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An Investigation of Second-Harmonic Shifting Characteristic of
Stepped-Impedance Resonators

S. Theerawisitpong!, T. Suzuki?, and Y. Utsumi®

1Faculty of Technical Education, Rajamangala University of Technology Thanyaburi

39 Moo 1, Rangsit-Nakorn Nayok Road, Klong Hok, Thanyaburi, Pathumtani 12110, Thailand
2Department, of Electrical and Electronic Engineering, Nippon Institute of Technology
4-1 Gakuendai, Miyashiro-machi, Minami Saitama-gun, Saitama-ken 345-8501, Japan

Abstract— This paper reports an investigation of second-harmonic shifting characteristic of
SIR technology. In our study, two features of SIR technology including shortened length and
second-harmonic shifting characteristic have been investigated with respect to electric current
density and equivalent model. It is found that those features are obtained by the effect of
equivalent L-C lumped circuits at steps which are confirmed in our study. In addition, proper
SIR dimensions enabling second-harmonic frequency at greater than two times of a fundamental
frequency (> 2fp) have also been recommended in this paper.

-

1. INTRODUCTION

The microstrip stepped-impedance line was early proposed by Riblet since 1960 [1], and further
studied in later years by well-known pioneers such as Yong, Matthaei, Chang, Horton, Rhodes,

; and Makimoto [2-7]. Recently, SIR technology is still attracting attention, and is widely applied

" in various woﬂ;s. Because of two advantages of this technology consisting of shortened length and
second-harmonic-shifting-characteristic, it has therefore been applied for miniaturized filters design
having second-harmonic suppression [8-15]. Applying this technology, the length of resonator can
be decreased by two times of conventional uniform impedance resonator (UIR) and second-harmonic
frequency can also be shifted at more than two times of fundamental frequency (> 2fo). Although
these advantages are well recognized, the circumstance of shortened length and second-harmonic
shifting characteristic is not clarified yet in any reports.

In our study, SIR technology has been investigated with respect to electric current density and
equivalent model, which are also compared with that of UIR. In particular, an investigation of
second-harmonic shifting characteristic of SIR has been demonstrated in this paper with ease of
finderstanding in why the length of SIR shorter than the length of UIR and how second-harmonic
frequency shifted. Furthermore, we also recommend the proper dimensions of SIR technology.

2. SCHEMATICS OF UIR AND SIR

In our study, SIR technology has been investigated and compared with UIR technology. Their
schematics are shown in Figure 1. In this figure, the total length of UIR is defined by L and
strip-width W is corresponding to impedance Zy. On the other hand, the schematic of SIR consists
of two low-impedance and a high-impedance parts. The low-impedance parts are defined on the
length L; and width W; is corresponding to impedance Z1. The high-impedance part is defined
on the length Ly and width W; is corresponding to impedance Zs. Thus, the total length of SIR is
9L; + Le. It is noted that UIR has only a 50- impedance (Zo) while SIR has two low-impedance
(Z; < Zp) parts and a high-impedance (Z2 > Zo) part.

These resonators are designed and fabricated on a NPC-F260A laminate having substrate thick-
ness (h) = 1.2mm, dielectric constant (¢;) = 2.6, tangential loss factor (tand) = 0.0015, and
copper-strip thickness (£) = 9 um. Hence, the total length of UIR (L) corresponding to a fundamen-
tal frequency of 2 GHz and strip-width of a 50-2 impedance (Zo) can be calculated at 51.197 mm,
and 3.32 mm, respectively [16]. Meanwhile, the dimensions of SIR are designed at W; = 6.78 mm
(2, =30Q), Wp = 0.92mm (Z; = 10092), L; = 7.32mm, and Ly = 2L; = 14.64mm [17], where
the total length of SIR is corresponding to a fundamental frequency of 2 GHz same as that of UIR.
The frequency response of these resonators is shown in Figure 2.

Figure 2 shows frequency response of UIR and SIR having the same fundamental frequency
fo at 2GHz but second-harmonic frequency of SIR (fe.s1r) is greater than that of UIR (fsuir)-
The second-harmonic frequency of UIR is at 2f, but second-harmonic frequency of SIR is at 3.2fo.
Typically, the location of second-harmonic should be better than 2fy because it may harmful
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Figure 1: Schematics of (a) UIR having the length  Figure 2: Frequency response of UIR and SIR with
L and width W is corresponding to impedance Zp,  the same fundamental frequency at 2 GHz where
and (b) SIR having two low-impedance parts defined second-harmonic frequency of UIR is at 2fy and
by length L; and width W, and a high-impedance second-harmonic frequency of SIR is at 3.2 fo.

part defined by length Ly and width W5.

| to fundamental frequency which is an information signal of wireless communication systems. In

- addition, the_ﬂpngth of SIR is also shorter than that of UIR. The shortened length and second-
harmonic shiftihg characteristic mentioned above are two features of SIR technology which have
been investigated and demonstrated as detailed in Section 3.

3. INVESTIGATION OF SIR TECHNOLOGY

In this study, the total length of UIR and SIR is designed at the same length and both resonators are
analyzed together with respect to electric current density (J) and equivalent model. The electric

" current density flowed along the resonator length and equivalent model of those resonators are
shown in Figure 3.

Figure 3 shows electric current density (J) flowed along the length of UIR and SIR in fundamen-
tal and second-resonant modes, which is calculated by IE3D software, and their equivalent models.
The total length of UIR and SIR for this case is designed at the same length (Lrurr = L1,s1R)-
In fundamental mode, maximum electric current density of those resonators is at the center which
is a short-circuit position, and minimum electric current density is at the ends which are the open-
circuit positions. In second-resonant mode, minimum electric current density is at the open-circuit
positions. The maximum electric current density of UIR is at the short-circuit positions while maxi-
mum electric current density of SIR is near the short-circuit positions where are on the narrow strip
of a high-impedance part, due to current concentration on the narrow-width strip. The equivalent
model of UIR consists of a transmission line having an impedance Zy and total length | = A\;/2
while the equivalent model of SIR consists of two low-impedance transmission lines (21 < Zy)
having the length I; and a high-impedance transmission line (Z2 > Zo) having the length Iy = 21;.
Furthermore, equivalent L-C lumped circuits are also modeled at steps of SIR where L; is larger
than Ly. These circuits do not effect to second-resonant mode because they are at the short-circuit
positions in second-resonant mode but they only affect fundamental mode. The electrical length
of SIR in fundamental mode is accordingly lengthened. Consequently, fundamental frequency of
SIR is shifted down but second-resonant frequency is not change which is same as that of UIR, as
shown in Figure 4.

Figure 4 shows the frequency response of UIR and SIR where the total length of these resonators
is same. The L-C lumped circuit occurred at steps of SIR effects to fundamental mode and this
frequency is therefore shifted down because electrical length of SIR is lengthened, as mentioned
above, while second-resonant frequency is not change which is same as that of UIR at approximately
AGIlz. In order to adjust fundamental frequency of SIR same as that of UIR at 2 GHz, the total
length of SIR must be shortened. Thus, fundamental and second-resonant frequencies of SIR are
shifted up together. The results of UIR and shortened SIR can see in Figures 1 and 2. In those
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Figure 3: Electric current density (.J) flowed along the length of UIR and SIR in fundamental (fo) and second-
resonant. (f,) modes, and their equivalent models, where the total length of these resonators is designed at
the same length (L1.urr = Lr.srr)- Symbols O and S denote open- and short-circuit positions.
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Figure 4: Calculated result of frequency response of UIR and SIR where the total length of these resonators
is same. The fundamental frequency of SIR is shifted down while second-resonant frequency of SIR is not
change which is same as that of UIR (at approximately 4 GHz).

figures, the fundamental frequency of UTR and SIR is same at 2 GHz but second-resonant frequency
of UIR is at 2f while second-resonant frequency of SIR is at 3.2f, and the total length of SIR is
shorter than that of UIR.
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4. DIMENSIONS OF SIR

The recommended dimensions of SIR technology are given in [17], where the length ratio N = La/Ly
is recommended in a range of 1.5 to 2.0 and impedance ratio R = Z; /Z; is recommended in a range
of 0.2 to 0.3. At those ratios, second-harmonic frequency can be improved at greater than 3fq
which is required for high-performance bandpass filters employed in commercial wireless systems.
Thus, the proper dimensions of SIR for a NPC-F260A laminate are as follows: W; = 6.78 mm
(Zy = 30§2), Wa = 0.92mm (Z; = 100Q2), Ly = 7.32mm, and Lz = 2L; = 14.64 mm, where ratios
N and R are respectively 2.0 and 0.3. Second-harmonic frequency can be shifted up to 3.2fo which
is satisfactory for further application [17].

5. CONCLUSIONS

An investigation of second-harmonic shifting characteristic of SIR has been demonstrated in this pa-
per. In particular, two features of SIR technology including shortened length and second-harmonic
frequency shifted has been investigated with respect to electric current density and equivalent
model. Those features are obtained by the effect of equivalent L-C lumped model at steps which
are confirmed by our study reported in this paper. This report is beneficial to make sure that why
shortened length and how second-harmonic frequency shifted.
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