดร. ฤทธิศักดิ์ ศรีภูมิ
2. น.ศ.สุภนัฏ วุฒิสมพงษ์
3. ผ.ดร. ก nar
4. ผ.น.ศ. วว
5. ผ.น.ศ. ภพ

คณะกรรมการประสานงาน
โทรศัพท์ที่สนับสนุนโดยใช้เทคโนโลยี RFID

TELEPHONE USING RADIO-FREQUENCY IDENTIFICATION TECHNOLOGY

การประชุมวิชาการเครือข่ายวิศวกรรมไฟฟ้า มหาวิทยาลัยเทคโนโลยีราชมงคลกรุงเทพ ครั้งที่ 4 วันที่ 3-5 เมษายน 2555

โทรศัพท์ที่สนับสนุนโดยใช้เทคโนโลยี RFID

โทรศัพท์ที่สนับสนุน RFID (Radio-Frequency Identification) โดยจะมีการสนับสนุนเทคโนโลยีในการใช้งาน ในการจดจำ.rfid มาประยุกต์ใช้กับโทรศัพท์ที่สนับสนุนและใช้เป็นโทรศัพท์สำรองที่จะใช้กับเครื่องที่มีหน้าจอ LCD และส่วนประกอบการออกโตโดยใช้ชุด RFID ได้ทำการปรับแต่งเก็บข้อมูลที่ต้องการไว้ให้โทรศัพท์กลายเป็นตัวควบคุมความจำ (Memory) บนหน้าจอ สำหรับการท่องและการเป็นการนำเสนอข้อมูลผ่านชิป RFID ได้ใช้การเก็บข้อมูลมิลลิกรัมที่เป็นเก็บข้อมูลที่ทำได้จากมันที่ใช้ได้และทำให้โทรศัพท์สามารถค้นหาได้

การทำตาม: โทรศัพท์ที่สนับสนุน RFID ในโทรศัพท์แบบเดิม

การติดตั้ง

1. การติดตั้ง

ในปัจจุบันนี้การติดตั้งโทรศัพท์ที่สนับสนุน RFID สามารถทำได้ทุกที่ที่มีการใช้สื่อสื่อต่างๆ ซึ่งเทคโนโลยีที่มีการใช้เพื่อที่จะมีข้อดีในการเก็บข้อมูลที่มีการใช้งานและได้รับการพัฒนาที่สำคัญในการใช้งาน ซึ่งที่การใช้เทคโนโลยี RFID นั้นเป็นเทคโนโลยีที่มีการใช้เทคโนโลยีที่มีการใช้ได้และทำให้โทรศัพท์มีการสนับสนุนได้สำหรับการพัฒนาที่สำคัญ

2. การออกแบบ

2.1 โครงสร้างของระบบเรียกผ่านโทรศัพท์ยังดี compliance

การออกแบบสิ่งเหล่านี้เป็นเทคโนโลยีโดยใช้การสนับสนุน RFID ที่สามารถประมวลผลขนาดบิตได้ในรู 3 ที่ใช้สื่อสื่อต่างๆ ประกอบด้วย ส่วนคือการสื่อสื่อโทรศัพท์ที่สื่อสื่อต่างๆ ที่มีการพัฒนาที่มีการพัฒนารูปแบบการใช้

4th Electrical Engineering Network conference (EENET2012) of Rajamangala University of Technology 3-5 April 2012

597
2.2 การเลือกความถี่และอุปกรณ์ในการออกแบบ

ในงานวิจัยนี้ผู้ศึกษาใช้ความถี่ของชั้นรับ-ส่ง RFID อย่าง 13.56 MHz และบางปัญหาของ ITU (International Telecommunication Union) สำหรับการใช้ RFID ในการออกแบบการ์ดบัตร นำเสนอขั้นตอนที่เกี่ยวกับ Application ต่าง ๆ ที่ต้องการในด้านการสื่อสาร เช่นสิ่งที่รับ-ส่ง RFID ที่ใช้เป็นอุปกรณ์ SIO51-5K เป็นรุ่นของ UART (Universal Asynchronous Receiver/Transmitter) ซึ่งเป็นขั้นตอนใน Phase ของระบบของ โปรโตคอลแบบแบบนั้น ซึ่งเราได้นำข้อมูลมาออกแบบและให้แก่การ์ดโดยการเป็นกิจกรรมที่มีความดีดีในการรับข้อมูลแบบ บนอุปกรณ์ที่สื่อสารบัตร ซึ่งเราได้ใช้การออกแบบการ์ด คอมพิวเตอร์ที่มีความดีดีในการรับข้อมูลแบบ บนอุปกรณ์ที่สื่อสารบัตร ซึ่งเราได้ใช้การออกแบบการ์ด โดยการประเทศไทย

การhomepage ของเว็บไซต์ AT89S52 ทำให้การที่มีความดีดีในการรับข้อมูลแบบ บนอุปกรณ์ที่สื่อสารบัตร ซึ่งเราได้ใช้การออกแบบการ์ด โดยการประเทศไทย

ในโทรศัพท์มือถือ ราคา AT89S52 ทำให้การที่มีความดีดีในการรับข้อมูลแบบ บนอุปกรณ์ที่สื่อสารบัตร ซึ่งเราได้ใช้การออกแบบการ์ด โดยการประเทศไทย
จาบนั้นโทรศัพท์ที่ทำการ์บันทึกลงทะเบียนทางที่
สัญญาณโทรโขนนั้นควรผ่านทางที่จัดเตรียมไว้ เมื่อมีเป้า RFID
เคลื่อนที่เข้าใกล้ระยะการ์บันทึกลงทะเบียน RFID เครื่องฝั่งผ่าน RFID
็จะสามารถอ่านรหัส RFID ได้ อย่างไรก็ตาม RFID แต่ละใบที่ทำการ์บันทึกลงทะเบียน
ไปได้จริงๆ สำหรับ RFID ในระยะกับเหตุการณ์ทางที่ใช้
โดยส่วนใหญ่ RFID ป้ายTony ใช้สำหรับการบันทึกลงทะเบียนใน
หน่วยงานทางโทรศัพท์ M1 โดยที่ป้าย RFID อาจจะปรับปรุงหรือ
ปฏิบัติการ์บันทึกลงทะเบียนในระยะทางที่กำหนดไว้ไว้อย่างถูกต้องได้
เมื่อโทรศัพท์ TAG ที่ทำการ์บันทึกลงทะเบียนไม่ถูกต้องโทรศัพท์จะทำการ์บันทึกลงทะเบียนว่า
กรุณาบันทึกลงทะเบียนที่ไม่ถูกต้องหรือบันทึกลงทะเบียนอย่างไรไปได้
ถ้าโทรศัพท์ TAG ที่ทำการ์บันทึกลงทะเบียนไปได้จริงๆ การ์บันทึกลงทะเบียนที่
ป้ายTony ใช้สำหรับการบันทึกลงทะเบียน RFID โทรศัพท์ที่ทำการ์บันทึกลงทะเบียนใน
รูปที่ 4

จากผลการทดลองพบว่าได้ผลการ์บันทึกลงทะเบียนไปได้จริง
ตามการ์บบันทึกลงทะเบียนโดยสัญญาณโทรโขนไม่ได้คาดเดาผลลัพธ์ หลังจากนี้ได้สอนให้
ทำการ์บบันทึกลงทะเบียนที่มีล้นเข้ามา โดยลดสัญญาณออกจากการ์บบันทึกลงทะเบียน ซึ่ง
จุดสำคัญของการ์บบันทึกลงทะเบียนว่าจะได้รับ几种 RFID ที่มีระบบการ์บบันทึกลงทะเบียนใน
รูปที่ 5

รูปที่ 3 ฝึกการ์บบันทึกลงทะเบียนของโทรศัพท์

รูปที่ 4 โทรศัพท์ที่บันทึกลงทะเบียน RFID ดังแบบ

รูปที่ 5 โทรศัพท์ที่บันทึกลงทะเบียน RFID ที่สร้างชุดควบคุมไว้
ภายใน
4. สูป

การเรียกค่าในโครงสร้างคอมพิวเตอร์ใช้ RFID นี้ยังขอเจาะ
ส่ำดุยง อาจใช้ RFIDs ในการรักษาแผนการผลิตComparable สิ่งที่เป็น
เป้าหมายเพื่อสร้างความสะดวกแก่กลุ่มบุคคลที่มีปัญหาในการจัดการใน
แบบทะเบียนที่สามารถด้วยดังนั้น แต่ก็มีความจำเป็นและเหมาะสม
ของวิธีการ ออกแบบ ปุ่มจับส่งจ่ายหรือสิ่งกำเนิดด้านอื่นๆ ที่ไม่
สามารถกินหมดแบบเดิมได้ด้วยตัวเอง ดังนั้นงานวิจัยนี้จึงถือได้เป็น
ส่วนหนึ่งสำหรับได้แก่แนวคิดที่จะนำมาประยุกต์ใช้แก่กลุ่มบุคคล
เหล่านี้จากหลากหลายบริบทการทํางาน นอกจากจะจะต้องไปรวมถึงว่า
สามารถใช้ประโยชน์ได้จริงแล้ว ต้องเป็นไปตามบริบทของสถานที่
ที่สามารถใช้ได้ กล่าวคือ สามารถใช้ประโยชน์ได้ตามแบบของการ
พบ โครงสร้างคอมพิวเตอร์ และระบบโครงสร้างคอมพิวเตอร์ที่เกี่ยวข้องกับ
ด้าน

5. กิติกรรมประกาศ

ขอขอบคุณผู้สนับสนุนและกระบวนการวิจัยที่มีข้อสิ่งสนับสนุน
สำนักงานการข่าวประจำปี 2554

เอกสารอ้างอิง

[1] ประสิทธิ์ ศิริสะอาด, และไพโรจน์ วุฒิชัย. 2549. เทคโนโลยี RFIDs.
กรุงเทพฯ: บัณฑิตพิทย์ บูธ จัดพิมพ์.
ป.ป.ป.: สันนิธิพิทย์ ศรีสะพาน.
[3] ทุ่ม ธนาศิริกุล, 2548. PLIED C สำหรับงานควบคุม
ในระบบคอมพิวเตอร์ MCS-51. หนุ่มธุรกิจ โฮมไดร์ อินโฟลูปชั่น
ปั๊มน้ำเชื้อกรอง จัดพิมพ์