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Abstract

This paper presents the effect of self-contact on
postbuckling behavior of a variable-arc-length elastica
where one end is clamped while the other end is
placed on the sleeve joint. An axial force is applied at
the sleeve end so that the clastica is well deflected
into postbuckling state. The governing differential
equations are established from equilibrium equations
of a small segment of the elastica and geometric
relations. The shooting method is employed as a tool
for computing the numerical results. From the results,
it reveals that the elastica subjected to the
compressive load can lose its stability under some
perturbation of displacement. Without the effect of
self-contact, the elastica move through itself and the
intersection points can be observed. By taking the
self-contact into consideration, the elastica obeys the
non-penetration condition and the elastica is stable
again when it is deflected until the self-contact takes
place.
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1. Introduction

The variable-arc-length (VAL) elastica is known
as the elastica where one end can slide freely on the
support. This causes the increase of the material into
the system. This kind of model was pioneered by
Chucheepsakul and Huang [1]. Afterwards, several
papers about the VAL elastica were investigated by i)
changing load case [2-6] and ii) changing boundary
conditions [7]. However, the effect of self-contact was
not included in their papers. Thus, for more practical
results, the self-contact will be considered in this
paper. It should be noted that the self-contact
considered in this paper belongs to the class of rigid
contact and the contact surface is assumed to be
frictionless. This means the cross section of the
elastica will not deform when self-contact occurs and
no friction force at the interface. The concept of
modeling the self-contact is to treat the contact force
as a point load oriented normal to tangent vector at
the contact point [8]. With this concept, the
computation of the self-contact elastica is possible.

In this paper, the weightless VAL elastica of

span length L and flexural rigidity E/ is considered.
One end of the elastica is completely fixed while the
other end is placed on the sleeve support where the
length can be increased by feeding the material at this
support (see Fig. 1b). At a very large deflection, the
each portion of the elastica can move to contact each
other at a certain point. This is recognized as the self-
contact elastica. The applications for this problem can
be found in feeding systems (e.g., in printers, in
rolling metal sheets, in conveyor belts, etc.) The
governing differential equations for dealing with this
problem are created from equilibrium of a small
segment of the elastica together with the geometric
relations. To explain the global behavior of the
elastica, the system of the differential equations need
to be integrated and the end values must be according
with the boundary conditions of the problem. This
constitutes the two-point boundary values problem
where the shooting method is an efficient tool for this
kind of problems. Hence, the shooting method is
employed in this study.

From the results, it is found that the VAL
elastica can lose its stability for some perturbation of
displacement. The instability of the elastica can be
ceased by considering the self-contact of the elastica,

2. Statement of the problem

In  Fig. 1, undeformed and deformed
configurations of the elastica are demonstrated. In
undeformed state, the weightless elastica is rested on
the rigid surface (see Fig. 1a). This can be viewed as a
feeding system operated by rolling balls at left and
right ends. If the roller at the left end is not in function
and the rolling system at the right end tries to push the
material into the system, this results in a compressive
force applied at the right end. Under the compressive
force, the elastica can be deflected into Fig. Ib. As
can be observed that during the deflection the span
length L of the elastica does not change but the total
arc-length is increased where this characteristic can be
considered as the VAL elastica.
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Figure 1. Undeformed and deformed
configurations: (a) undeformed configuration; (b)
deformed configuration

3. Formulations

By considering a weightless elastica and its
small segment in Fig. 2, the equilibrium equations can
be expressed by

(la-c)

Figure 2. An elastica segment

N,V and M are normal force, shear force and
bending moment, respectively. s is arc-length of the
elastica. The geometric relations can be given by

dx

_=cosg;ﬂ=sin9 (2a,b)
ds ds

x and y are horizontal and vertical distances

measured from the reference point O. & is an angle of
the elastica defined from the x-axis.

For the sake of the generality, the following non-
dimensional parameters are introduced.

(3a-c)

(3d-H)

Subsequently, equations 1 and 2 can be rewritten into
non-dimensional forms as

d——O;ﬂ/-= O;d— =—V cos@+ Nsiné (4a-c)
das ds s
% =cosé,; % =sin@ (4d.e)

Equation 4 forms a set of the non-linear governing
differential equations of the system defined in a very
small region 45 . To describe the whole system of the
elastica, Eq (4) must be integrated. There are several
techniques of integration such as elliptic integral
technique [2,4,5.7] and numerical integration by
Runge-Kutta algorithm [6]. The finite element method
was also used as a numerical tool for solving this kind
of problems [1,3,6]. In this paper, the numerical
integration (i.e., Runge-Kutta method) is employed.
The integration is performed from one end to the
other end of the elastica and this is referred to the
two-point boundary value problem where the shooting
method can be served as a powerful tool for
calculating the results. The boundary conditions of the
problem are as follows

At5=0:
x(0)=0;7(0)=0:0(0)=0 (5a-c)
At 5=35,:

x(5)-1=0,5(5)=0,0(5,)=0 (5d-f)

5§, is the total arc-length of the elastica. As can be

L

seen in Eq 4, there are three unknown parameters (i.e.,
N(0),7(0),M(0). Therefore, three constraint

equations need to be supplied (i.e., Eqs (5d-f)). By
integrating Eqs (4a-e) associating with boundary
conditions in Egs (5a-f), the solution of contact-free
VAL elastica can be obtained.

For the case of the self-contact elastica, there are two
additional unknown parameters increased from the
contact-free elastica. They are the arc-length at a
contact point 5, and the contact force at that point F,.

Thus, it is necessary to increase the constraint
equations from 3 equations (the contact-free case) into
5 equations (the self-contact case). Since the
deflection of the elastica is symmetry, the additional
constraint equations are utilized the advantage of
symmetry conditions of the deflection. The constraint
equations are

9(§)-%=0;§(a)—0.5=0 (6a,b)

Furthermore, the elastica in this case is divided into
three segments: i) 5 =075, ii) §=5 .27 -5,
and iii) § =5 =5, —75,. This is because there is a
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discontinuity (jump) in force N at the contact point.
Thus, the integration of the entire length of the
elastica is also divided into three parts as previous
mention. The continuity of bending moment and
displacements at the contact point is considered
during the integration process as well as the

discontinuity of the force N at the contact point.

4. Results and discussion
4.1 Contact-free elastica

In this case, the self-contact is not taken into account.
The load-deflection curve is presented in Fig. 3.
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Figure 3. Load-deflection curve for contact-free VAL
clastica.

From the curve, the naturally straight elastica is
buckled at [N] =4. Afterwards, it loses the
stability where the stiffness of the system becomes

negative (i.e., negative slope of load-deflection
curve). At a given load that less than the critical load

”N || < "N ]Lr , there are two equilibrium configurations.
One is stable configuration (i.e, straight

configuration) and the other is unstable configuration
(i.e., deformed configuration). This means that, under

compression ||ﬁ"<||ﬁ||”, the system can lose its
stability when the straight elastica (line OA) is
disturbed so that it snaps into the broken line of the
equilibrium path (line AB) in Fig. 3. For [N]>|¥] .
the system is definitely unstable. Under some small

perturbation, the system will lose its stability. The
equilibrium configurations are plotted in Fig. 4.
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Figure 4. Equilibrium configurations of the VAL
elastica (the contact-free case)
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As can be seen that, the elastica moves through itself
when the self-contact is not taken into account for
total arc-length 5, =8. By varying total arc-length, it
is found that the self-contact of the elastica begins at
total arc-length 5, = 6.61 (see Fig. 5).
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Figure 5. Equilibrium configuration for 5, = 6.61

4.2 Self-contact elastica

In the case of self-contact elastica, the load-
deflection curve is shown in Fig. 6. From Fig. 6, we
can observe that the equilibrium path emanated from
point C is the equilibrium path for the elastica where
self-contact takes place.
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Figure 6. Load-deflection curve for self-contact
elastica

As can be observed that the equilibrium path for self-
contact elastica (i.e., the solid line after point C) is
stable path since the stiffness of the system becomes
positive (i.e., load increases as deflection increases).
The equilibrium shapes of the self-contact elastica are
illustrated in Fig. 7.
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Figure 7. Equilibrium configurations for self-contact
elastica

5. Simple experiment

In this section, a simple experiment was setup to
validate the theoretical results with experimental
results. The experiment was conducted to compare the

geometry (maximum height, i_g,,u =ﬁm~fi) from the

analytical results and experimental results. The
maximum height A, can be computed by
integrating Eq (4e) from §=0 to .T~=%’. Figure 8
shows an elastic sheet (i.e., the polycarbonate sheet)
in the experiment and the maximum height A, .

Since the material model is assumed to be
linearly elastic material, the highly flexible material is
necessary. In this experiment, a polycarbonate sheet is
utilized as the elastic sheet. The span length L of the
elastic sheet is assigned to be 30 cm. Since the
material length is limited to around 100 cm, with span
length of 30 cm. the total arc-length 5, cannot be

larger than 3 ( 90 cm.).

In the analysis, it indicates that the system is
unstable and any measurement during unstable state is
very difficult because only a small disturbance causes
the system into motion. Thus, in this experiment, the
elastica needs to be stabilized by preventing the both
ends from motion (clamped at the both ends). After
stabilization of the system, the height of the elastica
can be read easily by image processing.

Figure 8. Simple experiment to scale the maximum
height (in the figures, =3)

Tablel The maximum height of the elastica:
theoretical results

2 0.74661 22.3983
3 1.19161 35.7483

Table2 The maximum height of the elastica:
experimental results and theoretical results

e ()
Theory Experiment
2 22.3983 22.9070
3 35.7483 36.3855

In table 1, the maximum height from the theoretical
results is presented. In table 2, the theoretical results
and experimental results are compared. It can be seen
that both results are in good agreement.
Unfortunately, the material length is limited. The
experiment for higher values of total arc-length
5, does not conduct in this paper. However, in the

further study, it is interesting to setup more advanced
experiment such as setting the load cell to read the
axial force and using a very long polycarbonate sheet
to observe the effect of self-contact in the experiment.

6. Conclusion

The variable-arc-length elastica where one end is
clamped and the other end is placed on the sleeve
joint is investigated. The analytical results are in good
agreement with those from the experimental results.
From the results, it can be concluded that without
effect of self-contact, the elastica can lose its stability
by some perturbation of displacement. The elastica
can gain the stability again if it moves to contact
itself.
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