CONFERENCE TOPICS

GROUP 1 (PE)
Power Electronics, Electric Machines, Motor Control and Drive, Measurement, Control and Robotics.

GROUP 2 (PW)

GROUP 3 (RE)

GROUP 4 (TE)
Telecommunication, Electronics, Information and Communication Technologies, Antennas, Microwave Theory and Techniques.

GROUP 5 (CP)

GROUP 6 (GN)
Education in Electrical Engineering, Simulation Software and Design tools, Related Topics in Electrical Engineering.
และการประชุมวิชาการเครื่องช่วยวิเคราะห์ไฟฟ้า
มหาวิทยาลัยเทคโนโลยีราชมงคล ครั้งที่ 4
3 - 5 เมษายน 2555 ณ โรงแรมแกรนด์ ฯ พระดิย์ จังหวัดหน ateşая

บัตรคีดฉือนรับ / Welcome to EENET2012

EENET เป็นเครือข่ายความร่วมมือด้านวิศวกรรมไฟฟ้าของกลุ่มมหาวิทยาลัยเทคโนโลยีราชมงคล โดยสมาชิกในเครือ
ทั้งหมดมีการดำเนินการสร้างเครือข่ายเทคโนโลยีราชมงคล 9 แห่ง มีจุดประสงค์เพื่อการมีส่วนร่วมกันทางวิชาการและงานวิจัยที่เกี่ยวกับด้านวิศวกรรมไฟฟ้า

การประชุมวิชาการที่จัดขึ้นประจำปีเป็นกิจกรรมหนึ่งที่เครือข่ายได้ดำเนินการติดต่อกันมาอย่างต่อเนื่อง การจัดประชุม
วิชาการครั้งนี้เป็นครั้งที่ 4 ที่จัดขึ้นเป็นประจำทุกปี EENET2012 การประชุมครั้งที่ 3 ครั้งที่ผ่านมาได้รับความร่วมมือจากนักวิชาการทั้งในและ
นอกเครือข่ายเป็นอย่างดี

ขอเชิญนักวิชาการและนักเรียนเข้าร่วมประชุม Phụนพิมพ์ผู้ประกอบการงานวิศวกรรมไฟฟ้า ประกอบด้วย:
โดยทุก
บทความจะจัด.emitการพิจารณาจากพิธีจัดนิทรรศการวิชาการ 3 วันนี้อย่างเข้มข้น จึงขอเรียนการเข้าร่วมอย่างสมเสีย

EENET คือการจัดทำด้านวิศวกรรมไฟฟ้า ที่มหาวิทยาลัยเทคโนโลยีราชมงคล 9 แห่งที่มีระบบการจัดทำทางวิชาการมีความสอดคล้องกัน

การบรรยายโดยผู้ทรงคุณค่า / keynote speakers

คุณศรีจันทร์ หนุนวิจาร

รองศาสตราจารย์ ดร.วิยะรักษ์ ขันเงิน

ระบบเครือข่ายและพิธีการเยี่ยมชมงานวิชาการ ได้รับความร่วมมือจากเจ้าของงานวิจัย

ขอเชิญเข้าร่วมโดยทั่วถึง สำหรับการประชุมวิชาการเครื่องช่วยวิเคราะห์ไฟฟ้า มหาวิทยาลัยเทคโนโลยีราชมงคล ครั้งที่ 4
ประจำปี 2555 (Electrical Engineering Network 2012 of Rajamangala University of Technology, EENET2012) ณ
โรงแรมแกรนด์ ฯ พระดิย์ จังหวัดนนทร์

The 4th Electrical Engineering Network conference EENET2012 of Rajamangala University of Technology will
be organized at Grand Paradise hotel, Nongkhai, Thailand. Both Thai and English can be used for contribution.
กลุ่มบทความ / Conference Topics

<table>
<thead>
<tr>
<th>กลุ่ม / Group</th>
<th>เนื้อหาบทความเกี่ยวกับ / Topics about</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (PE) Power Electronics, Electric Machines, Motor Control and Drive, Measurement, Control and Robotics.</td>
<td></td>
</tr>
<tr>
<td>4 (TE) Telecommunication, Electronics, Information and Communication Technologies, Antennas, Microwave Theory and Techniques.</td>
<td></td>
</tr>
<tr>
<td>6 (GQ) Education in Electrical Engineering, Simulation Software and Design tools, Related Topics in Electrical Engineering.</td>
<td></td>
</tr>
</tbody>
</table>

กำหนดการ / Importance Dates

การส่งบทความ / Full Paper Submission Deadline	29 มกราคม 2555	29 January 2012
ประกาศผลการพิจารณา / Notification of Acceptance	15 กุมภาพันธ์ 2555	15 February 2012
ยื่นเอกสารเต็มที่ / Revised Full Paper Submission Due	22 กุมภาพันธ์ 2555	22 February 2012
วันสมำทำงการสมำทำง / Registration	15-29 กุมภาพันธ์ 2555	15-29 February 2012
วันจัดประชุมวิจัย / Conference Date	3-5 เมษายน 2555	3-5 April 2012

สำนักงานคณะกรรมการวิจัยและนวัตกรรม สำนักงานปลัดกระทรวงวิทยาศาสตร์และเทคโนโลยี กระทรวงวิทยาศาสตร์และเทคโนโลยี สำนักงานคณะกรรมการวิจัยและนวัตกรรม สำนักงานปลัดกระทรวงวิทยาศาสตร์และเทคโนโลยี สำนักงานปลัดกระทรวงวิทยาศาสตร์และเทคโนโลยี Email: eenet2012@gmail.com Tel/Fax: +66 (0)44-252659

Copyright © 2011 papertconference.com All rights reserved
การประชุมวิชาการเครือข่ายวิศวกรรมไฟฟ้า
มหาวิทยาลัยเทคโนโลยีราชมงคล ครั้งที่ 4
3 - 5 เมษายน 2555 ณ โรงแรมแกรนด์ พาเราซิ่ง จังหวัดหนองคาย

คณะกรรมการจัดงาน / Committee Organization

คณะกรรมการอำนวยการ
+ ประสานงาน บรรณาธิการ
+ คณะฝ่ายนักงานงานการสากลและสถาปัตยกรรมศาสตร์
+ คณะฝ่ายนิติกรรมศาสตร์
+ คณะฝ่ายและผลการและเทคโนโลยี

คณะกรรมการจัดงาน EENET2012

ประกาศสภากาชาดไทยได้รับการสนับสนุนจาก

คณะกรรมการวิชาการเครือข่ายวิศวกรรมไฟฟ้า

1. ผศ.ดร.โรจน์ โพธิ์ทรัพย์
2. ผศ.ดร.ณัฐธ์ ศรีสมบูรณ์
3. ผศ.ดร.อภิซัย ปีรพิชญ์
4. ผศ.ดร.ธวัชชัย ศิริสวัสดิ์
5. ผศ.ดร.ธวัชชัย ศิริสวัสดิ์
6. ผศ.ดร.นิสาจันธ์ มานวัฒน์
7. ดร.อุษา คำบ้าน
8. ผศ.ดร.ยงคศักดิ์ อินทรพิทย์
9. ผศ.ดร.ณัฐชัย องค์วิทย์
10. ผศ.ดร.ศิริชัย ดีบุญ
11. ผศ.ดร.นัทธินันท์ เล็ก
12. ผศ.ดร.ประพัฒน์ อุทัยชาติ

คณะกรรมการดำเนินงานประชุมวิชาการ

1. ผศ.ดร.โรจน์ โพธิ์ทรัพย์
2. ผศ.ดร.ณัฐธ์ ศรีสมบูรณ์
3. ผศ.ดร.อภิซัย ปีรพิชญ์
4. ผศ.ดร.ธวัชชัย ศิริสวัสดิ์
5. ผศ.ดร.ธวัชชัย ศิริสวัสดิ์
6. ผศ.ดร.ยงคศักดิ์ อินทรพิทย์
7. ผศ.ดร.นิสาจันธ์ มานวัฒน์
8. ผศ.ดร.อภิชัย ผลพิชิต
9. ผศ.ดร.นัทธินันท์ เล็ก
10. ผศ.ดร.อภิชัย ผลพิชิต
11. ผศ.ดร.นิสาจันธ์ มานวัฒน์
12. ผศ.ดร.อภิชัย ผลพิชิต
13. ผศ.ดร.นัทธินันท์ เล็ก
14. ผศ.ดร.อภิชัย ผลพิชิต

รายงานของผู้ดำเนินงาน

สถานที่จัดงาน: มหาวิทยาลัยเทคโนโลยีราชมงคล จังหวัดขอนแก่น

Copyright © 2011 paper-conference.com. All rights reserved
This article presents the MATLAB/Simulink mathematical model of the photovoltaic (PV) cell/module using general equations of solar cell in order to study the affection of irradiance, temperature, diode model parameter, and shunt resistance of the PV cell comparing to the output power. It will lead to analyse and develop the PV simulator using DSP interfacing card and it may be useful in comparing with the commercial PV cell in case of PV performance and it also useful in case of the development of the PV control system. The results of the PV model therefore must have high value of shunt resistor and low value of series resistor for giving more output power and higher Fill Factor. The diode parameter and temperature affects the change in open circuit voltage of cell. From the simulation result it can be observed that as solar radiation falling on PV cell is reduced, both short circuit current and open circuit voltage decreases, but the change in open circuit voltage is not as prominent with incident solar radiation as is with short circuit current, which varies almost directly proportional.

Keywords: Photovoltaic module, irradiance, temperature

2. ทฤษฎี

2.1 กระแสแสงอาทิตย์

กระแสไฟฟ้าของเซลล์แสงอาทิตย์ (Photo current) เกิดจากแสง สร้างให้เกิดกระแสแสงอาทิตย์ซึ่งประจุ positiv ที่ออกมาจากเซลล์แสงอาทิตย์สนามไฟฟ้าที่มีค่าของ PN Junction ซึ่งจะเปลี่ยนแปลงด้วยอัตราและแหล่งของกระแส ในการที่จะ กระแสของเซลล์แสงอาทิตย์และกระแสของเซลล์แสงอาทิตย์ที่จะ เข้าอยู่ในรูปแบบที่เกิดขึ้นเป็นแบบขั้นตอน (exponential equation) [2]

\[I = I_{ph} - I_s \left(\exp \left(\frac{q(V + IR_s)}{NKT} \right) - 1 \right) - \left(\frac{V + IR_s}{R_{sh}} \right) \]

(I)
การประมวลวิเคราะห์กระแสวิสัยทัศน์ไฟฟ้า มหาวิทยาลัยเทคโนโลยีราชมงคล กรุงเทพ 4 วันที่ 3-5 เมษายน 2555

เนื่องใน I_p คือกระแสไฟฟ้าที่ได้จากแสง A

q คือประจุอิเล็กตรอนที่มีค่าเท่ากับ 1.602×10^{-19} C

k คือค่าคงที่ของ Boltzman (1.3806504 \times 10^{-23} J/K)

T คืออุณหภูมิที่ต้องการวัดของเซลล์, $Kevin$

V คือแรงดันที่กลับของโฉ 页面名

N และ i คือคงผลของโฉด

R_s และ R_p คือความต้านทานอนุกรมและขนานของเซลล์, Ω

จากสมการที่ 1 สามารถเขียนเป็นสภาวะยุติของเซลล์แสงอาทิตย์ได้ดังแสดงในรูปที่ 1

1.1 กระแสที่ตัวเรือของเซลล์แสงอาทิตย์

C_{ph} เป็นกระแสที่ตัวเรือของเซลล์แสงอาทิตย์โดยใช้ในการเปรียบเทียบช่วงการที่ตัวเรือของเซลล์แสงอาทิตย์อาวุธ

N และ i_p, R_s และ R_p

จากสมการที่ 1 สามารถเขียนเป็นสภาวะยุติของเซลล์แสงอาทิตย์ได้ดังแสดงในรูปที่ 1

\[I_{ph} = I_{sc} + I_L \left(1 - \frac{T}{T_{ref}} \right) \]

(2)

เนื่องใน I_{ph} คือกระแสส่องร้งของเซลล์ที่ $25^\circ C$; A

K_v คือค่าประสิทธิ์ชั้นยุติของกระแสส่องร้ง; A/K

λ คือความคงที่ของเซลล์, $\text{W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$

1.2 ผลกระทบของอุณหภูมิ

หากกำหนดให้เรามาพิจารณาแบบที่ 2 ค่าอุณหภูมิผลต่อกระแสที่ตัวเรือของเซลล์แสงอาทิตย์เรื่อนจากกระแสส่องร้งของเซลล์อยู่ในระดับที่ต้องการในระดับที่ต้องการสูงสุด

\[I_{ph}(T) = I_{ph} \left(1 - \frac{T}{T_{ref}} \right) \]

(3)

เนื่องใน E_g คือ Band gap energy of semiconductor

V_T คือ Thermal voltage at room temperature

1.3 ผังของเซลล์แสงอาทิตย์ (PV Module)

แสดงผังของเซลล์แสงอาทิตย์แบบโมดูลเป็นการนำขนานแสงอาทิตย์ต่อ

แบบบูรณาการเพื่อนำกระแสได้หมายภัคกิจพิเศษยุติของแสงอาทิตย์

แบบอนุกรมจึงส่งผลเป็นกระแสในระบบพิเศษยุติของกระแสประจุจากแสงอาทิตย์ได้ส่งผลกระตุ้นกระแสในระบบได้ดังแสดงในรูปที่ 1

\[I_n = I_{ph} - I_{PL} \left(\exp \left(\frac{qV}{NK_T N_s} \right) - 1 \right) \]

(4)

เนื่องใน q คือจานนิวเคลียร์ที่ต้องการและ N คือจานนิวเคลียร์ที่ต้องการ

2.2 กระแสที่ตัวเรือของเซลล์แสงอาทิตย์ (I-V Curve)

คุณสมบัติทางไฟฟ้าของเซลล์แสงอาทิตย์ได้โดยใช้ I-V curve ที่ได้มาเวลาส่องผ่านชั้นยุติของเซลล์แสงอาทิตย์

หากอุณหภูมิของเซลล์และปริมาณความส่องผ่านของกระแสที่ตัวเรือของเซลล์แสงอาทิตย์พีแอมใน I-V curve ซึ่งจะมีการไฟฟ้าที่สัมพันธ์ต่อที่สูง V_{oc}

\[V_{oc} = \frac{V_m}{l_{mp} l_{mp}} \]

(5)

\[\eta = \frac{V_{oc} l_{oc} FF}{P_{in}} \]

(6)

3. การสร้างแบบจำลอง และส่วนประกอบของระบบ

รูปที่ 2 แบบจำลองเซลล์แสงอาทิตย์โดยใช้โปรแกรม Matlab/Simulink

จากการที่ 2 เป็นการสร้างแบบจำลองเซลล์แสงอาทิตย์และแสงอาทิตย์ในโปรแกรม Matlab/Simulink โดยใช้เทคนิคของ 5 ตัวแปรคู่กันส่งผ่านไฟฟ้าของเซลล์แสงอาทิตย์ การจัดสรรได้ใช้ทำ...
4.1 ผลของไนโคทีน (Ideal factor and Reverse saturation current of diode)

ค่า N และ I_0 เป็นผลของไนโคทีน โดย N ของเซลล์แสงอาทิตย์แบบซิลิคอนมีค่าระหว่าง 1 ถึง 2 ซึ่งอยู่ในบริเวณระหว่างของ I_0 เมื่อค่า N มีค่ามากขึ้นคือ 1.0, 1.5, และ 2.0 ทำให้ FF มีค่ามากขึ้นตามรูปที่ 3 ส่วนค่ากระแสในทางขันได้จำแนกตามภูมิคุณภูมิ I_0 เมื่อค่า I_0 มีค่ามากขึ้น $100 nA$, $1 nA$ และ $10 nA$, ทำให้ FF มีค่าลดลงตามรูปที่ 4

4.2 ผลของความชื้นทางความร้อน (Series Resistance) และความต้านทานช็อชท์ (Shunt Resistance)

ค่า R_s เป็นความต้านทานของช็อชท์ที่เกิดขึ้นในชันรวมกับความต้านทานของช็อชท์ส่วนหนึ่งและส่วนหลังจุดกั้นช็อชท์ [1] เมื่อ R_s มีค่ามากขึ้นคือ $1 m\Omega$, $0.01 m\Omega$ และ $0.1 m\Omega$ ทำให้ FF มีค่าลดลงตามรูปที่ 5 สำหรับค่า R_s เป็นการวิเคราะห์ของกระแสเนื่องจากจุด P-N junction ที่ไม่สมบูรณ์ทำให้ค่าดีกรีของแรงดันโวล์ตมีค่าสูงขึ้น

4.3 ผลของความเข้มแสง (radiation intensity) และอุณหภูมิ (Cell Temperature)

ภาพที่ 7 ความสัมพันธ์ระหว่าง I-V curve แสดงการเปลี่ยนแปลงของค่า λ ความเข้มแสงเป็นตัวปรัชญาในการเจาะลึกซึ่งสิ่งที่กล่าวถึงเป็นค่าค่าที่จะเปลี่ยนแปลงตามช่วงของอุณหภูมิ ค่า I_v เป็น $3.8 A$ ที่ STC ในการเจาะลึกที่ค่าความเข้มแสง λ เป็น $1.000 W/m^2$, $0.75 W/m^2$, $0.50 W/m^2$ และ $0.25 W/m^2$ (T= $25^\circ C$) ได้ผล I-V curve ตามรูปที่ 7 ส่วนของเหตุผลของเหตุผลที่สูงขึ้นจะทำให้ค่าดีกรีของแรงดันโวล์ตขึ้นตามจำนวนแสงได้มากที่ทำให้ FF มีค่าลดลงตามรูปที่ 8
การประชุมวิเคราะห์เครื่องวิเคราะห์ไฟฟ้า มหาวิทยาลัยเทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์ ครั้งที่ 4 วันที่ 3-5 มกราคม 2555

รูปที่ 8 กราฟ I-V Curve แสดงการจ่ายของพลังงานของ graf

4.4 แหล่งพลังงานแสงอาทิตย์ (PV Module)

การเพิ่มขนาดกำลังไฟฟ้าของเซลล์แสงอาทิตย์ได้ให้ความ
เหมาะสมและสะดวกในการใช้งานที่ได้โดยการนำเซลล์มาต่อกับ
และยุทธการที่ทำให้เซลล์มีการยืดหยุ่นของผิวเซลล์ที่
(N=36) จำนวนรวมเท่ากับ 1 (Np=1) ได้ผล P-V curve ตามรูปที่ 9
และตารางที่ 1 แสดงผลใช้เมื่อทดลองระหว่างแหล่งพลังงานแสงอาทิตย์ Solarex รุ่น MSX 60

รูปที่ 9 กราฟ P-V Curve แสดงการจ่ายของพลังงานแสงอาทิตย์

ตารางที่ 1 ผลเปรียบเทียบแบบจำลองกับกลุ่มลักษณะละตัว

<table>
<thead>
<tr>
<th></th>
<th>MSX-60</th>
<th>Simulation</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pmax (W)</td>
<td>59.85</td>
<td>60.46</td>
<td>1.02%</td>
</tr>
<tr>
<td>Vmp (V)</td>
<td>17.1</td>
<td>16.99</td>
<td>0.64%</td>
</tr>
<tr>
<td>Impp (A)</td>
<td>3.5</td>
<td>3.56</td>
<td>1.71%</td>
</tr>
</tbody>
</table>

5. สรุป

ผลการจำลองของเซลล์แสงอาทิตย์ด้วยโปรแกรม Matlab/Simulink
พบว่าผลที่นำมาใช้คำว่า FF สรุปได้โดยที่ FF ตั้งใจ
ออกจากผลลัพธ์ที่คำว่า FF อาจมีความสำคัญที่จะมีผลต่อแกน
แนวตั้งของข้อมูลของไฟฟ้าได้คือ FF ที่จะมีผลต่อคำว่า FF ที่จะตั้งใจคือ FF ต้องตั้งใจให้ FF ต้องตั้งจ

6. แนวคิดการวิจัยพื้นฐาน

จากการวิจัยพบว่าผลที่ได้มาเป็นผลที่มีความ
การตรวจสอบความเชื่อมโยงอุปกรณ์ของ PV ที่เป็นผลที่สูงที่สุดในที่ต่อ
ให้ได้ผลการใช้งานจากเซลล์แสงอาทิตย์ในประเทศโดยไม่ต้องมี
เกียวกับต่างประเทศ ดังนั้นการพัฒนาต่อไปของบทความนี้จะนำ
DSpace DS1104 ซึ่งเป็นอุปกรณ์ควบคุมและแสดงผลที่มีประสิทธิภาพ
สูงสุดจะต่อกับแบบจำลองของ PV Module ที่สร้างขึ้นโดยใช้
Realtime Libeary ซึ่งเป็น blocksheet ที่ใช้เข้ากับการทดลอง
Analog Converter เพื่อให้เป็นสัญญาณจึงต้องเป็นแบบทดสอบโดยเราสามารถ
ปรับแต่งพร้อมกับผลตอบแทนของผลลัพธ์ที่ต้องการจำลองของ PV Module.

สรุป

รูปที่ 10 การเชื่อมต่อแบบจำลองกับกลุ่มลักษณะและค่าไฟฟ้า

เอกสารต้นฉบับ

[1] บุษบก อิสระ ปัลลัษ “PHOTOVOLTAIC SYSTEMS” มหาวิทยาลัยเทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์ 2545.

