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1 Introduction Scintillating glasses can be used for
the detection of X-rays, y-rays, and neutrons [1-3]. They are
cheaper and easier to fabricate with respect to single crystal
materials, but they suffer from inefficient energy transfer and
concentration quenching at higher content of emission
activator ions. In phosphate glasses the former problem was
overcome by embedding the energy guiding sublattice made
by high concentration of Gd 3* jons [2]. Nevertheless, the
energy transfer was finally classified as phonon assisted [4]
due to crystalline field fluctuation in glass matrix.
Consequently, scintillation response contained a large amount
of slow components. Scintillating glasses are required to have
high light yield, high density, short decay time and -good
radiation hardness. To increase the density for effective
detection of X-/y-rays, Ce**-doped dense glasses with fast
decay time were investigated using high concentration of
Gd,0; at levels up to 30 mol% in the glass matrices [2, 5-7].

This paper provides the photo- and radioluminescence
(PL, RL) characteristics of Ce**-doped glass containing of
30mol% Gd,0; in the oxide glass matrix. The scintillation
response under excitation with 662 keV vy-rays from a '*’Cs
source is measured and compared to the response of the
BiysGe;0,, (BGO) single crystal scintillator.

2 Experimental The composition of the glass pre-
pared in this work was 158i02-30B,05-25A1,05-30Gd 05
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(mol%), and doped with CeO, (1.0wt%). The starting
materials were reagent-grade SiO,, H;BO;, Al(OH)s,
Gd,03, and CeO,. Powders of starting materials were mixed
homogeneously in an agate mortar and melted in an alumina
crucible under CO reducing atmosphere at 1580 °C for 1 h.
The melt was poured onto a preheated stainless steel plate
and then annealed at 600 °C for 4 h followed by cooling in the
furnace at its natural cooling rate to ambient temperature.
Polished plate of about 7 x 7 % 1 mm® was used for all
measurements. The glass density was 4.70 g/cm” determined
by Archimedes method.

The excitation and emission spectra were recorded by a
Hitachi F-2500 fluorescence spectrophotometer equipped
with a 150 W xenon lamp source. RL spectra and PL decays
were obtained using the custom made 5000M fluorometer,
Horiba Jobin Yvon, equipped with X-ray tube (40kV, Mo
anode) and pulsed (ns) hydrogen flashlamp as excitation
sources, respectively, for details see Ref. [8].

Photoelectron yield, expressed as 2 number of photo-
electrons per MeV (phe/MeV) of absorbed +y-photon, and
energy resolution were measured by a Photonis XPS?.OOB
PMT under the excitation with 662 keV vy-rays from a s
source., The measurements were carried out with 4 s
shaping time constant in a spectroscopy amplifier. The
PC-based multichannel analyzer (Tukan 8k MCA) was used
to record pulse height spectra. The light yield, expressed
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as a number of photons per MeV (ph/MeV) of absorbed
y-photon, was determined by relating the response of
Ce *"-doped Gd glass to 662 keV photopeak to the response
of a reference BGO crystal (light yield of ~8 500 ph/MeV),
and by taking into account the photocathode quantum
efficiency of PMT for BGO crystal and Ce*-doped Gd glass
emission wavelengths.

3 Results and discussion Absorption and excitation
spectra for the Ce**-doped Gd glass at room temperature
(RT) are given in Fig. 1. The broad bands (230-375 nm) are
attributed to the 4f — 5d transitions of the Ce®* ions
admixed with ®S, — °1,,°P, transitions of the Gd** ions.
Energy transfer from higher | yin% tates (°L,, °P4p) of Gd**
to lower lying 5d states of Ce™ can further strengthen
emission intensity of Ce**. In the absorption spectrum, the
absorption edge located around 375 nm is due to the 4f — 5d,
transition of Ce**. The charge transfer absorption band of
Ce“*islocated at longer wavelength with an absorption edge
around 450 nm in case when the glass is made under an air
atmosphere [7]. As it is absent in Fig. 1 it indicates that Ce**
ions efficiently transform into Ce** ions when glass melts
under the CO reducing atmosphere.

Characteristic broad emission band of Ce®* is peaking
around 400nm under 300 nm excitation, but it is worth to
note that the band is inhomogeneously broadened. This is
rather typical situation of Ce®* center in glassy environment.
RL spectra of both Ce**-doped Gd glass and BGO standard
sample at RT are given in Fig. 2. The samples have about the
same shape and the measurements were performed in closely
similar conditions, so that the spectra can be compared in an
absolute way. The integral scintillation efficiency (integral
of RL spectra) of the Ce**-doped Gd glass sample is ~30%
of the BGO standard sample.

The PL decay at 386nm of the Ce>*-doped Gd
glass sample under excitation with J.,=310nm is
given in Fig. 3(a). Its double-exponential approximation,
I(t) = ZAexp(—1/t;) + background, i = 1,2, yields the decay
times 7,=283ns and .= 165ns with respective com-
ponent intensities /; = (A;1)/(ZA;t;), namely, I, =92% and

8
+

1,2 - - - .
Gd-glass : Ce (a) absorption

) 1.0+ A\ (b) 4_=410nm | 7
‘c c) A_=300 nm
: [\ lezsom ||
] (c)
e
S 0.6 J
=
= 04 _
®
T 02 -

0.0 - SN

200 300 400 500 600 700

Wavelength (nm)

Figure 1 (online color at: www.pss-a.com) Absorption (a),
excitation (b) and emission (c) spectra of Ce**-doped Gd glass
sample as measured at RT.
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Figure 2 (online color at: www.pss-a.com) RL spectra (X-ray

excitation: 40kV, 15 mA) of Ce**-doped Gd glass and BGO crystal

as measured at RT. The spectra are mutually comparable in an
absolute way.

I, =8%, respectively. The PL decay at longer wavelength
of 470nm under excitation with J.,=360nm was also
measured and is given in Fig. 3(b). Its double-exponential
approximation, I(t) = 1481exp(—t/40.3ns)+49 exp(—1#/
136ns)+0.17, yields the decay times 1,=40.3ns and
72 = 136 ns with respective component intensities /, = 90%
and [, = 10%, respectively. While z, decay times are typical
for the 5d; — 4f radiative transition of Ce** [9] there is no
immediate explanation of longer r, ones though respective
component amplitude is very small.
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Figure 3 (online color at www.pss-a.com) PL decay curves
of the Ce**-doped Gd glass [(a) Jex=310nm, /em= 386 nm:
(b) fex=360nm, /.p=470nm] at RT. The solid lines are the
convolution of the instrumental response and the function
I(t),given in the figures.
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Figure 4 (online color at: www.pss-a.com) Pulse height spectra of
662 keV y-rays from a '*’Cs source as measured with BGO crystal
and Ce**-doped Gd glass (with a higher gain factor of 5.5).

Rather non-exponential decay of Ce** center in Fig. 3
and varying 7, values with emission wavelength are worth a
comment. Similar phenomena can be noticed in the silica
glasses doped with Ce”* ions [10, 11] and Eu®" ions [3]: the
5d excited state of both Ce*" and Eu®' is sensitive to
symmetry, short-range order and crystal field strength at a
given site of glass host. Due to glass matrix, the dopant is
embedded at a number of slightly inequivalent sites, the
emission band broadens inhomogeneously and the decay
time value varies as well. Nevertheless, position and shape of
PL and RL spectra in Figs. 1 and 2 nearly coincide and decay
non-exponentiality is rather small (note quite low /; intensity
of the decay component associated with longer z, decay
times) which means that the inhomogeneity of the Ce* sites
is rather small. ’

Pulse height spectra of 662keV vy-rays from a '*’Cs
source are given in Fig. 4 for both BGO crystal and Ce>*-
doped Gd glass (with a higher amplification gain factor of
5.5). To our present knowledge, this is the first time to obtain
the photopeak, which is well-separated from the Compton
continuum in the pulse height spectrum of 662 keV ~y-rays as
measured with Ce**-doped Gd glass. Based on the recorded
photopeak positions for Ce**-doped Gd glass and BGO
crystal, and by taking into account the photocathode
quantum efficiency of PMT for BGO crystal (~20% at
480 nm) and Ce**-doped Gd glass (~29% at 390 nm), we
estimated the light yield of Ce**-doped Gd glass to be about
907 ph/MeV as measured at 4 s shaping time constant, This

Table 1 Photoelectron yield, light yield, and energy resolution at
662 keV y-rays for Ce**-doped Gd glass and BGO crystal coupled
to the XP5200B PMT as measured at 4 s shaping time constant.

sample photoelectron light energy
yield yield resolution
(phe/MeV) (ph/MeV) (%)

Gd glass:Ce** 263 907 18.3

BGO 1700 8500 9.0

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

light yield is about 11% of BGO. The photoelectron yield,
light yield and energy resolution for both samples at 662 keV
+y-rays are given in Table 1.

4 Conclusions The Ce®*-doped Gd glass with small
inhomogeneity of Ce*" sites was successfully prepared
under CO reducing atmosphere, It exhibited an intense
violet-blue emission of Ce®* ions under UV and X-ray
excitations and an integral scintillation efficiency of about
30% of the BGO scintillator. Despite of low light yield
(~11% of BGO), it shows photopeak in the pulse height
spectrum of 662keV +y-rays, which is well-separated from
the Compton continuum. Based on good performance in -
ray detection, short decay time, lower cost and easier
fabrication, the Ce’*-doped Gd glass is very attractive
scintillator for practical applications e.g., in high-energy
physics. However, its scintillation light yield should be
further enhanced e.g., by optimizing the concentrations of
Gd**and Ce®" in the SiO;-B20s~Al,05-Gd,O5 system.
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