Green Energy and Innovations for ASCAN's Future
หน่วยงานในเครือชายพลังงานแห่งประเทศไทย

1. คณะพลังงานและวิศวกรรมทหารยานพาหนะกองทัพไทย
2. สมาคมทหารยานพาหนะกองทัพไทย
3. จุฬาลงกรณ์มหาวิทยาลัย
4. สถาบันเทคโนโลยีราชมงคลสีรินทร์
5. สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
6. มหาวิทยาลัยเกษตรศาสตร์
7. มหาวิทยาลัยธรรมศาสตร์
8. มหาวิทยาลัยศิลปากร
9. มหาวิทยาลัยรังสิต
10. มหาวิทยาลัยเทคโนโลยีสุรนารี
11. มหาวิทยาลัยราชภัฎนครนายก
12. มหาวิทยาลัยนครศรีธรรมราช
13. มหาวิทยาลัยมหาสารคาม (วิทยาลัยพลังงานทดแทน)
14. มหาวิทยาลัยสงขลานครินทร์
15. มหาวิทยาลัยมหาสารคาม
16. มหาวิทยาลัยกำหนด
17. มหาวิทยาลัยแม่โจ้
18. มหาวิทยาลัยเทคโนโลยีราชมงคล
19. มหาวิทยาลัยธุรกิจบัณฑิตย์
20. มหาวิทยาลัยธุรกิจบัณฑิตย์ราชภัฏ
21. มหาวิทยาลัยเทคโนโลยีมหาสารคาม
22. มหาวิทยาลัยศรีนครินทรวิโรฒ
23. สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารภูเขานคร
24. มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี
25. มหาวิทยาลัยสมุทรปราการ
26. มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ วิทยาเขตนครราชสีมา
27. มหาวิทยาลัยพระยานุสรณ์
รายชื่อผู้ทรงคุณวุฒิพิจารณาบประมาณ

ราชบุรี ภูเก็ต จันทบุรี

ร.ศ.ร. กรุณา เผ่าทอง มหาวิทยาลัยราชภัฏนครศรีธรรมราช
ร.ศ.ร. ธุนินท์ แม่ขันน่าน มหาวิทยาลัยเทคโนโลยีมหาสารคาม
ร.ศ.ร. นฤพล ภูมิปัญทัศน์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
ร.ศ.ร. ธนยวัฒน์ วิชมนิล มหาวิทยาลัยสงขลานครินทร์
ร.ศ.ร. 缯รกิติ 黎 龔 มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
ร.ศ.ร. สมเกียรติ ปรชิตรราภรณ์ มหาวิทยาลัยจุฬาลงกรณ์
ร.ศ.ร. อภิชาติ นากรบุตร มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
ร.ศ.ร. สิทธิพงษ์ภูมิศรี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
ร.ศ.ร. สิทธิพงษ์ ศรีสว่าง มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
ร.ศ.ร. จิราภรณ์ ศรีประสาท
ร.ศ.ร. ระวิทยา สุทธิพงษ์
ร.ศ.ร. ธนิช ทิพานิช
ร.ศ.ร. อัญชลี อินทริกขร
ร.ศ.ร. ชัชย์วัฒน์ เตชกิจเจริญ
ร.ศ.ร. วิศวะ ประทินทอง
ร.ศ.ร. ปีรยา เอียสสุทธิสวัสดิ์
ร.ศ.ร. วรรณา สรสุวรรณ มหาวิทยาลัยราชภัฏนครศรีธรรมราช
ร.ศ.ร. ธนาสิน แสงกิติ
ร.ศ.ร. สิทธิพร เวชวิทยา
ร.ศ.ร. วันชัย อิ่ม/url
ร.ศ.ร. คัมภีร์ ระลึกหน้า
ร.ศ.ร. ศิริ ดวงพร
ร.ศ.ร. สุชาติ นารีวรรณ
ร.ศ.ร. จินตนา ภูริคุณ
ร.ศ.ร. เจริญยุทธ เลิศศักดิ์ชานนท์
ร.ศ.ร. บุษป์ ปกรณ์
ร.ศ.ร. พิบูลพร กุสิดาแดง
รายชื่อผู้ทรงคุณวุฒิพิจารณาบทความ (ต่อ)

- มหาวิทยาลัยมหาสารคาม
- มหาวิทยาลัยมหาสารคาม
- มหาวิทยาลัยมหาสารคาม
- มหาวิทยาลัยมหาสารคาม
- การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย
- กรมส่งเสริมการเกษตร
- และสหกรณ์การเกษตรแห่งประเทศไทย
- มหาวิทยาลัยเกษตรศาสตร์
- มหาวิทยาลัยบูรพา
- มหาวิทยาลัยมหาสารคาม
กำหนดการประชุมวิชาการเครือข่ายพลังงานแห่งประเทศไทยครั้งที่ 8
ณ โรงแรมเดลินิสต้า จังหวัดมหาสารคาม

วันที่ 2 พฤศจิกายน พ.ศ. 2555
08.00 น. – 10.00 น. ลงทะเบียนและพักผ่อนก่อนประชุม
10.00 น. – 12.15 น. แบ่งกลุ่มย่อยนำเสนอบทความวิชาการ
12.15 น. – 13.15 น. พักเรียกประชุมอาหารกลางวัน
13.15 น. – 13.45 น. ที่ประชุมการประชุมวิชาการเครือข่ายพลังงานแห่งประเทศไทยครั้งที่ 8
13.45 น. – 15.45 น. การเสวนาเรื่อง “พลังงานทางเลือกกับอนาคตโรงไฟฟ้าประเทศไทย”
โดย
1. ผู้แทนหน่วยงานภาครัฐ
2. ผู้อำนวยการฝ่ายบริหารงานวิจัยและพัฒนา ทป.\n3. ผู้อำนวยการโรงไฟฟ้าภาคตะวันออกเฉียงเหนือ กลุ่มธุรกิจพลังงานวิทยาศาสตร์\n4. ศาสตราจารย์ ดร. สมชาย โคติมนุษกิจ ราชบัณฑิต (ผู้ดำเนินรายการ)
15.45 น. – 16.00 น. พักผ่อนก่อนประชุมอาหารกลางวัน
16.00 น. – 16.30 น. เดินทางจากโรงแรมเดลินิสต้า กลับพื้นที่ประชุม
16.30 น. – 18.00 น. เยี่ยมชมพื้นที่หน่วยงานวิทยาศาสตร์ที่มีการค้นคว้า
18.00 น. – 21.30 น. งานเลี้ยงรับรองผู้เข้าร่วมประชุมวิชาการเครือข่ายพลังงานแห่งประเทศไทย ครั้งที่ 8 ณ พื้นที่ที่อยู่ในห้องประชุมอาคาร

วันที่ 3 พฤศจิกายน พ.ศ. 2555
08.30 น. – 10.30 น. แบ่งกลุ่มย่อยนำเสนอบทความวิชาการ
10.30 น. – 10.45 น. พักผ่อนก่อนประชุมอาหารกลางวัน
10.45 น. – 11.45 น. บรรยายพิเศษ เรื่อง “การใช้พลังงานหมุนเวียน...จากทฤษฎีสู่การนำมาใช้ประโยชน์จริง”
โดย ศาสตราจารย์ ดร. ทนงเกียรติ เกียรติศิริเวโรจน์
11.45 น. – 13.00 น. พักผ่อนก่อนประชุมอาหารกลางวัน
13.00 น. – 15.00 น. แบ่งกลุ่มย่อยนำเสนอบทความวิชาการ
15.00 น. – 15.15 น. พักผ่อนก่อนประชุมอาหารกลางวัน
15.15 น. – 17.00 น. แบ่งกลุ่มย่อยนำเสนอบทความวิชาการ
17.00 น. – 19.00 น. ประชุมคณะกรรมการประสานงานเครือข่าย
19.00 น. – 20.00 น. งานเลี้ยงอาหารเย็นและงานประชุมคณะกรรมการประสานงานเครือข่ายและกรรมการจัดงาน
วันที่ 4 พฤศจิกายน พ.ศ. 2555

08.30 น. - 10.30 น. แบ่งกลุ่มย่อยนำเสนอบทความวิชาการ
10.30 น. - 10.45 น. พิธีรับประกาศอาหารว่าง
10.45 น. - 12.00 น. แบ่งกลุ่มย่อยนำเสนอบทความวิชาการ
12.00 น. - 12.15 น. พิธีปิดการประชุม
12.15 น. - 13.00 น. พิธีรับประกาศอาหารกลางวัน
กำหนดการนำเสนอบทความวิชาการเครือข่ายพลังงานแห่งประเทศไทยครั้งที่ 8

วันที่ 2 พฤหัสบดี 2555

<table>
<thead>
<tr>
<th>เวลา</th>
<th>กลุ่มผู้ยื่นยันบทความวิชาการ</th>
<th>ห้องที่ 1</th>
<th>ห้องที่ 2</th>
<th>ห้องที่ 3</th>
<th>ห้องที่ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00-10.00 น.</td>
<td>ลงทะเบียนรับประชุม</td>
<td>AP01</td>
<td>EC01</td>
<td>RE01</td>
<td>EP01</td>
</tr>
<tr>
<td>10.15-10.45 น.</td>
<td></td>
<td>AP02</td>
<td>EC02</td>
<td>RE02</td>
<td>EP02</td>
</tr>
<tr>
<td>10.30-10.45 น.</td>
<td></td>
<td>AP03</td>
<td>EC14</td>
<td>RE03</td>
<td>EP03</td>
</tr>
<tr>
<td>10.45-11.00 น.</td>
<td></td>
<td>AP04</td>
<td>EC15</td>
<td>RE04</td>
<td>EP04</td>
</tr>
<tr>
<td>11.00-11.15 น.</td>
<td></td>
<td>AP05</td>
<td>EC16</td>
<td>RE05</td>
<td>EP05</td>
</tr>
<tr>
<td>11.15-11.30 น.</td>
<td></td>
<td>AP06</td>
<td>EC05</td>
<td>RE06</td>
<td>EP06</td>
</tr>
<tr>
<td>11.30-11.45 น.</td>
<td></td>
<td>AP07</td>
<td>EC06</td>
<td>RE07</td>
<td>EV01</td>
</tr>
<tr>
<td>12.00-12.15 น.</td>
<td></td>
<td>AP08</td>
<td>EC07</td>
<td>RE09</td>
<td>EV03</td>
</tr>
</tbody>
</table>

วันที่ 3 พฤหัสบดี 2555

<table>
<thead>
<tr>
<th>เวลา</th>
<th>กลุ่มผู้ยื่นยันบทความวิชาการ</th>
<th>ห้องที่ 1</th>
<th>ห้องที่ 2</th>
<th>ห้องที่ 3</th>
<th>ห้องที่ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00-10.00 น.</td>
<td>ลงทะเบียนรับประชุม</td>
<td>AP10</td>
<td>EC08</td>
<td>RE11</td>
<td>EV05</td>
</tr>
<tr>
<td>08.45-09.00 น.</td>
<td></td>
<td>AP11</td>
<td>EC10</td>
<td>RE12</td>
<td>EM01</td>
</tr>
<tr>
<td>09.00-09.15 น.</td>
<td></td>
<td>AP12</td>
<td>EC12</td>
<td>RE13</td>
<td>EM02</td>
</tr>
<tr>
<td>09.15-09.30 น.</td>
<td></td>
<td>AP13</td>
<td>EC03</td>
<td>RE15</td>
<td>EM04</td>
</tr>
<tr>
<td>09.30-09.45 น.</td>
<td></td>
<td>AP14</td>
<td>EC04</td>
<td>RE16</td>
<td>EM05</td>
</tr>
<tr>
<td>09.45-10.00 น.</td>
<td></td>
<td>AP15</td>
<td>EC13</td>
<td>RE17</td>
<td>EM06</td>
</tr>
<tr>
<td>10.00-10.15 น.</td>
<td></td>
<td>AP16</td>
<td>EC17</td>
<td>RE18</td>
<td>EM07</td>
</tr>
<tr>
<td>10.15-10.30 น.</td>
<td></td>
<td>AP17</td>
<td>EC27</td>
<td>RE19</td>
<td>EM08</td>
</tr>
</tbody>
</table>

เวลา 10.30-10.45 น. | พักพักรับประชุม
วันที่ 3 พฤศจิกายน 2555 (ต่อ)

<table>
<thead>
<tr>
<th>เวลา</th>
<th>การประชุมระดับชั้น</th>
<th>ห้องที่ 1</th>
<th>ห้องที่ 2</th>
<th>ห้องที่ 3</th>
<th>ห้องที่ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.45 - 11.45 น.</td>
<td>การประชุมระดับชั้นเริ่มก่อน듣ิการ</td>
<td>AP18</td>
<td>EC18</td>
<td>RE20</td>
<td>AP54</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อน듣ิการ</td>
<td>AP19</td>
<td>EC19</td>
<td>RE21</td>
<td>AP55</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP20</td>
<td>EC21</td>
<td>RE22</td>
<td>AP56</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP22</td>
<td>EC22</td>
<td>RE23</td>
<td>AP57</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP23</td>
<td>EC23</td>
<td>RE24</td>
<td>AP58</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP24</td>
<td>EC24</td>
<td>RE25</td>
<td>AP59</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP25</td>
<td>EC25</td>
<td>RE27</td>
<td>AP62</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP26</td>
<td>EC26</td>
<td>RE29</td>
<td>AP63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>เวลา</th>
<th>การประชุมระดับชั้นเริ่มก่อนhörการ</th>
<th>ห้องที่ 1</th>
<th>ห้องที่ 2</th>
<th>ห้องที่ 3</th>
<th>ห้องที่ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.00 - 15.15 น.</td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP18</td>
<td>EC18</td>
<td>RE20</td>
<td>AP54</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP19</td>
<td>EC19</td>
<td>RE21</td>
<td>AP55</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP20</td>
<td>EC21</td>
<td>RE22</td>
<td>AP56</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP22</td>
<td>EC22</td>
<td>RE23</td>
<td>AP57</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP23</td>
<td>EC23</td>
<td>RE24</td>
<td>AP58</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP24</td>
<td>EC24</td>
<td>RE25</td>
<td>AP59</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP25</td>
<td>EC25</td>
<td>RE27</td>
<td>AP62</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP26</td>
<td>EC26</td>
<td>RE29</td>
<td>AP63</td>
</tr>
</tbody>
</table>

วันที่ 4 พฤศจิกายน 2555

<table>
<thead>
<tr>
<th>เวลา</th>
<th>การประชุมระดับชั้นเริ่มก่อนhörการ</th>
<th>ห้องที่ 1</th>
<th>ห้องที่ 2</th>
<th>ห้องที่ 3</th>
<th>ห้องที่ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.30 - 08.45 น.</td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP18</td>
<td>EC18</td>
<td>RE20</td>
<td>AP54</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP19</td>
<td>EC19</td>
<td>RE21</td>
<td>AP55</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP20</td>
<td>EC21</td>
<td>RE22</td>
<td>AP56</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP22</td>
<td>EC22</td>
<td>RE23</td>
<td>AP57</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP23</td>
<td>EC23</td>
<td>RE24</td>
<td>AP58</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP24</td>
<td>EC24</td>
<td>RE25</td>
<td>AP59</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP25</td>
<td>EC25</td>
<td>RE27</td>
<td>AP62</td>
</tr>
<tr>
<td></td>
<td>การประชุมระดับชั้นเริ่มก่อนhörการ</td>
<td>AP26</td>
<td>EC26</td>
<td>RE29</td>
<td>AP63</td>
</tr>
</tbody>
</table>

vii
วันที่ 4 พฤศจิกายน 2555(ต่อ)

<table>
<thead>
<tr>
<th>เวลา</th>
<th>ห้องที่ 1</th>
<th>ห้องที่ 2</th>
<th>ห้องที่ 3</th>
<th>ห้องที่ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.30 น.-10.45 น.</td>
<td>พักรับประทานอาหารว่าง</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.45 น.-12.00 น.</td>
<td>ocols คุณยนต์เสนอความวิชาการ</td>
<td>AP46</td>
<td>EC53</td>
<td>RE26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.00 น.-11.15 น.</td>
<td>AP47</td>
<td>EC54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.15 น.-11.30 น.</td>
<td>AP49</td>
<td>EC55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.30 น.-11.45 น.</td>
<td>AP50</td>
<td>AP21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.45 น.-12.00 น.</td>
<td>AP51</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>เวลา</th>
<th>พักรับประทานอาหารกลางวัน</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.00 น.-12.15 น.</td>
<td>พักรับประทานอาหารกลางวัน</td>
</tr>
<tr>
<td>12.15 น.-13.00 น.</td>
<td>พักรับประทานอาหารกลางวัน</td>
</tr>
</tbody>
</table>
สารบัญ

รหัสบทความ ข้อบทความ

RE Renewable Energy
RE01 การศึกษาสมรรถนะของเครื่องกลน้ำทะเลด้วยพลังงานแสงอาทิตย์ที่มีแผ่นและห้องรั่วสี
บุญชัย นิยมวชิร
RE02 การออกแบบระบบเชื่อมต่อพลังงานไฟฟ้าจากเซลล์แสงอาทิตย์สู่ระบบกำลังกักลั่นไฟฟ้าแบบระบบ
ประเทศไทย ปิ่นทอง พัฒนาเศรษฐกิจและ เสี่ยวพันธ์ เพียรศาสตร์
RE03 การคำนวณการลดโลกร้อนด้วยแสงอาทิตย์โดยประโยชน์ในเบื้องหน้าของประเทศไทย
สมบัติ โพธิ์ศรี
RE04 การพยากรณ์แนวโน้มของการผลิตก๊าซไฟฟ้าจากโฟโตโคลจิกโดยใช้เครื่องยนต์เทียม
บุญชัย ป่าชุมวิน สมชัย ทิพยาวิจิตร และ วิชัย ทรัพย์สิงห์
RE05 เครื่องดัดแปลงไฟฟ้าจากแสงอาทิตย์
พุทธชา เศรษฐ,UnityEngine ผู้ช่วย วิชัย กิจกรณ์
RE06 หลักการออกแบบเครื่องจักรเก็บแสงอาทิตย์ในระบบพลังงานแสงอาทิตย์แบบผสมแผน
บริษัท โสมศิลป์ และ มูญิภัณ ปลังกล้า
RE07 การทดสอบระบบดิจิตอลตามแสงอาทิตย์สำหรับอุปกรณ์และสมบัติความร้อนแบบบริเวณสัมผัส
พระพล ประทียิ่ง นุตธาดา สุทธาภัย สิริทวี พัฒนาเศรษฐกิจ
RE09 แบบจำลองทางคณิตศาสตร์ของแผงเซลล์แสงอาทิตย์แบบที่มา
ตั้งศิริมงคล อินทRecv และ วิชัย ทรัพย์สิงห์
RE10 การศึกษาการวัดความร้อน ตัวพลังระบบความร้อน
นัทธพล แจ้งจิต และ วิชัย ทรัพย์สิงห์
RE11 การออกแบบเครื่องให้อาหารสัตว์เลี้ยงแบบยี่ห้อในนำรับระบบพลังงานแสงอาทิตย์
สมชัย ทิพยาวิจิตร ชัยภูมิ ทรัพย์สิงห์ ฮ่องกี้ แสงใหม่ และ สมชัย ทิพยาวิจิตร
RE12 การออกแบบและทดสอบเครื่องกำเนิดไฟฟ้าแบบหลักการสำหรับก๊าซพลังงานผลิตไฟฟ้า
พลังงานน้ำขนาดจิ๋ว
นัทธชัย งามสม ชัยวัชร์ พาหนะ วิชัย เมืองใหม่ วิชัย เพ็งกิจเกษม รินท์ ประจำยี่หูนิมิต และ วิชัย เพ็งกิจเกษม
RE13 แบบจำลองสำหรับประมวลเครื่องสั่นสะ紀錄ของดวงอาทิตย์จากอุณหภูมิอากาศแฉล้มสำหรับประเทศ
ไทย
เสรีชัย จันทร์ยาน และพุทธพันธ์ นิยมวชิร
RE14 การวิเคราะห์ประสิทธิภาพก๊าซพลังงานจาก 1 กิโลวัตต์ เพื่อการสูบนำ
คิสไปร์ เพ็ญพูล และ วิชัย โรจน์รัตน์
สารบัญ (ต่อ)

รหัสบทความ ชื่อบทความ
RE15 การศึกษาเกี่ยวกับผังแบบผลิตไฟฟ้าขนาด 1.5 MW ด้วยโปรแกรมพลังศาสตร์ของไอ
ที, สิริ, ชัยพงษ์ และ วิศิษฐ์ โอสถรินทร์
RE16 ฟาร์มกังหันเวนกันข้ามภูมิภาคเข้ากับการผลิต 150 เมกะวัตต์ติดปีวันสภาพอากาศ
จังหวัดนครศรีธรรมราช
สมพร, ชัยบุตร, บุญเพลีย, ดร. วรรณ, วัชระนันท์ และ ทรงศักดิ์ ยะยืนชนา
RE17 โปรแกรมคอมพิวเตอร์สำหรับการออกแบบเครื่องจักรตั้งตัวและพื้นในระบบ
ไฟฟ้าสูงคิกก์
ทรงพล วิริยะสวัสดิ์, สุริยา ทิพยวัฒน์ และสมบูรณ์ ปลวกกลาง
RE18 การประเมินผลการดำเนินงานและพัฒนาด้านความมั่นคงของโรงไฟฟ้าบอล fireEventย์แบบบิดตั้งอยู่
กับแป้นและแป้นเปลี่ยนที่สามารถทางวิศวกรรมในประเทศไทย
คงทวี, ณัฐธิป, ณัฐธิป เกตุจิม, รัฐพัน วิมัชญ์, ณัฐธิป ขาวสะอาด และ
ณัฐธิป ศิริสวัสดิ์
RE19 การทดลองทางการไฟฟ้าสูงสุดของแป้นและแป้นอักษรที่เกิดจากความดันทานภายใน
นิวเคลียร์ เกตุจิม, ณัฐธิป ขาวสะอาด, ณัฐธิป ศิริสวัสดิ์, ณัฐธิป ศิริสวัสดิ์ และรัฐพัน เจริญ
RE20 การศึกษาการบรรจุของผู้คนแป้นและแป้นอักษรต่อการผลิตไฟฟ้า
บรรษัท, บุญเพลีย, .WebDriver วัชระนันท์ และนิวเคลียร์ เกตุจิม
RE21 การศึกษาความเป็นไปได้ของโรงไฟฟ้าผังกังหันขนาด 10 MW บริเวณพื้นที่
อ. สระสันธิ, จ. สระสันธิ
ขณะ นัทธวัฒน์, ยอดทวี วิริยะสวัสดิ์ และทรงศักดิ์ ยะยืนชนา
RE22 A Robust Optimization Model for DC Optimal Power Flow Considering Wind Power
Generation Uncertainty
Chanwit Boonchuay, Songklod Sniprung, Anuchit Auririatich, and
Weerakorn Ongsaku
RE23 การพัฒนาประสิทธิภาพเครื่องกำเนิดไฟฟ้าโดยใช้ซอฟต์แวร์พีซิมิเลตเตอร์ต้นสุขศึกษาในพื้นที่สุร
ประสิทธิ ApiService และ วัชรพล สมwiązan
RE24 เครื่องจักรไทยตั้งตัวและพื้นในระบบและเครื่องจักร
ปฏิบัติการ, วัชรพล และ วัชรพล วัชรพล
RE25 การประจูบพื้นที่และพื้นในระบบและพื้นในระบบต่อการผลิตไฟฟ้าสูงสุด
ศุภชัย อิสระ พันสิริ, อุตธน ทิพยวัฒน์, สุชาติ อภิสิทธิ์, ฤทธิภูมิ ขวัญชัย, ณัฐวุฒิ ขวัญชัย
RE26 การใช้ข้อมูลจากพื้นที่และพื้นในระบบต่อการผลิตไฟฟ้าในระบบคอมพิวเตอร์และการผลิตไฟฟ้าในการผลิตไฟฟ้า
สัตว์ วัชรพล, วัชรพล, ปฏิบัติการ และ วัชรพล วัชรพล
สารบัญ (ต่อ)

รหัสบทความ ชื่อบทความ
RE27 แบบจำลองเชื้อเพลิงชนิด PEMFC ร่วมกับวงจรแปลงผ่านวงจรทองระดับแรงดันไฟฟ้า
กระแสตรงด้วยโปรแกรม MATLAB/Simulink
ประทีป พรทวีมณี และ วันวิชย์ ทวีพัฒนิติ์
RE29 การศึกษาปริมาณและคุณสมบัติของน้ำมันหยาเมท่า จากการก๊าซสูงเพื่อศึกษาคุณสมบัติของน้ำมัน
สนูดจากการเก็บแสงและน้ำมัน ณ ช่วงเวลาต่าง ๆ
ชยานันท์ อาษาสุริโอ, อมรรัตน์ สัมมาทิพย์, ภุชญพร ฐานะมะกอล, ธนิดา สนธิศรีย์,
นิรุธ ศิรินทร์ทรัพย์, เทพบุตร ภัท包含了สัณฑ์ และชัยดนย์ ศรีกิติ	
RE31 แบบจำลองของพลังงานรวมพลังงานต่อระดับรวมพลังงานประเทศไทย
เสินรัช รัตนเศรษฐี, เจนฝ ประทีปมณี, สมศักดิ์ ภัทรานุชิตย์, รุ่งรัตน์ วิจตตาภิรม
RE32 การออกแบบและทดสอบระบบการกระแสแสงอาทิตย์โดยแผ่นเรียงแสงเพื่อประหยัดที่ในการผลิต
กระแสไฟฟ้า
นัทธระชัย ดาภา และ วัชรินทร์ ศิริมณี
RE33 การสร้างชุดพลังงานเจริญและความสามารถของแสงอาทิตย์ด้วยสภาพภูมิอากาศอย่างง่าย
สมศักดิ์, ทรงภักดี, พนม, พิทักษ์ณัฐ, วิชชาภูธ, ล้างคำ, แสงทอง, พันเอกบรรณานนท
RE34 แบบจำลองวงจรแปลงผ่านไฟฟ้ากระแสสลับเป็นไฟฟ้ากระแสสลับแบบระดับสูงสำหรับแหล่งก๊าซเนฟ
พลังงานแท้จัด
วีรินทร์วุฒิธรรม, ณรงค์ กหุบแขก และ กุลธัชช์ภูมิกิติพิพันธ์
RE35 ผลกระทบจากอุณหภูมิต่อคุณสมบัติทางแสง และประสิทธิภาพของเซลล์แสงอาทิตย์
ทรงเกียรติ กิตติศิริวัชระ, วิชิต แสงสุวรรณ, จรัญ ศริราษฎร์คุณ, อมรรัตน์ สันติมา, และ
กอบกิจ ศรีภักดี
RE36 ผลกระทบของอุณหภูมิในชั้นไอที่มีต่อการเดินทางของเซลล์แสงอาทิตย์ชนิดนอร์มัลฟิลเลปทีค
ภูตินันท์, ดวงสงคราม, ทรงเกียรติ กิตติศิริวัชระ, ภูชญพร, ธนูพรทิพย์, วิทวัส ภูริพัฒน์, วิชิต แสง
สุวรรณ, จรัญ ศริราษฎร์คุณ, อมรรัตน์ สันติมา, และ กอบกิจ ศรีภักดี
RE37 สมการทางระบบพลังงานแสงอาทิตย์ย่อยขนาด 2.2kWP ชนิดเชื้อเพลิงที่ใช้ระบบขันต์เป็นแนวตาก ปี
ที่ติดตั้งที่หน่วยงานพลังงานทางภาคส่วนและเทคโนโลยีแห่งชาติ(สขิร.)
วิทวัส ภูริพัฒน์, ทรงเกียรติ กิตติศิริวัชระ, ภูชญพร ฐิติสุริยา, ฐาภิกา ธนภัทร์, อนุสรณ์ อุดมศักดิ์, วิชิต แสง
สุวรรณ, จรัญ ศริราษฎร์คุณ, อมรรัตน์ สันติมา, และ กอบกิจ ศรีภักดี
RE38 การสังเกตการณ์ในอุณหภูมิจากน้ำมันแปลงโมดูลโอลิเดนโดยใช้ตัววัดปริมาณของขั้นแบบเบส
พราวสุวรรณ ศรีสุขพจน์, อาทิยา แซมยิมภพพงศ์
RE41 สมการทางความร้อนของอุณหภูมิแบบทางแสงอาทิตย์แบบอากาศร้อนหลัง
วรยุทธ แซมสิงห์ และ อนุชิต กติภักดี
RE42 การประยุกต์ใช้เครื่องบริบูรณ์ไอเสียไฟฟ้าชนิดแบบสำหรับฝักบัวอุตุภูมินอิมมอลระดับขั้นของ
การผลิตอากาศ
ชวกรร ปรัชญาภัทร, สันทิพร ฤทธิเดช และ บพิชญา ฤทธิเดช
สารบัญ (ต่อ)

รหัสบทความ ชื่อบทความ
RE43 การศึกษาประสิทธิภาพทางความร้อนของเครื่องทำน้ำอุ่นด้วยพลังงานแสงอาทิตย์ที่ติดตั้งท่อ-
โซโฟประกอบด้วยแท่งเรืองรัง
ตั้งจะง บุณฑริกภัทรกุล, พิพัฒน์ อมตะภิรมย์, ปิยศักดิ์ กฤดาศัย, วัฒนศักดิ์ ศรีเมือง
RE47 ศักยภาพในการทำสะท้อนจากระบบปั้นjectน้ำเสือของโรงงานกระดาษได้เป็นขอเพิ่มชีวิมด้วย
กิจกรรมว่า วันนี้มี ช้างวอ อายุการ
RE48 ผลของอัตราการป้อนเชื้อเพลิงที่มีต่อปริมาณผลิตภัณฑ์ในกระบวนการไฟฟ้าเชิงแบบเรียกวันเวลา
ปฏิกรณ์แบบasticsearch
บุญวิบัติ บุตตภัณฑ์, สิทธา สุขภักดี และ อธิศักดิ์ ปิติยา
RE49 สมบัติของไฟฟ้าอย่างและกําเนิดที่ได้จากการกระบวนการไฟฟ้าเชิงแบบเรียกของไปอย
เย็น ดวงยาและ อธิศักดิ์ ปิติยา
RE50 ผลของการผลิตกําลังไฟฟ้าอย่างด้วยวิธีต่อปริมาณผลิตภัณฑ์และสมบัติของไฟฟ้าอย่างที่ได้จาก
กระบวนการไฟฟ้าเชิงแบบเรียกของไม้กระชากไคร้ท์
คมสัน ชัยนาม, สุนทรส ยุทธภพ และ อธิศักดิ์ ปิติยา
RE51 ผลของอุปกรณ์ที่ต่อพันธุ์รากและสมบัติของไฟฟ้าอย่างที่ได้จากการไฟฟ้าเชิงแบบเรียกของ
ลักษณะและเคลื่อนที่ในเครื่องปฏิกรณ์แบบasticsearch
นิวัตน์ ประทีป, มุลทัต ซุบเนทและ อธิศักดิ์ ปิติยา
RE52 ผลของการใช้กําลังไฟฟ้าเชิงที่มีต่อปริมาณผลิตภัณฑ์และสมบัติของไฟฟ้าอย่างที่ได้จากไฟฟ้าเชิง
แบบเรียกของไม้กระชากไคร้ท์
พงศ์ธริย์ ธาวัช, สุนทรส ยุทธภพ และ อธิศักดิ์ ปิติยา
RE53 ผลของการใช้กําลังไฟฟ้าอย่างด้วยและสมบัติของไฟฟ้าอย่างที่ได้จากการกระบวนการไฟฟ้าเชิงแบบเรียก
โดยใช้กําลังไฟฟ้าอย่างด้วยปฏิกรณ์แบบasticsearch
สมชาย บัวแม่น, มุลทัต ซุบเนท, อธิศักดิ์ ปิติยา
RE54 ผลของการต่อกลางการไฟฟ้าอย่างที่มีต่อปริมาณผลิตภัณฑ์และสมบัติของไฟฟ้าอย่าง ที่ผลิตจากการกระบวนการ
ไฟฟ้าเชิงแบบเรียกโดยใช้ลักษณะและเคลื่อนที่ในเครื่อง
ศุภภัทร ชานวัฒน์, อธิศักดิ์ ปิติยา
RE55 ولوجของแสงแรงดันไฟฟ้ากระชากข้าวปัตโตเรียกซึ่งที่ทำสำหรับระบบผลลัพธ์ชื้น
ธีรกิติ ศรีภูริณี และ ศิริโรจน์ ศิริสุขประสิทธิ์
RE56 การศึกษาประสิทธิภาพทางการผลิตงานแสงอาทิตย์ที่ติดตั้งน้ำแปร
ศิริพร ชูวิเขียร
RE57 การศึกษาประสิทธิภาพทางการผลิตงานแสงอาทิตย์ติดตั้งท่อสปริงกระดาษชื้น
สันติภาพ โคตทะลู อุดม เครือกอง นานาสาร บุญยืน และระวี สิริ
RE58 อิทธิพลของตัวเปรียบ เพื่อ advantageous ทางเนื้อระบบงานผลิตงานแสงอาทิตย์ที่ติดตั้งน้ำแปร
สุกิจ ฉัตรพัฒ, จิราธิวาส จาโรเสงกังสณ์ และอธิศักดิ์ ปิติยา
ตารางนี้แสดงว่าสิ่งเหล่านี้เกี่ยวข้องกับวิชาการอื่นๆที่เกี่ยวข้อง:

<table>
<thead>
<tr>
<th>รหัสapters ละกามาไทย</th>
<th>ชื่อประเทศ</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE59</td>
<td>การหาสัตว์สัมพันธ์ที่เหมาะสมของชีวภูมิของกลุ่มพันธุ์ต่างๆแล้วใช้เป็นวิธีการสัมพันธ์ต่างๆ</td>
</tr>
<tr>
<td>EC</td>
<td>Energy Conservation and Management</td>
</tr>
<tr>
<td>EC01</td>
<td>การศึกษาการปรับปรุงด้านการตัดสินใจของโครงการในการใช้พลังงานต่างๆ</td>
</tr>
</tbody>
</table>
| EC02 | การหาสัตว์สัมพันธ์ที่เหมาะสมของชีวภูมิของกลุ่มพันธุ์ต่างๆแล้วใช้เป็นวิธีการสัมพันธ์ต่างๆ
| EC03 | การปรับปรุงด้านการตัดสินใจของโครงการในการที่จะมีการตัดสินใจต่างๆ|
| EC04 | ผลการศึกษาด้านการตัดสินใจของโครงการในการใช้พลังงานต่างๆ|
| EC05 | การศึกษาด้านการตัดสินใจของโครงการในการใช้พลังงานต่างๆ|
| EC06 | การจัดการในการใช้พลังงานต่างๆ|
| EC07 | การออกแบบระบบการตัดสินใจของโครงการในการใช้พลังงานต่างๆ|
| EC08 | แบบจำลองทางเศรษฐศาสตร์ที่มีต่อการตัดสินใจของโครงการในการใช้พลังงานต่างๆ|
| EC09 | การออกแบบและสร้างเครื่องจักรสำหรับการผลิตพลังงานต่างๆ|
| EC10 | การออกแบบและสร้างเครื่องจักรตามที่ได้รับการสั่งงบในการใช้พลังงานต่างๆ}
สารบัญ (ต่อ)

รหัสกิจกรรม ชื่อกิจกรรม
EC12 การศึกษาแนวทางการประหยัดพลังงานในฟาร์มสุราภักดีชูซ้าไข่ฟาร์มบรรณาดา
และพืช อบอุ่นชูภูมิ และสัตว์ ชวนนอก
EC13 โปรแกรมการออกแบบเครื่องกำเนิดไฟฟ้ากระแสสลับสามเฟสชนิดเดินแรงแม่เหล็กตามแนวแกน
เพื่อประหยัดใช้สุราภักดีชูซ่าไข่ฟาร์ม
ชัย zwaro ภูมิภักดี ภูมิภักดี และสัตว์ ชวนภักดี ชวนภักดี
EC14 การเปลี่ยนแปลงไฟฟ้ากระแสสลับเป็นไฟฟ้ากระแสตรงแบบสามเฟสที่ควบคุมกระแสด้วยวิธี
อิสระหรือวิธีสำหรับปรับถูกต้องใช้งานกับกังหันลม
ชนะพิภพ ชนะพิภพ และทองกันทร์ ผู้อิสระ
EC15 การปรับปรุงสูตรมนุษย์และกำเนิดไฟฟ้าตลาด
มะลิภัทร์ เสนารัตน์ อนุวัฒน์ จากนิยมธีร์ และอัสนัน เพชรทอง
EC16 การลดพลังงานในฟาร์มพืชโดยการใช้แสงกันแดดและระบบชนิดแสงอาทิตย์
ภูมิภักดี ทองรัตน์ และนิพนช์ เกตุใจย์
EC17 ระบบการสื่อสารเพื่อการจัดการสุราภักดีทางการตรวจสอบระบบไมโครกริด
วิศวกรรม แซลย์ฟิลล์ และนิพนช์ เกตุใจย์
EC18 การประมวลผลข้อมูลเครื่องมือบันทึกแบบใหญ่ทุกชั้น: การนำเริ่มต้นประโยชน์ในฟาร์ม
วันชัย ยูไนเต็ด ธนาคาร และสำนักงาน ทรัพยากร พุฒิพงศ์ และอาวิชิตซี ทิปดำก
EC19 การบันทึกคำคำบรรยายและลูกผสมที่ดีต่ำต่ำไมโครคอมพิวเตอร์ใหญ่ PIC และแสดงผล
ของยาสุรนารีในโปรแกรม Visual Basic
จริยากิติ์ รัตน์ จริยาภักดี สงขลาภักดี และภูมิภักดี ศรีบริโภค
EC21 การประหยัดพลังงานในระบบไฟฟ้าแบบเรียงแถวที่พิว กรณีศึกษาการเรียนรู้ระบบทั่วไป
เทคโนโลยีการผลิตชูภูมิ
สันติภัฒ ผู้อิสระ และนิพนช์ เกตุใจย์
EC22 การเพิ่มประสิทธิภาพของการควบคุมระยะห่างการตรวจสอบไฟฟ้าโดยการสวิทช์ด้วยวิธีการ
พลังสิทธิ์รูปสลับชั้นรูปสลับซืน
ทรงกฤท ศรีประกาศ และวันชัย ทรัพย์ปิ่น
EC23 ระบบบริหารจัดการพลังงานไฟฟ้าอินเทอร์เน็ตในภาค
กิตติภัทร์ แจ่ม อิสระ, ผู้อิสระ นิพนช์ เจริญภักดี, สมเกียรติ ทองแก้ว และ
นิพนช์ เจริญภักดี
ตารางที่ 1. สรุปบทความ

<table>
<thead>
<tr>
<th>เลขที่</th>
<th>ความคืบหน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC24</td>
<td>การตัดรูปล็อคกระแสไฟฟ้าต้านข้า</td>
</tr>
<tr>
<td>EC25</td>
<td>การออกแบบวงจรแก้ไขค่าต่ำสุดของกระแสไฟฟ้าอิเล็กทรอนิกส์สำหรับหลอดไฟเดิม</td>
</tr>
<tr>
<td></td>
<td>ความต่ำสุด</td>
</tr>
<tr>
<td></td>
<td>สำเนา</td>
</tr>
<tr>
<td>EC26</td>
<td>การจ่ายไฟในแบบตัวเชื่อมต่ออิเล็กทรอนิกส์กับไฟฟ้ากระแสต่ำของผู้ถูกต้อง</td>
</tr>
<tr>
<td></td>
<td>ที่เป็น</td>
</tr>
<tr>
<td></td>
<td>ที่สิ้นสุด</td>
</tr>
<tr>
<td></td>
<td>เพื่อนำมาสู่ผลิตภัณฑ์</td>
</tr>
<tr>
<td></td>
<td>น.วิวัฒน์</td>
</tr>
<tr>
<td></td>
<td>ศักดิ์สิทธิ์</td>
</tr>
<tr>
<td></td>
<td>แรงดันในแบบ DQ Frame</td>
</tr>
<tr>
<td></td>
<td>มทร.จุฬาลงกรณ์</td>
</tr>
<tr>
<td>EC29</td>
<td>การวิเคราะห์อุปกรณ์ไฟฟ้าในระบบที่เหมาะสมซึ่งสุดสตรุปที่สูงสำหรับนิคมนิคมนิคม</td>
</tr>
<tr>
<td></td>
<td>นาโนไฟฟ้า</td>
</tr>
<tr>
<td></td>
<td>ที่มี</td>
</tr>
<tr>
<td>EC30</td>
<td>การบริหารจัดการการใช้พลังงานไฟฟ้าในระบบที่เหมาะสมซึ่งสุดสตรุปที่สูงสำหรับนิคมนิคม</td>
</tr>
<tr>
<td></td>
<td>ร่างกาย</td>
</tr>
<tr>
<td></td>
<td>วิทยา</td>
</tr>
<tr>
<td></td>
<td>สิทธิชัย, กลยุทธ์</td>
</tr>
<tr>
<td></td>
<td>นิคมนิคม</td>
</tr>
<tr>
<td>EC31</td>
<td>การควบคุมกลุ่มผ้าปั๊มนิคมต่ำกว่าด้วยตัวอย่างไฟฟ้าเพื่อการประหยัดพลังงาน:</td>
</tr>
<tr>
<td></td>
<td>ของการ</td>
</tr>
<tr>
<td></td>
<td>ร่างกาย</td>
</tr>
<tr>
<td>EC32</td>
<td>การกำหนดค่าในระบบเตี้ยแรงดันต่ำที่สูงสุดที่สามารถจะกระทำหน้าจอของโทรศัพท์มือสอง</td>
</tr>
<tr>
<td></td>
<td>ศักดิ์สิทธิ์</td>
</tr>
<tr>
<td></td>
<td>และ ศักดิ์สิทธิ์</td>
</tr>
<tr>
<td></td>
<td>ศักดิ์สิทธิ์</td>
</tr>
<tr>
<td>EC33</td>
<td>การพัฒนาอิเล็กทรอนิกส์สำหรับหลอดไฟเมื่อ 250 วัตต์ โดยใช้การใช้พลังด้วยไฟฟ้า</td>
</tr>
<tr>
<td></td>
<td>น.วิวัฒน์</td>
</tr>
<tr>
<td></td>
<td>และ วิจิตร กิติเรศ</td>
</tr>
<tr>
<td>EC34</td>
<td>เทคนิคการปรับแรงดันไฟฟ้ากระแสต่ำด้วยพลังดิจิตอลเลชชัน เอซี ชึ่งเปอร์สำหรับการประหยัด</td>
</tr>
<tr>
<td></td>
<td>โทรศัพท์มือสอง</td>
</tr>
</tbody>
</table>
| รหัสบทความ | สัจurnished คำ
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC35</td>
<td>การพัฒสาธารณและการทำความเย็นของเครื่องผลิตนำเข้าที่ของโดยการดัดตั้งเครื่องแลกเปลี่ยนความร้อน ณ จัดตั้ง พระนครราช�วรมน และ นคร ศรีวิชัย</td>
</tr>
<tr>
<td>EC39</td>
<td>รถวิทยาที่ไม่ต้องการรับมือกับดินที่สามารถจัดใด้รับความร้อนของของเล็กมูสุลมัน อนุรักษ์ ยิ้มหยดน้ และ วิชาน วัฒนิพิทย</td>
</tr>
<tr>
<td>EC40</td>
<td>การพัฒนาระบบการผลิตที่ตอบสนองในเครื่องผลิตนำเข้าทรายดีนิก 20 ตัน ศักยภาพ นครชัย รัฐทวี พันธ์วิริยา และ ศิริพร เทตมะเงิน์วิวัฒ</td>
</tr>
<tr>
<td>EC41</td>
<td>การกำหนดผลของการนำความร้อนเหลือจากการประกอบนำเข้าเยี่ยนร่วมกับการใช้เป็นความร้อนในการผลิตนำร้อน ศิริพร ชูประเสริฐ และ จิตดี แดงเที่ยง</td>
</tr>
<tr>
<td>EC44</td>
<td>การออกแบบแห่งนำเข้าไฟฟ้าสำหรับโคมไฟที่ใช้หลอดนำร้อนดีกลาลูกสูง ปัญญา เกิดลาง ชูพินัย ฤทธิ์ยิ่งน์ แสงธัญ แกวหนุน ภูริทวี และ รัตน์วรานนท์ หัมรีย์</td>
</tr>
<tr>
<td>EC46</td>
<td>การประหยัดพลังงานไฟฟ้าในระบบแสงสว่างโดยใช้เทคนิคการเรียบตรงนั้น การมีศักยภาพปัญญาภานันท์ทราบ ชูพินัย ฤทธิ์ยิ่งน์</td>
</tr>
<tr>
<td>EC47</td>
<td>การศึกษาความเป็นไปได้ของการปรับแต่งมอดองค์เครื่องนำเข้าสำหรับพลังงานทดแทนในประเทศไทย อนุรักษ์ ภูษาศรี ปัญญา วิทยานันท์ วิชาน ศรีธน์ ศรีสุทธิ์ ศรีสุทธิ์ ศรีพร ศรีสวัสดิ์ ศูนย์รักษ์ ศูนย์รักษ์ และ รัตน์กิจ ศรีสุทธิ์</td>
</tr>
<tr>
<td>EC48</td>
<td>การประเมินผลความถูกต้องของเครื่องวัดพลังงานไฟฟ้าอิเล็กทรอนิกส์ด้วยวิธีการประมวลผลภาพ อิลิฟัล์เฟอร์SCP และ ณัฐวุฒิ เปรมเกียรติธรรม ศรีสุทธิ์ ศรีสุทธิ์ และ ณัฐวุฒิ เปรมเกียรติธรรม</td>
</tr>
<tr>
<td>EC53</td>
<td>การพัฒนาระบบนำเข้าเครื่องมือเพื่อใช้งานในระบบนำเข้าผ่านการใช้เกียรติพลังงาน ณัฐวุฒิ ศรีสุทธิ์ ชุมนนท์ สุทธิ์กิจ ศรีสุทธิ์ และ ณัฐวุฒิ เปรมเกียรติธรรม</td>
</tr>
<tr>
<td>EC54</td>
<td>การทำทำตัวกลับประชุมเพื่อความเหมาะสมสำหรับการควบคุมแสดงการนำเข้าไฟฟ้าระบบไฟฟ้า ชุมนนท์ สุทธิ์กิจ ศรีสุทธิ์ ศรีสุทธิ์ และ ณัฐวุฒิ เปรมเกียรติธรรม</td>
</tr>
<tr>
<td>EC55</td>
<td>การศึกษาการรู้จักพลังงานในระบบพลังงานอุตสาหกรรมประเภทถ๋อม มุมภาพ ณัฐวุฒิ เปรมเกียรติธรรม</td>
</tr>
</tbody>
</table>
สารบัญ (ต่อ)

รหัสความ ชื่อความ
AP Established Energy
AP01 การออกแบบและสร้างเครื่องยนต์ติดท่อแบบอีเอท่าน้ำค่า 350 ค.c.
บัญชี ตระเวน และ สมควร ต่างกัน
AP02 การพัฒนาเครื่องยนต์พื้นฐานให้กับนักดิจิทัล
บัญชี ตระเวน และ ประเสริฐ สิริธรรมศรี
AP03 การพัฒนาเครื่องยนต์แม่เหล็กในอนาคตต้องปฏิบัติการ
บัญชี ตระเวน และ ภูมิพัฒน์ ชาฎะวิทย์
AP04 ปัจจัยของการออกแบบและสร้างเครื่องยนต์พื้นฐาน และมีส่วนร่วมกับการใช้เครื่องยนต์คอมพิวเตอร์และเครื่อง
เก็บรักษาส่วนต่างๆของเครื่องยนต์ได้บูรณาการอย่างมีคุณภาพต่างกัน
สุทธิธรรม ภูมิพัฒน์, เกียรติพงศ์, เกียรติศักดิ์, และ ฤทธิมา ภูมิพัฒน์
AP05 สมการของสมการที่ใช้คำนวณการกระทำสำคัญที่เป็นผลตามที่ร่วม
บัญชี ตระเวน และ ภูมิพัฒน์ ชาฎะวิทย์
AP06 การศึกษาประสิทธิภาพเครื่องยนต์ของเครื่องยนต์ขับเคลื่อน
บัญชี รถไฟฟ้า, บัญชี ตระเวน และ ภูมิพัฒน์ ชาฎะวิทย์
AP07 การศึกษาประสิทธิภาพเครื่องยนต์ของเครื่องยนต์เพื่อการขับเคลื่อน
บัญชี ตระเวน และ ภูมิพัฒน์ ชาฎะวิทย์
AP08 การศึกษาผลกระทบของการพัฒนาเครื่องยนต์ขับเคลื่อนไฟฟ้าที่มีประสิทธิภาพด้านต่างๆ
บัญชี ตระเวน และ ภูมิพัฒน์ ชาฎะวิทย์
AP09 การพัฒนาเครื่องยนต์พลังงานที่มีประสิทธิภาพด้านต่างๆ
บัญชี ตระเวน และ สุทธิธรรม ภูมิพัฒน์
AP10 การออกแบบและผลิตการกระทำความร้อนของเครื่องยนต์ไฟฟ้าและเครื่องยนต์ดีเซล
บัญชี ตระเวน และ ภูมิพัฒน์ ชาฎะวิทย์
AP11 การพัฒนาแพลตฟอร์มเครื่องยนต์ที่ใช้กับเครื่องยนต์ต่างๆ
บัญชี ตระเวน และ ภูมิพัฒน์ ชาฎะวิทย์
AP12 การออกแบบและผลิตการกระทำความร้อนของเครื่องยนต์ไฟฟ้าและเครื่องยนต์ดีเซล
บัญชี ตระเวน และ ภูมิพัฒน์ ชาฎะวิทย์
AP13 การออกแบบและผลิตการกระทำความร้อนของเครื่องยนต์ไฟฟ้าและเครื่องยนต์ดีเซล
บัญชี ตระเวน และ ภูมิพัฒน์ ชาฎะวิทย์
AP14 ผลการทดลองทางสถิติ
ธนวัฒน์, ณัฐสิน, เวทินทร์, ณัฐวัฒน์, และ ณัฐวัฒน์ ภูมิพัฒน์
<table>
<thead>
<tr>
<th>รหัสกทธา</th>
<th>ชื่อกทธา</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP15</td>
<td>การพัฒนาหัวข้อแบบเพื่อภาคเอกชนการจ้างเหมาส่วนบริการรวมทั้งการแก้ไขแบบ</td>
</tr>
<tr>
<td></td>
<td>ผู้ว่าราชการและผู้ว่าราชการส่วนท้องถิ่น</td>
</tr>
<tr>
<td>AP16</td>
<td>การสนับสนุนผ่านแหล่งเงินทุนต่างรูปแบบและทรัพยากรทางวิทยาศาสตร์</td>
</tr>
<tr>
<td></td>
<td>เทคโนโลยี นิวเคลียร์ งานวิจัย งานวิเคราะห์และอนุรักษ์</td>
</tr>
<tr>
<td>AP17</td>
<td>แบบรายการทางวิทยาศาสตร์ของรายงานต่างบัตรสิทธิ์และสิทธิ์ส่วนบุคคลการสมัครและ</td>
</tr>
<tr>
<td></td>
<td>ผู้ดำเนินการ</td>
</tr>
<tr>
<td>AP18</td>
<td>การศึกษาประสิทธิภาพของอัตราดอกเบี้ยการคืนเงินที่ดีในระบบยืมเงินธุรกิจ</td>
</tr>
<tr>
<td></td>
<td>วิทยาศาสตร์ สถิติ วิทยาศาสตร์ นิติศาสตร์ วิทยาศาสตร์</td>
</tr>
<tr>
<td>AP19</td>
<td>ศาสตร์การบริหารที่มีผลต่อคุณภาพผลิตภัณฑ์และคุณภาพการบริการ</td>
</tr>
<tr>
<td></td>
<td>ภาคเอกชน ภาคธุรกิจ ภาคการจ้างเหมาและอุตสาหกรรม</td>
</tr>
<tr>
<td>AP20</td>
<td>การบริหาร.just-in-time การจัดการต่อเนื่องทางการผลิตในอุตสาหกรรม TEG12750D</td>
</tr>
<tr>
<td></td>
<td>كรม หน่วยงาน บุญบารมี ปลัดบางแสน</td>
</tr>
<tr>
<td>AP21</td>
<td>การจัดระเบียบในการจัดทำลายใบตราสารที่มีความช้าเสื่อมพัฒนา</td>
</tr>
<tr>
<td></td>
<td>ที่ต้องการ ที่มีผลต่อการเปลี่ยนแปลงและอุตสาหกรรม</td>
</tr>
<tr>
<td>AP22</td>
<td>ยิทธิ์รอยรุ่นของสิทธิ์และสิทธิ์ส่วนบุคคลอุตสาหกรรมไทยโดยเทคนิคพื้นฐานคิดเช่น</td>
</tr>
<tr>
<td></td>
<td>กฎหมาย creasing และ ชัย uprising จากปัจจัย</td>
</tr>
<tr>
<td>AP23</td>
<td>ยิทธิ์رو่กิจการจัดหาวัสดุในสถาน-sorting ผลิตภัณฑ์คิดเช่นต่อต่างสิทธิ์การสร้าง</td>
</tr>
<tr>
<td></td>
<td>บริษัทที่จดทะเบียน บริษัท บริษัท บริษัทพัฒนา บริษัทพัฒนา บริษัทพัฒนา บริษัทพัฒนา</td>
</tr>
<tr>
<td>AP24</td>
<td>ยิทธิ์ของเครื่องบินยึดเมื่อต่อต่อต่างสิทธิ์การจัดหาความและความในห้องผลิตภัณฑ์</td>
</tr>
<tr>
<td></td>
<td>อุตสาหกรรม ธาตุและอุตสาหกรรม ธาตุและอุตสาหกรรม</td>
</tr>
<tr>
<td>AP25</td>
<td>การศึกษาความพร้อมความสามารถและตัวอย่างการจัดหาความและความในห้องผลิตภัณฑ์</td>
</tr>
<tr>
<td></td>
<td>ทรัพยากร ควรรับและควรรับแผนการ</td>
</tr>
<tr>
<td>AP26</td>
<td>การศึกษาความพร้อมในการจัดหาความและความในห้องผลิตภัณฑ์</td>
</tr>
<tr>
<td></td>
<td>ทรัพยากร ควรรับและควรรับแผนการ</td>
</tr>
<tr>
<td>AP27</td>
<td>อุตสาหกรรมการจัดหาวัสดุและอุตสาหกรรมการจัดหาวัสดุและอุตสาหกรรม</td>
</tr>
<tr>
<td></td>
<td>ถึงขั้นตอนการจัดหาวัสดุและอุตสาหกรรมการจัดหาวัสดุและอุตสาหกรรม</td>
</tr>
</tbody>
</table>

xxii
สารบัญ (ต่อ)
<table>
<thead>
<tr>
<th>รหัสพิเศษ</th>
<th>ชื่อบทความ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP40</td>
<td>ระบบปรับอากาศพลังงานร่วมแสงอาทิตย์-ชีวมวล</td>
</tr>
<tr>
<td></td>
<td>มุ่งเน้นที่ประสิทธิภาพ, ศาลพา, ทองค์ และ เอก. ธนภัทร</td>
</tr>
<tr>
<td>AP41</td>
<td>การพัฒนาห้องเผาไหม้เชื้อวิชวลมาจากเชื้อวิชวล</td>
</tr>
<tr>
<td></td>
<td>พิษณุโลก, ณรินทร์รุ่ง, น้ำตา และ เลาลักษณ์, ยอดภูมิใจ</td>
</tr>
<tr>
<td>AP42</td>
<td>เรื่องไข่ที่เหมาะสมสำหรับการอบแห้งพืชด้วยเครื่องอบแห้งพลังงานแสงอาทิตย์</td>
</tr>
<tr>
<td></td>
<td>ขนถ่าย, หอมจ่า, ทรงสุภา, พุ่มชูพง และ อาภาพัลกิติ, ทีบุญมา</td>
</tr>
<tr>
<td>AP44</td>
<td>การศึกษาความชื้นกับรังสีอาทิตย์แบบสมดุลความร้อนในไฟฟ้าเชื้อเพลิงหรือกันชนคลาสคลิก</td>
</tr>
<tr>
<td></td>
<td>แนะนารูปภาพ, เจริญพร, เลิศศิริธนกร และ นิธินา, รังสีบางส่วน</td>
</tr>
<tr>
<td>AP45</td>
<td>การพัฒนากระบวนการทำงานแห้งอย่างเป็นกฏหมาย</td>
</tr>
<tr>
<td></td>
<td>วิศษัทศักดิ์, ศิริพันธ์, ชนิต, สราวิศสิริ, ดี-------------------------------</td>
</tr>
<tr>
<td></td>
<td>นภกรภูมิ, และ สมศรี, โภคภูมิยท์</td>
</tr>
<tr>
<td>AP46</td>
<td>การเปลี่ยนเป็นประสิทธิภาพพลังงานความร้อนและความสัมประสิทธิ์ของเวลาแบบนวัตกรรม</td>
</tr>
<tr>
<td></td>
<td>และเวลาแบบนวัตกรรมคอมพิวเตอร์</td>
</tr>
<tr>
<td></td>
<td>วิศษัทศักดิ์, ทองแสง และ ทรงชัย, รังสีบางส่วน</td>
</tr>
<tr>
<td>AP47</td>
<td>อิทธิพลของการเผาไหม้ชีวมวลและเชื้อวิชวลของโมดิโลใช้ในเกณฑ์และน้ำเยียวยา</td>
</tr>
<tr>
<td></td>
<td>ภริยาภุ, วัชระกิจ, ภูมิ, ลาภคุณ, ภูมิ, ภูมิ, ภูมิ, ภูมิ, ภูมิ, ภูมิ</td>
</tr>
<tr>
<td></td>
<td>ภูมิ, แก่, ศิริบุตร, ผู้รื้อ, ภูมิ และ ประทาน, วงศ์ศิริชวล</td>
</tr>
<tr>
<td>AP49</td>
<td>การเฝ้าและจัดการเรื่องความร้อนที่เกิดขึ้นพร้อมกันในวัสดุรุ่นชนิดมีก๊าซออกมันแน่น</td>
</tr>
<tr>
<td></td>
<td>วิศษัทศักดิ์, ศิริพันธ์, ศิริพันธ์, ภูมิ, ศิริพันธ์, สมชัย</td>
</tr>
<tr>
<td></td>
<td>ศิริพันธ์, สมชัย, และภูมิพันธ์, ภูมิพันธ์</td>
</tr>
<tr>
<td>AP50</td>
<td>เล้าแก้วรุ่งสิ่งในเครื่องแบบวิศษัทศักดิ์โดยสูตรดั้งเดิม</td>
</tr>
<tr>
<td></td>
<td>วิศษัทศักดิ์, ศิริพันธ์, ภูมิพันธ์, ภูมิพันธ์, ภูมิพันธ์</td>
</tr>
<tr>
<td></td>
<td>ภูมิพันธ์, ภูมิพันธ์, ภูมิพันธ์, ภูมิพันธ์</td>
</tr>
<tr>
<td>AP51</td>
<td>การประยุกต์ใช้ช่วงเวลาของความชื้นของอากาศ kobed สำหรับกระบวนการอบแห้งของผลิตพืชเพื่อ</td>
</tr>
<tr>
<td></td>
<td>ลดการใช้พลังงานในการอบแห้งและรักษาโรคและสำนักพิมพ์</td>
</tr>
<tr>
<td></td>
<td>ภูมิ, ศิริพันธ์, ศิริพันธ์, ศิริพันธ์</td>
</tr>
<tr>
<td>AP52</td>
<td>Numerical Investigation of Laminar Flow and Heat Transfer in a Tube with 45° Angled Baffles</td>
</tr>
<tr>
<td></td>
<td>Somchay Sriapattanapipat and Pongjet Promvonge</td>
</tr>
</tbody>
</table>

xxiv
สารบัญ (ต่อ)

ลำดับความ
ชื่อบทความ
AP53 คุณลักษณะการเผชิญหน้าของเครื่องยนต์เชื้อเพลิงร่วมกับขั้นตอนนำมันที่มีผลต่อการทดสอบนำมันดีเซลกันต่างๆ
พิศิษฐ์ ศรีสมศิษฏ์, ประชาสัมพันธ์ ไตรภูมิ และกุธารังษี เพียรทอง

AP54 แบบจำลองแสดงความร่วมมือของกลุ่มผู้ผลิตเครื่องจักรยานที่มีผลกระทบต่อการผลิตเครื่องจักรยานสี่ล้อ
นันทวัชร์ วงศ์บุญวิชญ์, พงษ์ชัย จงกูญบรรณา และภูมิทิพย์ เฟื่องวงศ์

AP55 เทคโนโลยียนต์ชิ้นส่วนการผลิตบันไดในอุตสาหกรรมการผลิตสีผ่านปัญญาจุล
สมิทธุทธิ์ หินภักดี และสมิทธ ยิ่งแสงดี

AP56 การออกแบบฝักบัวเชื้อเพลิงดียาวตัวเครื่องยนต์คอมบรังค์สังเคราะห์แบบอิเล็กทรอนิกส์ที่มีประสิทธิสกิน
ความร้อน
ณัฐทิพย์, ณัฐพล กุมิยะสาด และจริยากร เลียบสิงห์

AP57 การออกแบบฝักบัวเชื้อเพลิงดียาวตัวเครื่องยนต์คอมบรังค์สังเคราะห์แบบอิเล็กทรอนิกส์ที่มีประสิทธิสกิน
ความร้อน
ณัฐทิพย์, ณัฐพล กุมิยะสาด และจริยากร เลียบสิงห์

AP58 สมรรถนะการทำความเย็นของเครื่องปรับอากาศเชื้อเพลิงดียาวตัวเครื่องยนต์คอมบรังค์สังเคราะห์แบบอิเล็กทรอนิกส์ที่มีประสิทธิสกิน
แบบระบบใหม่
วิทัยวัชร์, ภิรมย์ ภูมิคุณแม่, จริยากร เลียบสิงห์, บพิตรภูมิรักษ์ และมานิตยา วังวิศวะ

AP60 ความจำเป็นของลักษณะในการออกแบบตัวเครื่องยนต์คอมบรังค์สังเคราะห์แบบอิเล็กทรอนิกส์ที่มีประสิทธิสกิน
ความร้อนที่ใช้ในเครื่องยนต์
ศราวุทธ์, ชัยเกียรติ, ณัฐพล กุมิยะสาด และจริยากร เลียบสิงห์

AP61 การออกแบบฝักบัวเชื้อเพลิงดียาวตัวเครื่องยนต์คอมบรังค์สังเคราะห์แบบอิเล็กทรอนิกส์ที่มีประสิทธิสกิน
ความร้อน
ณัฐทิพย์, ณัฐพล กุมิยะสาด และจริยากร เลียบสิงห์

AP62 การศึกษาความเป็นไปได้ของสถานการณ์การตอบแทนด้วยวิธีเชื้อเพลิงดียาวตัวเครื่องยนต์คอมบรังค์สังเคราะห์แบบอิเล็กทรอนิกส์ที่มีประสิทธิสกิน
ความร้อน
ณัฐทิพย์, ณัฐพล กุมิยะสาด และจริยากร เลียบสิงห์

AP63 การออกแบบตัวเครื่องยนต์คอมบรังค์สังเคราะห์แบบอิเล็กทรอนิกส์ที่มีประสิทธิสกิน
ทวีชัย, พิณพิทักษ์, ณัฐพล กุมิยะสาด และจริยากร เลียบสิงห์

AP64 การออกแบบตัวเครื่องยนต์คอมบรังค์สังเคราะห์แบบอิเล็กทรอนิกส์ที่มีประสิทธิสกิน
กิติคุณ, จักรกฤษณ์, ณัฐพล กุมิยะสาด และจริยากร เลียบสิงห์

AP65 การศึกษาความเป็นไปได้ของสถานการณ์การตอบแทนด้วยวิธีเชื้อเพลิงดียาวตัวเครื่องยนต์คอมบรังค์สังเคราะห์แบบอิเล็กทรอนิกส์ที่มีประสิทธิสกิน
มานิตยา, นันทวัชร์ และณัฐพล กุมิยะสาด

AP66 การออกแบบตัวเครื่องยนต์คอมบรังค์สังเคราะห์แบบอิเล็กทรอนิกส์ที่มีประสิทธิสกิน
ภูมิคุณแม่, ณัฐพล กุมิยะสาด, นันทวัชร์ และณัฐพล กุมิยะสาด
สารบัญ (ต่อ)

รหัสบทความ ชื่อบทความ
AP67 ผลกระทบจาก政权ทำและขนาดเล็กสู่ภูมิภาคของห้องที่มีต่อประสิทธิภาพเครื่องทำน้ำร้อน
และอาทิตย์ในตัวเล็ก
ประพันธ์ชง สมศิริ, ประทีป คุ้มทอง, วิชัยชนชื่น ผลเจริญ และ อายุพัทธิ์ ทิมบุญมา
AP68 การประเมินความสัมพันธ์ผลลัพธ์ในการก่อสร้างเรือเพื่อใช้ในโรง
นรภัทร หมินทอง และ อายุพัทธิ์ ทิมบุญมา
AP69 การศึกษาผลกระทบของเครื่องยนต์ HCCI ที่ใช้เชื้อเพลิง DME
คมนิต วิทยาวิชัย และ ปัญจพล หมวดธิรprung
AP70 การเผาไหม้ของเชื้อเพลิง DME ในเครื่องยนต์ HCCI
คมนิต วิทยาวิชัย, ประสพโชค โพธิ์สิงห์ และ ปัญจพล หมวดธิรprung
AP71 การจัดการไฟลท์ในช่องการไฟไทยของคอมพิวเตอร์แบบแพร่กระจายของเครื่องยนต์ที่ใช้ก๊าซ
ดัดแปลงของเชื้อ
ธีรศักดิ์ อัตนประพัฒน์ และ จรูวัติ เจริญสุทธิ
EP Energy Policy
EP01 การศึกษาผลกระทบแนวความน่าจะเป็นของราคาสำรองปลิวโดยการบริหารจัดการของกองทุนน้ำมัน
เชื้อเพลิง
วัชรภรณ์ ยอดศศิสวรรช และ วิริยา หวั่นรัตน์
EP02 การศึกษาผลกระทบของระบบผลิตกระแสไฟฟ้าด้วยแผนแสงอาทิตย์เพื่อขายสู่ระบบปัตตานีใน
แพค่อนและจังหวัดมหาสารคาม
ธีระชัย ภูชู และ นุชิรดา สุระพัก
EP03 การศึกษาข้อมูลทางด้านการบริหารจัดการทรัพยากรที่มีผลกระทบต่อการใช้งานระบบแสงอาทิตย์เพื่อ
การศึกษาในพื้นที่ห่างไกล
ภูมิพฤทธิ์ จุนทรภัณฑ์, นพสิทธิ์ คุ้มชาดิเศรษฐี, วิฑิต มะภัณฑ์, วีระ แสงสุวรรณ์ และ ทรงเกียรติ
กิตติศันธ์กิจ
EP04 การวิเคราะห์ที่จุดม่านจากการยอดด้วของเทคโนโลยีแบตเตอรี่ไฟฟ้า: กรณีศึกษาสำหรับภาคการ
ขนส่งทางบกในกรุงเทพมหานคร
Peerawat Saigirirat, Manida Tongroon and Nuwong Chollacoop
EP05 การจัดทำแผนทางสัญจรเทคโนโลยีในระบบการผลิตน้ำประปาระบิดลังบางเขน การ
ประสานภูมิศาสตร์
ศุภชัย ปฏิมาวัฒน์ และ สุธีรา วัฒนกิจภักดี
EP06 หลักเกณฑ์ในการพิจารณาสิ่งแวดล้อมที่สุจริตในหลักสูตรการพัฒนาชุมชนไทย
กิตติ สายพรวิริยะ และ ตรัยฤทธิ์ วิชิตชัยชาคร
<table>
<thead>
<tr>
<th>รหัสบทบาท</th>
<th>ชื่อบทบาท</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>Energy Materials</td>
</tr>
<tr>
<td>EM01</td>
<td>การศึกษาเชิงทดลองการทำเครื่องของวัสดุพูนแบบเบื้องต้น</td>
</tr>
<tr>
<td>EM02</td>
<td>การศึกษาสมบัติของก๊าซผสมจากเปลือกแคงคูโลตัวการเสริมทีอุปกรณ์มีเทาตัว</td>
</tr>
<tr>
<td>EM04</td>
<td>สมบัติทางกายภาพและค่าความดันของเหลวของเหลวชนิดเหลวผลิตภัณฑ์ซีเรียบ</td>
</tr>
<tr>
<td>EM05</td>
<td>การสังเกตการณ์ทางภูมิภาคของแกลลนของโลสต์และค่าความร้อนของโลสต์</td>
</tr>
<tr>
<td>EM06</td>
<td>การศึกษาเชิงทดลองแกลลนสมบัติและค่าความร้อนของวัสดุระบบนิเวศของความร้อนของโลสต์</td>
</tr>
<tr>
<td>EM07</td>
<td>การศึกษาเชิงทดลองแกลลนสมบัติไม่ความร้อนของวัสดุระบบนิเวศของโลสต์</td>
</tr>
<tr>
<td>EM08</td>
<td>รัฐประหารพลังงานที่มีใช้ผลประโยชน์การนำไปใช้และการเกณฑ์การเข้าวิทยา</td>
</tr>
<tr>
<td>EV</td>
<td>Environmental Management</td>
</tr>
<tr>
<td>EV01</td>
<td>การประเมินวิเคราะห์ของกระบวนการที่มีค่าต่อของโลสต์</td>
</tr>
<tr>
<td>EV03</td>
<td>ตัวเลือกผลักดันการทำให้โลสต์มีค่าต่อของโลสต์</td>
</tr>
<tr>
<td>EV04</td>
<td>เครื่องยนต์อากาศ楽し</td>
</tr>
<tr>
<td>EV05</td>
<td>การศึกษาประสิทธิภาพของโลสต์ใส่เทคโนโลยีที่ต่อออกแบบบนคลังสัมภาระการแยกของโลสต์</td>
</tr>
</tbody>
</table>

ข้อคิดเห็น (ต่อ)
Designing of Solar Energy Automatic Pet Feeding Machine

Abstract

This paper presents a design of solar energy automatic pet feeding machine. The aim of objective is constructing solar energy to automatic pet feeding machine. The problem was found that the supply source as far as from the load and inappropriate outdoor usage or it uses at rural area.

The step of control has been simulated stand alone solar system. 45W solar panel, 12V 6Ah battery and 12W load are selected to simulation. The load is to be 4 times for a day. The simulation found that the system can be supported load for all of time and it remains about 75.4% which can be used on other load in the control system.

The result of simulation found that a 45 Wp solar panel is large size and it can be reduced to small size solar panel. It means the system cost which is reduce. We can be bringing the APF which use to outdoor or rural area.

Keywords: Solar Energy, Automatic Pet Feeding Machine (APFM), Automatic Control System.
1. บทนำ
การใช้พลังงานไฟฟ้า มีอัตราการเจริญเติบโตที่สูงมาก มีอัตราการใช้ไฟฟ้าตีต่อร้อยละ 4.2 [1] ซึ่งหมายความว่าต่อปีเพิ่มเติมๆ ที่ใช้ไฟฟ้าจะต้องมากจากปีไปปี จากกรุปที่ 1 แสดงให้เห็นการใช้ไฟฟ้าเพิ่มขึ้นและแหล่งน้ำมันก๊าซซึ่งในปี 2553 มีการใช้ก๊าซส่วน 4,300 ล้านลูกบาศก์ฟุตต่อปี และมีความต้องการใช้พลังงานไฟฟ้าน้อยสุด เมื่อวันที่ 10 พฤศจิกายน 2553 ที่ประมาณ 24,630 เมกะวัตต์ ซึ่งเพิ่มขึ้นจากเมื่อปี 52 ร้อยละ 15.3

แนวโน้มลูกบาศก์ฟุต/วัน

กรุปที่ 1 การให้ก๊าซและแหล่งที่มา
จากข้อมูลทางการใช้ไฟฟ้าต่างๆ ส่วนช่วงต้น การลดการใช้พลังงานไฟฟ้าโดยสถาบันราชการใช้พลังงานทดแทน เช่น พลังงานแสงอาทิตย์ พลังงานลม บทความวิจัยนี้ได้ใช้พลังงานแสงอาทิตย์เป็นชิ้นงานในการจ่ายกระแสไฟฟ้าให้กับเครื่องให้อาหารสัตว์เลี้ยงแบบอัตโนมัติ เนื่องจากเครื่องให้อาหารสัตว์เลี้ยงที่มีอยู่เดิม ใช้ไฟฟ้าจากระบบไฟฟ้า 220 โวลต์ หรือไฟบ้านทำให้ไม่สะดวกดังการใช้งาน เพราะเมื่อต้องการนํ้าเครื่องไปใช้พลังงานนอกจากนี้เครื่องนัก ต้องต่อสายไฟขึงออกไป ทำให้ไม่สะดวกดังการใช้งาน การเลือกใช้พลังงานแสงอาทิตย์ก็เพื่อลดปัญหาการต่อสายไฟจากบ้าน หรือนํ้าไปใช้ในบริเวณที่ไม่มีสายไฟฟ้า ต่ออยู่ได้

2. การออกแบบเครื่องให้อาหารสัตว์เลี้ยง
การออกแบบเครื่องให้อาหารสัตว์เลี้ยงแบบอัตโนมัติ ประกอบด้วยการออกแบบระบบควบคุมซึ่งใช้ PLC ในการควบคุม การจ่ายอาหารและตรวจสอบการทำงานในส่วนต่างๆ การออกแบบตัวเครื่องให้อาหารสัตว์เลี้ยง

2.1 การออกแบบตัวเครื่อง
กรุปที่ 2 ออกแบบและสร้างให้อาหารสัตว์มี ซึ่งประกอบไปด้วยสายพาน สําหรับขนอาหารและหลอดสัญญาณแสดงสถานะการทำงานของเครื่องในเกณฑ์ต่างๆ และมีอุปกรณ์ระดับ (Sensor) ในการตรวจจับการทำงานของสุนัขขนาดเล็กมีเครื่องให้อาหารสัตว์เลี้ยงแบบอัตโนมัติ สําหรับตัวเครื่องทําจากแผน mediocre ติดเชื่อมกรุปที่ 6 แสดงให้เห็นเครื่องให้อาหารสัตว์เลี้ยงแบบอัตโนมัติที่สร้างเสร็จเรียบร้อยแล้ว ระดับตัวระบบที่พลังงานแสงอาทิตย์ที่ผ่านนั้น

2.2 การออกแบบระบบควบคุม
การออกแบบระบบควบคุมใช้ Programable logic controller (PLC) ในการควบคุม การสั่งงานอาหารและการตรวจสอบการทำงานของเครื่องให้อาหารสัตว์ล่าง ซึ่งจากงานวิจัยเบื้องต้นใช้ผลิตภัณฑ์ PLC มีรุ่น Mitsubishi รุ่น FX Series
ตารางที่ 1 จำนวน I/O ของ PLC FX-Series

<table>
<thead>
<tr>
<th></th>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX-1S 10MT</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>FX-1S 14MT</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>FX-1S 20MR</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

รูปที่ 3 PLC ยี่ห้อ Mitsubishi

จากรูปที่ 3 - 4 แสดงให้เห็นด้านในของ PLC ยี่ห้อ Mitsubishi ที่ใช้ในงานวิจัย ซึ่งเดินสายยาวจากควบคุมความร้อนย่อยแล้ว สำหรับรูปที่ 5 แสดงโดยละเอียด ของการควบคุม ซึ่งประกอบไปด้วย PLC บันทึกลดขึ้นมาจากอุปกรณ์รับสัญญาณ (Sensor) ก่อนส่งไปที่อุปกรณ์ทำงานตามเงื่อนไขที่กำหนด โดยมีหลอดไฟสัญญาณแสดงที่หน้าจอ และมอเตอร์ทำงานหน้าที่ขับสารภาพแล้วเลี้ยงอาหาร และมอเตอร์ 12 โวลต์ทำงานหน้าที่เข้ารางได้อาหารให้อาหารมีลำเลียงมากที่สุดถ้าอาหาร

รูปที่ 4 การเดินสายระหว่างควบคุมของ PLC

จากรูปที่ 6 เครื่องให้อาหารมีลำเลียงแบบอัตโนมัติ ซึ่งประกอบไปด้วยอุปกรณ์ต่างๆ คือ ส่วนที่ 1 เป็นช่องสำหรับบรรจุอาหารเม็ด ซึ่งสามารถใส่ได้ทั้งอาหารเม็ดสำหรับสุนัข ช่องที่ 2 ประกอบไปด้วยไมโครการใช้งานของเครื่องให้อาหาร จำนวน 3 โมเดลการทำงาน คือ โมเดลสำหรับสุนัขหน้าหน้า ตะแคง 2 - 20 กิโลกรัม จนถึงโมเดลสำหรับสุนัขขนาดเล็กหน้าด้วมกว่า 41 กิโลกรัม และหลอดไฟสัญญาณแสดงการสถานะของอาหาร เลย หรือว่า ว่างเป็น

รูปที่ 5 โดยละเอียดของควบคุม

จากรูปที่ 6 เครื่องให้อาหารมีลำเลียงแบบอัตโนมัติ ซึ่งประกอบไปด้วยอุปกรณ์ต่างๆ คือ ส่วนที่ 1 เป็นช่องสำหรับบรรจุอาหารเม็ด ซึ่งสามารถใส่ได้ทั้งอาหารเม็ดสำหรับสุนัข ช่องที่ 2 ประกอบไปด้วยไมโครการใช้งานของเครื่องให้อาหาร จำนวน 3 โมเดลการทำงาน คือ โมเดลสำหรับสุนัขหน้าหน้า ตะแคง 2 - 20 กิโลกรัม จนถึงโมเดลสำหรับสุนัขขนาดเล็กหน้าด้วมกว่า 41 กิโลกรัม และหลอดไฟสัญญาณแสดงการสถานะของอาหาร เลย หรือว่า ว่างเป็น

ENETT8-RE11
3/6
2.3 การออกแบบระบบพลังงานแสงอาทิตย์

การเลือกใช้ระบบพลังงานแสงอาทิตย์ เนื่องจากเครื่องให้อาหารสัตว์ถูกตั้งกล่าว ต้องใช้พลังงานไฟฟ้าในการควบคุมเครื่องมือ โดยรับไฟฟ้ากระแสสลับจากรถยนต์ PLC และอุปกรณ์อื่นๆ ในระบบ การเลือกใช้พลังงานแสงอาทิตย์ก็เพื่อช่วยเสริมการทำงานของเครื่องให้อาหารสัตว์ด้วยตัวเครื่อง จึงต้องการออกแบบระบบพลังงานแสงอาทิตย์แบบใดก็ได้ (Stand alone)

2.3.1 ระบบพลังงานแสงอาทิตย์แบบใดก็ได้

รูปที่ 9 คำว่าความเข้มแสงที่ใช้ในการทดลอง

รูปที่ 9 แสดงให้เห็นคำว่าความเข้มแสงอาทิตย์ที่ต่าง ๆ ของจังหวัดโปรตุเกส ได้แก่คำว่าความเข้มแสงอาทิตย์ระดับสูงในเดือนตุลาคม 6.98 หน่วยต่อตารางเมตรต่อวันและสำหรับเดือนมีถูกลาน คือ 4.25 หน่วยต่อตารางเมตรต่อวัน (kWh/m²/day)

รูปที่ 10 จำนวนเงินที่ใช้ในระบบพลังงานแสงอาทิตย์

รูปที่ 10 แสดงให้เห็นการใช้เงินในระบบพลังงานแสงอาทิตย์ที่ได้ทำการออกแบบ พบว่ามีการใช้เงินในการซื้อแซลแสงอาทิตย์มากที่สุด ที่ประมาณ 3,800 บาท (45 รัฐдолลาร์) และสำหรับเมอร์คิว ประมาณ 350 บาทคิดหน่วยละ 12 V 6Ah ผลการ Charge Regulator 1 ด้วยราคาประมาณ 1,200 บาท

รูปที่ 11 คำว่ากำลังไฟฟ้าที่ผลิตได้ของระบบ

รูปที่ 11 คือคำว่ากำลังไฟฟ้าที่ผลิตได้ของแซลแสงอาทิตย์ เชนที่เลือกมาตราการสามารถผลิตกำลังไฟฟ้าได้เฉลี่ย 9 รัฐดอลลาร์ ซึ่งได้จากการจำลองระบบพลังงานแสงอาทิตย์ด้วยโปรแกรม HOMER

รูปที่ 12 ลักษณะการใช้งานของไหล่

รูปที่ 12 แสดงจำนวนครั้งและหน่วยกำลังไฟฟ้าของเครื่องใช้ที่ได้รับผลิตภัณฑ์แบบที่เลือกในสมทบ โดยใช้กำลังไฟฟ้าประมาณ 12 รัฐดอลลาร์ หรือ 48 รัฐดอลลาร์ จากรูปที่ 13 แสดงให้เห็นการใช้กำลังไฟฟ้าของไหล่ตลอดเดือน แบ่งออกเป็น 4 ช่วงในแต่ละวันที่เรียงท่าภูมิงาน รูปที่ 13 กำลังไฟฟ้าที่ผลิตได้จากการระบบพลังงานแสงอาทิตย์จะมากกว่าการใช้งานของไหล่อยู่ที่ประมาณ 75.4 ตามตารางที่ 2 โดยคำว่าแสดงจำนวนตารางที่ 2 แสดงในหน่วยของหน่วยต่อปี หรือ kWh/year

ตารางที่ 2 การผลิตที่กำลังไฟฟ้าของระบบพลังงานแสงอาทิตย์และอื่นๆและการใช้งานของไหล่

<table>
<thead>
<tr>
<th>Quantity</th>
<th>kWh/yr</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV production</td>
<td>77.4</td>
<td>100</td>
</tr>
<tr>
<td>Excess electricity</td>
<td>58.4</td>
<td>75.4</td>
</tr>
<tr>
<td>DC primary load</td>
<td>17.5</td>
<td>100</td>
</tr>
</tbody>
</table>

5. สุขภาพ

เครื่องให้อาหารสวัสดีเลี้ยงแบบอัตโนมัติ มีวัตถุประสงค์เพื่อการขอความสงบของสวัสดีเลี้ยงในการให้อาหารกับสวัสตร์เลี้ยงที่ดูแลอยู่โดยทำให้เป็นระบบอัตโนมัติเพื่อป้องกันเรื่องจำนวนอาหารเหลือเกิน ทำให้อาหารจำนวนมาก หรือไม่พอตัดเก็บน้ำหนักตัวของ
สุนิช เมธยานตร์การจัดการกับระบบไฟฟ้าที่ต้องจ่ายให้กับเครื่องให้อากาศสั่งเสริมเมื่อต้องติดตั้งนอกอาคารโดยพื้นที่ใช้แบบใดแบบหนึ่ง จากการออกแบบระบบพลังงานแสงอาทิตย์แบบใดแบบหนึ่ง ขนาดแผงเซลล์แสงอาทิตย์ 45 วัตต์ต่อแผงเครื่องให้อากาศสั่งเสริมอันดับไม้สี พบว่าทำให้ไฟฟ้าที่ผลิตได้จากแผงเซลล์แสงอาทิตย์มีประมาณมากพอต่อกับการใช้งานของเครื่อง โดยสามารถผลิตพลังงานไฟฟ้าได้มากกว่า 77 หน่วยต่อปี ขณะที่โหลดการใช้งานของเครื่องให้อากาศสั่งเสริมใช้พลังงานไฟฟ้า 17.5 หน่วยต่อปี เหลือพลังงานไฟฟ้า 58.4 หน่วยต่อปี สามารถลดขนาดของแผงเซลล์แสงอาทิตย์ให้เล็กลงมาได้เพียงไร้ความใช้ชิ้นในการติดตั้งระบบพลังงานแสงอาทิตย์ ตลอดไป

6. เอกสารอ้างอิง
[2] Homer energy, hybrid renewable energy & distributed power designed support, URL: https://homerenergy.com, access on 27/02/2012.
[3] PV system type, standalone system
URL: http://www.aladdinsolar.com/pvsystems.html, access on 27/02/2012.
[4] พบว่า ลิมิตชัยศักดิ์, ชัยฤทธิ์ ทวีบุตร ประสิทธิ์ ปริญญาตรีพิเศษ 2554, เครื่องให้อากาศสั่งเสริมแบบอัตโนมัติ, ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี