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Abstract

In this research study, 10 of the latest metaheuristics' performance characteristics are compared in the
context of 19 unconstrained benchmark functions, where the large dimension of the test challenge is 100.
Optimization problems may often encompass a large number of design variables, exerting complex effects upon
the specific objective function. The performance is evaluated as the algorithm seeks a global optimum and avoids
becoming trapped in a local optimum through the use of best values, mean and standard deviation (Stdev.). This
study also uses Friedman Aligned Ranks and applies the Quade Ranks test to examine the differences in
performance as the algorithms seek their solutions. Analysis of exploitation is conducted using Friedman Aligned
Rank tests, while exploration is addressed using the Quade Ranks test. The study revealed that the different
algorithms use different approaches to look for their solutions, with a significance level of 0.05. Finally, the
comparison of the ten algorithms' performance is presented in this paper in the context of solving constrained
mechanical and chemical engineering problems.

Keywords: Metaheuristics, Optimization techniques, Unconstrained benchmark functions, Constrained

engineering optimization, Friedman Aligned Ranks, Quade Ranks

1. Introduction

Among the various real-world problems
addressed by artificial intelligence or machine
learning involve a number of different types,
including discrete, continuous, constrained, or
unconstrained problems. However, studies have
shown that the suitable approaches for these various
problem types are not always sufficient to handle
large-scale multimodal real-world problems that may
be non-continuous or non-differentiable (1-3).
Therefore, metaheuristic algorithms are suitable to
address a wide range of problems and have thus been
designed and employed as competitive alternative
solvers based on their ease of implementation and
inherent simplicity. Furthermore, these techniques'
fundamental operating processes are not reliant upon
the gradient details for the objective landscape, nor
are the mathematical traits necessary.

All  optimization algorithms act by
performing the exploration and exploitation
processes within a particular search space (4), while
to obtain the best solutions, the two processes must
be suitably balanced. During the exploration stage,
the algorithm will search the most promising areas
within the search space, while the exploitation stage
finds the best solutions within those most promising

areas (5). Optimal solutions or solutions close to
optimal can only be found when the exploration and
exploitation processes are suitably tuned. Given that
there are so many optimization algorithms available,
it is always questionable whether there is a need to
develop different optimization algorithms.
Metaheuristics have increasingly taken
precedence in recent studies (6-7) and are now more
widely applied. There is also a comparison
metaheuristic with benchmark functions (8). They
can be categorized into four broad types, as shown in
Figure 1: genetic evolution-based algorithms, animal
and plant-based algorithms, human activity-based
algorithms, and physics-based algorithms (9). The
algorithms can be described as problem-independent
since they can be used to seek approximate optimal
solutions in the context of highly complex nonlinear
problems that cannot be addressed by traditional
deterministic approaches due to the time that
conventional techniques would require (10).
Accounting for their increased popularity in the
science and engineering fields today, metaheuristic
optimization algorithms offer many advantages over
the conventional approaches (11): they are flexible,
simple, have a derivation-free mechanism, and avoid
local optima. The drawback is that an exact solution



Prog. Appl. Sci. & Tech. Vol.11 No.1 (2021)

11

cannot be guaranteed, but the solutions generated are
generally acceptable and will be achieved much more
quickly.

Figure 1 The four main categories for metaheuristic algorithm inspiration

When new optimization algorithms are
created, it is necessary to verify their operation and
draw comparisons with alternative algorithmic
approaches. To do this, benchmark evaluation
functions may be employed to measure the efficiency
of the algorithm. To assess the output from the
optimization process, the various algorithms are
tested, and comparisons are drawn by using the
benchmark functions. In this study, ten novel
algorithms from 2018 to 2020 are assessed for
optimization. They are shown in Table 1 and include
Beetle Antennae Search (BAS), Atom Search
Optimization (ASO), Henry Gas Solubility
Optimization (HGSO), Sunflower Optimization
(SFO), Seagull Optimization Algorithm (SOA),
Mayfly Algorithm (MA), Marine Predators
Algorithm (MPA), Parasitism Predation Algorithm
(PPA), Slime Mould Algorithm (SMA), and Tunicate
Swarm Algorithm (TSA). A total of 19 benchmark
test functions were also selected to verify and analyze
the algorithms' performance.

The fields of chemical and mechanical
engineering or similar industries have used the
problem-solving  capacity of  metaheuristics,
including Gray Wolf Optimizer (GWO) or PSO using
an ABC algorithm (27). Simultaneously, researchers
have also sought to employ such algorithms as GWO
with multi-objective optimization (MOO) to address
problems such as producing biodiesel from waste
cooking oil to lower the capital costs and procedural
costs advantage of the primary functions of MOO
(28). The field of energy conservation applied an HS
algorithm to perform the synthesis of heat-integrated

distillation sequences. This method requires that the
distillation sequence be first considered, followed by
the heat integration, to hold the overall annual cost to
a minimum. The HS algorithm can be improved to
address this particular problem and proved itself to
be both robust and effective in this context (29). In
electrical engineering, Electrical Load Dispatch
(ELD) offers a means of combining many power
generating units in an optimal formation, minimizing
the overall fuel cost while simultaneously generating
sufficient power to meet the load demand. The
technique uses a modified directional Bat Algorithm
(dBA) to ensure that operational constraints are
respected. It can be seen that the use of dBA allows
operational costs to be reduced with improved
convergence attributes and lower computational time
(30).

This research paper begins in Section 2 with an
overview of metaheuristic optimization algorithms.
Section 3 describes the benchmark functions tests
and the procedures for performance testing. The
ranking system to assess each algorithm's
performance is also discussed. Section 4 presents the
results, including the best value, mean, Stdev.,
Friedman Aligned Ranks test and Quade Ranks test
outcomes. Section 5 contains an analysis of
constrained  mechanical-chemical ~ engineering
problems, and the principal findings and conclusions
are presented in Section 6.
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Table 1 Various algorithms and their creators

Algorithm Proposed by Proposed
year
BAS Jiang and Li (31) 2018
ASO Zhao et al. (32) 2019
HGSO Hashim et al. (33) 2019
SFO Gomes et al. (34) 2019

SOA Dhiman and Kumar (35) 2019
MA Zervoudakis and Tsafarakis 2020

(36)
MPA Faramarzi et al. (37) 2020
PPA Mohamed et al. (38) 2020
SMA Li et al. (39) 2020
TSA Kaur et al. (40) 2020

2. A Review of metaheuristic algorithms used for
the optimization
2.1 Beetle Antennae Search (BAS)

BAS has its basis in the way the longhorn
beetle behaves as it searches for food. The algorithm
mirrors the activity of the beetle’s antennae and
resulting walking, which is naturally performed by
the beetle. The principal steps are therefore detection
and scanning (31).

2.2 Atom Search Optimization (ASO)

The basis of ASO algorithms is the atomic
motion model, which is structured mathematically to
represent the way atoms interact, taking into account

2.3 Henry Gas Solubility Optimization (HGSO)

Henry’s law provides the foundation for
the Henry Gas Solubility Optimization (HGSO)
algorithm to find solutions to complex problems
involving optimization. This integral gas law
explains the amount of gas that can be dissolved
within a particular form and volume of a liquid at a
given temperature. HGSO copies the buoyancy of
gas for the purposes of extraction and discovery
within the search space while avoiding the problem
of local optimization (33).

2.4 Sunflower Optimization (SFO)

The SFO algorithm is an iterative and
population-based global heuristic algorithm for
optimization. It differs from conventional algorithms
in making use of terminology, including root velocity
and robust pollination. In the natural world,
sunflowers follow the same daily routine, following
the sun throughout the day as it moves across the sky.
During the night, the movement direction is reversed
as they await the sunrise the following morning.

In testing the SFO algorithm, Gomes et al.
discovered that good positions could be located in
regular feature testing, thus confirming the right level
of efficiency. However, certain adjustments were
necessary to optimize various dimensions to ensure
maximized computational (34).

the Lennard-Jones (41) interaction and restriction
forces that would result from the bond length
potential. This approach is both simple and offers
ease of practical use.

The first five atoms which offer the ideal
fitness value are designated as KBest , and Figure 2

presents the atom population forces. The cases
identified as 4, 4, 4 and 4, makeup KBest, as
Figure 2 shows, while 4;, 4 and 4, serve to entice
or provide resistance to each of the KBest atoms
while 4, 4,, 4 and 4, either resist or entice each
other. Within the population, each atom has a
limitation force derived from the best atom 4, with

the exception of 4 ( x,,,,) (32).

@ KBest
e Auraction
e Repulsion
Constraint
@,
s

Figure 2 Forces within the system of atoms with
KBest for K =5

2.5 Seagull Optimization Algorithm (SOA)

The SOA is based on the way seagulls
naturally move and make their attacks on migratory
birds as their victims cross the sea (42). Their attacks
typically involve a spiral movement as they approach
their targets. This can be represented mathematically,
as shown in Figure 3. It is essential to consider this
action to correlate with the target function to be
further refined if necessary. It is thus, feasible to
develop a new optimization algorithm. In this
context, SOA is based on seagulls' two biological
activities: Moving, and attacking, respectively to
exploration and exploitation (35).

vy

Good Lift *Circle - Prey

Wind ;i

Figure 3 The movement and attacking strategies of
seagulls
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2.6 Mayfly Algorithm (MA)

In 2020, Zervoudakis and Tsafarakis
developed the mayfly algorithm (MA) inspired by
mayflies' mating behavior. Upon hatching, mayflies
become adults, and while the lifespan may be short,
it is the healthiest mayflies that can survive. Solutions
to an optimization problem are given by the location
of the mayfly within a search space. The algorithm
works by first creating two mayfly sets to serve as
males and females (36).

2.7 Marine Predators Algorithm (MPA)

The marine predator's algorithm (MPA)
uses the foraging activity of sea creatures as the
model, in the form of Lévy and Brownian behaviors,
along with the optimization policy, which considers
the rate at which encounters between marine
predators and their prey take place. MPA employs the
natural rules that govern the optimal foraging
strategy in line with prey and predators' meeting rate
within the natural ocean setting. There are three
critical phases of MPA optimization, Phase 1: The
high-velocity ratio when the prey speed exceeds that
of the predator, Phase 2: The unit velocity ratio when
the predator and prey have equal speeds, giving the
impression that both are seeking prey, Phase 3: The
low-velocity ratio when the predator speed exceeds
that of the prey. This situation will arise during the
last stage of the optimization process and is
associated with more significant exploitation
potential. Figure 4 presents a visual representation of
the three phases involved in MPA optimization 37).

Phase 3

S Elite (Predator) g0 = 3

@« Prey

4 Browntan
% Levy movement ‘\\
" Eddy and FADs

Figure 4 Three optimization phases using MPA

2.8 Parasitism Predation Algorithm (PPA)

The PPA is based on the complicated
relationship between predators, parasites, and hosts,
represented respectively by cats, cuckoos, and crows,
which are sued to produce the crow-cuckoo-cat
device model, which is able to address the issucs
arising in problems with a lack of cohesion and large
data dimensions (38).

2.9 Slime Mould Algorithm (SMA)

The SMA is based on the slime mould known
as Physarum polycephalum, which was initially
understood to be a fungus when Howard (43) described
its life cycle in 1931. It is eukaryotic which thrives in
locations that have high humidity and low temperatures.

Its principal nutritional phase is plasmodium,
representing the slime mould's complex activity stage,
replicated by the algorithm for its primary testing
process. In this phase, the slime mold's organic
components seek food before occupying that food and
consuming it by the emission of enzymes. As the slime
mould migration occurs, the front end takes on a fan-
shaped appearance, as seen in Figure 5, while an
intersected venous network is developed behind this to
facilitate cytoplasm movement (39,44).

Figure 5 The slime mould foraging morphology

2.10 Tunicate Swarm Algorithm (TSA)

The TSA uses swarm intelligence to address
real-world optimization problems using community or
multi-solution swarm intelligence to analyze the
search space better to find the global optima. However,
such an approach cannot solve all optimization
problems, as explained in the No Free Lunch Theorem
(45). These shortcomings inspired to seek a novel
population-based metaheuristic algorithm that might
address those problem types that cannot currently be
solved using current techniques (40).

3. Methodology
3.1 Benchmark functions test

When assessing an algorithm's optimal
performance, its achievements must be compared with
those of other algorithms for validation by testing with
a set of benchmark test functions (46). These
benchmarks, which are artificial problems, allow
assessments to be carried out for the algorithm's
efficiency, reliability, and validity under examination.
Accordingly, the performance can be objectively rated.

This research study examined 19 benchmark
test functions, which are presented in Table 2. These
were drawn from the work of Jamil and Yang (46). For
the ten optimization algorithms examined in this study,
the benchmark functions have at least one optimum.
Table 2 shows that ten are shown to be unimodal across
the 19 benchmark functions as a whole, while the
remainder is multimodal. It is possible to assess the
algorithms' exploitation capabilities using the unimodal
test functions, while algorithms can be better explored in
greater depth by using the multimodal functions. The
unimodal function plots can be seen in Figure 6, while
the multimodal plots are presented in Figure 7.
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Figure 7 3D surface plot multimodal function:(a) Alpinenl, (b) Qing, (c) Styblinski-Tank

3.2 Performance testing procedure

A variety of benchmark functions were
selected to encompass a range of features. There were
19 in total. Ten optimization algorithms were then
examined in the context of the 19 unconstrained test
problems. The algorithms' experimentation process is
carried out with MATLAB Version R2020a, while
the simulation uses Microsoft Windows 10 (64 bit)
with a Core i7 processor with 2 GHz and memory of
8 GB. The experiments for all algorithms employed
the same conditions to ensure fairness, with the
maximum number of evaluations set to 50,000. The
dimensions for all algoritims were set to be 100
when problem-solving. The effects of any other
random factors which might influence the algorithm
results were mitigated by running the comparative
algorithms separately for 30 iterations in each
function before taking the final result. The
measurements included best values, mean and Stdev.
These values were used for further analysis.

Table 2 The selected 19 benchmark testing functions

Function Name

Function Formulation

Dim (D), [lower bound, upper bound]
Alpinen]

d

fi)= le, sin(x, ) +0. lx,l
i=l

D=100, [-10,10]

Brown

- + 341
=3 4 (32, )

i=l

D=100, [-5,5]

Table 2 (Countinued)

Function Name
Function Formulation
Dim (D), [lower bound, upper bound]

Dixon& Price
.
L) =(x-1)+ Zi(Zx,’ —x,_,)
in2
D=100, [-10,10]

2

Happy Cat

2 2 'lll bl 8 g 1
50 =[(F -a) T o 23+ $n o £
D=100, [-2,2]

Periodic

J5(x0) =1+isin2 (-‘,)—O.Ie[?‘]
i=)

D=100, [-15,15]

Powellsum
d
/;(x) = ZIX!IM
i=l
D=100, [-1,1]

Qing
d
SR = (=i

D=100, [-525,525]

Quartic

fi(x)= Zd:ix,‘ +random[0,1)

=l

D=100, [-2,2]
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Table 2 (Countinued)

Function Name
Function Formulation
Dim (D), [lower bound, upper bound]

Rastrigin

f(x)=10d + zd:[x,z —10cos(27x, )]

i=l

D=100, [-10,10]

Schwefel 2.20
d
Jo®)=2Jx|

=]

D=100, [-110,110]

Schwefel 2.22

d
519 = el T Tl

=l

D=100, [-110,110]

Schwefel 2.23

d
fa®)=X5°

i=1
D=100, [-15,15]

Styblinski-Tank
d
fl,(x)=%Z(x,f’ +16x7 +5x,)

i=l

D=100, [-5,5]

Sum of Different Powers
3 i+

YAGEDY
i=)

D=100, [-10,10]

Sum Squares

S =S

i=l

D=100, [-10,10]

Trid
d d
S =206 -1 =Y xx,
i=l

i=2
D= 50, [-6000,6000]
Xin-She Yang N.1

d i
Ja()="4[x| ; ¢ is arandom form [0,1]
i=l

D=100, [-10,10]

Xin-She Yang N.3
d /5 \° d d

Sa(®) = cxp[—lzl:(l—ls-] ]--Zexp(—zl,\:,?)l_lcos2 (%)
=] i i=]

D=100, [-10,10]

Xin-She Yang N.4

Sio(x) = (i sin® (x,) et )e—z,',,....zm
i=l

D=100, [-20,20]
In this study, rankings are to be applied as
a performance metric, based on assigning a rank to
each algorithm for each benchmark test function's
performance. A ranking of 1 is given to the best
performer, while ten is assigned to the worst.

Exploitation and Exploration performance are
measured through the Friedman Aligned Ranks test
and Quade Ranks tests, respectively and weightings
are used for the row ranks, whereby the factor used is
a function of the row range (47).

4. Results and discussion
4.1 Comparing each algorithm in terms of the best value

Statistical outcomes for the optimal results for
each of the algorithms on benchmark functions are
presented in Table 3, with numbers in the bold font
representing the best values in each of the benchmark
function tests, which serve as the global optimum. Those
figures indicated with an asterisk are solutions that are a
near-global optimum. It was found that the PPA and
SMA algorithms were able to produce the best values
for each of the functions when compared to the
alternative algorithms when considering 13 of the 19
functions for PPA and 12 functions for SMA. However,
SMA could determine a more significant number of
responses for the global optimal point than PPA,
whereas the remaining algorithms, including BAS,
SFO, ASO, MA, and TSA, could still not beat other
algorithms whose best values were superior. SMA can
avid the local optimum in functions 6 and 17, thus
exhibiting the capacity to explore around the optimum.,
In this regard, SMA is the sole algorithm capable of
reaching an optimal solution in the case of those two
functions. When considering the best values shown in
Table 3, it is apparent that SMA has a more remarkable
ability in the context of multimodal problems than it
does when faced with a unimodal problem.

Furthermore, it demonstrates better
solutions with scalable problems than is the case for
non-scalable problems. Its ability to obtain solutions
for particular problems is better than the alternatives,
but separable problems are not addressed effectively
as non-scalable problems. It achieves better
performance with continuous forms than with non-
continuous forms, and the data for functions 3.4, 7,
and 10 suggest that PPA offers the best solutions to
these problems and can work around the optimum
point, demonstrating a similar mathematical basis to
SMA. The difference is that PPA is better able than
SMA to solve unimodal problems rather than
multimodal problems and can handle both separable
and non-separable problems.

Meanwhile, HGSO achieves the best value
for six functions and a near-global optimal solution
for six functions. It demonstrates good exploitation
capability close to the optimum point, and while the
mathematical basis has similarities to that of PPA,
HGSO is better able to handle separable problems
than non-separable problems. Table 3 reveals that
BAS can find a near-optimal solution for function 12,
although this was the only function for BAS to
achieve any search success.
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Table 3 Comparison of the best value for each algorithm

# BAS ASO HGSO SFO SOA MA MPA PPA SMA TSA
Ji 25494766 001466 3ssE226  LIBBEH02  0,01466 99.09982  L.88SE-27*  0.I3813  8741E-294  105.46802
Jp  63S6E¥29  4299E-09*  0.00000  4.634E-04*  24S3E-18*  3SI3EN21 3.196E47*  0.00000 0.00000  1.656E-31*
f3 167608 108275 0.66667 0.82381 0.66667 0.05156 0.66667 0.00000 0.25779 0.66667
J4 9.0014 0.7794 2,058 0.8963 0.7075 0.6739 0.6773 0.0000 0.0003* 0.6560
/s 42532 1.005* 0.900 1.001* 1.804 39272 0.900 0.900 0.900 25.617
fé 2.44260 1.022E-23* 1.693E-13* 2.302E-05* 3.115E-59* 1.350E-09* 4.702E-124* 3.133E-08* 0.00000 7.850E-159*
J1 L4SEVIZ 261073 2250405 B8T9E+04  2.096E+05  9.78TE+ll  SITIEH03  0.00000 1795E+03  4.178E+04
J§  L147E+04 032513 43BE-06"  SA9TE-04*  4.803E-04®  S.626E+02  3.520E-04*  2094E-06*  3.57SE-05%  7.810E-03*
Jo 34T6E403 1L622E+02  0.00000 132411 0.00000 0.57518 0.00000 0.00000 0.00000  7.586E+02
Slo 329EHI2 787779 sossmame 593744 679E-11* 4.460EF03 5242526 0.00000 J073E-289¢  1.993E-17%
NI 2457046 S4G9EH02  s3eE23s  7993EH00  2ISGE-I1*  L74SES93  LI79E26  0.00000 0.00000  6.931E-18*
N2 6amEr  LOSE-IIY 0.00000  4258E-16*  2229E-58 20936412 14TE10C  0.00000 0.00000  2.836E-39%
Si3 (124511 3562.905* 1602034 2069497  -1999315 1337578 -3499.138* 39166 -3916.616  -2643.394
Jla 41ISEYBY  2127E+07  0.00000  1I0GE-06*  LOGGE-B4* 319535 410EIe  0.00000 0.00000  1.677E-106*
fis  1.514E+05  8.725E-08*  0.00000 048165 1.8SSE-18*  3038E-07*  8.998E-46*  0.00000 0.00000  1.779E-30*
Sl BM9E08  1444EH07  3SI0EH0T 69003 S20EH00  54UEWS  LeErd  0.0005400 -LOIE04  2.284E+02
J17  BBMEYS2  124IE+12 1ossmasos  233IE-04*  LISSE22°  L628EFI3 | LOI6E33e  2amEame 0.00000 102971
fig  suman 0.71510 017655  -0.97137* 0.17655 0.48233 -1.00000  -1.00000  -1.00000 0.50908
Nlg  GOLIE27  2845E39  8921E40  -S4VEOIF  S.138E40 2602527 1252042 100000 100000 5.557E-39

*Near-global optimal value
4.2 Comparing the mean and standard deviation for unimodal problems much more quickly than

each of the algorithm

Table 4 presents a comparison of the ten
algorithms' outcomes in terms of mean and Stdev.
Excellent performance or robustness is indicated by
a Stdev. approaching zero, while the numbers shown
in bold font represent the best values for the mean of
each benchmark function along with a low value for
the standard deviation. It can be seen from Table 4
that the best optimizer is PPA, ahead of SMA and
HGSO, respectively. PPA owes its success to its
ability to avoid the local optima, as observed in its
performance on functions 3, 4, 7, 11, and 19. For
function 11, the Stdev. for PPA, SMA, and HGSO
were all equal to zero, indicating excellent
robustness. However, the data do not show whether
the HGSO and SMA algorithm can avoid the local
optima. This also applies to function 19 for the same
reasons. Table 4 indicates that the MPA, SOA, TSA,
SFO, ASO, and MA algorithms can find the mean of
the optimal point, which is close to a global optimum
for 11 functions (MPA), nine functions (SOA), seven
functions (TSA), five functions (SFO), four functions
(ASO), and two functions (MA). These algorithms
show that they help exploit analysis and address

multimodal problems.

Furthermore, these algorithms show better
performance  with continuous problems than
discontinuous problems and better solve scalable
problems than the non-differential problem or
separable problems. However, one exception is the
ASO algorithm, which is better in non-separable
problems than separable problems.

Figure 8 presents the column bar of
average mean, best, worst, and Stdev. ranking and
presents the average overall ranking line. It can be
concluded that algorithms can be classified for global
performance into four groups according to the
average overall ranking by considering percentiles.
The 1% quartile optimizer is the SMA method, the 2™
quartile optimizers are the PPA, MPA, and HGSO
methods, the 3" quartile optimizers are the TSA,
SOA, and SFO methods, and the 4% quartile
optimizers are the ASO, MA, and BAS methods.
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Table 4 Comparative mean and Stdev. of each algorithm
# Statistical BAS ASO HGSO SFO SOA MA MPA PPA SMA TSA
T Mean 283.42905 0.62405 3.986E-196  1.806E+02 0.62405 107.41074 6.575E-26 0.55345 1.593E-183 136.95194
! Stdev. 16.85964 0.86697 0.00000 4.137E+01 0.86697 7.15790 5.900E-26 0.66192 0.00000 24.48173
£ Mean 2.881E+31 8.271E-05 0.00000 0.06486 8.625E-12  3.993E+23  6.324E-46 0.00000 0.00000 1.647E-28
2 Stdev. 4.017E431 2.612E-04 0.00000 0.07136 2.704E-11 6.931E+23 9.363E-46 0.00000 0.00000 2.604E-28
f Mean 2.0S8E+08 10.95289 0.66667 9.02345 0.66667 1.712E+03 0.66667 0.00000 0.52392 0.66667
3 Stdev. 2.866E+07 9.23969 3447E-07 8.20522 3.545E-06  5.385E+03  4.260E-08 0.00000 0.20693 3.545E-06
f Mean 33.9179 0.8477 9.7681 1.0055 0.8296 0.8166 0.7560 0.0000 0.1101 0.7800
4 Stdev. 11.0751 0.0473 4.3569 0.1033 0.0841 0.0883 0.0504 0.0000 0.1284 0.0973
f Mecan 46.116 4.034 0.900 1.018 18.983 42397 2.340 0.900 0.900 28.013
s Stdev. 2.39423 3.75850 1.170E-16 0.01693 12.70658 1.88719 2.19037 L170E-16 L170E-16 2.03404
f Mean 3.79708 2.059E-21 1.766E-07 1.912E-04 8.825E-07 3.114E-07  2.071E-117 3.133E-08 0.00000 2.540E-134
6 Stdev. 0.99072 4.790E-21 3.719E-07 2.370E-04 2.791E-06 2.933E-07 __ 5.985E-117 6.975E-24 0.00000 8.032E-134
f; Mean LS33E+I2  41SOE+09  2567E+0S  1.737E+05 23208405 1.062E+12  1.246E+04 0.00000 260SE+03  6.5TIE+04
7 Stdev. 6.509E+10 _ 6.39SE+09 1.880E+04  7.746E+04 1ASBE+04  4.988E+10  9.041E+03 0.00000 730.79736 1.400E+04
f Mean 1.509E+04 0.48365 4.336E-05 0.02773 1.236E-03 8.940E+02 9.930E-04 L771E-08 1.291E-04 0.01250
8 Stdev. 2.615E+03 0.12207 2.193E-05 0.05648 7.306E-04 2.245E+02 5.231E-04 1.190E-05 6.072E-05 3.889E-03
71 Mean 4.023E403  2.092E+02 0.00000 1.905E+01 0.09981 7.154E+01 0.00000 0.00000 0.00000 8.985E+02
9 Stdev. 3.042E4+02 _ 3.870E+01 0.00000 1.210E+01 0.31564 4.907E+01 0.00000 0.00000 0.00000 1.331E+02
f Mean S.078E+12 18.09511 1.889E-198  20.77224 4.691E-10  4.676E+03 4.377E-24 2.043E-304  5.015E-202 8.344E-17
10 Stdev. 1.009E+12 7.10930 0.00000 11.98781 3.460E-10 1.278E+02 5.509E-24 0.00000 0.00000 7.071E-17
7 Mean 241416 LI46E+03  1103E-191  2.606E+01  1.65GE-10 LILE+12 1.285E-24  3.092E-284  1.SIGE-168  2.405E-17
1 Stdev. 200060164 2.138E+02 _ 0.000E+00 __1.SSSE+01 1.359E-11 3071E112 1.643E-24  0.000E+00 __ 0.000E+00 _ 2.331E-17
fi Mean 4.712E+12 1.304E-05 0.00000 6.821E-03 3.062E-30 2779E+12  2411E-179 0.00000 0.00000 1.099E-31
12 stdev. Z000B+12  2903E:0s  0.00000 002122  9684E-30 _ 3.824+11 _ 0.00000 _ 0.00000 _ 0.00000 293031
£ Mean -535.4620 33548381 -1417.3697  -189L1113  -1871.0441  -12493802 33715149 -39.1662 39165952 25323162
13 Stdev. 326.038 88.898 113.657 92.265 122.023 73.385 83.714 0.000 0.042 101.998
f Mean 5.11E+95 1.8SE+12 0.00000 9.21E-03 1.35E-72 1.25E-21 3.83E-110 0.00000 0.00000 1.29E-43
14 Stdev. L124E+96  3.169E+12 0.00000 1.821E-02 3.985E-72 3.962E-21 1.026E-109 0.00000 0.00000 4.066E-43
f Mean 1.696E+05 0.03840 0.00000 2.71401 1.554E-16 7.91966 1.893E-44 0.00000 0.00000 2.400E-28
1S Sstdev. 1333E+04 __ 0.10981 0.00000  2.77089  2786E-16  2424E+01 __ 1.804E-44  0.00000 0.00000  2.396E-28
A Mean OO0STEFO8  S.A31E+07  3SIOE+07  7.837E+03  1.998E+01  1.792E404  -1.523E03  3.000E01  -LOSOE+0Y  -6.210E+01
16 Stdev. J.O7RE+07 __ 1473E+07  0.000E+00  1.8OSE+04 _ 924SE+00  2.926E+04 _ 2287E+02  4.830E-01 1.O60E+03 ___ 8.103E+01
7 Mean L441E+94  SOTSE+29  1.953E-91 6.008E-03  7.1ISE-06  L.I43E+I8  7.104E-22  |.295E-255 0.00000 275.50450
17 Stdev. 4.558E+94  1.602E+30  6.174E-91 S763E-03  2249E-05  2.393E+80  2.091E-21 0.000E+00 0.00000 531.44520
f Mean 6.664E-111 0.72947 0.17655 -0.20473 0.17655 0.54667 0.05889 =1.00000 -1.00000 0.54291
18 Stdev. 2.107E-110 _ 9.743E-03 2.926E-17 0.39070 2.926E-17 0.06506 0.37206 0.00000 0.00000 0.01844
f Mean 5.246E-22 3.306E-25 8.921E~40 -5.596E-02 8.790E-40 2.019E-23 5.182E42 -1.00000 -0.99999 3.287E-38
19 Sidev. 1.388E-21 S343E-25  0.000E+00  1.711E-01 _ 2819E-41 _ 4.149E-23  5.570E-42 0.00000 4.302E-05 3.115E-38
s Mean
10 e Best
s Worst
s Stdev,
Average

Average overall ranking

w

HGSO

SFO

SOA

«
=

«
P
=

Figure 8 Average overall ranking for each algorithm

PPA

overall ranking
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4.3 Authentication
4.3.1 Friedman Aligned Ranks test for exploitation

The Friedman Aligned Ranks test uses data
rankings rather than looking directly at the data values
themselves. For this reason, it is possible to avoid the
classical assumptions concerning the parametric
analysis of variance (ANOVA), which include a normal
distribution and constant variance. Aligned observations
have assigned ranks known as aligned ranks. The 7'
value is compared to the Chi square-distribution ( x2)
while the degrees of freedom set to be 9. Table 5
presents the aligned ranks in this study using the
Friedman tests for exploitation with the ten algorithms
for unimodal functions. The rankings alone can provide
an indication allowing comparison of the algorithms. On
average, SMA was ranked first with a score of 22.1,
followed by PPA (26.2) and MPA (36.4). In the last
place was BAS (85.6).

For the Friedman testing the statistics
included 7 = 54.849, while the P -value calculated

from the X§ = 16.91898, leading to the rejection of the

null hypothesis. Thus, the findings indicate that the ten
algorithms employ different approaches to determine

solutions in exploitation problems, with a significance
level of 0.05.

4.3.2 Quade Ranks test for exploration

In this scenario, the values are compared to
the F-distribution percentiles when the degrees of
freedom are cqual Fy 7, . S; represents the sum for each

of the classifiers. In this study, exploration was
evaluated by the Quade Ranks test. The aligned
observations and rankings (in brackets) are shown in
Table 6 in the context of multimodal functions for each
of the ten algorithms. SMA was ranked first overall (2.0)
ahead of PPA (2.7) and MPA (3.2), while BAS was once
again last (8.9).

Vg=41.2866 has a distribution that follows
the F distribution with 9-1=8 and 72 degrees of
freedom. Comparisons of the P -value were made using
the Fy,, =2.06983164, leading to the rejection of the

null hypothesis. Therefore, it was concluded that the ten
algorithms find their exploration problem solutions
using significantly ~ different approaches, at a
significance level of 0.05.

Table 5 Results of ranks test for unimodal function: Friedman Aligned Ranks test

i BAS ASO HGSO SFO SOA MA MPA PPA SMA TSA

5 97 55 20 61 47 96 33 20 20 38

fa 90 77 69 76 71 83 68 20 65 71

Je 74 43 51 56 53 52 29 50 20 28

No 95 78 24 80 49 84 41 21 23 45

/i 100 82 25 81 48 99 40 22 27 <

N2 94 54 20 57 37 93 26 20 20 36

N4 98 92 20 58 32 42 31 20 20 35

Nis 87 59 20 73 46 75 34 20 20 39

N6 91 89 88 85 79 86 2 64 1 3

fis 30 72 63 6 63 67 60 5 5 66
Average Friedman  85.6  70.1 40.0 633 525 717 364 26.2 221 405

Aligned Ranks test
Table 6 Results of ranks test for multimodal function: Quade Ranks test

# BAS ASO HGSO SFO SOA MA MPA PPA SMA TSA

A 18 2 -18 14 2 6 -10 -6 -14 10

fa 9 3 7 5 1 -1 -5 -9 -7 -3

/s 13.5 1.5 -1.5 4.5 45 10.5 -1.5 -7.5 -7.5 7.5

/7 36 20 12 -4 4 28 =20 -36 -28 -12

Sz 225 125 -175 75 2.5 17.5 -1.5 -225  -125 2.5

Jfo 315 175  -105 3.5 -3.5 105 -105  -10.5  -10.5 245

N3 21 -15 9 -3 3 15 =21 27 =27 -9

N7 31.5 405 -225 4.5 <45 225 -135 315  -40.5 13.5

fo 4.5 2.5 0.5 -2.5 <05 35 -1.5 -4.5 -3.5 1.5

S; 187.5 845 475 205 35 1125 -90.5 -100.5 -150.5 355
Average Quade 8.80  6.40 4.20 530 510 710 3.20 2.70 2.00 570

Ranks test
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5. Mechanical and Chemical
Constrained Problem
5.1 Boiler-turbo generator system optimization
This problem involves a power system using
steam generated from burning wood pulp to supply a small
power house. A pair of turbo generators are used to
generate electricity. The first turbine is of a double
extraction type which has a pair of intermediate streams
that leave at 195 psi and 62 psi. The resulting maximum
capacity for generation and minimum load are respectively
6250 kW and 2500 kW. In the last phase, a condensate is
produced which then serves as feed water for the boiler.
The second turbine is of a single extraction type and has
one intermediate stream at 195 psi along with an exit
stream that leaves at 62 psi. This turbine does not produce
any condensate, while the maximum capacity for
genceration and the minimum load are respectively 9000
kW and 3000 kW. Greater cfficiency is offered by the first
turbine as a consequence of the release of energy via steam
condensation, although its power output is lower than that
of the second turbine. Any excess steam produced can
bypass the two turbines and pass directly to the two levels
of steam via the pressure-reducing valves which can be
seen in Figure 9.

Engineering

i Boiler

HSP
b 4 (635 psig steam)

Turbine 1
by

Figure 9 presents a system that is suitable for
modeling as constraints in combination with an objective
function. The aim is to lower the system operating cost to a
minimum by the optimal selection of power generation or
purchase and steam flow rates while considering the
various requirements and limitations imposed by the
system (48).

1; indicates the inlet flow rate ; [Ibwh] of the
turbine, while HE, and LE, are the exit flow rates from

the turbine i to the 195 psi header and the 62 psi header
[Ibw/h] respectively. The condensate flow rate for Turbine
1 is given by ¢ [lbwh], while P, represents the power
output i [kW]. BF, and BF, show the respective bypass
flow rates from 635 psi to the 195 psi header and 195 psi to
the 62 psi header [Ibwh]. HPS, MPS ,and LPS are the
flow rates through the 635, 195, and 62 psi headers [Ibw/h]
respectively. PP represents purchased power [kW], while
EP indicates excess power [kW] (calculated as the
difference between PP and base power). Finally, PRV
represents the pressure-reducing valve.

The hourly operational cost for the system is
indicated as (48):
Minimize: f =0.00261HPS +0.0239 PP +0.00983 EP

PP(EP)
..‘,’_

Turbine 2 Power

f Transformer
I; -
:{ PRV,
w0 B H Qe g C MPS
BF) ¥ HE, ¥ HE, ¥ (195 psig steam)
f“i PRV, | / LPS
BF, ¥ LE, y LE; y _ (62 psigbjteam)

Figure 9 Boiler/turbo-generator process

In this problem, there are a total of 16
continuous independent variables. The constraints are
shown in Table 7, while the decision variables can be
seen in Table 8, which also summarizes their upper
and lower bounds.

Table 7 Constraints applied in the problem of
optimizing the boiler-turbo generator system (48)

Turbine 1 Turbine 2
B, <6250 P, £9000
P, 22500 P, 23000
HE, £192,000 1, < 244,000
C<62,000 LE, <142,000

I, - HE, 132,000

Table 7 (Countinued)

Material balances
HPS-1,-1,-BF, =0
I, +1,+BF,~C-MPS -LPS =0

Power purchased
EP+ PP 212,000

Demand
I,-HE -LE -C=0 MPS 2271,536
I,-HE,-LE, =0 LPS 2100,623

HE, + HE, + BF, - BF, - MPS =0
LE, + LE, + BF, - LPS =0
Energy balances
1359.81, ~1267.8HE, —1251.4LE, -192C -3413R =0
1359.81, ~1267.8HE, = 1251 4LE, —3413P, =0
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The solutions for this optimization problem
can be seen in Table 9. They were obtained via the
previously described optimization methods. The set
population is set to be 50 for 1,000 iterations for every
algorithm. The bold figures indicate the best
performance values. A penalty function was applied
in order to address any violations of the constraints
which were imposed. Table 8 shows that the same
global optimum values were reached by MPA and
SMA, at 1268.75, while some of the other algorithms,
including HGSO, SOA, MA, and TSA, produced
values near the global optimum.

Table 8 Decision variables applied in the problem of
optimizing the boiler-turbo generator system (48)

Decision variable Lower bound Upper bound
1 100000 150000
L 200000 250000

HE, 120000 192000
HE, 100000 150000
LE, 0 0
LE, 100000 150000
C 8000 62000
BF, 0 0
BF, 0 0
HPS 380329 380329
MPS 200000 300000
LPS 100000 200000
P 2500 6250
b 7061 7061
PP 10000 12000
EP 760 1000

SMA and MPA achieved the lowest values
for the mean, while SMA's lowest Stdev. occurred.
The respective values for Iy, I,, HE, HE,, LE,,
LE,, C, BF,, BF, , HPS, MPS, LPS, P, B,, PP,
and EP at the optimum reached by SMA were
136329, 244000, 128158, 143377, 0, 100623, 8170, 0,

0, 380329, 271536, 100623, 6250, 7061, 11239, and
761.

Table 9 Statistical result of operating cost of example
using different algorithms

_Algorithm _ Best value Mean Stdev.
BAS 1276.308 1280.066 4.357
ASO 1269.505 1270.923 1.318

HGSO 1268.800 1279.336 8.429
SFO 1271.474 1274.730 2.604
SOA 1268.770 1269.014 0.216
MA 1268.983 1269.861 0.661
MPA 1268.751 1268.756 0.006
PPA 1271.805 1272.883 1.068
SMA 1268.752 126.755 0.004
TSA 1268.792 1268.888 0.143

5.2 Design of a piston lever
This particular design problem initially
appeared in (49). The aim is to determine the location

of the piston components given as s By Diyand X
by setting the volume of oil to a minimum while the
piston lever is raised to 45° as Figure 10 indicates. The

following objective function can be stated for this
problem:
Minimize:

f(H,B,D,X) = 7D (L, - 1)
Subject to:
g =QLcos@ - RF <0 at §=45°
2= QLX) =My <0
&3=12(Ly-L))-L; <0

D
==-B<0
&4 2
Where
- ,—X(Xsin0+H)+H(B—Xcos0)‘
J(xX =B+ 2
2
Fe nPD
4

L=(X-B) +H?

Ly =y(Xsin45+H)? +(B X cosds)

where P represents the payload (10,000 Ibs), L isthe
lever (240 in), oil pressure is 1,500 psi, and the lever
has a maximum permissible bending moment of 6 max
M =18x10 Ibs in. Several inequality constraints are
applied. The calculations also take into consideration
the equilibrium force, the minimum piston stroke, the
lever’s  maximum bending moment, and the
geometrical conditions.

Figure 10 Piston lever design problem
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In order to investigate the ten algorithms, a
population of size 50 is used, while 100 is set as the
maximum number of iterations. The fitness value is
fixed at iteration zero to achieve equality during the
testing process.

Table 10 presents a summary of the

optima, thereby failing to achieve the global solution
for the piston lever design problem.

Table 10 Statistical comparison of the different
optimization outcomes in the piston lever design problem

performance of the ten algorithms. For the problem Algorithm _ Best value Mean Stdev.
under investigation the SMA, MPA, and PPA BAS 120.241 133.372  13.871
algorithms produced the best results in terms of best, ASO 15.283 23.713 14.577
mean, and Stdev. values. HGSO 9.5874 10.4608 1.359
In Figure 11 the function values for the SFO 12.5863 16.775 8.951
piston lever design problem are presented in SOA 25.550 42.092 12.803
association with the number of iterations. It is MA 86.734 90.289 3.322
apparent that four algorithms in particular can reach a MPA 8.4268 8.433 0.009
global solution while offering a fast rate of PPA 8.4271 8.428 0.001
convergence. These are MPA, SMA, PPA, and SMA 8.4267 8.433 0.009
HGSO. Among the other algorithms tested, BAS, TSA 50.787 56.798 4.967
SOA, SFO, MA, and TSA exhibited slow
convergence rates and were unable to avoid local
—  BAS
S 300- —
< .
>
=
=
S 200-
=
-
e
v
B
S 100=
2
=
o
0
0

Number of Iterations

Figure 11 Function values plotted against the number of iterations in the piston lever design problem

6. Conclusion

Metaheuristic optimization algorithms can
provide solutions to a wide range of benchmark
function problems of different types, whether
unimodal, multimodal, continuous, discontinuous and
so forth. This ability stems from the inherent
advantages the algorithms offer in terms of
diversification and exploitation. These factors
ultimately explain the capacity of an algorithm to
reach a global maximum under different
circumstances. This research paper examines ten
metaheuristic optimization algorithms introduced
during the period from 2018 to 2020, tested them with
dimensions set to 100 on 19 benchmark functions, and
assessed their problem-solving capacity in scenarios

involving constrained chemical and mechanical
engineering problems.

From the results of performance testing, it
can be observed that each algorithm has different
solution advantages and disadvantages based on
global search performance, the capability of
exploitation and exploration analysis, convergence
rate, robustness, and computation time, which can be
validated and certified from the Friedman Aligned
Ranks test and Quade Ranks test ranking. Both rank
tests confirm that the algorithms have different
searching approaches to solve with significance at
95%.

In this paper, conclusions confirm that these
ten metaheuristic algorithms help solve both
unconstrained and constrained mathematical model
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problems but can still eliminate problems that
interfere with the global performance test. Therefore,
in the future, metaheuristic optimization algorithms
will still need to be developed and improved, with
proposed new hybrid algorithms to reach complete
solutions to all mathematical problems and solve such
problems in multiple scientific and engineering fields
involving complex real-world, large-scale challenges
for industrial success.
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Appendix

Source code

1. Beetle Antennae Search (BAS)

BAS-Beetle  Antennae  Search Algorithm _ for
Optimization - File Exchange - MATLAR Central
(mathworks.com)

2. Atom Search Optimization (ASO)

Alom. Search_ Optimization (ASQ)._Algorithm - File

Exchange - MATLAB Central (mathworks.com)

3. Henry Gas Solubility Optimization (HGSO)

Heury gas solubility optimization - File Exchange -
MATLAB Central (mathworks.com)

4. Sunflower Optimization (SFO)

SUNFLOWER QPTIMIZATION (SFO)
ALGORITHM - File Exchange - MATLAB Cental
(mathworks.com)

5. Seagull Optimization Algorithm (SOA)
Optimization Algori (8C
Exchange - MATLAB Central (mathworks.com)

6. Mayfly Algorithm (MA)

A _mayfly optimization algorithm - File Exchange -
MATLAB Central (mathwo

7. Marine Predators Algorithm A)

Marine Predators Algorithm (MPA) - File Exchange -
MATLAB Central (mathworks.com)

8. Parasitism Predation Al gorithm (PPA)

Parasitism - Predation algorithm (PPA) - File
Lxchange - MATLAR Central mathworks.com)

9. Slime Mould Algorithm (SMA)

Slime. Mould. Algorithm ( SMA):. A Method for
Optimization - File Exchange - MATLAR Central
(mathworks.com)

10. Tunicate Swarm Algorithm (TSA)

Tunicate Swarm Alsorithm (TSA).- File Exchange -

MATLAB Central (mathworks.com)
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