IE Network Conference 2012
การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหกรรม
ประจำปี 2012
เอกสารรวมบทคัดย่อ
(Abstract Summary)
คณะกรรมการผู้ทรงคุณวุฒิพิจารณาบทคัด elem
การประชุมวิชาการชี้แจงงานวิศวกรรมอุตสาหการ ประจำปี 2555

จุฬาลงกรณ์มหาวิทยาลัย
รองศาสตราจารย์ ดร.ประเมศ ชิติมา
รองศาสตราจารย์ธีรพันธ์ เว่ประเสริฐวงศ์
ผู้ช่วยศาสตราจารย์ ดร.วิชาช์ สุชิวงศ์
ผู้ช่วยศาสตราจารย์ ดร.นนทชัย โชคศิลป์
ผู้ช่วยศาสตราจารย์ ดร.กมล บางศรี
ผู้ช่วยศาสตราจารย์ ดร.กัศมีร์ ตั้งแก้ว
ผู้ช่วยศาสตราจารย์ ดร.สมเกียรติ ตั้งจรัสเจริญ
อาจารย์สุรัตน์ ศิริฤทธานิช

มหาวิทยาลัยเกษตรศาสตร์
อาจารย์ ดร.นพฉัตร ลิ้มจอมพล
อาจารย์ ดร.พิชิต โหนดแก้ว ทองรัตน์
อาจารย์ ดร.ภีรนาถ อยู่สุข

มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน
อาจารย์เฉลิม ชัยเสรี

มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตศรีราชา
อาจารย์ ดร.ชัยวัฒน์ นุ่มทอง
อาจารย์ ดร.ณัฐชา จินทรภักดี
อาจารย์ ดร.พิชิตสุข ทันถุทธิชัย
อาจารย์นันทมนตรี ศรีบุญเพ็ญ

มหาวิทยาลัยทองหน้า
รองศาสตราจารย์ ดร.ชาญมาลิ สายแก้ว
ผู้ช่วยศาสตราจารย์ ดร.วิริฒิพงศ์ เสนอถึงสมบูรณ์
อาจารย์ ดร.อุรัสสยา วรชัยยินดี

ผู้ช่วยศาสตราจารย์ ดร.สมชาย ฟักเจริญเมส
ผู้ช่วยศาสตราจารย์ ดร.ประมวล สุขเจริญรัตน์
ผู้ช่วยศาสตราจารย์ ดร.ศิริ ปรีชำนัตน์
ผู้ช่วยศาสตราจารย์ประสิทธิ์ อังกฤษประพันธ์
อาจารย์ ดร.ณัฐกร ทวีแสงสุกิจไทย
อาจารย์ ดร.ไชยเจริญ จัตุรัสทิพย์
อาจารย์ภูมิ เหลืองเจริญกิติ

อาจารย์ ดร.สุดารัตน์ วงศ์วิเศษเจริญ
อาจารย์ ดร.ศุภชัย วิชกุล
อาจารย์ ดร.จิราวัฒน์ ワークラ

อาจารย์ ดร.ศุภชัย ศิริประภานุช
อาจารย์ ดร.นิธิพงศ์ หมื่นไวยกุล
อาจารย์ ดร.สถิติ กลิ่นแสบ
อาจารย์จินทร์ กลิ่นเรือง
อาจารย์ประกายพรบงค์ เกษราพร

รองศาสตราจารย์ ดร.สมรักษ์ ชาญฤทธิ์ศักดิ์
ผู้ช่วยศาสตราจารย์ ดร.ศิริวัฒน์ ศุชโภต
อาจารย์ ดร.สมาชิก ราชสีห์
มหาวิทยาลัยเชียงใหม่
รองศาสตราจารย์ ดร. ขวัญ กลุ่มวิทยาศาสตร์
รองศาสตราจารย์ ดร. นิemonicิต แจ่มจินิก
ผู้ช่วยศาสตราจารย์ ดร. ปุณฑริก บุญโพธิ์
อาจารย์ ดร. วันชัย เกิดแก้ว

มหาวิทยาลัยเทคโนโลยีขอนแก่น
รองศาสตราจารย์ ดร. อธิชัย โสภณแสง
ผู้ช่วยศาสตราจารย์ ดร. ตระกูล เลิศกุล
อาจารย์ ดร. ทรงภู แป้นแทน ภพพวชิน

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
รองศาสตราจารย์ ดร. ศิริพงษ์ สมบูรณ์ทวีเทพ
รองศาสตราจารย์ ดร. บำรุง ผูกพัน
ผู้ช่วยศาสตราจารย์ ดร. เจริญชัย ไชยพัฒนกิจ
ผู้ช่วยศาสตราจารย์ ดร. ไพบูลย์ คำค้ำ
ผู้ช่วยศาสตราจารย์ ดร. สมบูรณ์ เจริญรัตน์
ผู้ช่วยศาสตราจารย์ ดร. วิภา.pb ศิรินันท์
อาจารย์ ดร. อัศวิน จันทร์ดี
อาจารย์ ดร. ศุภชัย บุญเหลา
อาจารย์ ดร. ภูมิitesse ศิริธิ
อาจารย์ ดร. พิมปรัตน์ ศิริ
อาจารย์ ดร. สมเกียรติ จันทร์ดี
อาจารย์ ดร. นพดล ศิริiku
อาจารย์ ดร. ศุภชัย บุญเหลา
อาจารย์ ดร. ภูมิ其次是 ศิริ
อาจารย์ ดร. พิมปรัตน์ ศิริ
อาจารย์ ดร. สมเกียรติ จันทร์ดี

มหาวิทยาลัยเทคโนโลยีพระปิยมหาราช
รองศาสตราจารย์ ดร. อธิชัย ฉัตรพิทยานุเคราะห์
รองศาสตราจารย์ ดร. 𣲘พงษ์ สมบูรณ์ทวีเทพ
รองศาสตราจารย์ ดร. บำรุง ผูกพัน
ผู้ช่วยศาสตราจารย์ ดร. สุธิสาร ทรงพิมุขพงษ์
ผู้ช่วยศาสตราจารย์ ดร. อภิญญา ศิริ
ผู้ช่วยศาสตราจารย์ ดร. กนิษฐ์ ศิริ:
อาจารย์ ดร. วิชญ์ จันทร์ดี
อาจารย์ ดร. ศุภชัย บุญเหลา
อาจารย์ ดร. ภูมิ其次是 ศิริ
อาจารย์ ดร. พิมปรัตน์ ศิริ
อาจารย์ ดร. สมเกียรติ จันทร์ดี

มหาวิทยาลัยเทคโนโลยีราชมงคลกรุงเทพ
ผู้ช่วยศาสตราจารย์ ดร. บุญชัย จันทร์ดี

มหาวิทยาลัยเทคโนโลยีราชมงคลกรุงเทพ
ผู้ช่วยศาสตราจารย์ ดร. วิชัย จันทร์ดี
มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

ผู้ช่วยศาสตราจารย์ ดร.กิติพรภัย กิมแพง
ผู้ช่วยศาสตราจารย์ ดร.แยร่า คูปยัมถ์ ผู้ช่วยศาสตราจารย์ ดร.ศรีนุช ตั้งสุกุล
อาจารย์ ดร.ชัยณรงค์ ปารีมพงษ์
อาจารย์ ดร.ชัยนิพัทธ์ ประยูร
อาจารย์คุณออก ประยูร

มหาวิทยาลัยเทคโนโลยีราชมงคลลำพูน พญา เขียงใหม่

ผู้ช่วยศาสตราจารย์มนวิภา มีรัตน์
อาจารย์ ดร.นเรศ อินทร์รัตน์
อาจารย์ ดร.เทพ เอกพิศาล
อาจารย์ ดร.ภาคภูมิ จากรุ่น

มหาวิทยาลัยเทคโนโลยีราชมงคลลำปาง พญา เขียงใหม่

ผู้ช่วยศาสตราจารย์มนวิภา มีรัตน์
อาจารย์ ดร.นเรศ อินทร์รัตน์
อาจารย์ ดร.เทพ เอกพิศาล

มหาวิทยาลัยเทคโนโลยีราชมงคลกาญจนบุรี

ผู้ช่วยศาสตราจารย์ยณี เหมามนธา
อาจารย์ ดร.ภาสิต ศิริภูริ

มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ

อาจารย์สิริยา คำจริง

มหาวิทยาลัยเทคโนโลยีสุรนารี

ผู้ช่วยศาสตราจารย์ ดร.เพ็ชร์ พิศิษฐ์
ผู้ช่วยศาสตราจารย์ ดร.พรติ จิตสมัย
อาจารย์ ดร.ปรีดี สิริภัณฑ์

มหาวิทยาลัยราชบพิธ

รองศาสตราจารย์ ดร.จิเกรศ ไตรภูม
รองศาสตราจารย์ ดร.ชัยวัฒน์ ทรงธรรม
ผู้ช่วยศาสตราจารย์ ดร.วิภาภูมิ ผจญมณี

การประชุมวิชาการร่วมกับวิทยาลัยทหารมวุลสุรศึกษา ประจำปี พ.ศ. 2555
17-19 ตุลาคม 2555 ระดับ เทศศุภกруч
มหาวิทยาลัยธุรกิจินทร์
ผู้ช่วยศาสตราจารย์ ดร.ปัญญา พิทักษ์กุล
อาจารย์ ดร.ณัฐพีร์ อาร์วีระกุล
อาจารย์ ดร.สินเวช รัฐวิภูย

มหาวิทยาลัยเกษตรศาสตร์
รองศาสตราจารย์ ดร.กิจพร สุนิทิศกุล
อาจารย์ ดร.ชัญธิฟนิธิ คำเมือง
อาจารย์วิศวสุข เจริญศุภ

มหาวิทยาลัยบูรพา
รองศาสตราจารย์บัญชา พิพัฒน์ปัญญาบุตร
ผู้ช่วยศาสตราจารย์ปัณฑิตานนท์ เหมาธิระศักดิ์
อาจารย์ ดร.จิระศักดิ์ ฤทธิเดช
อาจารย์ ดร.ณัฐวุฒิ์ จันทรคุณา

มหาวิทยาลัยเกษตรศาสตร์อุเทนบุรี
รองศาสตราจารย์สุคนธ์ อาจภู่

มหาวิทยาลัยรังสิต
ผู้ช่วยศาสตราจารย์ ดร.ธนยวัฒน์ อัครไพร
อาจารย์ ดร.พิเชฏ มนัสปิฎก
อาจารย์ภรรยาประสิทธิ์ แก้วนำรัตน์
อาจารย์สมพร พรหมวงศ์

มหาวิทยาลัยรามคำแหง
ผู้ช่วยศาสตราจารย์ ดร.ภูมิรัตน์ ญาณรัศมี
อาจารย์ ดร.ศิลปวรรณ ชลนิธิชัย
อาจารย์นันทภรณ์ อุบลภร

มหาวิทยาลัยเทคโนโลยีสุรนารี
ผู้ช่วยศาสตราจารย์ ดร.ปรีดาสิริ ลิขิต

มหาวิทยาลัยบูรพา
ผู้ช่วยศาสตราจารย์ ดร.บุษบัน จันทร์ลง

มหาวิทยาลัยเกษตรศาสตร์
ผู้ช่วยศาสตราจารย์ ดร.บุญมาพร วิทยาลัย

มหาวิทยาลัยศิลปากร
ผู้ช่วยศาสตราจารย์ ดร.กฤษฎา ประชานิเวศน์

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.ศศินี บุญพลพันธุ์

มหาวิทยาลัยราชภัฏนครราชสีมา
ผู้ช่วยศาสตราจารย์ ดร.นฤกิต ปัญญาพงศ์

มหาวิทยาลัยศรีนครินทรวิโรฒ
ผู้ช่วยศาสตราจารย์ ดร.ภูมิภัทร วิชิตรัตน์

มหาวิทยาลัยสุรินทร์
ผู้ช่วยศาสตราจารย์ ดร.ทวีภูติ ประจิตร

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.วัชรินทร์ ภูผาพันธุ์

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.นฤกิต ปัญญาพงศ์

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.ทวีภูติ ประจิตร

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.วัชรินทร์ ภูผาพันธุ์

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.นฤกิต ปัญญาพงศ์

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.ทวีภูติ ประจิตร

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.วัชรินทร์ ภูผาพันธุ์

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.นฤกิต ปัญญาพงศ์

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.ทวีภูติ ประจิตร

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.วัชรินทร์ ภูผาพันธุ์

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.นฤกิต ปัญญาพงศ์

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.ทวีภูติ ประจิตร

มหาวิทยาลัยมหิดล
ผู้ช่วยศาสตราจารย์ ดร.วัชรินทร์ ภูผาพันธุ์
มหาวิทยาลัยศรีนครินทรวิโรฒ
รองศาสตราจารย์ชริน แลววิชนา
ผู้ช่วยศาสตราจารย์นิธินารถ บุญฤทธิ์
อาจารย์ ดร.พิไล หวังพานิช
อาจารย์พงษ์พีระ จันทะ

มหาวิทยาลัยสงขลานครินทร์
รองศาสตราจารย์ ดร.นิกร ศรีวงศ์ไพศาล
รองศาสตราจารย์สุทธิ ชูโย
ผู้ช่วยศาสตราจารย์ ดร.โณศรี รัตนไพล
ผู้ช่วยศาสตราจารย์ ดร.รัษฎา ศิริมงคล
ผู้ช่วยศาสตราจารย์ ดร.เลสเซน สุทธานานท์
ผู้ช่วยศาสตราจารย์เจริญ จรดิจิต
ผู้ช่วยศาสตราจารย์พิชญ์ ธรรมการชัยวิทย์

มหาวิทยาลัยเทคโนโลยีการ
รองศาสตราจารย์ ดร.บุญทรง อิศวรสวัสดิวิเสถ
ผู้ช่วยศาสตราจารย์ ดร.ภานุชนา ภานุชนาสุนทร

มหาวิทยาลัยธุรกิจบัณฑิตย์
อาจารย์จีตดา ชัยเจริญ
อาจารย์นิศาสตร์ สมชุต

มหาวิทยาลัยอุบลราชธานี
ผู้ช่วยศาสตราจารย์ ดร.ถนิม ภูผึ้ง
ผู้ช่วยศาสตราจารย์ ดร.มุนตรา เกษียกรกฎ
ผู้ช่วยศาสตราจารย์ ดร.พิพัฒน์ ปิตาทอง
ผู้ช่วยศาสตราจารย์ ดร.สวัสดิ์ อินทมานนท์
อาจารย์ ดร.อิทธิพล อุ่นวงศ์
อาจารย์ ดร.สำรุจดล ڤานิชกุล
อาจารย์ปิยะ แสงเศียร

ผู้ช่วยศาสตราจารย์ ดร.เรือนฟ้า คงประสิทธิ์
อาจารย์ ดร.ณัฐพงษ์ คงประสิทธิ์
อาจารย์สวัสดิ์ ชาติจินด์
รองศาสตราจารย์ชวิน นิลยานันท์
ผู้ช่วยศาสตราจารย์ ดร.กลิ่น เอื้อโรจน์
ผู้ช่วยศาสตราจารย์ ดร.ภิรมย์ มิ่งดวง
ผู้ช่วยศาสตราจารย์ ดร.ชุ่มภาพ ไชยประพันธ์
ผู้ช่วยศาสตราจารย์ ดร.ธัญภูมิ สัตตกัญชง
ผู้ช่วยศาสตราจารย์ยอดดวง พันธุ์รัง
ผู้ช่วยศาสตราจารย์สุวานิช อัครโพธิ์ธรรม
ผู้ช่วยศาสตราจารย์ ดร.คณาภรณ์ เบียร์บรรณาภรณ์
อาจารย์ ดร.วิจิตร ปุยกุล
อาจารย์ย่ำรักษา เศรีบุญศรี
อาจารย์อ้อมมา กอลสัน

ผู้ช่วยศาสตราจารย์ ดร.ดรันธ์ เพียรทอง
ผู้ช่วยศาสตราจารย์ ดร.ปรีชา เกษียกรกฎ
ผู้ช่วยศาสตราจารย์ ดร.สมบัติ สินธุชานนท์
ผู้ช่วยศาสตราจารย์สุริยา โชคศาสตร์
อาจารย์ ดร.สุนทร โพธิพวิกูล
อาจารย์ฉัตรนาถ เฟื่องทอง
อาจารย์สุรเจริญ กันจนทรัพย์
มหาวิทยาลัยอีสเทิร์นแคลรี
ผู้ช่วยศาสตราจารย์ ดร.เลขา พวงสามารถ

โรงเรียนมาตรฐานอากาศ
รองศาสตราจารย์อุบล ศรีปุริษา
อาจารย์ออมยุต ศรีปุริษา

สถาบันเทคโนโลยีปทุมธานี
ผู้ช่วยศาสตราจารย์ชัยพงษ์ ภูมิประภัต
อาจารย์เจริญ วงศ์อนันต์
อาจารย์สุนทรา มุขธา

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
รองศาสตราจารย์ ดร.วรรณวิกร กิตยาภิปร
รองศาสตราจารย์ ดร.ศภิษฐ์ กลิ่นภูมิพฤกษ์
อาจารย์ ดร.วิทยา ศรีวัฒน์สิทธิ์

มหาวิทยาลัยสุรนารี
ผู้ช่วยศาสตราจารย์ปฏิสัจ สงคราม
ผู้ช่วยศาสตราจารย์วิจิตร สิทธิ์อ้วน
อาจารย์ ดร.จุฑา ชีวภูมิ
อาจารย์ ดร.กานสูร ศิริภูมิ

มหาวิทยาลัยพิทักษ์
รองศาสตราจารย์ศุภชัย บุญศุภ
อาจารย์ ดร.กนกวรรณ กิ่งสูง
อาจารย์ ดร.เกียรติศักดิ์ ศรีบรรจุศักดิ์
อาจารย์ติวถิ่น สุกิจติ
อาจารย์บุญนา สตรา
มหาวิทยาลัยศรีปทุม
รองศาสตราจารย์ ดร.กีรติ ชมภูธนภัทร
ผู้ช่วยศาสตราจารย์ ดร.วารินี มนต์ศรี
ผู้ช่วยศาสตราจารย์ ดร.สมใจ กันต์คาน
ผู้ช่วยศาสตราจารย์ ดร.ฤกษ์ ทัศนภัทร
ผู้ช่วยศาสตราจารย์ ดร.พันธุ์ พรหมวัฒนภัทร
ผู้ช่วยศาสตราจารย์รัชวิทยา สรอริกมล
ผู้ช่วยศาสตราจารย์วิชิต เครือสุข
อาจารย์ ดร.เทพรัตน์ ทองชูบุญ
อาจารย์ ดร.ริสา ผลิกพฤกษ์พันธ์
อาจารย์จิรภัทร กันตระ
อาจารย์นิษฐา เริ่่งคง
อาจารย์คินวิน วงศิริวัฒน์
อาจารย์ศิริ สัตย์ไพศาล

ผู้ช่วยศาสตราจารย์ ดร.ชวิน ถิรัมภ์
ผู้ช่วยศาสตราจารย์ ดร.สุภาพร เกษราศริน
ผู้ช่วยศาสตราจารย์อภิรัช อมฤทธิ์
ผู้ช่วยศาสตราจารย์พัฒนศักดิ์ อภิสิทธิ์
ผู้ช่วยศาสตราจารย์ชวพร มณีศรี
ผู้ช่วยศาสตราจารย์อภิรักษ์ สวัสดิกิจ
อาจารย์ ดร.อัศมีศิริ วานิชชลัม
อาจารย์กิติศักดิ์ อาจารย์กิต
อาจารย์ญินัน ศรีประยุทธ์
อาจารย์ธีรชัย นฤทธา
อาจารย์วิทวัส ดุษฎีบูรพา
Replacement of Aluminum Powder by Sediment Ceramic Powder in Lightweight Concrete Production

Abstract
This work aims to study the effect of the ceramic sediment powder on lightweight concrete properties. The experiment was done using the ratio of cement: lime: gypsum: sand at 1: 0.2: 0.2: 1 and the ratio of water: cement at 0.7. The ceramic sediment powder amount in the lightweight concrete mixture varied from 0-100%. The experimental results are as follows. Compressive strength, volume density and bending strength of the lightweight concrete was increased with the increase of the sediment ceramic powder amount and the curing time. Water absorption decreased with the increase in curing time and the increase of the ceramic sediment powder. The comparison between the experimental lightweight concrete with the TIS 58-2530 lightweight concrete found that the experimental one was within the criteria of TIS 58-2530.

Keywords : lightweight concrete, sludge, sediment, ceramic, aluminum powder
1. บทนำ

อุตสาหกรรมเครื่องมือแบบมีการพัฒนาและ
ขยายตัวที่มีอยู่ในขณะนี้ ทำให้ผู้ผลิตต้องปรับปรุง
ความเป็นอยู่ ได้แก่ ปัญหาคุณภาพ ทราย อินทรีย์ ผง
อุติมเมส์ นำโดยกลุ่มอุติมเมส์มีต้นทุนสูงในการผลิต
 Kommentar: ...

2. ขอบเขตการศึกษาและวัตถุประสงค์

1. ศึกษาคุณสมบัติต่างๆ ของกลีบดินโดย
กรณีวิเคราะห์เชื้อรา

2. ศึกษาอัตราการสูญหายของปิโตรเลียม
อุติมเมส์และมีการทดสอบกระบวนการเก็บเกี่ยวเชื้อรา
และออกแบบควบคุมสิ่งที่จะขจัดที่จะทำให้ผลิตภัณฑ์นี้มี
คุณภาพที่ดีในอนาคต

3. ขั้นตอนการทำงานกลีบดินดูดความดัน

3.1 ทำการศึกษาคุณสมบัติของกลีบดินดกอน

โดยการวิเคราะห์หัวของกลีบดินดกอน (XRF) จาก
การปฏิบัติการ เพื่อนำไปใช้เป็นข้อมูลในการควบ
การติดตั้งการเก็บกักปริมาณเชื้อราในกลีบ
dินดกอนดี

3.2 ออกแบบควบคุมสิ่งที่จะขจัดที่จะทำให้
ผลกระทบของกลีบดินดกอน

4. การวิเคราะห์การทดสอบ

4.1 ผลการวิเคราะห์คุณสมบัติและองค์ประกอบของ
กลีบดินดกอนโดยใช้เครื่องมือ

โดยการวิเคราะห์หัวของกลีบดินดกอน (XRF) จาก
การปฏิบัติการ

ใช้อัตราส่วนนั้นเพื่อค้นหาความต้องการใช้
ที่เท่ากับ 1 : 0.2 : 0.2 และอัตราส่วนของน้ำต่อ
ผงอุติมเมส์ (w/c) เท่ากับ 0.7 ที่สิ่งเหล่านี้ในสภาวะที่
อุติมเมส์ที่อัตราส่วน 0%, 20%, 40%, 60%, 80% และ
100% โดยน้ำหนักตามลิตร

ใช้เปลือกกลีบ 100 x 100 x 100 มิลลิเมตร จำนวน
6 อัตราส่วน อัตราส่วนและ 2 ตัวอย่าง ทำให้ทำการ
ทดสอบกาลังยืด ความทนแน่นเชิงปริมาณ ถึงขั้น
อุติมเมส์ และเลือกกลีบดินขนาด 40 x 40 x 160
มิลลิเมตร จำนวน 6 อัตราส่วน อัตราส่วน และ 2 ตัวอย่าง
สำหรับการทดสอบกาลังยืด และอัตราการเปลี่ยนแปลง
ความยาว แต่ละอัตราส่วนส่งผลต่ออัตราการเปลี่ยนแปลง
ความยาวที่เหมาะสมที่ต้องการที่ต่ำสุด 7, 14 และ 28 วัน
วิธีการทดสอบตาม มอก. 1505-2541 [1]

จากนั้นทำการทดลองผลิตกลีบดินดกอนและอัตรา
ส่วนผสมที่ออกแบบไว้ เครื่องวัดความยืดและอุปกรณ์ที่ใช้ในการ
ทดสอบ ได้แก่ ปั๊มน้ำหนัก ทราย และ ผงอุติมเมส์
นำกรอบแม่สีขาวและกรอบอีลิท ผง
อุติมเมส์ นำเครื่องวัดความยืดและอุปกรณ์ที่ใช้ในการ
ทำให้ผลิตภัณฑ์นี้มีคุณภาพที่ดีในอนาคต

3.3 ความยุ่งยากการดำเนินไปทดสอบหาค่าต่างๆ

3.3.1 การทดสอบกาลังยืดหรือความดัน

3.3.2 การทดสอบหาดิสเป็นภาพความ

3.3.3 การทดลองหาผลิตภัณฑ์

3.3.4 การทดสอบหาค่าความหนาแน่นเชิง

3.3.5 การทดลองหาผลิตภัณฑ์
สามารถทำปฏิกิริยาภัณฑ์เล็กเชื้อไข่ดีโพรไกซ์ที่ดูเหมือนภัณฑ์
ปกติ ทำให้สารประกอบที่มีกลุ่มสารบิชในสารประกอบ
ประสาน เมื่อใช้ผสมกับกรดจะทำปฏิกิริยาภัณฑ์
เล็กเชื้อไข่ดีโพรไกซ์ที่ได้จากปฏิกิริยาไอเดียซัคของ
ผู้ยืนในแม่ปัญญาแล้ว แม้ว่าปฏิกิริยาปัญญาจะ
คล้ายกับปฏิกิริยาไอเดียซัคของผู้ยืนในแม่ปัญญาแล้ว
แต่ยังขาดการเกิดปฏิกิริยาไอเดียซัค ดังนั้นจึงสามารถใช้
รังสีฟิวเตอร์เพื่อเปิดความร้อนของปฏิกิริยาไอเดียซัค
ในกรณีนี้

4.2 ผลการทดสอบหาค่าคุณสมบัติต่าง ๆ ของ
คอนกรีตมวลเบาด้วยอุณหภูมิอัดอากาศต่าง ๆ

4.2.1 ผลการทดสอบความทนทาน

ความทนทานของคอนกรีตมวลเบาจากดินแลกอน
เซรามิก มีการสูงขึ้นตามผลส่วนของดินแลกอนเซรามิกที่
เพิ่มขึ้น ดังรูปที่ 1 เนื่องจากอนุภาคของดินแลกอนมี
ขนาดเล็กสามารถเข้าไปอยู่ในร่องหรือพังงาที่เกิด
จากการระเหยของก๊าซซึ่งจึงทำปฏิกิริยาอย่าง
ดูเหมือนกับปัญญาในเนื้อคอนกรีตมวลเบาทำให้เกิด
เป็นโครงสร้างใหม่เรียกว่า Cellular Structure ส่งผลให้
ทำให้เนื้อคอนกรีตมีความทนทานสูงขึ้น [2] ดังรูปที่ 2
(๑) ผ่านคอนกรีตที่มีอัตราส่วน 0.100 หลังการปั่นที่ 28
วัน และรูป (๒)-(๕) โครงสร้างของผุดของคอนกรีต จาก
การส่องกล้องแบบส่องผิว (SEM) ที่เครื่อง JEOL รุ่น
JSM-6510 ที่กำลังขยาย 500 เท่า

รูปที่ 1 กราฟแสดงค่าความทนทานของคอนกรีตมวลเบาจากกรด
และเซรามิกในอุณหภูมิต่าง ๆ
4.2.3 ผลการทดสอบการเปลี่ยนแปลงความยาว

คอนกรีตเมื่อถูกตัดออกจากคณะกรรมการชมมิชั่นที่อี้ด้าส่วนผสมของดินตะกอนมากที่สุดจะมีอัตราการหลุดล่วงที่สูงสุด เนื่องจากปฏิกิริยาไฮโดรซิลของคอนกรีตและปฏิกิริยาที่ระหว่างดินตะกอนที่ทำให้ปัญญาซึ่งเป็นปฏิกิริยาที่ต้องการบีมมาก ส่งผลให้ส่วนผสมหินก่อก็เกิดการหลุดล่วงอย่างเห็นได้ชัด ซึ่งมีความสัมพันธ์กับความหมายแน่นของคอนกรีต ดังรูปที่ 4 และรูปที่ 5 (ก) และ (ข) ภาพแสดงการทดสอบชิ้นงาน

4.2.2 ผลการทดสอบการดูดซึมน้ำ

การดูดซึมน้ำของคอนกรีตวัสดุจากภายนอก จะมีการผันแปรในค่าตัวแปรในถังอุ่นของดินตะกอนจากชมมิชั่นที่อี้ด้าเนื่องจากปริมาณช่องว่างหรือผิวภายนอกในเรื่องกริดลูด ซึ่งส่งผลกับความหนาแน่นของคอนกรีต เมื่อความหนาแน่นเพิ่มขึ้นจากการแทนที่ด้วยดินตะกอน การดูดซึมน้ำของคอนกรีตจะลดลงตามปริมาณดินตะกอนเพิ่มขึ้น [2] ดังรูปที่ 3

รูปที่ 2 (ก) บล็อกคอนกรีตที่อี้ด้าด้าน 0 : 100, (ข) 100 : 0, (ค) 80 : 20, (ง) 60 : 40, (จ) 40 : 60, (ฉ) 20 : 80 และ (ช) 0 : 100

รูปที่ 4 ภาพแสดงการทดสอบค่าร้อยละการหลุดล่วงของคอนกรีตวัสดุจากภายนอกของชมมิชั่นที่อี้ด้าด้านล่างๆ

รูปที่ 3 ภาพแสดงการดูดซึมน้ำของคอนกรีตวัสดุจากภายนอกชมมิชั่นที่อี้ด้าด้านล่างๆ ปริมาณดินตะกอน

รูปที่ 5 (ก) รัดความยาวก่อนทำทดสอบ (ข) รัดความยาวหลังการทำทดสอบ provenance word count: 1783
4.2.4 ผลการทดสอบกำลังติด

จากการทดสอบหาค่ากำลังรับแรงดัด จากทดสอบความทนต่อการรับแรงดัด ได้ทั้ง ELE International รุ่น ADR 2000 พบว่า ค่ากำลังรับแรงดัดจะแปรผันตรงกับอายุครีมก่อนการรับกำลังติดสูงขึ้น และค่ากำลังติดย้อมแปรผันกับปริมาณของดินตะกอนเชื้อที่เพิ่มขึ้น เนื่องจากช่องว่างหรือ ไฟออกภายในในเมื่อควันครีมตลอดจากการทำตนที่ของ ดินตะกอน ส่งผลโดยตรงต่อค่าที่รับแรงดัดที่เพิ่มขึ้น [2] ทำให้คอมนิค์เมมเบรนที่มีกำลังติดสูงขึ้น อัตรารักษาด่วน ยึดมั่นคงช่วงของ SiO₂, Al₂O₃, Fe₃O₅ ซึ่งเป็นวัสดุ ประกอบที่ผ่านการผืนผ้าจะส่งผลให้ค่ากำลังติดเพิ่มสูงขึ้นด้วย ดังรูปที่ 6 และรูปที่ 7 ภาพแสดงการทดสอบ

4.2.5 ผลการทดสอบกำลังติด

ค่ากำลังติดหรือความดันที่แรงดัดของคอนกรีต มวลที่สามารถทดสอบความทนต่อการรับแรงดัดสูงสุดมีแนวโน้มเพิ่มขึ้นตาม อายุครีมและปริมาณของดินตะกอนเชื้อที่ญี่ปุ่น โดยผลการทดสอบแสดงว่าค่ากำลังติดที่ 28 วัน จะมีค่ากำลังติดสูงสุดที่ 28 วัน ที่มีค่ากำลังติดสูงสุดเมื่อ เบอร์เกียบกับอัตราส่วนผสมของดิน ตะกอนสูงสุด (R100) จะมีค่ากำลังติดสูงสุดสูงกว่า ปริมาณเกียบกับอัตราส่วนผสมของดินที่มีการแทนที่ของดินตะกอนที่เกจิตลง มีค่า ที่เห็นในรูปที่ 10 และรูปที่ 11 แสดงค่า กำลังติดจากเครื่องทดสอบกำลังติด ที่ห้อง ELE International รุ่น ADR 2000 และรูปที่ 10 (g) และ (h) ภาพแสดงการทดสอบต่อไปนี้

รูปที่ 6 การแสดงผลค่ากำลังติดของคอนกรีตมวลที่มีการทดสอบที่แตกต่างกัน

รูปที่ 8 การแสดงค่ากำลังติดของคอนกรีตมวลที่มีการทดสอบที่แตกต่างกัน

รูปที่ 7 (g) การนำคอนกรีตเชื่อมเข้าทดสอบ (g) รายการผลงานที่ผลิตด้าน

(ร) รายการขั้นตอนการทดสอบในช่อง

(ข) รายการผลที่ผลิตด้านการทดสอบ

(ค) รายการผลที่ผลิตด้านการทดสอบ
5. สูปpressions

การนำกำลังกองทัพเรือมาฝึกอยู่ใน
การรักษาสุขภาพเป็นส่วนหนึ่งของสัตว์ใช้ของกองทัพเรือ
ต่างๆ ที่ถูกที่สุด กิจกรรมของกองทัพเรือสำรองที่
น่าสนใจโดยสามารถสรุปได้ดังนี้

5.1 ลูกผสมสัตว์กังหนัก

การทดลองกำลังยิงของกองทัพเรือมีหลายที่
อัตราส่วน 20, 40, 60, 80, 100 เปอร์เซ็นต์ ถูกใช้
กองทัพเรือจะมีสัดส่วนเป็นร้อยละ 21.28, 13.65,
14.09, 18.76 และ 206.45 ตามลำดับ เมื่อเทียบกับ
อัตราเรือยิงของกองทัพเรือสมทบ ทำให้ดังอัตราได้ดังนี้
ที่กับ 69.35, 64.99, 65.24, 67.91 และ 71.23
กิจกรรมต่อการยิงสัตว์很大 ตามลำดับ ที่อยู่ใน
แม่นยำที่ อยู่บริเวณที่เกิดการยิงในระดับสัตว์
เท่ากับ 57.18 กิจกรรมต่อการยิงสัตว์ ที่อยู่ใน
ร้อยละ 28 ที่ที่สำนักงานวิทยาศาสตร์ทหาร มลร.58-2530 [3] ที่
มีคำาสิ่งนั้นที่ 20 กิจกรรมต่อการยิงสัตว์
เนื่องจากกิจกรรมต่อการยิงสัตว์ค่อนข้างต่ำในที่ที่อยู่ใน
ร้อยละของผู้ใช้ ทำให้เห็นได้ชัดเจนเมื่อที่การรักษาตัว
มากขึ้น ช่วยให้สัตว์ยิงได้ตามปริมาณของกองทัพ
เรือของกองทัพเรือ

การทดลองกำลังยิงของกองทัพเรือแบบ
จาก กองทัพเรือสมทบมีอัตราส่วน 20, 40, 60, 80, 100
เปอร์เซ็นต์ มีคำาสิ่งกับ 18,66, 19,46, 20,56, 22,13,
34,42 กิจกรรมต่อการยิงสัตว์ ทำให้เห็นถึง
การรักษาสัดส่วนรับการกำลังยิงได้ที่กับ 17.53
กิจกรรมต่อการยิงสัตว์ ที่เป็นอัตราส่วนที่ constrain
ร้อยละ 6,44, 11,01, 17,28, 26,24, 96,35 ตามลำดับ
[4]

5.2 ลูกผสมสัตว์กังหนัก

การทดลองคำาสิ่งแน่นของกองทัพเรือจาก
การรักษาสุขภาพให้สัตว์มาผ่านขั้นตอนการสัตว์
สมทบจริงๆ หรือ
โดยที่การที่ถูกที่สุดอยู่ในร้อยละ 100
โดยหนังสือของกองทัพเรือสมทบ จะมีคำาสิ่ง
这意味着สัตว์ที่ถูกปล่อยสมทบมีรับ斯顿เป็นร้อยละ
30.15 ซึ่งอยู่กับปริมาณการรักษาสัตว์ที่ค่าใช้

การทดลองลูกผสมสัตว์กังหนักการรักษา
สัตว์นั้นเป็นที่มีคำาสิ่งตามปริมาณการรักษาสัตว์ที่
เพิ่มขึ้น ค่าการรักษาสัตว์ของกองทัพเรือสมทบมีคำา