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Abstract. In this paper, we introduce a hybrid subgradient method for finding an ele-

ment common to both the solution set of a class of pseudomonotone equilibrium problems,

and the set of fixed points of a finite family of κ-strictly presudononspreading mappings

in a real Hilbert space. We establish some weak and strong convergence theorems of the

sequences generated by our iterative method under some suitable conditions. These con-

vergence theorems are investigated without the Lipschitz condition for bifunctions. Our

results complement many known recent results in the literature.

1. Introduction

Let H be a real Hilbert space in which the inner product and norm are denoted by
〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H. Let
T : C → C be a mapping. A point x ∈ C is called a fixed point of T if Tx = x and
we denote the set of fixed points of T by F (T ). Recall that a mapping T : C → C
is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, for allx, y ∈ C,

and it is said to be quasi-nonexpansive if F (T ) 6= ∅ and

‖Tx− Ty‖ ≤ ‖x− y‖, for allx ∈ C, and y ∈ F (T ).
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A mapping T : C → C is said to be a strict pseudocontraction if there exists a
constant k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C,

where I is the identity mapping on H. If k = 0, then T is nonexpansive on C.
In 2008, Kohsaka and Takahashi [15] defined a mapping T in a in Hilbert spaces

H to be nonspreading if

2‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖Ty − x‖2, for all x, y ∈ C.

Following the terminology of Browder-Petryshyn [10], Osilike and Isiogugu [17]
called a mapping T of C into itself κ-strictly pseudononspreading if there exists
κ ∈ [0, 1) such that

‖Tx−Ty‖2 ≤ ‖x−y‖2 +2〈x−Tx, y−Ty〉+κ‖x−Tx− (y−Ty)‖2, for all x, y ∈ C.

Clearly, every nonspreading mapping is κ-strictly pseudononspreading but the con-
verse is not true; see [17]. We note that the class of strict pseudocontraction map-
pings and the class of κ-strictly pseudononspreading mappings are independent.

In 2010, Kurokawa and Takahashi [16] obtained a weak mean ergodic theorem
of Baillon’s type [7] for nonspreading mappings in Hilbert spaces. Furthermore,
using the idea of mean convergence in Hilbert spaces, they also proved a strong
convergence theorem of Halpern’s type [12] for this class of mappings. After that,
in 2011, Osilike and Isiogugu [17] introduced the concept of κ-strictly pseudonon-
spreading mappings and they proved a weak mean convergence theorem of Baillon’s
type similar to [16]. They further proved a strong convergence theorem using the
idea of mean convergence. This theorem extended and improved the main theorems
of [16] and gave an affirmative answer to an open problem posed by Kurokawa and
Takahashi [16] for the case when the mapping T is averaged. In 2013 Kangtun-
yakarn [14] proposed a new technique, using the projection method, for κ-strictly
pseudononspreading mappings. He obtained a strong convergence theorem for find-
ing the common element of the set of solutions of a variational inequality, and the
set of fixed points of κ-strictly pseudononspreading mappings in a real Hilbert space.

On the other hand, let F be a bifunction of C × C into R, where R is the set
of real numbers. The equilibrium problem for F : C ×C → R is to find x ∈ C such
that

(1.1) F (x, y) ≥ 0 for all y ∈ C.

The set of solutions of (1.1) is denoted by EP (F,C). It is well known that there are
several problems, such as complementarity problems, minimax problems, the Nash
equilibrium problem in noncooperative games, fixed point problems, optimization
problems, that can be written in the form of an EP . In other words, the EP
is a unifying model for several problems arising in physics, engineering, science,
optimization, economics, etc.; see [6, 8, 11] and the references therein.
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In recent years the problem of finding an element common to the set of solutions
of a equilibrium problems, and the set of fixed points of nonlinear mappings, has
become a fascinating subject, and various methods have been developed by many
authors for solving this problem (see [1, 4, 5, 20]). Most of all the existing algorithms
for this problem are based on applying the proximal point method to the equilibrium
problem EP (F,C), and using a Mann’s iteration to the fixed point problems of
nonexpansive mappings. The convergence analysis has been considered when the
bifunction F is monotone. This is because the proximal point method is not valid
when the underlying operator F is pseudomonotone.

Recently, Anh [2] introduced a new hybrid extragradient iteration method for
finding a element common to the set of fixed points of a nonexpansive mapping and
the set of solutions of equilibrium problems for a pseudomonotone bifunctions. In
this algorithm the equilibrium bifunction is not required to satisfy any monotonicity
property, but it must satisfy a Lipschitz-type continuous bifunction i.e. there are
two Lipschitz constants c1 > 0 and c2 > 0 such that

(1.2) f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖2 − c2‖y − z‖2, ∀x, y, z ∈ C.

They obtained strongly convergent theorems for the sequences generated by these
processes in a real Hilbert space.

Anh and Muu [3] reiterated that the Lipschitz-type condition (1.2) is not in
general satisfied, and if it is, that finding the constants c1 and c2 is not easy. They
further observed that solving strongly convex programs is also difficult except in
special cases when C has a simple structure. They introduced and studied a new
algorithm, which is called a hybrid subgradient algorithm for finding a common
point in the set of fixed points of nonexpansive mappings and the solution set of a
class of pseudomonotone equilibrium problems in a real Hilbert space. The proposed
algorithm is a combination of the well-known Mann’s iterative scheme for fixed point
and the projection method for equilibrium problems. Furthermore, the proposed
algorithm uses only one projection and does not require any Lipschitz condition for
the bifunctions. To be more precise, they proposed the following iterative method:

(1.3)


x0 ∈ C,
wn ∈ ∂εnF (xn, ·)xn,
un = PC(xn − γnwn), γn = βn

max{σn,‖wn‖} ,

xn+1 = αnxn + (1− αn)Tun, for each n = 1, 2, 3, ...,

where ∂εF (x, ·)(x) stands for ε-subdifferential of the convex function F (x, ·) at x
and {εn}, {γn}, {βn}, {σn}, and {αn} were chosen appropriately. Under certain
conditions, they prove that {xn} converges strongly to a common point in the set
of a class of pseudomonotone equilibrium problems and the set of fixed points of
nonexpansive mapping. Using the idea of Anh and Muu [3], Thailert et al. [21]
proposed a new algorithm for finding a common point in the solution set of a class
of pseudomonotone equilibrium problems and the set of common fixed points of a
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family of strict pseudocontraction mappings in a real Hilbert space. Then Thailert
et al. [22] introduced new general iterative methods for finding a common element in
the solution set of pseudomonotone equilibrium problems and the set of fixed points
of nonexpansive mappings which is a solution of a certain optimization problem
related to a strongly positive linear operator. Under suitable control conditions,
They proved the strong convergence theorems of such iterative schemes in a real
Hilbert space.

In this paper, motivated by Anh and Muu [3], Kangtunyakarn [14], and other
research going on in this direction, we proposed a hybrid subgradient method for the
pseudomonotone equilibrium problem and the finite family of κ-strictly pseudonon-
spreading mapping in a real Hilbert space. The weak and strong convergence of the
proposed methods is investigated under certain assumptions. Our results improve
and extend many recent results in the literature.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respec-
tively. It is well-known that for all x, y, z ∈ H and α, β, γ ∈ [0, 1], with α+β+γ = 1
there holds

(2.1) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉,

and

(2.2) ‖ αx+βy+γz ‖2= α ‖ x ‖2 +β ‖ y ‖2 +γ‖z‖2−αβ ‖ x− y ‖2 −βγ‖y− z‖2.

Let C be a nonempty closed convex subset of H. Then, for any x ∈ H, there exists
a unique nearest point of C, denoted by PCx, such that ‖ x− PCx ‖≤‖ x− y ‖ for
all y ∈ C. Such a PC is called the metric projection from H into C. We know that
PC is nonexpansive. It is also known that, PCx ∈ C and

(2.3) 〈x− PCx, PCx− z〉 ≥ 0, for all x ∈ H and z ∈ C.

It is easy to see that (2.3) equivalent to

(2.4) ‖x− z‖2 ≥ ‖x− PCx‖2 + ‖z − PCx‖2, for all x ∈ H and z ∈ C.

Lemma 2.1.([19]) Let H be a real Hilbert space, let C be a nonempty closed convex
subset of H and let A be a mapping of C into H. Let u ∈ C. Then for λ > 0,

u ∈ V I(C,A)⇔ u = PC(I − λA)u,

where PC is the metric projection of H onto C.

Recall that a bifunction F : C × C → R is said to be
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(i) η-strongly monotone if there exists a number η > 0 such that

F (x, y) + F (y, x) ≤ −η‖x− y‖2, for all x, y ∈ C,

(ii) monotone on C if

F (x, y) + F (y, x) ≤ 0, for all x, y ∈ C,

(iii) pseudomonotone on C with respect to x ∈ C if

F (x, y) ≥ 0 implies F (y, x) ≤ 0, for all y ∈ C.

It is clear that (i) ⇒ (ii) ⇒ (iii), for every x ∈ C. Moreover, F is said to be
pseudomonotone on C with respect to A ⊆ C, if it is pseudomonotone on C with
respect to every x ∈ A. When A ≡ C, F is called pseudomonotone on C.

The following example, taken from [18], shows that a bifunction may not be
pseudomonotone on C, but yet is pseudomonotone on C with respect to the solution
set of the equilibrium problem defined by F and C:

F (x, y) := 2y|x|(y − x) + xy|y − x|, for all x, y ∈ R, C := [−1, 1].

Clearly, EP (F ) = {0}. Since F (y, 0) = 0 for every y ∈ C, this bifunction is
pseudomonotone on C with respect to the solution x∗ = 0, However, F is not
pseudomonotone on C. In fact, both F (−0.5, 0.5) = 0.25 > 0 and F (0.5,−0.5) =
0.25 > 0.

For solving the equilibrium problem (1.1), let us assume that ∆ is an open
convex set containing C and the bifunction F : ∆ ×∆ → R satisfies the following
assumptions:

(A1) F (x, x) = 0 for all x ∈ C and F (x, ·) is convex and lower semicontinuous on
C;

(A2) for each y ∈ C, F (·, y) is weakly upper semicontinuous on the open set ∆;

(A3) F is pseudomonotone on C with respect to EP (F,C) and satisfies the strict
paramonotonicity property, i.e., F (y, x) = 0 for x ∈ EP (F,C) and y ∈ C
implies y ∈ EP (F,C);

(A4) if {xn} ⊆ C is bounded and εn → 0 as n → ∞, then the sequence {wn}
with wn ∈ ∂nF (xn, ·)xn is bounded, where ∂εF (x, ·)x stands for the ε-
subdifferential of the convex function F (x, ·) at x.

The following idea of the ε-subdierential of convex functions can be found in
the work of Bronsted and Rockafellar [9] but the theory of ε-subdierential calculus
was given by Hiriart-Urruty [13].

Definition 2.2. Consider a proper convex function φ : C → R. For a given ε > 0,
the ε-subdierential of φ at x0 ∈ Domφ is given by

∂εφ(x0) = {x ∈ C : φ(y)− φ(x0) ≥ 〈x, y − x0〉 − ε, ∀y ∈ C}.
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Remark 2.3. It is known that if the function φ is proper lower semicontinuous
convex, then for every x ∈ Domφ, the ε-subdierential ∂εφ(x) is a nonempty closed
convex set (see [13]).

Next, throughout this paper, weak and strong convergence of a sequence {xn}
in H to x are denoted by xn ⇀ x and xn → x, respectively. In order to prove our
main results, we need the following lemmas.

Lemma 2.4.([17]) Let C be a nonempty closed convex subset of a real Hilbert space
H, and let T : C → C be a κ-strictly pseudonospreading mapping. If F (T ) 6= ∅,
then it is closed and convex.

Remark 2.5. If T : C → C is a κ-strictly pseudononspreading mapping with
F (T ) 6= ∅, then from Lemma 2.8 in [14] and Lemma 2.1, we have F (T ) = V I(C, (I−
T )) = F (PC(I − λ(I − T ))), for all λ > 0.

Lemma 2.6. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. For every i = 1, 2, ..., N, let Ti : C → C be a finite family of κi-strictly
pseudononspreading mappings with

⋂N
i=1 F (Ti) 6= ∅. Let {a1, a2, ..., an} ⊂ (0, 1)

with ΣNi=1ai = 1, let κ̄ = max{κ1, κ2, ..., κN} and let λ ∈ (0, 1− κ̄). Then

(i)
⋂N
i=1 F (Ti) = F (ΣNi=1aiPC(I − λ(I − Ti))).

(ii) ‖ΣNi=1aiPC(I−λ(I−Ti))x−y‖2 ≤ ‖x−y‖2, for all x ∈ C and y ∈
⋂N
i=1 F (Ti),

i.e. ΣNi=1aiPC(I − λ(I − Ti)) is quasi-nonexpansive.

Proof. (i) It easy to see that
⋂N
i=1 F (Ti) ⊆ F (ΣNi=1aiPC(I − λ(I − Ti))). Let x ∈

F (ΣNi=1aiPC(I−λ(I−Ti))) and let x∗ ∈
⋂N
i=1 F (Ti) ⊆ F (ΣNi=1aiPC(I−λ(I−Ti))).

Note that for every i = 1, 2, 3, ..., N we have

‖PC(I − λ(I − Ti))x− x∗‖2 ≤ ‖x− x∗ − λ(I − Ti)‖2

= ‖x− x∗‖2 − 2λ〈x− x∗, (I − Ti)x〉
+ λ2‖(I − Ti)x‖2.(2.5)

Put Ai = I − Ti, for all i = 1, 2, ..., N, we have Ti = I −Ai and

‖Tix− Tix∗‖2 = ‖(I −Ai)x− (I −Ai)x∗‖2

= ‖(x− x∗)−Aix‖2

= ‖x− x∗‖2 − 2〈x− x∗, Aix〉+ ‖Aix‖2

≤ ‖x− x∗‖2 + κi‖(I − Ti)x− (I − Ti)x∗‖2 + 2〈x− Tix, x∗ − Tix∗〉
= ‖x− x∗‖2 + κi‖(I − Ti)x‖2,(2.6)

which implies that

(1− κi)‖(I − Ti)x‖2 ≤ 2〈x− x∗, Aix〉, for all i = 1, 2, 3, ..., N
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From (2.5) and (2.6), we have

‖PC(I − λ(I − Ti))x− x∗‖2 ≤ ‖x− x∗‖2 − 2λ〈x− x∗, (I − Ti)x〉
+ λ2‖(I − Ti)x‖2

≤ ‖x− x∗‖2 − λ(1− κi)‖(I − Ti)x‖2

+ λ2‖(I − Ti)x‖2

= ‖x− x∗‖2 − λ[(1− κi)− λ]‖(I − Ti)x‖2

≤ ‖x− x∗‖2,(2.7)

for all i = 1, 2, 3, . . . , N .
From the definition of x and (2.7), we have

‖x− x∗‖2 = ‖ΣNi=1aiPC(I − λ(I − Ti))x− x∗‖2

= a1‖PC(I − λ(I − T1))x− x∗‖2 + a2‖PC(I − λ(I − T2))x− x∗‖2 + · · ·
+ aN‖PC(I − λ(I − TN ))x− x∗‖2 − a1a2‖PC(I − λ(I − T1))x

− PC(I − λ(I − T2))x‖2 − a2a3‖PC(I − λ(I − T2))x−
PC(I − λ(I − T3))x‖2 − · · · − aN−1aN‖PC(I − λ(I − TN−1))x−
PC(I − λ(I − TN ))x‖2

≤ ‖x− x∗‖2 − a1a2‖PC(I − λ(I − T1))x− PC(I − λ(I − T2))x‖2

− a2a3‖PC(I − λ(I − T2))x− PC(I − λ(I − T3))x‖2 − · · ·
− aN−1aN‖PC(I − λ(I − TN−1))x− PC(I − λ(I − TN ))x‖2.

This implies that

PC(I − λ(I − T1))x = PC(I − λ(I − T2))x = · · · = PC(I − λ(I − TN ))x

Since x ∈ F (ΣNi=1aiPC(I − λ(I − Ti))), we get that x = PC(I − λ(I − Ti))x, for all
i = 1, 2, 3, ..., N From Remark 2.5, we have x ∈ F (Ti) , for all i = 1, 2, 3, ..., N. That

is x ∈
⋂N
i=1 F (Ti). Hence F (ΣNi=1aiPC(I − λ(I − Ti))) ⊆

⋂N
i=1 F (Ti).

(ii) Let x ∈ C and y ∈
⋂N
i=1 F (Ti) = F (ΣNi=1aiPC(I − λ(I − Ti)))

As the same argument as in (i), we can show that

‖PC(I − λ(I − Ti))x− y‖2 ≤ ‖x− y‖2,(2.8)

for all i = 1, 2, 3, ..., N . Thus

‖ΣNi=1aiPC(I − λ(I − Ti))x− y‖2 ≤ a1‖PC(I − λ(I − T1))x− y‖2

+ a2‖PC(I − λ(I − T2))x− y‖2 + · · ·
+ aN‖PC(I − λ(I − TN ))x− y‖2

≤ ΣNi=1ai‖x− y‖2 = ‖x− y‖2. 2(2.9)
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Lemma 2.7.([23]) Let {an} and {bn} be two sequences of nonnegative real numbers
such that

an+1 ≤ an + bn, n ≥ 1,

where
∑∞
n=0 bn <∞. Then the sequence {an} is convergent.

3. Weak Convergence Theorem

In this section, we prove weak convergence theorem for finding a common ele-
ment in the solution set of a class of pseudomonotone equilibrium problems and the
set of fixed points of a finite family of κ-strictly presudononspreading mappings in
a real Hilbert space.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H and
F : C × C → R be a bifunction satisfying (A1)–(A4). Let {κ1, κ2, ..., κN} ⊂ [0, 1)
and {Ti}Ni=1 be a finite family of κi-strictly pseudononspreading mappings of C into

itself such that Ω :=
⋂N
i=1 F (Ti) ∩ EP (F,C) 6= ∅. Let x0 ∈ C and {xn} be a se-

quence generated by

(3.1)


x0 ∈ C,
wn ∈ ∂εnF (xn, ·)xn,
un = PC(xn − ρnwn), ρn = δn

max{σn,‖wn‖} ,

xn+1 = αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun, ∀n ∈ N,

where a, b, c, d, λ ∈ R, ai ∈ (0, 1), for all i = 1, 2, ..., N with ΣNi=1ai = 1,
{αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1 and {δn}, {εn},{λin} ⊂ (0,∞)
satisfying the following conditions:

(i) 0 < λ ≤ λin ≤ min{1 − κ1, 1 − κ2, ..., 1 − κN} and Σ∞n=1λ
i
n < ∞ for all

i = 1, 2, ..., N ;

(ii) 0 < a < αn, βn, γn < b < 1;

(iii)
∑∞
n=0 δn =∞,

∑∞
n=0 δ

2
n <∞, and

∑∞
n=0 δnεn <∞.

Then the sequence {xn} converges weakly to x̄ ∈ Ω.

Proof. First, we will show that {xn} is bounded. Let p ∈ Ω. Then we have

‖un − p‖2 = ‖xn − p‖2 − ‖un − xn‖2 + 2〈xn − un, p− un〉
≤ ‖xn − p‖2 + 2〈xn − un, p− un〉.(3.2)

Since un = PC(xn − ρnwn) and p ∈ C, we get that

(3.3) 〈xn − un, p− un〉 ≤ ρn〈wn, p− un〉.
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Substuting (3.3) into (3.2), we have

‖un − p‖2 ≤ ‖xn − p‖2 + 2ρn〈wn, p− un〉
= ‖xn − p‖2 + 2ρn〈wn, p− xn〉+ 2ρn〈wn, xn − un〉
≤ ‖xn − p‖2 + 2ρn〈wn, p− xn〉+ 2ρn‖wn‖‖xn − un‖
≤ ‖xn − p‖2 + 2ρn〈wn, p− xn〉+ 2δn‖xn − un‖.(3.4)

By using un = PC(xn − ρnwn) and xn ∈ C again, we get

‖xn − un‖2 = 〈xn − un, xn − un〉
≤ ρn〈wn, xn − un〉
≤ ρn‖wn‖‖xn − un‖
≤ δn‖xn − un‖,(3.5)

which implies that

(3.6) ‖xn − un‖ ≤ δn.

By condition (iii), we have

(3.7) lim
n→∞

‖xn − un‖ = 0.

Combining (3.4) and (3.6), we obtain

(3.8) ‖un − p‖2 ≤ ‖xn − p‖2 + 2ρn〈wn, p− xn〉+ 2δ2
n.

Since wn ∈ ∂εnF (xn, ·)xn, p ∈ C and F (x, x) = 0 for each x ∈ C, we obtain that

〈wn, p− xn〉 ≤ F (xn, p)− F (xn, xn) + εn

= F (xn, p) + εn.(3.9)

Thus, it follows from (3.8) and (3.9) that

(3.10) ‖un − p‖2 ≤ ‖xn − p‖2 + 2ρnF (xn, p) + 2ρnεn + 2δ2
n.

Form Lemma 2.6 (ii), we have

(3.11) ‖ΣNi=1aiPC(I − λin(I − Ti))xn − p‖2 ≤ ‖xn − p‖2.

From (3.1), (3.10) and (3.11), we have

‖xn+1 − p‖2 = ‖αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun − p‖2

≤ αn‖xn − p‖2 + βn‖ΣNi=1aiPC(I − λin(I − Ti))xn − p‖2

+γn‖un − p‖2 − αnβn‖xn − ΣNi=1aiPC(I − λin(I − Ti))xn‖2

≤ αn‖xn − p‖2 + βn‖xn − p‖2 + γn

(
‖xn − p‖2 + 2ρnF (xn, p)

+2ρnεn + 2δ2
n

)
− αnβn‖xn − ΣNi=1aiPC(I − λin(I − Ti))xn‖2

= ‖xn − p‖2 + 2γnρnF (xn, p) + 2γnρnεn + 2γnδ
2
n

−αnβn‖xn − ΣNi=1aiPC(I − λin(I − Ti))xn‖2.(3.12)
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Since p ∈ EP (F,C) and F is pseudomonotone on F with respect to p, we get that
F (xn, p) ≤ 0 for all n ∈ N. Then from (3.12) it follows that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 + 2γnρnεn + 2γnδ
2
n

−αnβn‖xn − ΣNi=1aiPC(I − λin(I − Ti))xn‖2

≤ ‖xn − p‖2 + 2γnρnεn + 2γnδ
2
n.(3.13)

Let ηn = 2γnρnεn + 2γnδ
2
n for all n ≥ 0. From condition (ii) and (iii), we get that

Σ∞n=0ηn = Σ∞n=0(2γnρnεn + 2γnδ
2
n) ≤ 2bΣ∞n=0ρnεn + 2bΣ∞n=0δ

2
n < +∞

Now applying Lemma 2.7 to (3.13), we obtain that the lim
n→∞

‖xn − p‖ exists, i.e.

lim
n→∞

‖xn − p‖ = ā for some ā ∈ C. Thus {xn} is bounded. Also, it easy to verify

that {un} and {ΣNi=1aiPC(I − λin(I − Ti))xn} are also bounded.
Next, we will show that lim sup

n→∞
F (xn, p) = 0 for any p ∈ Ω. Since F is pseu-

domonotone on C and F (p, xn) ≥ 0, we have −F (xn, p) ≥ 0. From (3.12) and
condition (ii), we have

2γnρn[−F (xn, p)] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+2γnρnεn + 2γnδ
2
n

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2bρnεn + 2bδ2
n.(3.14)

Summing up (3.14) for every n, we obtain

0 ≤ 2

∞∑
n=0

γnρn[−F (xn, p)]

≤ ‖x0 − p‖2 + 2b

∞∑
n=0

ρnεn + 2b

∞∑
n=0

δ2
n < +∞.(3.15)

By the assumption (A4), we can find a real number w such that ‖wn‖ ≤ w for every
n. Setting Γ := max{σ,w}, where σ is a real number such that 0 < σn < σ for
every n, it follows from (ii) that

0 ≤ 2a

Γ

∞∑
n=0

δn[−F (xn, p)](3.16)

≤ 2

∞∑
n=0

γnρn[−F (xn, p)] < +∞,(3.17)

which implies that

0 ≤
∞∑
n=0

δn[−F (xn, p)] < +∞.(3.18)
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Combining with −F (xn, p) ≥ 0 and
∑∞
n=0 δn = ∞, we can deduced that

lim sup
n→∞

F (xn, p) = 0 as desired.

Next, we will show that ωω(xn) ⊂ Ω, where ωω(xn) = {x ∈ H : xni
⇀ x for

some subsequence {xni} of {xn}}. In deed since {xn} is bounded and H is reflexive,
ωω(xn) is nonempty. Let x̄ ∈ ωω(xn). Then there exists subsequence {xni} of {xn}.
converging weakly to x̄, that is xni

⇀ x̄ as i → ∞. By the convexity, C is weakly
closed and hence x̄ ∈ C. Since F (·, p) is weakly upper semicontinuous for p ∈ Ω, we
obtain

F (x̄, p) ≥ lim sup
i→∞

F (xn, p)

= lim
i→∞

F (xni
, p)

= lim sup
n→∞

F (xn, p)

= 0.(3.19)

Since F is pseudomontone with respect to p and F (p, x̄) ≥ 0, we obtain F (x̄, p) ≤ 0.
Thus F (x̄, p) = 0. Furthermore, by assumption (A3), we get that x̄ ∈ EP (F,C).
On the other hand, from (3.13) and conditions (ii)–(iii), we have

αnβn‖xn − ΣNi=1aiPC(I−λin(I − Ti))xn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2γnρnεn + 2γnδ
2
n

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2bρnεn + 2bδ2
n

(3.20)

taking the limit as n→∞ yields

(3.21) lim
n→∞

‖xn − ΣNi=1aiPC(I − λin(I − Ti))xn‖ = 0.

Now, we will show that x̄ ∈
⋂N
i=1 F (Ti). Assume that x̄ /∈

⋂N
i=1 F (Ti). By Lemma

2.6, we have x̄ /∈ F (ΣNi=1aiPC(I − λn(I − Ti))). From the Opial’s condition, (3.21)
and condition (i), we can write

lim inf
i→∞

‖xni − x̄‖ < lim inf
i→∞

‖xni − ΣN
i=1aiPC(I − λi

n(I − Ti))x̄‖

≤ lim inf
i→∞

(
‖xni − ΣN

i=1aiPC(I − λi
n(I − Ti))xni‖

+ ‖ΣN
i=1aiPC(I − λi

n(I − Ti))xni − ΣN
i=1aiPC(I − λi

n(I − Ti))x̄‖
)

≤ lim inf
i→∞

(
‖xni − x̄‖+ ΣN

i=1aiλ
i
n‖(I − Ti)xni − (I − Ti)x̄‖

)
≤ lim inf

i→∞
‖xni − x̄‖.

This is a contradiction. Then x̄ ∈
⋂N
i=1 F (Ti). Thus x̄ ∈ EP (F,C) ∩ F (T ) = Ω

and so ωω(xn) ⊂ Ω.
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Finally, we prove that {xn} converge weakly to an element of Ω. It’s sufficient
to show that ωω(xn) is a single point set. Taking z1, z2 ∈ ωω(xn) arbitrarily, and
let {xnk

} and {xnm
} be subsequence of {xn} such that xnk

⇀ z1 and xnm
⇀ z2

respectively. Since lim
n→∞

‖xn − p‖ exists for all p ∈ Ω and z1, z2 ∈ Ω, we get that

lim
n→∞

‖xn − z1‖ and lim
n→∞

‖xn − z2‖ exist. Now, assume that z1 6= z2, then by the

Opial’s condition,

lim
n→∞

‖xn − z1‖ = lim
k→∞

‖xnk
− z1‖

< lim
k→∞

‖xnk
− z2‖

= lim
n→∞

‖xn − z2‖

= lim
m→∞

‖xnm
− z2‖

< lim
m→∞

‖xnm
− z1‖

= lim
n→∞

‖xn − z1‖,(3.22)

which is a contradiction. Thus z1 = z2. This show that ωω(xn) is single point set.
i.e. xn ⇀ x̄. This completes the proof. 2

If we set κi = 0 for all i = 1, 2, ..., N then we get the following Corollary.

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space H and
F : C ×C → R be a bifunction satisfying (A1)–(A4). Let {Ti}Ni=1 be a finite family

of nonspreading mappings of C into itself such that Ω :=
⋂N
i=1 F (Ti)∩EP (F,C) 6= ∅.

Let x0 ∈ C and {xn} be a sequence generated by

(3.23)


x0 ∈ C,
wn ∈ ∂εnF (xn, ·)xn,
un = PC(xn − ρnwn), ρn = δn

max{σn,‖wn‖} ,

xn+1 = αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun, ∀n ∈ N,

where a, b, c, d, λ ∈ R, ai ∈ (0, 1), for all i = 1, 2, ..., N with ΣNi=1ai = 1,
{αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1 and {δn}, {εn},{λin} ⊂ (0,∞)
satisfying the following conditions:

(i) 0 < λ ≤ λin < 1 and Σ∞n=1λ
i
n <∞ for all i = 1, 2, ..., N ;

(ii) 0 < a < αn, βn, γn < b < 1;

(ii)
∑∞
n=0 δn =∞,

∑∞
n=0 δ

2
n <∞, and

∑∞
n=0 δnεn <∞.

Then the sequence {xn} converges weakly to x̄ ∈ Ω.
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4. Strong Convergence Theorem

In this section, to obtain strong convergence result, we add the control condition

lim
n→∞

αn =
1

2
, and then we get the strong convergence theorem for finding a common

element in the solution set of a class of pseudomonotone equilibrium problems and
the set of fixed points of a finite family of κ-strictly presudononspreading mappings
in a real Hilbert space.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H and
F : C × C → R be a bifunction satisfying (A1)–(A4). Let {κ1, κ2, ..., κN} ⊂ [0, 1)
and {Ti}Ni=1 be a finite family of κi-strictly pseudononspreading mappings of C into

itself such that Ω :=
⋂N
i=1 F (Ti) ∩ EP (F,C) 6= ∅. Let x0 ∈ C and {xn} be a se-

quence generated by

(4.1)


x0 ∈ C,
wn ∈ ∂εnF (xn, ·)xn,
un = PC(xn − ρnwn), ρn = δn

max{σn,‖wn‖} ,

xn+1 = αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun, ∀n ∈ N,

where a, b, c, d, λ ∈ R, ai ∈ (0, 1), for all i = 1, 2, ..., N with ΣNi=1ai = 1,
{αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1 and {δn}, {εn},{λin} ⊂ (0,∞)
satisfying the following conditions:

(i) 0 < λ ≤ λin ≤ min{1 − κ1, 1 − κ2, ..., 1 − κN} and Σ∞n=1λ
i
n < ∞ for all

i = 1, 2, ..., N ;

(ii) 0 < a < αn, βn, γn < b < 1 and lim
n→∞

αn =
1

2
;

(iii)
∑∞
n=0 δn =∞,

∑∞
n=0 δ

2
n <∞, and

∑∞
n=0 δnεn <∞.

Then the sequence {xn} converges strongly to x̄ ∈ Ω.

Proof. By a similar argument to the proof of Theorem 3.1 and (2.4), we have

‖ΣNi=1aiPC(I − λin(I − Ti))xn − PΩ(xn)‖2 ≤ ‖ΣNi=1aiPC(I − λin(I − Ti))xn − xn‖2

−‖xn − PΩ(xn)‖2

and

(4.2) ‖un − PΩ(xn)‖2 ≤ ‖un − xn‖2 − ‖xn − PΩ(xn)‖2.

It follows from (4.2) and condition (ii) that
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‖xn+1 − PΩ(xn+1)‖2

≤ ‖αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun − PΩ(xn)‖2

≤ αn‖xn − PΩ(xn)‖2 + βn‖ΣNi=1aiPC(I − λin(I − Ti))xn − PΩ(xn))‖2

+γn‖un − PΩ(xn)‖2

≤ αn‖xn − PΩ(xn)‖2 + βn

(
‖ΣNi=1aiPC(I − λin(I − Ti))xn − xn‖2

−‖xn − PΩ(xn)‖2
)

+ γn

(
‖un − xn‖2 − ‖xn − PΩ(xn)‖2

)
= (αn − (βn + γn))‖xn − PΩ(xn)‖2 + βn‖ΣNi=1aiPC(I − λin(I − Ti))xn − xn‖2

+γn‖un − xn‖2.
≤ (2αn − 1)‖xn − PΩ(xn)‖2 + b‖ΣNi=1aiPC(I − λin(I − Ti))xn − xn‖2

+b‖un − xn‖2.

Combining (3.7), (3.21), conditions (ii)–(iii), and the boundedness of the sequence
{xn − PΩ(xn)}, we obtain

(4.3) lim
n→∞

‖xn+1 − PΩ(xn+1)‖ = 0

Since Ω is convex, for all m > n, we have 1
2 (PΩ(xm) + PΩ(xn)) ∈ Ω, and therefore

‖PΩ(xm)− PΩ(xn)‖2 = 2‖xm − PΩ(xm)‖2 + 2‖xm − PΩ(xn)‖2

−4‖xm −
1

2
(PΩ(xm) + PΩ(xn))‖2

≤ 2‖xm − PΩ(xm)‖2 + 2‖xm − PΩ(xn)‖2

−4‖xm − PΩ(xm)‖2

= 2‖xm − PΩ(xn)‖2 − 2‖xm − PΩ(xm)‖2.(4.4)

Using (3.13) with p = PΩ(xn), we have

‖xm − PΩ(xn)‖2 ≤ ‖xm−1 − PΩ(xn)‖2 + ηm−1

≤ ‖xm−2 − PΩ(xn)‖2 + ηm−1 + ηm−2

≤ ...

≤ ‖xn − PΩ(xn)‖2 +

m−1∑
j=n

ηj ,(4.5)

where ηj = 2γjρjεj + 2γjδ
2
j . It follows from (4.4) and (4.5) that

(4.6) ‖PΩ(xm)− PΩ(xn)‖2 ≤ 2‖xn − PΩ(xn)‖2 + 2

m−1∑
j=n

ηj − 2‖xm − PΩ(xm)‖2.
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Together with (4.3) and
∑∞
j=0 ηj < +∞, this implies that {PΩ(xn)} is a Cauchy

sequence, Hence {PΩ(xn)} strongly converges to some point x∗ ∈ Ω. Moreover, we
obtain

(4.7) x∗ = lim
i→∞

PΩ(xni) = PΩ(x̄) = x̄,

which implies that PΩ(xi) → x∗ = x̄ ∈ Ω. Then from (4.3) and (4.7), we can
conclude that xn → x̄. This completes the proof. 2

If we set κi = 0 for all i = 1, 2, ..., N then we get the following Corollary.

Corollary 4.2. Let C be a closed convex subset of a real Hilbert space H and
F : C ×C → R be a bifunction satisfying (A1)–(A4). Let {Ti}Ni=1 be a finite family

of nonspreading mappings of C into itself such that Ω :=
⋂N
i=1 F (Ti)∩EP (F,C) 6= ∅.

Let x0 ∈ C and {xn} be a sequence generated by

(4.8)


x0 ∈ C,
wn ∈ ∂εnF (xn, ·)xn,
un = PC(xn − ρnwn), ρn = δn

max{σn,‖wn‖} ,

xn+1 = αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun, ∀n ∈ N,

where a, b, c, d, λ ∈ R, ai ∈ (0, 1), for all i = 1, 2, ..., N with ΣNi=1ai = 1,
{αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1 and {δn}, {εn},{λin} ⊂ (0,∞)
satisfying the following conditions:

(i) 0 < λ ≤ λin < 1 and Σ∞n=1λ
i
n <∞ for all i = 1, 2, ..., N ;

(ii) 0 < a < αn, βn, γn < b < 1 and lim
n→∞

αn =
1

2
;

(iii)
∑∞
n=0 δn =∞,

∑∞
n=0 δ

2
n <∞, and

∑∞
n=0 δnεn <∞.

Then the sequence {xn} converges weakly to x̄ ∈ Ω.
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Abstract 

In this paper, we obtain the Binet’ s formula for ( , )s t -Pell and ( , )s t -Pell-Lucas numbers and then 
we get some identities for these numbers by using the Binet’ s formula.  Moreover, we obtain the generating 
functions for ( , )s t - Pell and ( , )s t - Pell- Lucas sequences and another expression for the general term of the 
sequences by using the ordinary generating functions. 

Keywords: Pell number; Pell-Lucas number; ( , )s t -Pell number; ( , )s t -Pell-Lucas number; Binet’s formula; 
Generating function.

1. Introduction 
It is well- known that the Fibonacci and 

Lucas numbers are the most famous of the recursive 
sequences that have been studied in the literature 
over several years. They are widely used in a variety 
of research areas such as Engineering, Architecture, 
Nature and Art.  ( see:  [ 6- 10] ) .  For 2n  , the 

classical Fibonacci { }nF   and Lucas { }nL  
sequences are defined by the recurrence relation: 

1 2n n nF F F     and 1 2 ,n n nL L L     with the 
initial conditions 0 1 0 10, 1, 2, 1F F L L     
respectively.  On the other hand, other sequences 
that also important are Pell and Pell- Lucas 
sequences.  The Pell and Pell- Lucas sequences are 
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defined by 0 1 1 20, 1, 2 ,n n nP P P P P      for 
2n    and 0 1 1 20, 2, 2 ,n n nQ Q Q Q Q      

for 2,n   respectively.  For more detailed 
information about Pell and Pell- Lucas sequences 
can be found in [4, 6]. Recently, Pell and Pell-Lucas 
numbers were generalized and studied by many 
authors in the different ways to derive many 
identities. For a lot of identities of Pell, Pell-Lucas 
numbers and their generalization can be found in [1, 
2, 5-7] and the references therein. 

In this paper we investigate the 
generalization of Pell and Pell- Lucas numbers, 
which is called ( , )s t  - Pell and ( , )s t  - Pell- Lucas 
numbers and then we obtain the Binet’s formula and 
some identities for these numbers. Also, we give the 
generating functions for the ( , )s t - Pell and ( , )s t -
Pell- Lucas sequences and another expression for 
the general term of the sequences, by using the 
ordinary generating functions. 

2. ( , )s t -Pell and ( , )s t -Pell-Lucas 
Numbers and some identities 
 In this section, a new generalization of 
Pell and Pell-Lucas numbers are introduced and it’s 
Binet’ s formula are obtained.  After that, by using 
the Binet’ s formula, we obtain some identities for 
these numbers.  We begin this section with the 
following definition. 

Definition 2.1 [2] Let ,s t  be any real number with 
2 0, 0s t s    and 0t   .  Then the ( , )s t  - Pell 

sequences  
0

( , )n n
P s t



  and the ( , )s t -Pell-Lucas 
sequences  

0
( , )n n

Q s t



 are defined respectively by  

1 2( , ) 2 ( , ) ( , ),n n nP s t sP s t tP s t    for 2,n     (2.1) 

1 2( , ) 2 ( , ) ( , ),n n nQ s t sQ s t tQ s t    for 2,n   (2.2) 

with initial conditions 0 1( , ) 0, ( , ) 1P s t P s t   and 

0 1( , ) 2, ( , ) 2 .Q s t Q s t s   

The first few terms of  
0

( , )n n
P s t




  are 

20,1,2 ,4 ,s s t
38 4s st   and so on.  Also, the 

first few terms of  
0

( , )n n
Q s t



   are 
2 32,2 ,4 2 ,8 6s s t s st   and so on.  The terms of 

( , )s t  - Pell and ( , )s t  - Pell- Lucas sequences are 
called ( , )s t - Pell- numbers and ( , )s t - Pell- Lucas-
numbers respectively.  

Throughout this paper, for convenience 
we will use the symbol nP   and nQ  instead of 

( , )nP s t   and ( , )nQ s t  respectively.  Also, we 
denoted the set of whole numbers by 0   ( i. e. 

 0 : 0,1,2,3,... ). 

Particular case of the Definition 2.1 are : 

•  If 1
, 1

2
s t    then the classical Fibonacci and 

Lucas sequence are obtained.  
• If 1s t   then the classical Pell and Pell-Lucas 
sequence are obtained.  

•  If 1
, 2

2
s t   then the classical Jacobsthal and 

Jacobsthal-Lucas sequence are obtained. 

 Next, we give the explicit formula for the 
term of order n   of ( , )s t  - Pell and ( , )s t  - Pell-
Lucas numbers.  From the Definition 2. 1, we have 
that the characteristic equation of (2.1) and (2.2) are 
in the form  

2 2x sx t                             (2.3)  
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and the root of equation (2.3) are 2s s t     
and 2 .s s t     We note that 2 ,s  

22 s t      and t     and we get the 
following theorem. 

Theorem 2.2 (Binet’s formula) 
The thn ( , )s t -Pell number and the thn ( , )s t -Pell-
Lucas number are given by  

n n

nP
 

 





                            (2.4) 

and  
n n

nQ                                 (2.5) 

respectively, where ,    are the roots of the 
characteristic equation (2.3) and   .  

Proof.  Since the characteristic equation ( 2. 3)  has 
two distinct roots, the closed form of  nP  is given 
by  

2

1 2 ,n

nP c c    

for some coefficients 1c  and 2c .  Giving to n  the 
values 0n   and 1n    then solving this system 
of linear equations 

we obtain 1 2

1
,c c

 
  


 and therefore 

n n

nP
 

 





. 

Similarly, the closed form of nQ  is given by  

1 2 ,n n

nQ c c     

for some coefficients 1c   and 2c  .  By the same 
fashion as above, we obtain 1 2 1c c  , and hence  

.n n

nQ                                     

 
 

Theorem 2.3 (Catalan’s identity)   
Let 0,n r with .n r  Then 
    2 2( )n r

n r n r n nP P P t P

                             (2.6) 
and  

   2 2( ) 4( )n r r

n r n r n rQ Q Q t Q t

             (2.7) 

Proof. Using the Binet’s formula (2.4), we have  
2

2

   

   

 

 

   

 

 
  

 

 
  

 

n r n r n r n r

n r n r n

n n

P P P

   

                       
2

2

( ) ( )

( )

n r r r  

 

 



 

        2( ) .n r

rt P    

Using the Binet’s formula (2.5), we have     
2

2

( )( )

( )

   

 

   

     

 

n r n r n r n r

n r n r n

n n

Q Q Q

            

                          2( ) ( ) 4( )n r r r r       

          2( ) 4( ) .n r r

rt Q t      

Note that for 1r  , equation ( 2. 6)  and 
(2.7) give Cassini’s identity for the ( , )s t -Pell and 
( , )s t -Pell-Lucas numbers respectively. 

Theorem 2.4 (Cassini’s identity)   
Let 0n . Then 
       2 1

1 1 ( )n

n n nP P P t 

                                    (2.8) 
and 

2 2 1

1 1 4( )( )n

n n nQ Q Q s t t 

                        (2.9)  

Proof. By letting 1r   in Theorem 2.3,  
we get the results.      
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Theorem 2.5 (d’Ocagne’s identity) 
Let 0,m n with .m n . Then 

1 1 ( )n

m n m n m nP P P P t P                       (2.10)  
and  

1 1m n m nQ Q Q Q   
 2 22( ) 2( ) .(2.11)

     n m n

m nt s t Q s s t                      

Proof. Using the Binet’s formula (2.4), we have  
1 1

1 1

m m n n

m n m nP P P P
   

   

 

 

 
  

 
 

           
1 1m m n n   

   

  
 

 
 

                        
2

( ) ( )( )

( )

n m n m n    

 

  



 

( )
m n m n

n  


 

 
 


 

( ) .n

m nt P    

Using the Binet’s formula (2.5), we have  
1 1

1 1 1 1( )( ) ( )( )       

 

   



     

m n m n

m m n n m m n n

Q Q Q Q

 

    ( ) ( )( 2 ).n m n m n m n            

Since 2s s t     and 2 ,s s t    we get  

   1 1m n m nQ Q Q Q   
    

2 22( ) ( 2( ) )n m n

m nt s t Q s s t 

       . 
 

Theorem 2.6  Let  nP and  nQ be  ( , )s t -Pell 
and  ( , )s t -Pell-Lucas sequences. Then 

       1

lim n

n
n

P

P





                                (2.12)  

and  

      1

lim n

n
n

Q

Q





 .                               (2.13)  

Proof. By using the Binet’s formula (2.4), we have 

1 1

1

1

lim lim lim .
1 1

n

n n
n

n n nn n n
n

P

P



  

  

  

   


 
  

  
 

  
  

 

 

Since 1, lim 0

n

n

 

 

 
  

 
,and therefore 

1

lim .n

n
n

P

P





  

On the other hand, using the Binet’ s formula ( 2.5) 
and using the same way as above, we obtain 

            

1 1

1

lim lim
n n

n

n nn n
n

Q

Q

 

   






 

                             
1

lim
1 1

n

nn







  



 
  
 


 

  
 

 

             .     

3. Generating Functions for ( , )s t -Pell 
and ( , )s t -Pell-Lucas Numbers 

In this section, the generating functions 
for the ( , )s t -Pell and ( , )s t -Pell-Lucas sequences 
are given.  First, we shall give the generating 
functions for the ( , )s t  - Pell sequences.  We shall 
write the ( , )s t  - Pell sequence as a power series 
where each term of the sequence correspond to 
coefficients of the series and from that fact, we find 
the generating function.  Let us consider the ( , )s t -
Pell sequences for any positive integer ,s t  .  By 
definition of ordinary generating function of some 
sequence, considering this sequence, the ordinary 
generating function associated is defined by 

 
0

2

0 1 2

;

... ... (3.1)







     

 n

n n

n

n

n

G P x P x

P Px P x P x

                                                                             



198          Sci. & Tech. RMUTT J. Vol.7 No.2 (2017) 

From (2.1) and 0 10, 1,P P   we have

 1 2

0 2

2n n

n n n

n n

P x x sP tP x
 

 

 

     

 
1 2

2 2

2
 

 

 

   n n

n n

n n

x s P x t P x    

             1 2 2

1 2

2 2

2 .n n

n n

n n

x sx P x tx P x
 

 

 

 

    (3.2) 

Now, consider that 1k n   and 2j n  , the 
equation (3.2) can be written by     

       2

0 1 0

2n k j

n k j

n k j

P x x sx P x tx P x
  

  

    
     

   

2

0 0

2 k j

k j

k j

x sx P x tx P x
 

 

    . 

Thus,  

       
2

0 0 0

2 .n n n

n n n

n n n

P x x sx P x tx P x
  

  

      

Therefore, the ordinary generating function of the 
( , )s t  -Pell sequence can be written as  

 
2

0

;
1 2

n

n n

n

x
G P x P x

sx tx





 
 

 .                 (3.3) 

Applying the ratio test for absolute convergence and 
using (2.12), we have  

1

11

lim lim ,
n

n n

nn n
nn

P x P
x x

PP x


 


                 (3.4) 

 and so the series converges absolutely if 1
x


  

and diverges if 1
x


  .  Thus it’ s radius of 

convergence R   is equal to 1


  .  Now, by the 

similar argument as above, we get that the ordinary 
generating function of ( , )s t - Pell- Lucas sequence 
can be written as  

 
2

0

2 2
; ,

1 2

n

n n

n

sx
G Q x Q x

sx tx






 

 
                (3.5) 

  
 

and it’s radius of convergence R  is equal to
 

1


.  

Finally, we give another expression for the general 
term of the ( , )s t -Pell sequence using the ordinary 
generating function. 

Theorem 3.1  

Let 
0

( ) ( ; ) ,n

n n

n

p x G P x P x




   for 1 1
( , )x
 

  . 

Then              
( ) (0)

,
!

n

n

p
P

n
                         (3.6) 

where 
( ) ( )np x  denotes the thn  order derivative of 

the function ( )p x . 

Proof. Since 
0

( ) ,n

n

n

p x P x




  we have 

1

1

( ) n

n

n

p x nP x






   , 

2

2

( ) ( 1) n

n

n

p x n n P x






   , 

3

3

( ) ( 1)( 2) n

n

n

p x n n n P x






    , 

 
( ) ( ) ( 1)( 2) ( ( 1))k n k

n

n k

p x n n n n k P x






          
               1 2 1 kk k k P     

 
1

( 1)( 2) ( 1) n k

n

n k

n n n n k P x




 

    

 

 
1

! ( 1)( 2) ( 1) ,n k

k n

n k

k P n n n n k P x




 

     
 

then ( ) (0) ! .k

kp k P  Thus for all 1n  , we have 

                         
( ) (0)

!

n

n

p
P

n
 .   

By using the same approximation as in Theorem 
3.1, we obtain the following theorem. 
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Theorem 3.2   Let  

0

( ) ( ; ) ,n

n n

n

q x G Q x Q x




  for 1 1
( , )x
 

  .   

 Then           
( ) ( )

,
!

n

n

q n
Q

n
                             (3.7)        

where ( ) ( )nq x  denotes the thn  order derivative of 
the function ( )q x . 
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1. Introduction  

Let ,s t  be any real number with
2

0,s t  0s  and 0.t   Then the ( , )s t -Pell sequences  ( , )n n
P s t

  [1] 

is defined by 

                                         1 2( , ) 2 ( , ) ( , ),n n nP s t sP s t tP s t     for all 2,n                           (1) 

with initial conditions 0 ( , ) 0P s t   and 1 ( , ) 1P s t   .  The first few terms of   ( , )n n
P s t

   are 

2 3
0, 1, 2 , 4 , 8 4s s t s st    and so on. The terms of this sequence are called ( , )s t -Pell numbers and we denoted 

the 
th

n ( , )s t  - Pell numbers by ( , )nP s t  .  The ( , )s t  - Pell numbers for negative subscripts can be defined as  

( , )
( , ) ,

( )

n
n n

P s t
P s t

t






 for all 1n   .  Then it follows that 1 2( , ) 2 ( , ) t ( , ),n n nP s t sP s t P s t   for all n   .  Also, 

( , )s t -Pell-Lucas sequences  ( , )n n
Q s t

  [1] is defined by 0 ( , ) 2Q s t  , 1 ( , ) 2Q s t s  and 

                    1 2( , ) 2 ( , ) ( , )n n nQ s t sQ s t tQ s t   ,    for all 2,n                                               (2) 

The first few terms of   ( , )n n
Q s t

  are 
2 3

2, 2 , 4 2 , 8 6s s t s st   and so on.  The terms of this sequence are 

called ( , )s t -Pell-Lucas numbers and we denoted the 
th

n ( , )s t -Pell-Lucas numbers by ( , )nQ s t . The ( , )s t -Pell-Lucas 
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numbers for negative subscripts are defined as  
( , )

( , ) ,
( )

n
n n

Q s t
Q s t

t
 


 for all 1n   .  It can be seen that 

1( , ) 2 ( , ) 2 ( , )n n nQ s t sP s t tP s t  and 1 1( , ) ( , ) ( , )n n nQ s t P s t tP s t     for all n   For more detailed 

information about ( , )s t -Pell and ( , )s t -Pell-Lucas numbers can be found in [1].  

From the definitions of ( , )s t -Pell and ( , )s t -Pell- Lucas numbers, we have that the characteristic equation of ( 1) 

and (2) are in the form 

                                                              
2

2x sx t                                                                     (3) 

and the root of equation ( 3)  are 
2

s s t   and
2

s s t    .  We note that ,2s  
2

2 s t     and t  .  Also, from the definitions of ( , )s t -Pell and ( , )s t -Pell-Lucas numbers, we 

have that if 1s = , t =1
2

, then the classical Fibonacci and Lucas sequence are obtained, and if 1, 1s t  , then the 

classical Pell and Pell-Lucas sequence are obtained.  It is well known that the Fibonacci, Lucas, Pell and Pell- Lucas 

sequences are the famous recursive sequences that have been studied in the literatures by many authors for over 

several years, because they are extensively used in various research areas such as Engineering, Architecture, Nature 

and Art (for examples see: [2-7]).  

In this paper, we will establish some identities for ( , )s t  -Pell and ( , )s t  - Pell- Lucas numbers by using matrix 

methods. Moreover, we present the solution of some Diophantine equations by applying these identities.  In the rest 

of this paper, for convenience we will use the symbol nP  and nQ  instead of ( , )nP s t  and ( , )nQ s t respectively. 

 

2. Main Results 
In this section, we will establish some identities for ( , )s t -Pell and ( , )s t -Pell-Lucas numbers by using the square 

matrix X  which satisfy the property
2

2X sX tI  .  Now, we begin with the following three Lemmas. 

 

Lemma 2.1.  If X  is a square matrix with
2

2X sX tI  , then 1
n

n nX P X tP I   for all n  . 

Proof.  If 0n  , then the proof is obvious.  It can be shown by induction that 1
n

n nX P X tP I   for all n .  

Now, we will show that 1
n

n nX P X tP I


      for all n .  Let 
1

2Y sI X tX
    . Then we have 

2 2
(2 ) 2 (2 ) 2Y sI X s sI X tI sY tI       . 

It implies that 1
n

n nY P Y tP I  . That is
1

1( ) (2 )
n

n ntX P sI X tP I


    . Thus 

1

1

1

( ) 2

(2 )

.

n n
n n n

n n n

n n

t X sP I P X tP I

P X sP tP I

P X P I
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Therefore, 

1
( 1) 1 .

( ) ( )

n n n
n n n nn n

P P
X X I P X tP I P X tP I

t t

 
           

   

This complete the proof.   

Lemma 2.2.  Let 

2s 2(s + t)
W = ,1 s

2

 
 
 
 
 

 then 

2
n n

n

n n

1 Q 2(s + t)P
2

W =
1 1P Q
2 2

 
 
 
 
 
 

 for all n  . 

Proof.  Since 
2

2 ,W sW tI   the proof follows from Lemma 2.1 and using  12 2 .n n nQ sP tP      

 

Lemma 2.3. 
2 2 2

4( ) 4( )
n

n nQ s t P t     for all n . 

Proof.  Since det( ) (det( )) ( )
n n n

W W t    and 
2 2 21

det( ) ( ) ,
4

n
n nW Q s t P    we get 

2 2 2
4( ) 4( ) .

n
n nQ s t P t     

 

Lemma 2.4. 
2

2 4( )m n m n m nQ Q Q s t P P     for all , .m n  

Proof. Since ,
m n m n

W W W
   we get the result. 

 

Lemma 2.5. 1
n

n nP tP     and 1
n

n nP tP    for all n . 

Proof.  Take
0

0
X 

 
  


 , then

2
2X sX tI  . By Lemma 2.1, we have 1 .

n
n nX P X tP I   It follows that 

1

1

0 0
.

00

n
n n

n
n n

P tP

P tP






 

   
      

 


 

This implies that  1
n

n nP tP     and 1 .
n

n nP tP                       
By using Lemma 2.1 and Lemma 2.5, we get the following Theorem. 

 

Theorem 2.6. Let 

0
,A

t

 
  


  then 

0
n

n
n

n

A
tP


 
 
  




 for all n   
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Proof.  Since 
2

2 0
2 ,

( ) 2

s t
A sA tI

t s t


   
 
  


   by Lemma 2.1 and Lemma 2.5, we get that

1

0
.

n

n
n n n

n

A P A tP I
tP

  
 
 
  




Thus, we get the result. 

By using Theorem 2.6, we get the following Theorem. 

 

Theorem 2.7.  Let , .m n  Then  
2 2 2 2 2 2

4( )( ) 4( )( ) 4 ( ) 4( ) .
m n m n

n m m n m n m ns t t P s t t P Q s t P P Q t


             

Proof.  Let a matrix A as in Theorem 2.6. It can be seen that 

2

1 1

2

2
0

1
.

2

n

n n

n
n

s t

tA A
t s t

Q
t

 



 




 
 
 
 
  





 

Since   1 1 1 1 2 2

2

1 1 1 2
,

n n m m m n m n m n
A A A A A A A

t t t t

             we get that 

2 .
2 m n

m n n ms tP Q Q      

Thus, 

2 2 2 2
4( ) (2 )(2 )

( )( ).

m n m n m n

m n n m
n m m n

s t P s tP s tP

Q Q Q Q

     

     
 

Since 
2 2 2

4( ) 4( ) ,
m n

m n m ns t P Q t


     we obtain 

                 
2 2 2

( ) ( ) 4( ) .
m n m n

n m m n m n m nt Q t Q Q Q Q Q t


                                          (4) 

Since 
2 2 2

4( ) 4( )
m

n nQ s t P t    and
2

2 4( )m n m n m nQ Q Q s t P P   , we get that     

          
2 2 2 2 2 2

4( )( ) 4 ( )( ) 4 ( ) 4( ) ,
m n m n

n m m n m n m ns t t P s t t P Q s t P P Q t


                      (5) 

and so the proof is completed. 

 

Example 2.8.  Let 1m   and 2n  . Then   
2 1 2 2 2 2 2 2 3

2 1 3 1 2 34( )( ) 4 ( )( ) 4( ) 4 ( )s t t P s t t P Q s t P P Q t           . 
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Proof. Consider, 
2 1 2 2 2 2 2 2 2 2 2 2 3 2

2 1 34( )( ) 4( )( ) 4( )( )(2 ) 4( ) (1) (8 6 )s t t P s t t P Q s t t s s t t s st              

                                                                
4 2 2 2 2 3 6 4 2 2

16 16 4 4 64 96 36s t s t s t t s s t s t         

          
6 4 2 2 3

64 112 48 4s s t s t t     , 

and 

             

2 3 2 3 3
1 2 3

6 4 2 2 3

4( ) 4( ) 4( )(1)(2 )(8 6 ) 4

64 112 48 4 .

s t P P Q t s t s s st t

s s t s t t

        

    
 

Thus, 
2 1 2 2 2 2 2 2 3

2 1 3 1 2 34( )( ) 4 ( )( ) 4( ) 4 ( )s t t P s t t P Q s t P P Q t           . 

 

Theorem 2.9.  Let , .m n  Then  
2 2 2 2 2 2

( ) 4 ( )( ) 4 ( ) 4( ) 4( ) .
m n m n

n m m n n m m nt Q s t t P s t P s t Q P P t


             

Proof.  By using a similar argument as in Theorem 2.7 and the property   

   1 1 1 1 1 11 1 1
,

n n m m n n m n m n
A A A A A A A A

t t t

             

we get that  

2
2

m n
m n n mQ Q s t P      and 

2
2

n m
m n m nQ s t P Q     . 

It follows that  

2 2 2

2 2 2 2

( 2 )(2 )

4( ) ( ) 4( )( ) .

m n n m
m n n m m n

m n
n m m n n m

Q Q s t P s t P Q

s t Q P P t Q s t t P





    

      

   
 

Since 
2 2 2

4( ) 4( ) ,
m n

m n m nQ s t P t


      we have 

      
2 2 2 2 2 2

( ) 4 ( )( ) 4 ( ) 4( ) 4( ) .
m n m n

n m m n n m m nt Q s t t P s t P s t Q P P t


                           (6) 

This completed the proof.  

 

Example 2.10.  Let 2m   and 0n  . Then 
2 2 2 0 2 2 2 2 2

0 2 2 0 2 2( ) 4 ( )( ) 4 ( ) 4( ) 4( ) .t Q s t t P s t P s t Q P P t            

Proof. Consider, 
2 2 2 0 2 2 2 2 2 2 2 2 2

0 2 2

4 2 2

( ) 4( )( ) 4( ) (2) 4( )(1)(2 ) 4( )(2 )

32 32 4 ,

t Q s t t P s t P t s t s s t s

s s t t

          

   
 

and 

               

2 2 2 2
0 2 2

4 2 2

4( ) 4( ) 4( )(2)(2 )(2 ) 4

32 32 4 .

s t Q P P t s t s s t

s s t t
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Thus, 
2 2 2 0 2 2 2 2 2

0 2 2 0 2 2( ) 4 ( )( ) 4 ( ) 4( ) 4( ) .t Q s t t P s t P s t Q P P t            

 

3. Applications 
In this section, by applying Theorem 2.7 and Theorem 2. 9, we give the solutions of some Diophantine equations. 

We will investigate in two cases: 

 

Case 1: If s
 and 1t  , then we get the following Theorems 

 

Theorem 3.1.   If m and n  are even integers, then the integer solutions of the equation  
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        are given by ( , , ) ( ( ,1), ( ,1), ( ,1)).m n m nx y z P s P s Q s  If m 

and n are odd integers, then the integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz      
are given by ( , , ) ( ( ,1), ( ,1), ( ,1))m n m nx y z P s P s Q s and if m is an odd integer and n is an even integer, then the 

integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        are given by

( , , ) ( ( ,1), ( ,1), ( ,1))m n m nx y z P s P s Q s . 

Proof. The result follows immediately from Theorem 2.7. 

 

Theorem 3.2.   If m and n  are even integers, then the integer solutions of the equation  
2 2 2

4z x y xyz     are given by ( , , ) ( ( ,1), ( ,1), ( ,1))m n m nx y z Q s Q s Q s  If m and n are odd integers, then the 

integer solutions of the equation  
2 2 2

4z x y xyz     are given by ( , , ) ( ( ,1), ( ,1), ( ,1))m n m nx y z Q s Q s Q s and 

if m is an odd integer and n is an even integer, then the integer solutions of the equation 
2 2 2

4z x y xyz     are 

given by ( , , ) ( ( ,1), ( ,1), ( ,1))m n m nx y z Q s Q s Q s . 

Proof. The result follows directly from (4). 

 

Theorem 3.3.   If m and n  are even integers, then the integer solutions of the equation  
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4x s y s z s xyz         are given by ( , , ) ( ( ,1), ( ,1), ( ,1))n m m nx y z Q s P s P s  .   If m 

and n are odd integers, then the integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4x s y s z s xyz        

are given by ( , , ) ( ( ,1), ( ,1), ( ,1))n m m nx y z Q s P s P s and if m is an odd integer and n is an even integer, then the 

integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4x s y s z s xyz        are given by

( , , ) ( ( ,1), ( ,1), ( ,1))n m m nx y z Q s P s P s . 

Proof. The result follows immediately from Theorem 2.9.  

 

 

 



S.  S ri s aw at  &  W .  S r ip r ad  /  S NRU  Jou rn al  o f  S c ience  an d T ech n o logy 8 ( 1 )  ( 20 17 )  424    4 31  

430 

Case 2: If s and 1 t , then we get the following Theorems 

 

Theorem 3. 4.    The integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        are 

given by ( , , ) ( ( , 1), ( , 1), ( , 1))m n m nx y z P s P s Q s    . 

Proof. The result follows immediately from Theorem 2.7.   

 

Theorem 3.5.   The integer solutions of the equation 
2 2 2

4z x y xyz     are given by

( , , ) ( ( , 1), ( , 1), ( , 1))m n m nx y z Q s Q s Q s    . 

Proof. The result follows directly from (4). 

 

Theorem 3.6.   The integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4s z x s y s xyz        are 

given by ( , , ) ( ( , 1), ( , 1), ( , 1))n m m nx y z Q s P s P s    . 

Proof. The result follows immediately from Theorem 2.8.  

 

4. Conclusion 
Nowadays, many mathematicians are interested in solving Diophantine equations. We think it is a little 

hard and interesting to give all integer (positive integer) solutions of the Diophantine equations. 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        

             
2 2 2

4z x y xyz     

              
2 2 2

4z x y xyz     

              
2 2 2

4z x y xyz     

    
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4x s y s z s xyz         

 
2 2 2 2 2 2

4( 1) y 4( 1) z 4( 1) 4x s s s xyz        

 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4x s y s z s xyz        

 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        

and 

 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4s z x s y s xyz       . 

Although they have infinite many integer solutions by the above Theorems. 
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Abstract

In this paper, we investigate some generalization of Pell and Pell-Lucas
numbers, which is called (s, t)-Pell and (s, t)-Pell-Lucas numbers, and we
define the 2× 2 matrix W, which satisfy the relation W 2 = 2sW + tI. After
that, we establish some identities of (s, t)-Pell and (s, t)-Pell-Lucas numbers
and some sum formulas for (s, t)-Pell and (s, t)-Pell-Lucas numbers by using
this matrix.

Keywords: Fibonacci number; Lucas number; Pell number; Pell-Lucas num-
ber; (s, t)-Pell number; (s, t)-Pell-Lucas number.

MSC: 11B37; 15A15.

1. Introduction

For over several years, there are many recursive sequences that have been studied in
the literatures. The famous examples of these sequences are Fibonacci, Lucas, Pell
and Pell-Lucas, because they are extensively used in various research areas such as
Engineering, Architecture, Nature and Art (for examples see: [2, 3, 4, 5, 6, 7]). For
n ≥ 2, the classical Fibonacci {Fn}, Lucas {Ln}, Pell {Pn} and Pell-Lucas {Qn}
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sequences are defined by Fn = Fn−1+Fn−2, Ln = Ln−1+Ln−2, Pn = 2Pn−1+Pn−2,
and Qn = 2Qn−1 +Qn−2, with the initial conditions F0 = 0, F1 = 1, L0 = 2, L1 =
1, P0 = 0, P1 = 1 and Q0 = Q1 = 2, respectively. For more detialed information
about Fibonacci, Lucas, Pell, Pell-Lucas sequences can be found in [2, 3].

Recently, Fibonacci, Lucas, Pell and Pell-Lucas were generalized and studied
by many authors in the different ways to derive many identities. In 2012, Gulec
and Taskara [1] introduced a new generalization of Pell and Pell-Lucas sequence
which is called (s, t)-Pell and (s, t)-Pell-Lucas sequences as in the definition 1.1 and
by considering these sequences, they introduced the matrix sequences which have
elements of (s, t)-Pell and (s, t)-Pell-Lucas sequences. Further, they obtained some
properties of (s, t)-Pell and (s, t)-Pell-Lucas matrices sequences by using elementary
matrix algebra.

Definition 1.1. [1] Let s, t be any real number with s2 + t > 0, s > 0 and t 6= 0.
Then the (s, t)-Pell sequences {Pn(s, t)}n∈N and the (s, t)-Pell-Lucas sequences
{Qn(s, t)}n∈N are defined respectively by

Pn(s, t) = 2sPn−1(s, t) + tPn−2(s, t), forn ≥ 2, (1.1)
Qn(s, t) = 2sQn−1(s, t) + tQn−2(s, t), forn ≥ 2, (1.2)

with initial conditions P0(s, t) = 0, P1(s, t) = 1 and Q0(s, t) = 2, Q1(s, t) = 2s.

In particular, if s = 1
2 , t = 1, then the classical Fibonacci and Lucas sequence

are obtained, and if s = t = 1, then the classical Pell and Pell-Lucas sequences are
obtained. From the definition 1.1, we have that the characteristic equation of (1.1)
and (1.2) are in the form

x2 = 2sx+ t (1.3)

and the root of equation (1.3) are α = s+
√
s2 + t and β = s−

√
s2 + t. Note that

α+ β = 2s, α− β = 2
√
s2 + t and αβ = −t. Moreover, it can be seen that [1]

Qn(s, t) = 2sPn(s, t) + 2tPn−1(s, t), for alln ≥ 0. (1.4)

In this paper, we introduce the 2 × 2 matrix W which satisfy the relation
W 2 = 2sW+tI. After that, we establish some identities of (s, t)-Pell and (s, t)-Pell-
Lucas numbers and some sum formulas for (s, t)-Pell and (s, t)-Pell-Lucas numbers
by using this matrix. Now, we first define (s, t)-Pell and (s, t)-Pell-Lucas numbers
for negative subscript as follows:

P−n(s, t) =
−Pn(s, t)

(−t)n , and Q−n(s, t) =
Qn(s, t)

(−t)n , (1.5)

for all n ≥ 1. In the rest of this paper, for convenience we will use the symbol Pn

and Qn instead of Pn(s, t) and Qn(s, t) respectively.

2. Main results

We begin this section with the following Lemma.
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Lemma 2.1. If X is a square matrix with X2 = 2sX + tI, then

Xn = PnX + tPn−1I for all n ∈ N.

Proof. If n = 0, then the proof is obvious. It can be shown by induction that
Xn = PnX+tPn−1I for all n ∈ N. Now, we will show thatX−n = P−nX+tP−n−1I
for all n ∈ N. Let Y = 2sI −X = −tX−1. Then we have

Y 2 = (2sI −X)2 = 2s(2sI −X) + tI = 2sY + tI.

It implies that Y n = PnY + tPn−1I. That is (−tX−1)n = Pn(2sI −X) + tPn−1I.
Thus

(−t)nX−n = 2sPnI − PnX + tPn−1I

= −PnX + (2sPn + tPn−1)I

= −PnX + Pn+1I.

Therefore, X−n = − Pn

(−t)nX + Pn+1

(−t)n I = P−nX + tP−(n+1)I = P−nX + tP−n−1I.
This complete the proof.

By using Lemma 2.1, we obtain the Binet’s formula for (s, t)-Pell and (s, t)-
Pell-Lucas numbers.

Corollary 2.2 (Binet’s formula). The nth (s, t)-Pell and (s, t)-Pell-Lucas number
are given by

Pn =
αn − βn

α− β and Qn = αn + βn, for all n ∈ Z,

where α = s +
√
s2 + t and β = s −

√
s2 + t are the roots of the characteristic

equation (1.3).

Proof. Take X =

[
α 0
0 β

]
, then X2 = 2sX + tI. By Lemma 2.1, we have

Xn = PnX + tPn−1I. It follows that
[
αn 0
0 βn

]
=

[
αPn + tPn−1 0

0 βPn + tPn−1

]
.

Thus, αn = αPn + tPn−1 and βn = βPn + tPn−1, which implies that

Pn =
αn − βn

α− β and Qn = αn + βn, for all n ∈ Z.

Let us define the 2× 2 matrix W as follows:

W =

[
s 2(s2 + t)
1
2 s

]
. (2.1)

Then it easy to see that W 2 = 2sW + tI. From this fact and Lemma 2.1, we get
the following Lemma.
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Lemma 2.3. Let W be a matrix as in (2.1). Then Wn =

[
1
2Qn 2(s2 + t)Pn

1
2Pn

1
2Qn

]

for all n ∈ Z.

Proof. Since W 2 = 2sW + tI, the proof follows from Lemma 2.1 and using Qn =
2sPn + 2tPn−1.

Now, by using the matrix W, we obtain some identities of (s, t)-Pell and (s,t)-
Pell-Lucas numbers.

Lemma 2.4. Let m, n be any integers. Then the following results hold.

(i) Q2
n − 4(s2 + t)P2

n = 4(−t)n,

(ii) 2Qm+n = QmQn + 4(s2 + t)PmPn,

(iii) 2Pm+n = PmQn +QmPn,

(iv) 2(−t)nQm−n = QmQn − 4(s2 + t)PmPn,

(v) 2(−t)nPm−n = PmQn −QmPn,

(vi) QmQn = Qm+n + (−t)nQm−n,

(vii) PmQn = Pm+n + (−t)nPm−n.

Proof. Since det(Wn) = (det(W ))n = (−t)n and det(Wn) = 1
4Q2

n − (s2 + t)P2
n,

we get that Q2
n − 4(s2 + t)P2

n = 4(−t)n and then (i) immediately seen. Since
Wm+n =WmWn, we obtain

[
1
2Qm+n 2(s2 + t)Pm+n

1
2Pm+n

1
2Qm+n

]

=

[
1
4

(
QmQn + 4(s2 + t)PmPn

)
(s2 + t)(QmPn + PmQn)

1
4 (PmQn +QmPn)

1
4

(
4(s2 + t)PmPn +QmQn

)
]
.

Thus, identities (ii) and (iii) are easily seen. Next, we note that Wm−n =
Wm(W−n) =Wm(Wn)−1. Thus, we get that
[

1
2Qm−n 2(s2 + t)Pm−n
1
2Pm−n 1

2Qm−n

]

=
1

(−t)n

[
1
4

(
QmQn − 4(s2 + t)PmPn

)
(s2 + t)(−QmPn + PmQn)

1
4 (PmQn −QmPn)

1
4

(
− 4(s2 + t)PmPn +QmQn

)
]
.

Therefore, the identities (iv) and (v) can be derived directly. The proof of (vi) and
(vii) goes on in the same fashion as above by using the property
Wm+n + (−t)nWm−n =Wm(Wn + (−t)nW−n).
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Next, we give the following Lemma for using in the next Theorems.

Lemma 2.5. Let W be a matrix as in (2.1). Then

H =W + tW−1 =

[
0 4(s2 + t)
1 0

]
.

Proof. Since det(W ) = −t, we get that W−1 = − 1
t

[
s −2(s2 + t)
− 1

2 s

]
. Thus,

H =

[
0 4(s2 + t)
1 0

]
.

Finally, by using matricesW and H, we obtain some sum formulas for (s, t)-Pell
and (s, t)-Pell-Lucas numbers.

Theorem 2.6. Let n ∈ N and m, k ∈ Z with (−t)m −Qm 6= −1. Then

n∑

j=0

Qmj+k =
Qk −Qmn+m+k + (−t)m

(
Qmn+k −Qk−m

)

1 + (−t)m −Qm

and
n∑

j=0

Pmj+k =
Pk − Pmn+m+k + (−t)m

(
Pmn+k − Pk−m

)

1 + (−t)m −Qm

Proof. It is know that

I − (Wm)n+1 = (I −Wm)
n∑

j=0

(Wm)j .

By Lemma 2.4 (i), we have

det(I −Wm) = (1− 1

2
Qm)2 − (s2 + t)P2

m = 1 + (−t)m −Qm.

Since det(I −Wm) 6= 0, we can write

(I −Wm)−1
(
I − (Wm)n+1

)
W k =

n∑

j=0

Wmj+k

=




1

2

n∑

j=0

Qmj+k 2(s2 + t)
n∑

j=0

Pmj+k

1

2

n∑

j=0

Pmj+k
1

2

n∑

j=0

Qmj+k



. (2.2)

Since

(I −Wm)−1 =
1

1 + (−t)m −Qm

[
1− 1

2Qm 2(s2 + t)Pm

1
2Pm 1− 1

2Qm

]
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=
1

1 + (−t)m −Qm

(
(1− 1

2
Qm)I +

1

2
PmH

)
,

we have

(I −Wm)−1
(
I − (Wm)n+1

)
W k

=

(
(1− 1

2Qm)I + 1
2PmH

)
(W k −Wmn+m+k)

1 + (−t)m −Qm

=

(
(1− 1

2Qm)(W k −Wmn+m+k) + 1
2PmH(W k −Wmn+m+k)

)

1 + (−t)m −Qm

= (1− 1

2
Qm)




1
2 (Qk −Qmn+m+k)

1 + (−t)m −Qm

2(s2 + t)(Pk − Pmn+m+k)

1 + (−t)m −Qm

1
2 (Pk − Pmn+m+k)

1 + (−t)m −Qm

1
2 (Qk −Qmn+m+k)

1 + (−t)m −Qm




+
1

2
Pm




2(s2 + t)(Pk − Pmn+m+k)

1 + (−t)m −Qm

2(s2 + t)(Qk −Qmn+m+k)

1 + (−t)m −Qm

1
2 (Qk −Qmn+m+k)

1 + (−t)m −Qm

2(s2 + t)(Pk − Pmn+m+k)

1 + (−t)m −Qm


 (2.3)

Using (2.2) and (2.3), we obtain

n∑

j=0

Qmj+k

=

(
(1− 1

2Qm)(Qk −Qmn+m+k) + 2(s2 + t)Pm(Pk − Pmn+m+k)
)

1 + (−t)m −Qm
. (2.4)

By Lemma 2.4 (iv), (2.4) becomes

n∑

j=0

Qmj+k =
Qk −Qmn+m+k + (−t)m

(
Qmn+k −Qk−m

)

1 + (−t)m −Qm
.

On the other hand, using (2.2) and (2.3) we get

n∑

j=0

Pmj+k =

(
(1− 1

2Qm)(Pk − Pmn+m+k) +
1
2Pm(Qk −Qmn+m+k)

)

1 + (−t)m −Qm
. (2.5)

By Lemma 2.4 (v), (2.5) becomes

n∑

j=0

Pmj+k =
Pk − Pmn+m+k + (−t)m

(
Pmn+k − Pk−m

)

1 + (−t)m −Qm
.
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Theorem 2.7. Let n ∈ N and m, k ∈ Z with (−t)m+Qm 6= −1. If n is even, then
n∑

j=0

(−1)jQmj+k =
Qk +Qmn+m+k + (−t)m

(
Qmn+k +Qk−m

)

1 + (−t)m +Qm

and
n∑

j=0

(−1)jPmj+k =
Pk + Pmn+m+k + (−t)m

(
Pmn+k + Pk−m

)

1 + (−t)m +Qm

Proof. Let n is an even natural number. Then we have

I + (Wm)n+1 = (I +Wm)

n∑

j=0

(−1)j(Wm)j .

By Lemma 2.4 (i), we have

det(I +Wm) = (1 +
1

2
Qm)2 − (s2 + t)P2

m = 1 +Qm + (−t)m.

Since det(I +Wm) 6= 0, we can write

(I +Wm)−1
(
I + (Wm)n+1

)
W k

=

n∑

j=0

(−1)jWmj+k

=




1

2

n∑

j=0

(−1)jQmj+k 2(s2 + t)

n∑

j=0

(−1)jPmj+k

1

2

n∑

j=0

(−1)jPmj+k
1

2

n∑

j=0

(−1)jQmj+k



. (2.6)

Since

(I +Wm)−1 =
1

1 +Qm + (−t)m




1 + 1
2Qm −2(s2 + t)Pm

− 1
2Pm 1 + 1

2Qm




=
1

1 +Qm + (−t)m
(
(1 +

1

2
Qm)I − 1

2
PmH

)
,

we have

(I +Wm)−1
(
I + (Wm)n+1

)
W k

=

(
(1 + 1

2Qm)I − 1
2PmH

)
(W k +Wmn+m+k)

1 +Qm + (−t)m

=

(
(1 + 1

2Qm)(W k +Wmn+m+k)− 1
2PmH(W k +Wmn+m+k)

)

1 +Qm + (−t)m
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= (1 +
1

2
Qm)




1
2 (Qk +Qmn+m+k)

1 +Qm + (−t)m
2(s2 + t)(Pk + Pmn+m+k)

1 +Qm + (−t)m
1
2 (Pk + Pmn+m+k)

1 +Qm + (−t)m
1
2 (Qk +Qmn+m+k)

1 +Qm + (−t)m




− 1

2
Pm




2(s2 + t)(Pk + Pmn+m+k)

1 +Qm + (−t)m
2(s2 + t)(Qk +Qmn+m+k)

1 +Qm + (−t)m
1
2 (Qk +Qmn+m+k)

1 +Qm + (−t)m
2(s2 + t)(Pk + Pmn+m+k)

1 +Qm + (−t)m


 . (2.7)

Using (2.6) and (2.7), we obtain

n∑

j=0

(−1)jQmj+k

=

(
(1 + 1

2Qm)(Qk +Qmn+m+k)− 2(s2 + t)Pm(Pk + Pmn+m+k)
)

1 +Qm + (−t)m . (2.8)

By Lemma 2.4 (iv), (2.8) becomes

n∑

j=0

(−1)jQmj+k =
Qk +Qmn+m+k + (−t)m

(
Qk−m +Qmn+k

)

1 + (−t)m +Qm
.

Similarly it can be easily seen that
n∑

j=0

(−1)jPmj+k =
Pk + Pmn+m+k + (−t)m

(
Pk−m + Pmn+k

)

1 + (−t)m +Qm
.

Theorem 2.8. Let n ∈ N and m, k ∈ Z with (−t)m +Qm 6= −1. If n is odd, then

n∑

j=0

(−1)jQmj+k =
Qk −Qmn+m+k + (−t)m

(
Qk−m −Qmn+k

)

1 + (−t)m +Qm

and
n∑

j=0

(−1)jPmj+k =
Pk − Pmn+m+k + (−t)m

(
Pk−m − Pmn+k

)

1 + (−t)m +Qm

Proof. Let n is an odd natural number. Then we get

n∑

j=0

(−1)jQmj+k =

n−1∑

j=0

(−1)jQmj+k −Qmn+k.

Since n is an odd natural number then n− 1 is even. By Thorem 2.7, we have

n−1∑

j=0

(−1)jQmj+k =
Qk +Qmn+k + (−t)m

(
Qmn+k−m +Qk−m

)

1 + (−t)m +Qm
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and
n∑

j=0

(−1)jQmj+k

=
Qk + (−t)m

(
Qmn+k−m +Qk−m

)
− (−t)mQmn+k −Qmn+kQm

1 + (−t)m +Qm
. (2.9)

Using Lemma 2.4 (vi) in (2.9), we get

n∑

j=0

(−1)jQmj+k =
Qk −Qmn+m+k + (−t)m

(
Qk−m −Qmn+k

)

1 + (−t)m +Qm
.

In a similar way, it can be seen that

n∑

j=0

(−1)jPmj+k =

n−1∑

j=0

(−1)jPmj+k − Pmn+k.

By Theorem 2.7, it follows that

n∑

j=0

(−1)jPmj+k

=
Pk + (−t)m

(
Pmn+k−m + Pk−m

)
− (−t)mPmn+k − Pmn+kQm

1 + (−t)m +Qm
. (2.10)

Using Lemma 2.4 (vii) in (2.10), we obtain

n∑

j=0

(−1)jPmj+k =
Pk − Pmn+m+k + (−t)m

(
Pk−m − Pmn+k

)

1 + (−t)m +Qm
.
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Abstract 

In this paper, we establish some identities involving Pell and Pell-Lucas numbers by using matrix 
methods. Moreover, we present the solution of some Diophantine equations by applying these identities. 

Keywords: Pell numbers, Pell-Lucas numbers, Diophantine equations. 

1. Introduction 
The Pell sequence { }nP  is defined by 

0 10, 1,P P   and 
1 22 ,n n nP P P   for 2n  . 

The first few terms of { }nP are 0,1,2,5,12  and so 
on. The terms of this sequence are called Pell 
numbers and we denoted the thn  Pell numbers by

nP . The Pell numbers for negative subscripts are 
defined as 1( 1) ,n

n nP P

    for 1n  . Then it is 
known that 1 22 ,n n nP P P    for n . Also, 
the Pell-Lucas sequence { }nQ  is defined by 

0 12, 2Q Q   and 1 22 ,n n nQ Q Q   for 2.n   
The first few terms of { }nQ are 2,2,6,14,34       

and so on. The terms of this sequence are called 
Pell-Lucas numbers and we denoted the thn  Pell-
Lucas numbers by .nQ  The Pell-Lucas numbers 
for negative subscripts are defined as 

( 1)n

n nQ Q   , for 1n  . It can be seen that 

12 2n n nQ P P    and 
1 1n n nQ P P    for all

.n  The Binet’s formula for { }nP  and { }nQ  

are ,
n n

nP
 

 





and ,n n

nQ    for 0,n 

where 1 2   and 1 2    are the roots of 
the characteristic equation 2 2 1x x  . It is well-
known that many identities of Pell and Pell-Lucas 
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numbers are proved by using Binet’s formula, 
induction or metrics     (see [1-3] ). 

In this paper, we establish some 
identities for Pell and Pell-Lucas numbers by using 
matrix methods. Moreover, we present the 
solutions of some Diophantine equations by   
applying these identities. 

2. Main results 
In this section, we establish some 

identities for Pell and Pell-Lucas numbers by using 
matrix methods and we begin with the following 
Lemma. 

Lemma 2.1 If X  is a square matrix with 
2 2 ,X X I   then 

1 ,n

n nX P X P I    
for all .n  
Proof. If 0n  , then the proof is obvious. It can be 
shown by induction that

1

n

n nX P X P I  , for all
n . Now, we will show that 

1

n

n nX P X P I

    , for all .n  
Let 12 .Y I X X      Then we have 

2 24 4Y I X X    

      2(2 )

2 .

I X I

Y I

  

 
 

It implies that 
1

n

n nY PY P I  .   
That is 1

1( ) (2 ) .n

n nX P I X P I

     
Thus, 1( 1) 2n n

n n nX P I P X P I

     

                            1

1

(2 )

.

n n n

n n

P X P P I

P X P I





   

  
 

Therefore,   1

1( 1) ( 1)n n n

n nX P X P I 

     

             
( 1)

1 .

n n

n n

P X P I

P X P I

  

  

 

   

This complete the proof.    

Form Lemma 2.1, we can give Corollary 2.2 
easily. Also one can consult [1] for more 
information about the matrices .M  

Corollary 2.2 Let 2 1

1 0
M

 
  
 

. Then

1

1

n nn

n n

P P
M

P P





 
  
 

, for all n . 

Next, let us define the matrix W  as in the 
following Lemma and by using this matrix, we 
obtain some identities for Pell and Pell-Lucas 
numbers. 

Lemma 2.3 Let 1 1

2 1
W

 
  
 

. Then

1

2

1

2
2

n nn

n n

Q P
W

P Q

 
  
 

, for all n . 

Proof. Note that 2
3 2

2
4 3

W W I
 

   
 

. 

By Lemma 2.1, we have  
1

n

n nW PW P I  . 
It follows that 

1

12

n n nn

n n n

P P P
W

P P P





 
  

 
 

       
1

2

1

2

.
2

n n

n n

Q P

P Q

 
  
 

 

Therefore, we get the result.     

Now, by using the matrix W , we get 
Lemma 2.4 and Lemma 2.5, respectively. 

Lemma 2.4 Let n  be any integer. Then the 
following equality holds: 

    2 28 4( 1) .n

n nQ P    

Proof. Since det( ) 1W    and
2 21

4
det( ) 2n

n nW Q P  , it follows that
2 28 4( 1)n

n nQ P   .    
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Lemma 2.5 For any integers m  and n , the 
following equality holds: 

    2 8 .m n m n m nQ Q Q P P    

Proof. Using m n m nW W W  , we get the result.  

Lemma 2.6 Let n  be any integer. Then following 
equalities hold: 

    (i) 
1

n

n nP P    ,  
    (ii) 

1

n

n nP P    . 

Proof. Take 0

0
X





 
  
 

, then 2 2X X I  . 

By Lemma 2.1, we have
1

n

n nX P X P I  .  
It follows that 

1

1

00

00

n
n n

n
n n

P P

P P









   
   

  
. 

This implies that  
 

1

n

n nP P     and
1

n

n nP P    .   

By Lemma 2.1 and Lemma 2.6, we get 
the following Theorem. 

Theorem 2.7 Let 0

1
A





 
  
 

, then      

0
,

n

n

n

n

A
P





 
  
 

 for all .n  

Proof. Since 
2

2

2

0
A



  

 
  

 
 

            
2 1 0

2 2 1

2 ,A I





 
  

 

 

 

it follows from Lemma 2.1 and Lemma 2.6 that 

1

n

n nA P A P I   

      

1

1

0

0
.

n n

n n n

n

n

n

P P

P P P

P













 
  

 

 
  
 

 

Therefore, the result is proved.  

By using Theorem 2.7, we get the following 
theorem. 

Theorem 2.8 For any integers m  and n , the 
following equality holds: 

2 2 2( 1) 8( 1) 8( 1)m n m n

m n m nQ P P

      
                    8( 1) 4.m n

m n m nP P Q

    
Proof. Let a matrix A  as in Theorem 2.7.  
Then we have 

1 1
2 2 0

2 2

n

n n

n

n

A A
Q





 
 

   
  

 

Since
1 1 1 1 2

2

( )( ) 2

,

m m n n m n m n

m n

A A A A A A

A

      

 

   


 

we get that  2 2 .n m

m n m nP Q Q     Thus,   
28 (2 2 )(2 2 )m n m n n mP P P          

  ( )( )n m m n

m n n mQ Q Q Q       
           2 2( 1) ( 1) .n m

m n m n m nQ Q Q Q Q       (2.1) 
From Lemma 2.4 and (2.1), we obtain

2 2 2( 1) ( 1) ( 1)m n m n

m n m nQ Q Q

      
                      ( 1) 4m n

m n m nQ Q Q

    (2.2) 
By Lemma 2.4, Lemma 2.5 and (2.2), we get that

2 2 2( 1) 8( 1) 8( 1)m n m n

m n m nQ P P

      
                      8( 1) 4.m n

m n m nP P Q

    (2.3) 
This complete the proof.                    

Theorem 2.9 For any integers m  and n , the 
following equality holds: 

2 2 28( 1) ( 1) 8( 1)m n n m

m n n mP Q P

      
                       8( 1) 4.m n

n m m nQ P P

    
 Proof. By similar argument as in Theorem 2.8 and 
using the properties  

1 1 1 1( ) ( )n n m m n nA A A A A A       
                                         1 1,m n m nA A      
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we get that  2 2m n

m n n mQ Q P       
and   2 2 .n m

m n m nQ P Q     
Therefore, we have 

2 ( 2 2 )(2 2 )m n n m

m n n m m nQ Q P P Q        

         2 28 ( 1) 8( 1) .m n

n m m n n mQ P P Q P      (2.4) 

By Lemma 2.4 and (2.4), we obtain
2 2 28( 1) ( 1) 8( 1)m n n m

m n n mP Q P

      
                       8( 1) 4.m n

n m m nQ P P

    (2.5) 
Therefore, the proof is completed.                  

3. Applications 
In this section we give the solutions of 

some Diophantine equations by applying Theorem 
2.8 and Theorem 2.9.  

Theorem 3.1 If m  and n  are even integers, then 
( , , ) ( , , )m n m nx y z P P Q   is a solution of the 
equation 2 2 28 8 8 4z x y xyz    . If m  and n  
are odd integers, then ( , , ) ( , , )m n m nx y z P P Q   is 
a solution of the equation 2 2 28 8 8 4z x y xyz    , 
and if m   is an odd integer and n  is an even 
integer, then ( , , ) ( , , )m n m nx y z P P Q   is a solution 
of the equation 2 2 28 8 8 4.z x y xyz     

Proof. The result follows immediately from 
Theorem 2.8.       

Theorem 3.2 If m  and n  are even integers, then 
( , , ) ( , , )m n m nx y z Q Q Q   is a solution of the 
equation 2 2 2 4z x y xyz    . If m  and n  are 
odd integers, then ( , , ) ( , , )m n m nx y z Q Q Q   is a 
solution of the equation 2 2 2 4z x y xyz    , 
and if m  is an odd integer and n  is an even 
i n t eg er ,  t h en  ( , , ) ( , , )m n m nx y z Q Q Q   i s  a 
solution of the equation 2 2 2 4z x y xyz    . 

Proof. The result follows directly from (2.1).        

Theorem 3.3 If m  and n  are even integers, then 
( , , ) ( , , )n m m nx y z Q P P   is a solution of the 
equation 2 2 28 8 8 4z x y xyz    . If m  and n  
are odd integers, then ( , , ) ( , , )n m m nx y z Q P P    
is a solution of the equation 2 2 28 8z x y 

8 4xyz  , and if m  is an odd integer and n  is 
an even integer, then ( , , ) ( , , )n m m nx y z Q P P   is 
a solution of the equation 2 2 28 8z x y 

8 4xyz   

Proof. The result follows immediately from 
Theorem 2.9.        

4. Conclusion 
In this paper, some identities for Pell and 

Pell-Lucas numbers are established by using 
matrix methods and the solutions of some 
Diophantine equations are presented by applying 
these identities. 
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Abstract
In this paper, we introduce two algorithms for finding a common solution of the mono-
tone inclusion problem and the fixed point problem for a relatively nonexpansive
mapping in reflexive Banach spaces. The weak convergence results for both algo-
rithms are established without the prior knowledge of the Lipschitz constant of the
mapping. An application to the variational inequality problem is considered. Finally,
some numerical experiments of the proposed algorithms including comparisons with
other algorithms are provided.

Keywords Maximal monotone operator · Banach space · Weak convergence · Fixed
point problem

Mathematics Subject Classification 47H09 · 47H10 · 47J25 · 47J05

1 Introduction

Let E be a real Banach space with its dual space E∗. Let A : E → E∗ be a monotone
operator and B : E → 2E∗

be a maximal monotone operator. The monotone inclusion
problem is to find an element x∗ ∈ E such that

0 ∈ (A + B)x∗. (1.1)
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We denote by (A + B)−10 the set of solutions of (1.1). The monotone inclusion
problem has wide applications in many fields such as machine learning, statistical
regression, image processing and signal recovery [17,18,20,38,56]. Moreover, this
problem includes the core of many mathematical problems, as special cases, such as:
variational inequalities, split feasibility problem, minimization problem, Nash equi-
librium problem in noncooperative games and so on [12,27,42].

A simple and efficient method for solving (1.1) is the forward-backward splitting
algorithm introduced by Lions and Mercier [26] in a Hilbert space H . This method is
of the following recursive scheme

xn+1 = J B
λn

(xn − λn Axn), ∀n ≥ 1, (1.2)

where J B
λn

:= (I +λn B)−1 denotes the resolvent of B, I denotes the identity mapping
on H and {λn} is a positive real sequence. It is known that this method converges
weakly to an element in (A+ B)−10 under the assumption that A is α-inverse strongly
monotone, that is,

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ H , (1.3)

where α > 0. Note that the inverse strong monotonicity of A is a strict assumption. To
avoid this assumption, Tseng [57] introduced the following algorithm which is known
as the Tseng’s splitting algorithm for solving (1.1):

⎧
⎪⎨

⎪⎩

x1 ∈ H ,

yn = J B
λn

(xn − λn Axn),

xn+1 = yn − λn(Ayn − Axn), ∀n ≥ 1,

(1.4)

where A : H → H is monotone and L-Lipschitz continuous and {λn} is the sequence
of suitable stepsize in

(
0, 1

L

)
. He proved that the sequence {xn} generated by (1.4)

converges weakly to an element in (A + B)−10. It is remarked that the stepsize of
Tseng’s splitting method requires the prior knowledge of the Lipschitz constant of
the mapping. However, from a practical point of view, the Lipschitz constant is very
difficult to approximate. In recent years, modifications of Tseng’s splitting method
have been received great attention by many authors, see, for instance, [21,22,54].

Recently, in 2019, Shehu [50] extended Tseng’s result to Banach spaces. He
proposed the following iterative process for approximating a solution of (1.1) in a
2-uniformly convex Banach space E which is also uniformly smooth:

⎧
⎪⎨

⎪⎩

x1 ∈ E,

yn = J B
λn

J−1(J xn − λn Axn),

xn+1 = J yn − λn(Ayn − Axn), ∀n ≥ 1,

(1.5)

where A : E → E∗ is monotone and L-Lipschitz continuous, J B
λn

:= (J + λn B)−1 J
is the resolvent of B and J is the duality mapping from E into E∗. He obtained weak
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convergence theorem to the solution of (1.1) provided the stepsize λn is chosen in(
0, 1√

2μκL

)
, where μ is the 2-uniform convexity constant of E and κ is the 2-uniform

smoothness constant of E∗. In addition, he also proposed a variant of (1.5) with a
linesearch for solving (1.1).

On the other hand, the fixed point problem is to find an element x∗ ∈ H such that

x∗ = T x∗, (1.6)

where T : H → H is a nonlinear mapping. The set of fixed points of T is denoted
by F(T ). Numerous problems in optimization, such as convex minimization problem,
variational inequality problem, minimax problem, and equilibrium problem can be
formulated as a fixed point equation (1.6). Several types of iterative method have
been constructed for solving the fixed point problem in various settings. One classical
method for studying the fixed point problem is the Mann’s iteration [29] (see also
[10,42]) which is defined as follows:

{
x1 ∈ H ,

xn+1 = αn xn + (1 − αn)T xn, ∀n ≥ 1,
(1.7)

where T is a self-mapping on H and {αn} is a sequence in [0, 1] satisfying∑∞
n=1 αn(1−

αn) = ∞. It was proved that if F(T ) �= ∅, then the sequence {xn} generated by (1.7)
converges weakly to an element in F(T ).

Consider the problem of finding a common solution of the monotone inclusion
problem (1.1) and the fixed point problem (1.6), that is, find x∗ ∈ H such that

0 ∈ (A + B)x∗ and x∗ = T x∗. (1.8)

In order to find and approximate a solution of this problem, when A : H → H is
α-inverse strongly monotone, Manaka and Takahashi [28] introduced the following
algorithm:

{
x1 ∈ H ,

xn+1 = αn xn + (1 − αn)T J B
λn

(xn − λn Axn), ∀n ≥ 1,
(1.9)

where T : H → H is a nonspreading mapping, {αn} is a sequence in (0, 1) and
{λn} is a sequence in (0, 2α). They proved that the sequence {xn} generated by (1.9)
converges weakly to an element in (A + B)−10 ∩ F(T ) under certain assumptions.

In recent years, severalmethods for solving themonotone inclusion problem and the
fixed point problem have been studied extensively by many authors, see, for instance,
[37,51–53,55].

In this paper, motivated byManaka and Takahashi [28] and Shehu [50], we propose
two algorithms for finding a common solution of themonotone inclusion problemwith
the sum of two monotone mappings and the fixed point problem for a relatively non-
expansive mapping. The stepsize of the first algorithm is established by using Armijo
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linesearch and the second one using self-adaptive stepsize. We prove weak conver-
gence theorems for the proposed algorithms under suitable conditions in reflexive
Banach spaces. The major advantage of both algorithms is that they do not require the
knowledge of the Lipschitz constant of the mapping.

The rest of this paper is organized as follows. We first recall some definitions and
useful results in Sect. 2. The weak convergence results of our two algorithms are then
established in Sect. 3. In Sect. 4, we provide an application of our results and finally,
in Sect. 5, we provide some preliminary numerical results including comparisons to
other algorithms.

2 Preliminaries

Throughout this paper, let E be a real reflexive Banach space with its dual E∗ and
f : E → (−∞,∞] be a proper, lower semicontinuous and convex function. We
denote by dom f = {x ∈ E : f (x) < ∞} the domain of f . We use the notations
xn → x and xn⇀x to denote the strong convergence and weak convergence of the
sequence {xn} ⊂ E to x , respectively. We also denote by 〈x, j〉 the value of functional
j ∈ E∗ at x ∈ E . The subdifferential of f is defined by

∂ f (x) = {x∗ ∈ E∗ : f (x) + 〈y − x, x∗〉 ≤ f (y), ∀y ∈ E}, x ∈ E .

The Fenchel conjugate of f is the function f ∗ : E∗ → (−∞,∞] defined by

f ∗(x∗) = sup
x∈E

{〈x, x∗〉 − f (x)}.

It is known that x∗ ∈ ∂ f (x) is equivalent to f (x) + f ∗(x∗) = 〈x, x∗〉 (see [47,
Theorem 23.5]). The function f on E is said to be cofinite if dom f ∗ = E∗ and f is
said to be strongly coercive if lim‖x‖→∞ f (x)

‖x‖ = ∞.
For any x ∈ int(dom f ) and y ∈ E , the directional derivative of f at x in the

direction y ∈ E is given by

f ′(x, y) = lim
t→0+

f (x + t y) − f (x)

t
. (2.1)

The function f is said to be Gâteaux differentiable at x if the limit as t → 0 in
(2.1) exists for each y. In this case, the gradient of f at x is the linear function
∇ f (x) : E → E∗ defined by 〈y,∇ f (x)〉 = f ′(x, y) for any y ∈ E . For more
details about gradient, we recommend [8, Remark 3.32]. The function f is said to
be Gâteaux differentiable if it is Gâteaux differentiable for any x ∈ int(dom f ). It
is known that if f is continuous at x and ∂ f (x) is single valued, then f is Gâteaux
differentiable at x and ∇ f (x) = ∂ f (x) (see [5, Proposition 2.40]). The mapping ∇ f
is said to be weakly sequentially continuous if for any sequence {xn} ⊂ E , xn⇀x
implies that ∇ f (xn)⇀∗∇ f (x). The function f is said to be Fréchet differentiable at
x if the limit (2.1) is attained uniformly in ‖y‖ = 1 and f is said to be uniformly
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Fréchet differentiable on a subset C of E if the limit (2.1) is attained uniformly for
x ∈ C and ‖y‖ = 1. It is well known that every Fréchet differentiable function is
Gâteaux differentiable and if f is Fréchet differentiable, then it is continuous but if
f is Gâteaux differentiable, then it is not necessary that f is continuous (see [35, p.
142]).

The function f : E → (−∞,∞] is said to be Legendre [45, p. 25] if and only if it
satisfies the following two conditions:

(L1) int(dom f ) �= ∅ and f is Gâteaux differentiable with dom∇ f = int(dom f );
(L2) int(dom f ∗) �= ∅ and f ∗ isGâteauxdifferentiablewith dom∇ f ∗ = int(dom f ∗).
Several examples of Legendre and related functions are presented in [39].

In a reflexive Banach space, we always obtain (∂ f )−1 = ∂ f ∗ (see [9, p. 83]). This
fact, when combined with conditions (L1) and (L2), implies the following facts:

(i) ∇ f is a bijection with ∇ f = (∇ f ∗)−1 (see [6, Theorem 5.10]);
(i) ran∇ f = dom∇ f ∗ = int(dom f ∗) and ran∇ f ∗ = dom∇ f = int(dom f ) (see

[46, p. 123]),

where ran∇ f denotes the range of ∇ f .
Let f : E → (−∞,∞] be a Gâteaux differentiable function. The function D f :

dom f × int(dom f ) → [0,∞) defined by

D f (x, y) = f (x) − f (y) − 〈x − y,∇ f (y)〉

is called the Bregman distance with respect to f [11]. The Bregman distance has the
following two important properties called the two-point identity and the three-point
identity, respectively: for any x, y ∈ int(dom f )

D f (x, y) + D f (y, x) = 〈x − y,∇ f (x) − ∇ f (y)〉 (2.2)

and for any x ∈ dom f and y, z ∈ int(dom f )

D f (x, y) = D f (x, z) − D f (y, z) + 〈x − y,∇ f (z) − ∇ f (y)〉. (2.3)

If E is a uniformly convex and uniformly smooth Banach space, and f (x) = 1
2‖x‖2

for all x ∈ E , then ∇ f (x) = J x , where J is the normalized duality mapping defined
by J x = { j ∈ E∗ : 〈x, j〉 = ‖x‖2 = ‖ j‖2}. So, we obtain

D f (x, y) = 1

2

(‖x‖2 − ‖y‖2 − 2〈x − y, J y〉)

= 1

2

(‖x‖2 − 2〈x, J y〉 + ‖y‖2)

= 1

2
φ(x, y),

where φ is called the Lyapunov functional which was studied in [3,43]. For a 2-
uniformly convex and smooth Banach space E , the Lyapunov functional satisfies the
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following inequality:

φ(x, y) ≥ c‖x − y‖2, (2.4)

where c > 0 is the 2-uniformly convexity constant of E (see [31, Lemma 2.3]). For a
real Hilbert space, it is well known that φ(x, y) = ‖x − y‖2 and c = 1.

Define the negative entropy function f (x) = ∑m
i=1 xi ln(xi ) over the nonnegative

octant Rm+ := {x ∈ R
m : xi ≥ 0}, then we have the Kullback-Leibler distance given

by

D f (x, y) =
m∑

i=1

(
xi ln

( xi

yi

)
+ yi − xi

)
.

For more examples of Bregman distances, see for instance, [25,33,34,40]. In general,
the Bregman distance is not a metric due to the fact that it is not symmetric and it does
not satisfy the triangle inequality. Note that D f (x, x) = 0, but D f (x, y) = 0 may
not imply x = y. In our case when f is Legendre this indeed holds (see [6, Theorem
7.3(vi), p. 642]).

A Gâteaux differentiable function f is said to be σ -strongly convex if there exists
a constant σ > 0 such that

f (x) ≥ f (y) + 〈x − y,∇ f (y)〉 + σ

2
‖x − y‖2, ∀x ∈ dom f , y ∈ int(dom f ).

From the definition of Bregman distance, we have

D f (x, y) ≥ σ

2
‖x − y‖2. (2.5)

The function f is said to be totally convex at x if v f (x, t) > 0, whenever t > 0 and is
called totally convex if it is totally convex at any point x ∈ int(dom f ), where modulus
of total convexity of f at x ∈ dom f is the function v f (x, ·) : [0,∞) → [0,∞]
defined by

v f (x, t) = inf{D f (y, x) : y ∈ dom f , ‖y − x‖ = t}.

It is well known that if f is totally convex and Fréchet differentiable, then f is cofinite
(see [45, Proposition 2.3, p. 39]). The function f is said to be totally convex on
bounded sets if v f (X , t) > 0 for any nonempty bounded subset X of E and t > 0,
where the modulus of total convexity of the function f on the set X is the function
v f : int(dom f ) × [0,∞) → [0,∞] defined by

v f (X , t) = inf{v f (x, t) : x ∈ X ∩ dom f }.

Several examples of totally convex functions can be found in [14]. Let Br = {x ∈ E :
‖x‖ ≤ r} for all r > 0 and SE = {x ∈ E : ‖x‖ = 1}. Then a function f : E → R
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is said to be uniformly convex on bounded subsets of E if ρr (t) > 0 for all r , t > 0,
where ρr : [0,∞) → [0,∞) is defined by

ρr (t) = inf
x,y∈Br ,‖x−y‖=t,α∈(0,1)

α f (x) + (1 − α) f (y) − f (αx + (1 − α)y)

α(1 − α)

for all t ≥ 0. The function ρr is called the gauge of the uniform convexity of f . It
is well known that f is totally convex on bounded sets if and only if f is uniformly
convex on bounded sets (see [13, Theorem 2.10]). The function f is also said to be
uniformly smooth on bounded subsets of E if limt→0+ σr (t)

t = 0 for all r > 0, where
σr : [0,∞) → [0,∞) is defined by

ρr (t) = sup
x∈Br ,y∈SE ,α∈(0,1)

α f (x + (1 − α)t y) + (1 − α) f (x − αt y)

α(1 − α)

for all t ≥ 0.
If f is uniformly convex, then we know the following lemma.

Lemma 2.1 [32, Lemma 2.3] Let E be a Banach space, let r > 0 be a constant and
f : E → R be a uniformly convex on bounded subsets of E. Then

f

( m∑

k=0

λk xk

)

≤
m∑

k=0

λk f (xk) − λiλ jρr (‖xi − y j‖)

for all i, j ∈ {0, 1, 2, . . . , m}, xk ∈ Br , λk ∈ (0, 1) for k = 0, 1, 2, . . . , m with∑m
k=0 λk = 1, where ρr is the gauge of uniform convexity of f .

Let C be a nonempty subset of E . Let T : C → C be a mapping. A point p ∈ C
is called a fixed point of T if p = T p and we denote by F(T ) the set of fixed points
of T , that is, F(T ) = {x ∈ C : x = T x}. The mapping T : C → int(dom f ) is said
to be relatively nonexpansive [15] if it satisfies the following conditions:

(i) F(T ) �= ∅;
(ii) D f (p, T x) ≤ D f (p, x) for all p ∈ F(T ) and x ∈ C ;
(iii) I − T is demi-closed at zero, that is, whenever a sequence {xn} in C such that

xn⇀p and limn→∞ ‖xn − T xn‖ = 0, it follows that p ∈ F(T ).

Remark 2.2 If T satisfies (i) and (i i), then T is called Bregman quasi-nonexpansive.
From above definition, it is known that if E is a Hilbert space and f (x) = 1

2‖x‖2,
then T is quasi-nonexpansive with I − T is demi-closed at zero.

Lemma 2.3 [44, Lemma 15.5] Let f : E → (−∞,∞] be a Legendre function. Let C
be a nonempty, closed and convex subset of int(dom f ) and T : C → C be a Bregman
quasi-nonexpansive mapping. Then F(T ) is closed and convex.

Recall that the Bregman projection with respect to f of x ∈ int(dom f ) onto the
nonempty, closed and convex set C ⊂ dom f is the unique P f

C (x) ⊂ C satisfying
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D f (P f
C (x), x) = inf{D f (y, x) : y ∈ C}.

Remark 2.4 If E is a uniformly convex and uniformly smooth Banach space, and
f (x) = 1

2‖x‖2 for all x ∈ E , then P f
C coincides the generalized projection 
C (see

[2, Definition 7.2]) and if E is a Hilbert space, then P f
C is the metric projection PC .

Lemma 2.5 [13, Corollary 4.4] Let C be a nonempty, closed and convex subset of E.
Let f : E → R be a Gâteaux differentiable and totally convex function and x ∈ E.
Then the following statements hold:

(i) z = 

f
C (x) if and only if 〈y − z,∇ f (x) − ∇ f (z)〉 ≤ 0, ∀y ∈ C.

(ii) D f (y, P f
C (x)) + D f (P f

C (x), x) ≤ D f (y, x), ∀y ∈ C.

Let f : E → R be a Legendre function. We define the function V f : E × E∗ →
[0,∞) associated with f by

V f (x, x∗) = f (x) − 〈x, x∗〉 + f ∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

Then V f is nonnegative and

V f (x, x∗) = D f (x,∇ f ∗(x∗)), ∀x ∈ E, x∗ ∈ E∗.

Moreover, if f : E → (−∞,∞] is a proper and convex function, then f ∗ : E →
(−∞,∞] is a proper lower semicontinuous and convex function (see [36, p. 42]).
Hence V f is convex in the second variable. Thus for all x ∈ E ,

D f

(
x,∇ f ∗(

N∑

i=1

ti∇ f (xi )
))

≤
N∑

i=1

ti D f (x, xi ), (2.6)

where {xi }N
i=1 ⊂ E and {ti }N

i=1 ⊂ (0, 1) with
∑N

i=1 ti = 1.
Let C be a nonempty subset of E . Then a mapping A : C → E∗ is said to be:

(i) monotone if 〈x − y, Ax − Ay〉 ≥ 0 for all x, y ∈ C .
(ii) L-Lipschitz continuous if there exists a constant L > 0 such that ‖Ax − Ay‖ ≤

L‖x − y‖ for all x, y ∈ C .
(iii) hemicontinuous if for each x, y ∈ C , the mapping f : [0, 1] → E∗ defined by

f (t) = A(t x + (1− t)y) is continuous with respect to the weak∗ topology of E∗.

For a set-valued operator A : E → 2E∗
, we define its domain, range and graph

as follows: domA = {x ∈ E : Ax �= ∅}, ranA = ⋃{Ax : x ∈ domA} and
G(A) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}, respectively. An operator A is said to
be monotone if for each (x, x∗), (y, y∗) ∈ G(A), we have 〈x − y, x∗ − y∗〉 ≥ 0. A
monotone operator A is said to be maximal, if its graph is not contained in the graph
of any other monotone operator on E . It is known that if f : E → R is Gâteaux
differentiable, strictly convex and cofinite, then A is maximal monotone if and only if
ran(∇ f + λA) = E∗ for λ > 0 (see [7, Corollary 2.4]).
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Let f : E → (−∞,∞] be a Fréchet differentiable function which is bounded on
bounded subsets of E and A be a maximal monotone operator, then the resolvent of
A for λ > 0 defined by

J A
λ (x) = (∇ f + λA)−1∇ f (x), ∀x ∈ E

is a single-valued Bregman quasi-nonexpansive mapping from E onto domA with
F(J A

λ ) = A−10.

Lemma 2.6 [4, Corollary 2.1] Let A : E → E∗ be a monotone, hemicontinuous and
bounded operator, and B : E → 2E∗

be a maximal monotone operator. Then A + B
is maximal monotone.

Lemma 2.7 [45, Lemma 3.1] Let f : E → R be a Gâteaux differentiable and totally
convex function. Suppose that x ∈ E, if {D f (x, xn)} is bounded, then the sequence
{xn} is bounded.

Lemma 2.8 [32, Lemma 2.4] Let E be a Banach space and f : E → R be a Gâteaux
differentiable function which is uniformly convex on bounded subsets of E. Suppose
that {xn} and {yn} are two sequences in E. Then limn→∞ D f (xn, yn) = 0 if and only
if limn→∞ ‖xn − yn‖ = 0.

Lemma 2.9 [30, Proposition 9] Let f : E → R be a Legendre function such that ∇ f
is weakly sequentially continuous. Suppose that the sequence {xn} is bounded and
that limn→∞ D f (u, xn) exists for any weak subsequential limit u of {xn}. Then {xn}
converges weakly to u.

3 Main results

In this section, we introduce two algorithms without the knowledge of the Lipschitz
constant of the mapping for solving the monotone inclusion problem and the fixed
point problem. From now on, let E be a real reflexive Banach space, f : E → R be a
σ -strongly convex, strongly coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of E , A : E → E∗
be a monotone and L-Lipschitz continuous mapping, B : E → 2E∗

be a maximal
monotone mapping, and T : E → E be a relatively nonexpansive mapping. Assume
that � := F(T ) ∩ (A + B)−10 �= ∅.
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Algorithm 1: Mann-type splitting algorithm with linesearch
Step 0. Given γ > 0, l ∈ (0, 1) and μ ∈ (0, σ ), where σ is a constant given by
(2.5). Let x1 ∈ E be arbitrary. Set n = 1.
Step 1. Compute

yn = J B
λn

∇ f ∗(∇ f (xn) − λn Axn), (3.1)

where λn = γ lmn and mn is the smallest nonnegative integer such that

λn‖Axn − Ayn‖ ≤ μ‖xn − yn‖. (3.2)

Step 2. Compute

zn = ∇ f ∗(∇ f (yn) − λn(Ayn − Axn)). (3.3)

Step 3. Compute

xn+1 = ∇ f ∗((1 − αn)∇ f (zn) + αn∇ f (T zn))). (3.4)

Set n := n + 1 and go to Step 1.

Lemma 3.1 Suppose that {αn} is a sequence in (0, 1). If yn = xn = xn+1 for some n,
then xn ∈ �.

Proof If yn = xn , then xn = J B
λn

∇ f ∗(∇ f (xn) − λn Axn). It follows that xn = (∇ f +
λn B)−1∇ f ◦ ∇ f ∗(∇ f − λn A)xn , that is, ∇ f (xn) − λn Axn ∈ ∇ f (xn) + λn Bxn ,
which implies that 0 ∈ (A + B)xn . Hence xn ∈ (A + B)−10. Again since yn =
xn and ∇ f is one-to-one, we have from (3.3) that zn = xn . On the other hand,
if xn+1 = xn , then by xn+1 = ∇ f ∗((1 − αn)∇ f (zn) + αn∇ f (T zn))), we have
∇ f (xn) = (1 − αn)∇ f (zn) + αn∇ f (T zn) and hence xn = T xn . This implies that
xn ∈ F(T ). Therefore, xn ∈ � := F(T ) ∩ (A + B)−10. ��
Lemma 3.2 The Armijo linesearch rule defined by (3.2) is well defined and

min{γ,
μl

L
} ≤ λn ≤ γ.

Proof Since A is L-Lipschitz continuous on E , we have

‖Axn − A(J B
γ lmn ∇ f ∗(∇ f (xn) − γ lmn Axn))

‖ ≤ L‖xn − J B
γ lmn ∇ f ∗(∇ f (xn) − γ lmn Axn)‖.

Using the fact that L > 0 and μ > 0, we get

μ

L
‖Axn − A(J B

γ lmn ∇ f ∗(∇ f (xn) − γ lmn Axn))‖ ≤ μ‖xn − J B
γ lmn ∇ f ∗(∇ f (xn)

−γ lmn Axn)‖.
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This implies that (3.2) holds for all γ lmn ≤ μ
L and so λn is well defined. Obviously,

λn ≤ γ . If λn = γ , then the lemma is proved. Otherwise, if λn < γ , then we have
from (3.2) that

‖Axn − A
(
J B

λn
l

∇ f ∗(∇ f (xn) − λn

l
Axn

))∥
∥ >

μ

λn
l

∥
∥xn − J B

λn
l

∇ f ∗(∇ f (xn) − λn

l
Axn

)∥
∥.

Again by the L-Lipschitz continuity of A, we obtain λn >
μl
L . This completes the

proof ��
Lemma 3.3 Let {xn} be a sequence generated by Algorithm 1. Then

D f (p, zn) ≤ D f (p, xn) −
(
1 − μ

σ

)
D f (yn, xn) −

(
1 − μ

σ

)
D f (yn, zn),

∀p ∈ (A + B)−10.

Proof Let p ∈ (A + B)−10. By the definition of Bregman distance, we have

D f (p, zn) = D f (p,∇ f ∗(∇ f (yn) − λn(Ayn − Axn)))

= f (p) − f (zn) − 〈p − zn,∇ f (yn) − λn(Ayn − Axn)〉
= f (p) − f (zn) − 〈p − zn,∇ f (yn)〉 + λn〈p − zn, Ayn − Aun〉
= f (p) − f (yn) − 〈p − yn,∇ f (yn)〉 + 〈p − zn,∇ f (yn)〉

+ f (yn) − f (zn) − 〈p − zn,∇ f (yn)〉
+λn〈p − zn, Ayn − Aun〉

= f (p) − f (yn) − 〈p − yn,∇ f (yn)〉 − f (zn) + f (yn)

+〈zn − yn,∇ f (yn)〉 + λn〈p − zn, Ayn − Axn〉
= D f (p, yn) − D f (zn, yn) + λn〈p − zn, Ayn − Axn〉. (3.5)

From (2.3), we have

D f (p, yn) = D f (p, xn) − D f (yn, xn) + 〈p − yn,∇ f (xn) − ∇ f (yn)〉. (3.6)

Combining (3.5) and (3.6), we get

D f (p, zn) = D f (p, xn) − D f (yn, xn) − D f (zn, yn) + 〈p − yn,∇ f (xn) − ∇ f (yn)〉
+λn〈p − zn, Ayn − Axn〉

= D f (p, xn) − D f (yn, xn) − D f (zn, yn) + 〈p − yn,∇ f (xn) − ∇ f (yn)〉
+λn〈yn − zn, Ayn − Axn〉 − λn〈yn − p, Ayn − Axn〉

= D f (p, xn) − D f (yn, xn) − D f (zn, yn) + λn〈yn − zn, Ayn − Axn〉
−〈yn − p,∇ f (xn) − ∇ f (yn) − λn(Axn − Ayn)〉. (3.7)

By the definition of yn , we have ∇ f (xn) − λn Axn ∈ ∇ f (yn) + λn Byn . Since B is
maximal monotone, there exists vn ∈ Byn such that ∇ f (xn) − λn Axn = ∇ f (yn) +
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λnvn , it follows that

vn = 1

λn

(∇ f (xn) − ∇ f (yn) − λn Axn
)
. (3.8)

Since 0 ∈ (A + B)p and Ayn + vn ∈ (A + B)yn , it follows from Lemma 2.6 that
A + B is maximal monotone. Hence

〈yn − p, Ayn + vn〉 ≥ 0. (3.9)

Substituting (3.8) into (3.9), we have

1

λn
〈yn − p,∇ f (xn) − ∇ f (yn) − λn Axn + λn Ayn〉 ≥ 0.

That is

〈yn − p,∇ f (xn) − ∇ f (yn) − λn(Axn − Ayn)〉 ≥ 0. (3.10)

Combining (3.7) and (3.10), we have

D f (p, zn) ≤ D f (p, xn) − D f (yn, xn) − D f (zn, yn) + λn〈yn − zn, Ayn − Axn〉
≤ D f (p, xn) − D f (yn, xn) − D f (zn, yn) + λn‖yn − zn‖‖Ayn − Axn‖
≤ D f (p, xn) − D f (yn, xn) − D f (zn, yn) + μ‖yn − zn‖‖yn − xn‖
≤ D f (p, xn) − D f (yn, xn) − D f (zn, yn) + μ

2

(
‖yn − zn‖2 + ‖yn − xn‖2

)
.

(3.11)

Thus from (2.5), we can rewrite (3.11) as follows:

D f (p, zn) ≤ D f (p, xn) −
(
1 − μ

σ

)
D f (yn, xn) −

(
1 − μ

σ

)
D f (yn, zn).

��

Theorem 3.4 Assume that {αn} is a sequence in (0, 1) such that {αn} ⊂ [a, b] ⊂ (0, 1)
for some a, b > 0. Suppose, in addition, that ∇ f is weakly sequentially continuous on
E. Then the sequence {xn} generated by Algorithm 1 converges weakly to an element
in �.

Proof First, we show that {xn} is bounded. Let z ∈ F(T ) ∩ (A + B)−10. Since
μ ∈ (0, 2σ), it follows from Lemma 3.3 that

D f (z, zn) ≤ D f (z, xn). (3.12)
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Consequently,

D f (z, xn+1) ≤ (1 − αn)D f (z, zn) + αn D f (z, T zn)

≤ (1 − αn)D f (z, zn) + αn D f (z, zn)

≤ D f (z, xn). (3.13)

This implies that limn→∞ D f (z, xn) exists and hence {D f (z, xn)} is bounded. By
Lemma 2.7, we have {xn} is bounded. By our assumption that f is Fréchet differ-
entiable, we have f is uniformly smooth. From this, we also have f ∗ is uniformly
convex (see [59, Theorem 3.5.5]). Then by the property of D f and Lemmas 2.1, 3.3,
we have

D f (z, xn+1) = V f (z, (1 − αn)∇ f (zn) + αn∇ f (T zn))

= f (z) − 〈z, (1 − αn)∇ f (zn) + αn∇ f (T zn)〉 + f ∗((1 − αn)∇ f (zn)

+αn∇ f (T zn))

≤ (1 − αn) f (z) + αn f (z) − (1 − αn)〈z,∇ f (zn)〉 − αn〈z,∇ f (T zn)〉
+(1 − αn) f ∗(∇ f (zn)) + αn f ∗(∇ f (T zn)) − αn(1 − αn)ρ∗

r (‖∇ f (zn)

−∇ f (T zn)‖)
= (1 − αn)( f (z) − 〈z,∇ f (zn)〉 + f ∗(∇ f (zn))) + αn( f (z) − 〈z,∇ f (T zn)〉

+ f ∗(∇ f (T zn)))

−αn(1 − αn)ρ
∗
r (‖∇ f (zn) − ∇ f (T zn)‖)

= (1 − αn)V f (z,∇ f (zn)) + αn V f (z,∇ f (T zn)) − αn(1 − αn)ρ∗
r (‖∇ f (zn)

−∇ f (T zn)‖)
= (1 − αn)D f (z, zn) + αn D f (z, T zn) − αn(1 − αn)ρ∗

r (‖∇ f (zn) − ∇ f (T zn)‖)
≤ D f (z, zn) − αn(1 − αn)ρ∗

r (‖∇ f (zn) − ∇ f (T zn)‖)
≤ D f (z, xn) −

(
1 − μ

σ

)
D f (yn, xn) −

(
1 − μ

σ

)
D f (yn, zn)

−αn(1 − αn)ρ
∗
r (‖∇ f (zn) − ∇ f (T zn)‖).

This implies that

(
1 − μ

σ

)
D f (yn, xn) +

(
1 − μ

σ

)
D f (yn, zn) + αn(1 − αn)ρ∗

r (‖∇ f (zn)

−∇ f (T zn)‖)
≤ D f (z, xn) − D f (z, xn+1). (3.14)

By Lemma 2.8 and the property of ρ∗
r , we have

lim
n→∞ ‖yn − xn‖ = lim

n→∞ ‖yn − zn‖ = 0 (3.15)
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and

lim
n→∞ ‖∇ f (zn) − ∇ f (T zn)‖ = 0. (3.16)

Since f is bounded and uniformly smooth on bounded sets of E , it follows that ∇ f
is uniformly continuous on bounded subsets of E (see [59, Proposition 3.6.3]). Thus
we have

lim
n→∞ ‖∇ f (yn) − ∇ f (xn)‖ = 0 (3.17)

and

lim
n→∞ ‖∇ f (yn) − ∇ f (zn)‖ = 0. (3.18)

Combining (3.17) and (3.18), we also have

‖∇ f (xn) − ∇ f (zn)‖ ≤ ‖∇ f (xn) − ∇ f (yn)‖ + ‖∇ f (yn) − ∇ f (zn)‖
→ 0.

Since f is uniformly convex on bounded subsets of E , it follows that∇ f ∗ is uniformly
continuous on bounded subsets of E∗ (see [59, Theorem 3.5.10]) and hence

lim
n→∞ ‖xn − zn‖ = 0. (3.19)

and

lim
n→∞ ‖zn − T zn‖ = 0. (3.20)

By the boundedness of {xn}, there exists a subsequence {xnk } of {xn} such that
xnk ⇀x∗ ∈ E . From (3.19), we also have znk ⇀x∗. Since ‖zn − T zn‖ → 0 and I − T
is demi-closed at zero, we have x∗ ∈ F(T ). We next show that x∗ ∈ (A + B)−10. Let
(v,w) ∈ G(A + B), we have w − Av ∈ Bv. From the definition of ynk , we note that

∇ f (xnk ) − λnk Axnk ∈ ∇ f (ynk ) + λnk Bynk ,

or equivalently,

1

λnk

(∇ f (xnk ) − ∇ f (ynk ) − λnk Axnk

) ∈ Bynk .

By the maximal monotonicity of B, we have

〈

v − ynk , w − Av + 1

λnk

(∇ f (xnk ) − ∇ f (ynk ) − λnk Axnk

)
〉

≥ 0.
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Moreover, by the monotonicity of A, we have

〈v − ynk , w〉 ≥
〈

v − ynk , Av + 1

λnk

(∇ f (xnk ) − ∇ f (ynk ) − λnk Axnk )

〉

= 〈v − ynk , Av − Axnk 〉 + 1

λnk

〈v − ynk ,∇ f (xnk ) − ∇ f (ynk )〉
= 〈v − ynk , Av − Aynk 〉 + 〈v − ynk , Aynk − Axnk 〉

+ 1

λnk

〈v − ynk ,∇ f (xnk ) − ∇ f (ynk )〉

≥ 〈v − ynk , Aynk − Axnk 〉 + 1

λnk

〈v − ynk ,∇ f (xnk ) − ∇ f (ynk )〉.
(3.21)

Since A is Lipschitz continuous and ynk ⇀x∗, it follows from (3.15) and (3.17) that

〈v − x∗, w〉 ≥ 0.

By the monotonicity of A + B, we get 0 ∈ (A + B)x∗, that is, x∗ ∈ (A + B)−10.
Hence x∗ ∈ F(T ) ∩ (A + B)−10. From Lemma 2.9, we conclude that the sequence
{xn} converges weakly to x∗. This completes the proof. ��

If E is a 2-uniformly convex and uniformly smooth Banach space, and f (x) = 1
2‖x‖2,

then we have the following result.

Corollary 3.5 Let A : E → E∗ be a monotone and L-Lipschitz continuous mapping,
B : E → 2E∗

be a maximal monotone mapping, and T : E → E be a relatively
nonexpansive mapping. Assume that � := F(T ) ∩ (A + B)−10 �= ∅. Given γ > 0,
l ∈ (0, 1) and μ ∈ (0, c), where c is a constant given by (2.4). For any x1 ∈ E, let
{xn} be defined by

⎧
⎨

⎩

yn = J B
λn

J−1(J xn − λn Axn),

zn = J−1(J yn − λn(Ayn − Axn)),

xn+1 = J−1((1 − αn)J zn + αn J (T zn)), ∀n ≥ 1,

where λn = γ lmn and mn is the smallest nonnegative integer m such that

λn‖Axn − Ayn‖ ≤ μ‖xn − yn‖.

Assume that {αn} is a sequence in (0, 1) such that {αn} ⊂ [a, b] ⊂ (0, 1) for some
a, b > 0. Suppose, in addition, that J is weakly sequentially continuous on E. Then
{xn} converges weakly to an element in �.
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Next, we propose anotherMann-type splitting algorithmwith self-adaptive stepsize
for solving the variational inclusion problem and the fixed point problem.

Algorithm 2:Man-type splitting algorithm with self-adaptive stepsize
Step 0. Given λ1 > 0 and μ ∈ (0, σ ), where σ is a constant given by (2.5). Let
x1 ∈ E be arbitrary. Set n = 1.
Step 1. Compute

yn = J B
λn

∇ f ∗(∇ f (xn) − λn Axn). (3.22)

Step 2. Compute

zn = ∇ f ∗(∇ f (yn) − λn(Ayn − Axn)). (3.23)

Step 3. Compute

xn+1 = ∇ f ∗((1 − αn)∇ f (zn) + αn∇ f (T zn))), (3.24)

where the stepsize is adaptively updated as follows:

λn+1 =

⎧
⎪⎨

⎪⎩

min

{
μ‖xn − yn‖

‖Axn − Ayn‖, λn

}

if Axn − Ayn �= 0,

λn otherwise.
(3.25)

Set n := n + 1 and go to Step 1.

Lemma 3.6 Let {xn} be a sequence generated by Algorithm 2. Then the sequence {λn}
is nonincreasing and

lim
n→∞ λn = λ ≥ min{μ

L
, λ1}.

Moreover,

‖Axn − Ayn‖ ≤ μ

λn+1
‖xn − yn‖, ∀n ≥ 1.

Proof It is obvious from (3.25) that λn+1 ≤ λn for all n ≥ 1. Since A is L-Lipschitz
continuous, in the case Axn − Ayn �= 0, we have

μ‖xn − yn‖
‖Axn − Ayn‖ ≥ μ‖xn − yn‖

L‖xn − yn‖ = μ

L
.

Clearly,

λn+1 ≥ min
{μ

L
, λn

}
.
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By induction, we obtain immediately that the sequence {λn} is bounded from below
by min{μ

L , λ1}. Thus there exists λ := limn→∞ λn ≥ min{μ
L , λ1}.

On the other hand, by the definition of {λn}, we have

λn+1 = min

{
μ‖xn − yn‖

‖Axn − Ayn‖, λn

}

≤ μ‖xn − yn‖
‖Axn − Ayn‖ .

This implies that

‖Axn − Ayn‖ ≤ μ

λn+1
‖xn − yn‖, ∀n ≥ 1.

��
Lemma 3.7 Let {xn} be a sequence generated by Algorithm 2. Then

D f (p, zn) ≤ D f (p, xn) −
(
1 − μ

σ

λn

λn+1

)
D f (yn, zn) −

(
1 − μ

σ

λn

λn+1

)
D f (yn, xn),

∀p ∈ (A + B)−10.

Proof Let p ∈ (A + B)−10. By using the same arguments as in the proof of Lemma
3.3, we can deduce that

D f (p, zn) ≤ D f (p, xn) − D f (yn, xn) − D f (zn, yn) + λn〈yn − zn, Ayn − Axn〉.

Thus from Lemma 3.6, we have

D f (p, zn) ≤ D f (p, xn) − D f (yn, xn) − D f (zn, yn) + λn‖yn − zn‖‖Ayn − Axn‖
≤ D f (p, xn) − D f (yn, xn) − D f (zn, yn) + μ

λn

λn+1
‖yn − zn‖‖yn − xn‖

≤ D f (p, xn) − D f (yn, xn) − D f (zn, yn)

+μ

2

λn

λn+1

(
‖yn − zn‖2 + ‖yn − xn‖2

)
. (3.26)

From (2.5), we can rewrite (3.26) as follows:

D f (p, zn) ≤ D f (p, xn) −
(
1 − μ

σ

λn

λn+1

)
D f (yn, zn) −

(
1 − μ

σ

λn

λn+1

)
D f (yn, xn).

��
Theorem 3.8 Assume that {αn} is a sequence in (0, 1) such that {αn} ⊂ [a, b] ⊂ (0, 1)
for some a, b > 0. Suppose, in addition, that ∇ f is weakly sequentially continuous on
E. Then the sequence {xn} generated by Algorithm 2 converges weakly to an element
in �.
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Proof We only show that {xn} is bounded. Since limn→∞ λn exists and μ ∈ (0, σ ),

we have limn→∞
(
1 − μ

σ
λn

λn+1

)
= 1 − μ

σ
> 0. Thus there exists n0 ∈ N such that

1 − μ

σ

λn

λn+1
> 0, ∀n ≥ n0.

This implies by Lemma 3.7 that

D f (p, zn) ≤ D f (p, xn), ∀n ≥ n0.

Consequently,

D f (z, xn+1) ≤ (1 − αn)D f (z, zn) + αn D f (z, T zn)

≤ (1 − αn)D f (z, zn) + αn D f (z, zn)

≤ D f (z, xn).

This shows that limn→∞ D f (p, xn) exists and hence {D f (p, xn)} is bounded. More-
over, we also have {xn} is bounded. By using the same arguments and techniques as
those of Theorem 3.4, we can show that the sequence {xn} converges weakly to an
element in � := F(T ) ∩ (A + B)−10. Then the proof is completed. ��
If E is a 2-uniformly convex and uniformly smooth Banach space, and f (x) = 1

2‖x‖2,
then we have the following result.

Corollary 3.9 Let A : E → E∗ be a monotone and L-Lipschitz continuous mapping,
B : E → 2E∗

be a maximal monotone mapping, and T : E → E be a relatively
nonexpansive mapping. Assume that � := F(T ) ∩ (A + B)−10 �= ∅. Given λ1 > 0
and μ ∈ (0, c), where c is a constant given by (2.4). For any x1 ∈ E, let {xn} be
defined by

⎧
⎨

⎩

yn = J B
λn

J−1(J xn − λn Axn),

zn = J−1(J yn − λn(Ayn − Axn)),

xn+1 = J−1((1 − αn)J zn + αn J (T zn)), ∀n ≥ 1,

where the stepsize is adaptively updated as follows:

λn+1 =

⎧
⎪⎨

⎪⎩

min

{
μ‖xn − yn‖

‖Axn − Ayn‖, λn

}

if Axn − Ayn �= 0,

λn otherwise.

Assume that {αn} is a sequence in (0, 1) such that {αn} ⊂ [a, b] ⊂ (0, 1) for some
a, b > 0. Suppose, in addition, that J is weakly sequentially continuous on E. Then
{xn} converges weakly to an element in �.

Remark 3.10 Our main results improve and generalize the main results of Shehu [50]
in the following ways:
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(i) For the structure of Banach spaces, we extend the duality mapping to more general
case, σ -strongly convex, strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets.

(ii) We extend the main results of Shehu [50] from the problem of finding a solution of
the monotone inclusion problem in a 2-uniformly convex and uniformly smooth
Banach space to the problem of finding a common solution of the monotone inclu-
sion problem and the fixed point problem in a reflexive Banach space. However,
the result of Theorem 3.4 contains the result of Theorem 3.10 in [50] as a special
case.

(iii) The sequence of stepsizes of our algorithms is chosen without the prior knowledge
of the Lipschitz constant and the uniform smoothness constant of the mapping,
while the sequence of stepsize of Theorem 3.6 in [50] requires the knowledge of
them.

Remark 3.11 Our main results improve and generalize the main result of Manaka and
Takahashi [28] in the following ways:

(i) We extend Theorem 3.1 in [28] from a Hilbert space to a reflexive Banach space.
(ii) We relax the strict assumption of the mapping A with the weaker assumption that

A is a monotone and L-Lipschitz continuous mapping.

4 Application

In this section, we apply our results to the problem of finding a common solution of
the variational inequality problem and the fixed point problem in Banach spaces. Let
C be a nonempty, closed and convex subset of a real reflexive Banach space E . Let
f : E → (−∞,∞] be a Legendre and totally convex function and A : C → E∗ be a
monotone mapping. The variational inequality problem is to find an element x∗ ∈ C
such that

〈y − x∗, Ax∗〉 ≥ 0, ∀y ∈ C . (4.1)

The set of solutions of (4.1) is denoted by V I (C, A). In particular, if A is a con-
tinuous and hemicontinuous mapping, then V I (C, A) is closed and convex (see [31,
Proposition 2.6]). Recall that the indicator function of C given by

iC (x) =
{

0, if x ∈ C,

∞, if x /∈ C .

It is known that iC is proper convex, lower semicontinuous and convex function with
its subdifferential ∂iC is maximal monotone (see [48, Theorem A]). Moreover, from
[1, Proposition 2.5.13], we know that

∂iC (v) = NC (v) = {u ∈ E∗ : 〈y − v, u〉 ≤ 0, ∀y ∈ C},

where NC is the normal cone for C at a point v.
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Theorem 4.1 Let f : E → R be a σ -strongly convex, strongly coercive Legendre
function which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E, A : E → E∗ be a monotone and L-Lipschitz continuous
mapping, and T : E → E be a relatively nonexpansive mapping. Assume that � :=
F(T ) ∩ V I (C, A) �= ∅. Given γ > 0, l ∈ (0, 1) and μ ∈ (0, σ ). For any x1 ∈ E, let
{xn} be defined by

⎧
⎪⎨

⎪⎩

yn = P f
C ∇ f ∗(∇ f (xn) − λn Axn),

zn = ∇ f ∗(∇ f (yn) − λn(Ayn − Axn)),

xn+1 = ∇ f ∗((1 − αn)∇ f (zn) + αn∇ f (T zn))), ∀n ≥ 1,

(4.2)

where λn = γ lmn and mn is the smallest nonnegative integer m such that

λn‖Axn − Ayn‖ ≤ μ‖xn − yn‖.

Assume that {αn} is a sequence in (0, 1) such that {αn} ⊂ [a, b] ⊂ (0, 1) for some
a, b > 0. Suppose, in addition, that ∇ f is weakly sequentially continuous on E. Then
the sequence {xn} generated by (4.2) converges weakly to an element in �.

Proof In this case, we set B = NC in Theorem 3.4 and from [58, p. 18], we know
that J ∂iC

λ = P f
C . Moreover, as shown in [24, Theorem 2.9], we have (A + NC )−10 =

V I (C, A). Therefore, we get the desired result from Theorem 3.4. ��
Theorem 4.2 Let f : E → R be a σ -strongly convex, strongly coercive Legendre
function which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E, A : E → E∗ be a monotone and L-Lipschitz continuous
mapping, and T : E → E be a relatively nonexpansive mapping. Assume that the
solution set � := F(T ) ∩ V I (C, A) �= ∅. Given λ1 > 0 and μ ∈ (0, σ ). For any
x1 ∈ E, let {xn} be defined by

⎧
⎪⎨

⎪⎩

yn = P f
C ∇ f ∗(∇ f (xn) − λn Axn),

zn = ∇ f ∗(∇ f (yn) − λn(Ayn − Axn)),

xn+1 = ∇ f ∗((1 − αn)∇ f (zn) + αn∇ f (T zn))), ∀n ≥ 1,

(4.3)

where the stepsize is adaptively updated as follows:

λn+1 =

⎧
⎪⎨

⎪⎩

min

{
μ‖xn − yn‖

‖Axn − Ayn‖, λn

}

if Axn − Ayn �= 0,

λn otherwise.

Assume that {αn} is a sequence in (0, 1) such that {αn} ⊂ [a, b] ⊂ (0, 1) for some
a, b > 0. Suppose, in addition, that ∇ f is weakly sequentially continuous on E. Then
the sequence {xn} generated by (4.3) converges weakly to an element in �.

Proof The proof is quite similar to that of Theorem 4.1. So we omit it.
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Table 1 Numerical results of
Algorithm 1 and Algorithm 2 for
Example 5.1

Algorithm 1 Algorithm 2

m = 10 No. of Iter. 7 8

cpu (Time) 0.0019 2.0470e-04

m = 50 No. of Iter. 5 5

cpu (Time) 3.2780e-04 1.6950e-04

m = 100 No. of Iter. 4 5

cpu (Time) 0.0020 2.9260e-04

m = 500 No. of Iter. 4 4

cpu (Time) 0.0045 0.0024

5 Numerical examples

5.1 Numerical behavior of Algorithm 1 and Algorithm 2

In this subsection, we provide the numerical experiments to illustrate the convergence
of the proposed algorithms.

Example 5.1 Let E = R
m (m = 2k) with C = {x = (u1, u2, . . . , um) ∈ R

m :
ui ≥ 0,

∑m
i=1 ui = 1}. Let f : C → R be define by f (x) = ∑m

i=1 ui ln(ui ) (it
is strongly convex with σ = 1 respect to 1-norm on C). Then we have ∇ f (x) =
(1 + ln(u1), 1 + ln(u2), . . . , 1 + ln(um)) and ∇ f ∗(x) = (eu1−1, eu2−1, . . . , eum−1).
Let Ax = (2u1, 0, 2u3, 0, 2u5, 0, . . . , 0, 2u2k−1, 0) and Bx = NC (x). We see that
A is monotone and Lipschitz continuous with L = 2, and B is maximal monotone.
Hence J ∂iC

λ (x) = P f
C (x). In this case, we define the Bregman projection onto C (see

[19, Remark 4]) by

P f
C (a) =

( u1ea1
∑m

i=1 ui eai
,

u2ea2
∑m

i=1 ui eai
, . . . ,

umeam

∑m
i=1 ui eai

)
, a ∈ R

m and x ∈ int(C).

Let T : R
m → R

m be a mapping defined by T x = x for all x ∈ R
m . We

perform the numerical tests of Algorithms 1 and 2 with four different cases of m
(m = 10, 50, 100, 500). We take l = 0.2, γ = 5, μ = 0.9 in Algorithm 1 and take
λ1 = 0.8 and μ = 0.9 in Algorithm 2. The starting point x1 is randomly generated in
R

m . We use the stopping criterion

En = ||xn+1 − xn‖ ≤ 10−5. (5.1)

The numerical results are presented in Table 1 and Fig. 1.
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Fig. 1 The error ploting of Algorithm 1 and Algorithm 2 in Example 5.1

5.2 Comparison of Algorithm 1 and Algorithm 2with other algorithms

In this subsection, we provide the numerical experiments of Algorithms 1 and 2 in both
finite and infinite-dimensional spaces.Moreover, we compare the proposed algorithms
with some existingmethods. Inwhat follows, let us define f (x) = 1

2‖x‖2 for all x ∈ E .

Example 5.2 Let A : Rm → R
m be an operator defined by Ax = Mx +q with q ∈ R

m

and

M = N N t + S + D,

where N , D ∈ R
m×m and S is an m × m skew-symmetric matrix (hence the operator

does not arise from an optimization problem), D is a positive definite diagonal matrix
(hence the variational inequality has a unique solution) and q is equal to the zero vector.
It is clear that A is monotone and Lipschitz continuous with L = ‖M‖ (see [23]). Let
T : Rm → R

m be a mapping defined by T x = x
2 for all x ∈ R

m . It is easy to see that
T is nonexpansive (hence it is quasi-nonexpansive). The feasible set C is described by
linear inequality constraints N x ≤ b for some randommatrix N ∈ R

k×m and a random
vector b ∈ R

k with nonnegative entries. Hence the zero vector is feasible and therefore
the unique solution of the corresponding variational inequality. These projections are
computed by solving a quadratic optimization problem using the MATLAB solver
quadprog.
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Table 2 Numerical results of Algorithm 1, Algorithm 2, HFBA and VMEM for Example 5.2

Algorithm 1 Algorithm 2 VMEM HFBA

m = 50 No. of Iter. 3 9 21 476

cpu (Time) 0.0547 0.0468 0.3284 02.7282

m = 100 No. of Iter. 4 10 21 551

cpu (Time) 0.1654 0.1397 00.7207 8.4411

m = 500 No. of Iter. 4 11 22 797

cpu (Time) 6.7415 4.6021 22.0554 375.0762

m = 1000 No. of Iter. 3 12 23 953

cpu (Time) 41.6583 32.3860 122.3584 2.9860e+03

In these experiments, we compare our Algorithm 1 andAlgorithm 2with aHalpern-
type forward backward algorithm (HFBA) proposed in ([53, Theorem 3.1]) and a
viscosity-type modified extragradient method (VMEM) proposed in ([52, Algorithm
3.1]). We see that the operators A of HFBA and VMEM are α-inverse strongly mono-
tone, then A is Lipschitz continuous. We perform the numerical experiments with four
different cases of m (m = 50, 100, 500, 1000). We take l = 0.001, γ = 0.002 and
μ = 0.03 in Algorithm 1 and take λ1 = 4 and μ = 0.03 in Algorithm 2. For both
Algorithm 1 and Algorithm 2, we take αn = n

2(n+1) . For HFBA, we take αn = 1
n+1 ,

βn = x
2(x+1) , λn = 1

2‖M‖ and for VMEM, we take αn = 1
n+1 , βn = rn = 1

2 ,

γn = 1
2 − 1

n+1 , λn = 1
2‖M‖ , and f (x) = 0.2x .

The starting point x1, u are randomly generated in R
m . We use stopping criterion

‖xn+1 − xn‖ ≤ 10−5. The numerical results are presented in Table 2 and Fig. 2.

Example 5.3 In this example, we apply our proposed algorithms to solve the fixed point
problem and the split feasibility problem in the infinite dimensional Hilbert spaces.
Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and
H2, respectively. Let A : H1 → H2 be a bounded linear operator with its adjoint A∗.
The split feasibility problem (SFP) is to find an element

x∗ ∈ C such that Ax∗ ∈ Q. (5.2)

We will use � to denote the solution set of SFP (5.2). Let H1 = H2 = L2([0, 1]) with
norm

‖x‖2 =
(∫ 1

0
|x(t)|2dt

)1/2

and inner product

〈x, y〉 =
∫ 1

0
x(t)y(t)dt

for all x, y ∈ L2([0, 1]).
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Fig. 2 The error ploting of Algorithm 1, Algorithm 2, HFBA and VMEM for Example 5.2

Now, let

C = {x ∈ L2([0, 1]) : ‖x‖ ≤ 1} and Q = {x ∈ L2([0, 1]) :
〈 t

2
, x

〉
= 0}.

Let A : L2([0, 1]) → L2([0, 1]) be a mapping defined by (Ax)(t) = x(t)
2 for all

x ∈ L2([0, 1]). Then we have (A∗x)(t) = x(t)
2 and ‖A‖ = 1

2 . We see that the solution
set of SFP is nonempty because of x∗(t) = 0 is a solution. Let T : L2([0, 1]) →
L2([0, 1]) be a mapping defined by

(T x)(t) =
∫ 1

0
t x(s)ds, t ∈ [0, 1].

It is not hard to show that T is nonexpansive (hence it is quasi-nonexpansive) with a
fixed point x∗(t) = 0. We aim to find an element x∗ ∈ C such that

x∗ ∈ � := F(T ) ∩ �. (5.3)

Hence � = {0}. Following ([21, Example 1]), we define Ax = ∇
(
1
2‖Ax −

PQAx‖2
)

= A∗(I − PQ)Ax and Bx = NC (x). Clearly A is L-Lipschitz contin-

uous with L = ‖A‖ = 1
2 . In this experiment, we compare our Algorithm 1 and

Algorithm 2 with a Halpern-type iteration for the split feasibility problem and the
fixed point problem (HSFP) proposed in ([16, Theorem 3.1]), Halpern-type forward
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Table 3 Numerical results of Algorithm 1, Algorithm 2, HSFP, HFBA and VMEM for Example 5.3

Algorithm 1 Algorithm 2 HSFP HFBA VMEM

x1 = t2 + 1 No. of Iter. 2 3 8 12 13

u = t cpu (Time) 0.4613 0.8929 3.3371 1.5090 2.5327

x1 = t2 + t No. of Iter. 2 3 8 9 10

u = t cpu (Time) 0.5497 1.0524 7.9545 1.3856 2.3888

x1 = 2t3 + 3t No. of Iter. 2 3 8 9 15

u = t cpu (Time) 0.5349 0.9868 8.3606 1.2968 3.1761

Number of iterations

10-6

10-4

10-2

100

102

E
n

Case 1
Algorithm 1
Algorithm 2
HSFP
HFBA
 VMEM

Number of iterations

10-6

10-4

10-2

100

102

E
n

Case 2
Algorithm 1
Algorithm 2
HSFP
HFBA
 VMEM

0 2 4 6 8 10 12 14 0 2 4 6 8 10

0 2 4 6 8 10 12 14 16
Number of iterations

10-6

10-4

10-2

100

102

E
n

Case 3
Algorithm 1
Algorithm 2
HSFP
HFBA
 VMEM

Fig. 3 The error ploting of Algorithm 1, Algorithm 2, HSFP, HFBA and VMEM in Example 5.3

backward algorithm (HFBA) proposed in ([53, Theorem 3.1]) and a viscosity-type
modified extragradient method (VMEM) proposed in ([52, Algorithm 3.1]).

We take γ = 0.002, l = 0.0001 and μ = 0.03 in Algorithm 1 and take λ1 = 3.5
and μ = 0.03 in Algorithm 2. For both Algorithm 1 and Algorithm 2, we take αn =

n
75(n+1) . For HFBA andVMEM,we takeαn = 1

n+1 ,βn = 1
2 , rn = 1

5 , f (x) = 0.2x and

λn = 4. For HSFP, we take λn = 0.001, αn = 1
n+1 , βn = 1

2 . We use stopping criterion
‖xn+1 − xn‖ ≤ 10−4. We perform the numerical experiments with the following three
cases of starting point x1:

Case 1 : x1 = t2 + 1;
Case 2 : x1 = t2 + t ;
Case 3 : x1 = 2t3 + 3t .

The numerical results are presented in Table 3 and Fig. 3.

123



P. Sunthrayuth et al.

6 Conclusions

In this paper,wehave proposed twoalgorithmswith different stepsizes byusingArmijo
linesearch and self-adaptive stepsize for solving the monotone inclusion problem and
the fixed point problem for a relatively nonexpansive mapping in reflexive Banach
spaces. The weak convergence theorems of the algorithms have been proved without
the computation of the Lipschitz constant of the mapping. An application related to
the obtained results has been provided. Finally, several numerical experiments have
been performed to illustrate the convergence of the algorithms and compare themwith
some known algorithms.
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1. Introduction

Let E be a real Banach space with its dual space E∗. In this paper, we study the so-called monotone
inclusion problem:

find z ∈ E such that 0 ∈ (A + B)z, (1.1)

where A : E → E∗ is a single mapping and B : E → 2E∗ is a multi-valued mapping. The set of solutions
of the problem (1.1) is denoted by (A + B)−10 := {x ∈ E : 0 ∈ (A + B)x}. This problem draws much
attention since it stands at the core of many mathematical problems, such as: variational inequalities,
split feasibility problem and minimization problem with applications in machine learning, statistical
regression, image processing and signal recovery (see [17, 33, 44]).
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A classical method for solving the problem (1.1) in Hilbert space H, is known as forward-backward
splitting algorithm (FBSA) [15, 29] which generates iterative sequence {xn} by the following algorithm: x1 ∈ H,

xn+1 = JB
λ (I − λA)xn, ∀n ≥ 1,

(1.2)

where JB
λ := (I + λB)−1 is the resolvent operator of an operator B. Here, I denotes the identity operator

on H. It was proved that the sequence generated by (1.2) converges weakly to an element in (A + B)−10
under the assumption of the α-cocoercivity of the operator A, that is,

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ H

and λ is chosen in (0, 2α). In fact, FBSA includes, as special cases, the proximal point algorithm (when
A = 0) [11, 20, 34] and the gradient method [18].

In order to get strong convergence result, Takashashi et al. [41] introduced the following algorithm: x1, u ∈ H,

xn+1 = αnu + (1 − αn)JB
λn

(xn − λnAxn), ∀n ≥ 1,
(1.3)

where A is an α-cocoercive mapping on H. It was shown that if {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1) satisfy
the following assumptions:

0 < a ≤ λn ≤ b < 2α,
∞∑

n=1

|λn+1 − λn| < ∞,

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and
∞∑

n=1

|αn+1 − αn| < ∞,

then the sequence {xn} defined by (1.3) converges strongly to an element in (A + B)−10.
In 2016, Cholamjiak [12] introduced the following FBSA in a uniformly convex and q-uniformly

smooth Banach space E: x1, u ∈ E,

xn+1 = αnu + βnxn + γnJB
λn

(xn − λnAxn), ∀n ≥ 1,
(1.4)

where JB
λn

:= (I +λnB)−1 is the resolvent operator of an m-accretive operator B and A is an α-cocoercive
mapping. He proved that the sequence generated by (1.4) converges strongly to a solution of the
problem (1.1) under the following assumptions:

{αn}, {βn}, {γn} ⊂ (0, 1) with αn + βn + γn = 1,

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim inf
n→∞

γn > 0,

AIMS Mathematics Volume 6, Issue 5, 4873–4900.
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0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
(αq
κq

) 1
q−1 ,

where κq is the q-uniform smoothness coefficient of E.
In recent years, the FBSA for solving the monotone inclusion problem (1.1), when A is

α-cocoercive, was studied and modified by many authors in various settings (see,
e.g., [1, 9, 10, 13, 26, 27, 32, 37, 38, 46]). It is important to remark that the α-cocoercivity of the
operator A is a strong assumption. To relax this assumption, Tseng [45] introduced the following
so-called Tseng’s splitting method:

x1 ∈ H,

yn = JB
λn

(xn − λnAxn),
xn+1 = yn − λn(Ayn − Axn), ∀n ≥ 1,

(1.5)

where A is monotone and L-Lipschitz continuous with L > 0. It was proved that the sequence {xn}

generated by (1.5) converges weakly to an element in (A + B)−10 provided the step size λn is chosen in(
0, 1

L

)
. It is worth noting that Tseng’s splitting method is a requirement to know Lipschitz constant of

the mapping. Unfortunately, Lipschitz constants are often unknown or difficult to approximate.
Very recently, Shehu [37] extended Tseng’s result to Banach spaces. He proposed the following

iterative process for approximating a solution of the problem (1.1) in a 2-uniformly convex Banach
space E which is also uniformly smooth:

x1 ∈ E,

yn = JB
λn

J−1(Jxn − λnAxn),
xn+1 = Jyn − λn(Ayn − Axn), ∀n ≥ 1,

(1.6)

where A : E → E∗ is monotone and L-Lipschitz continuous, JB
λn

:= (J + λnB)−1J is the resolvent of B
and J is the duality mapping from E into E∗. He obtain weak convergence theorem to the solution of
the problem (1.1) provided the step size λn is chosen in

(
0, 1√

2µκL

)
, where µ is the 2-uniform convexity

constant of E and κ is the 2-uniform smoothness constant of E∗. At the same time, he also proposed a
variant of (1.6) with a linesearch for solving the problem (1.1). It is known that any algorithm with a
linesearch needs an inner loop with some stopping criterion over iteration.

In this paper, motivated by Shehu [37], we propose two modifications of Tseng’s splitting method
with non-monotone adaptive step sizes for solving the problem (1.1) in the framework of Banach
spaces. The step size of our methods does not require the prior knowledge of the Lipschitz constant of
operator and without any linesearch procedure. The remainder of this paper is organized as follows: We
recall some definitions and lemmas in Section 2. Our methods are presented and analyzed in Section
3. Theoretical applications to variational inequality problem and convex minimization problem are
considered in Section 4 and finally, in Section 5, we provide some numerical experiments to illustrate
the behaviour of our methods.

2. Preliminaries

Let R and N be the set of real numbers and the set of positive integers, respectively. Let E be a real
Banach space with its dual space E∗. We denote 〈x, f 〉 by the value of a functional f in E∗ at x in E,

AIMS Mathematics Volume 6, Issue 5, 4873–4900.
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that is, 〈x, f 〉 = f (x). For a sequence {xn} in E, the strong convergence and the weak convergence of
{xn} to x ∈ E are denoted by xn → x and xn ⇀ x, respectively. Let S E = {x ∈ E : ‖x‖ = 1}. The space
E is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ S E. The space E is said to be uniformly smooth if the limit (2.1) converges uniformly
in x, y ∈ S E. It is said to be strictly convex if ‖(x + y)/2‖ < 1 whenever x, y ∈ S E and x , y. The space
E is said to be uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2], where δE is the modulus of
convexity of E defined by

δE(ε) = inf
{
1 − ‖x+y‖

2 : x, y ∈ S E, ‖x − y‖ ≥ ε
}

for all ε ∈ [0, 2]. Let p ≥ 2. The space E is said to be p-uniformly convex if there is a c > 0 such that
δE(ε) ≥ cε p for all ε ∈ (0, 2]. Let 1 < q ≤ 2. The space E is said to be q-uniformly smooth if there
exists a κ > 0 such that ρE(t) ≤ κtq for all t > 0, where ρE is the modulus of smoothness of E defined
by

ρE(t) = sup
{
‖x+ty‖+‖x−ty‖

2 − 1 : x, y ∈ S E

}
for all t ≥ 0. Let 1 < q ≤ 2 < p < ∞ with 1

p + 1
q = 1. It is observed that every p-uniformly convex

(q-uniformly smooth) space is uniformly convex (uniformly smooth) space. It is known that E is p-
uniformly convex (q-uniformly smooth) if and only if its dual E∗ is q-uniformly smooth (p-uniformly
convex) (see [2]). If E is uniformly convex then E is reflexive and strictly convex and if E is uniformly
smooth then E is reflexive and smooth (see [14]). Moreover, we know that for every p > 1, Lp and `p

are min{p, 2}-uniformly smooth and max{p, 2}-uniformly convex, while Hilbert space is 2-uniformly
smooth and 2-uniformly convex (see [4, 23, 47] for more details).

Definition 2.1. The normalized duality mapping J : E → 2E∗ is defined by

Jx = { f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖ f ‖2}, ∀x ∈ E,

where 〈·, ·〉 denotes the duality pairing between E and E∗.

If E is a Hilbert space, then J = I is the identity mapping on E. It is known that E is smooth if and
only if J is single-valued from E into E∗ and if E is a reflexive, smooth and strictly convex, then J−1

is single-valued, one-to-one, surjective and it is the duality mapping from E∗ into E. Moreover, if E is
uniformly smooth, then J is norm-to-norm uniformly continuous on bounded subsets of E (see [2, 14]
for more details). A duality mapping J from a smooth Banach space E into E∗ is said to be weakly
sequentially continuous if for any sequence {xn} ⊂ E such that xn ⇀ x implies that Jxn ⇀

∗ Jx.

Lemma 2.2. [39] Let E be a smooth Banach space and J be the duality mapping on E. Then 〈x −
y, Jx − Jy〉 ≥ 0 for all x, y ∈ E. Further, if E is strictly convex and 〈x − y, Jx − Jy〉 = 0, then x = y.

Definition 2.3. A mapping A : E → E∗ is said to be:
• α-cocoercive if there exists a constant α > 0 such that 〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2 for all

x, y ∈ E;

AIMS Mathematics Volume 6, Issue 5, 4873–4900.
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• monotone if 〈x − y, Ax − Ay〉 ≥ 0 for all x, y ∈ E;
• L-Lipschitz continuous if there exists a constant L > 0 such that ‖Ax − Ay‖ ≤ L‖x − y‖ for all

x, y ∈ E;
• hemicontinuous if for each x, y ∈ E, the mapping f : [0, 1]→ E∗ defined by f (t) = A(tx + (1− t)y)

is continuous with respect to the weak∗ topology of E∗.

Remark 2.4. It is easy to see that if A is cocoercive, then A is monotone and Lipschitz continuous but
the converse is not true in general.

The next lemma can be found in [49] (see also [47]).

Lemma 2.5. (i) Let E be a 2-uniformly smooth Banach space. Then there exists a constant κ > 0 such
that

‖x − y‖2 ≤ ‖x‖2 − 2〈y, Jx〉 + κ‖y‖2, ∀x, y ∈ E.

(ii) Let E be a 2-uniformly convex Banach space. Then there exists a constant c > 0 such that

‖x − y‖2 ≥ ‖x‖2 − 2〈y, Jx〉 + c‖y‖2, ∀x, y ∈ E.

Remark 2.6. It is well-known that κ = c = 1 whenever E is a Hilbert space. Hence these inequalities
reduce to the following well-known polarization identity:

‖x − y‖2 = ‖x‖2 − 2〈x, y〉 + ‖y‖2.

Moreover, we refer to [49] for the exact values of constants κ and c.

Next, we recall the following Lyapunov function which was introduced in [3]:

Definition 2.7. Let E be a smooth Banach space. The Lyapunov functional φ : E × E → R is defined
by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E. (2.2)

If E is a Hilbert space, then φ(x, y) = ‖x − y‖2 for all x, y ∈ E. In addition, the Lyapunov function φ
has the following properties:

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2, ∀x, y ∈ E. (2.3)

φ(x, J−1(αJy + (1 − α)Jz) ≤ αφ(x, y) + (1 − α)φ(x, z), ∀x, y, z ∈ E, α ∈ [0, 1]. (2.4)

φ(x, y) = φ(x, z) − φ(y, z) + 2〈y − x, Jy − Jz〉, ∀x, y, z ∈ E. (2.5)

Lemma 2.8. [6] Let E be a 2-uniformly convex Banach space, then there exists a constant c > 0 such
that

c‖x − y‖2 ≤ φ(x, y),

where c is a constant in Lemma 2.5 (ii).
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We make use of the following functional V : E × E∗ → R studied in [3]:

V(x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗. (2.6)

Obviously, V(x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗.

Lemma 2.9. [3] Let E be a reflexive, strictly convex and smooth Banach space. Then the following
statement holds:

V(x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V(x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.

Let E be a reflexive, strictly convex and smooth Banach space. Let C be a closed and convex subset
of E. Then for any x ∈ E, there exists a unique element z ∈ C such that

φ(z, x) = min
y∈C

φ(y, x).

Such a mapping ΠC : E → C defined by z = ΠC(x) is called the generalized projection of E onto C. If
E is a Hilbert space, then ΠC is coincident with the metric projection denoted by PC.

Lemma 2.10. [3] Let E be a reflexive, strictly convex and smooth Banach space and C be a closed and
convex subset of E. Let x ∈ E and z ∈ C. Then the following statements hold:

(i) z = ΠC(x) if and only if 〈y − z, Jx − Jz〉 ≤ 0, ∀y ∈ C.
(ii) φ(y,ΠC(x)) + φ(ΠC(x), x) ≤ φ(y, x), ∀y ∈ C.

Lemma 2.11. [25] Let C be a closed and convex subset of a smooth and uniformly convex Banach
space E. Let {xn} be a sequence in E such that φ(p, xn+1) ≤ φ(p, xn) for all p ∈ C and n ≥ 1. Then the
sequence {ΠC(xn)} converges strongly to some element x∗ ∈ C.

Let B : E → 2E∗ be a multi-valued mapping. The effective domain of B is denoted by D(B) = {x ∈
E : Bx , ∅} and the range of B is also denoted by R(B) =

⋃
{Bx : x ∈ D(B)}. The set of zeros of B is

denoted by B−10 = {x ∈ D(B) : 0 ∈ Bx}. A multi-valued mapping B is said to be monotone if

〈x − y, u − v〉 ≥ 0, ∀x, y ∈ D(B), u ∈ Bx and v ∈ By.

A monotone operator B on E is said to be maximal if its graph G(B) = {(x, y) ∈ E × E∗ : x ∈ D(B), y ∈
Bx} is not properly contained in the graph of any other monotone operator on E. In other words, the
maximality of B is equivalent to R(J + λB) = E∗ for all λ > 0 (see [5, Theorem 1.2]). It is known that
if B is maximal monotone, then B−10 is closed and convex (see [39]).

For a maximal monotone operator B, we define the resolvent of B by JB
λ (x) = (J + λB)−1Jx for

x ∈ E and λ > 0. It is also known that B−10 = F(JB
λ ).

Lemma 2.12. [5] Let E be a reflexive Banach space. Let A : E → E∗ be a monotone, hemicontinuous
and bounded operator and B : E → 2E∗ be a maximal monotone operator. Then A + B is maximal
monotone.

Lemma 2.13. ([48]) Assume that {an} is a sequence of nonnegative real sequences such that

an+1 ≤ (1 − γn)an + γnδn, ∀n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence of real sequences such that
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(i)
∑∞

n=1 γn = ∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=1 |γnδn| < ∞.

Then limn→∞ an = 0.

Lemma 2.14. ([30]) Let {Γn} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {Γni} of {Γn} which satisfies Γni < Γni+1 for all ` ∈ N. Define the
sequence {σ(n)} of integers as follows:

σ(n) = max{k ≤ n : Γk < Γk+1},

for all n ≥ n0 (for some n0 large enough). Then {σ(n)}n≥n0 is a non-decreasing sequence such that
limn→∞ σ(n) = ∞, and it holds that

Γσ(n) ≤ Γσ(n)+1 and Γn ≤ Γσ(n)+1.

Lemma 2.15. ([42]) Assume that {λn} and {θn} are two nonnegative real sequences such that

λn+1 ≤ λn + θn, ∀n ≥ 1.

If
∑∞

n=1 θn < ∞, then lim
n→∞

λn exists.

3. Main results

In this section, we introduce two modified Tseng’s splitting algorithms for solving the monotone
inclusion problem in Banach spaces. In order to prove the convergence results of these algorithms, we
need make the following assumptions:

Assumption 3.1. (A1) The Banach space E is a real 2-uniformly convex and uniformly smooth.
(A2) The mappings A : E → E∗ is monotone and L-Lipschitz continuous, and B : E → 2E∗ is maximal

monotone.
(A3) The solution set of the problem (1.1) is nonempty, that is, (A + B)−10 , ∅.
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Algorithm 1: Tseng type splitting algorithm for monotone inclusion problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let x1 ∈ E be arbitrary. Set n = 1.
Step 1. Compute

yn = JB
λn

J−1(Jxn − λnAxn). (3.1)

If xn = yn, then stop and xn is a solution of the problem (1.1). Otherwise, go to Step 2.
Step 2. Compute

xn+1 = J−1(Jyn − λn(Ayn − Axn)), (3.2)

where the sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖Axn − Ayn‖
, λn + θn

}
if Axn − Ayn , 0,

λn + θn otherwise.
(3.3)

Set n := n + 1 and go to Step 1.

Lemma 3.2. Assume that Assumption 3.1 holds. Let {xn}, {yn} and {λn} be sequences generated by
Algorithm 1. Then the following statements hold:

(i) If xn = yn for all n ∈ N, then xn ∈ (A + B)−10.
(ii) lim

n→∞
λn = λ ∈

[
min{ µL , λ1}, λ1 + θ

]
, where θ =

∑∞
n=1 θn. Moreover

‖Axn − Ayn‖ ≤
µ

λn+1
‖xn − yn‖, ∀n ≥ 1.

Proof. (i) If xn = yn, then xn = JB
λn

J−1(Jxn − λnAxn). It follows that xn = (J + λnB)−1J ◦ J−1(J − λnA)xn,
that is, Jxn − λnAxn ∈ Jxn + λnBxn, which implies that 0 ∈ (A + B)xn. Hence xn ∈ (A + B)−10.

(ii) In the case Axn − Ayn , 0, using the Lipschitz continuity of A, we have

µ‖xn − yn‖

‖Axn − Ayn‖
≥
µ‖xn − yn‖

L‖xn − yn‖
=
µ

L
.

From (3.3) and mathematical induction, we have the sequence {λn} has upper bound λ1 + θ and lower
bound min{ µL , λ1}. From Lemma 2.15, we have lim

n→∞
λn exists and we denote λ = lim

n→∞
λn. It is obvious

that λ ∈
[

min{ µL , λ1}, λ1 + θ
]
. By the definition of λn, we have

λn+1 = min
{ µ‖xn − yn‖

‖Axn − Ayn‖
, λn + θn

}
≤

µ‖xn − yn‖

‖Axn − Ayn‖
.

This implies that

‖Axn − Ayn‖ ≤
µ

λn+1
‖xn − yn‖, ∀n ≥ 1. (3.4)

�
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Lemma 3.3. Assume that Assumption 3.1 holds. Let {xn} be a sequence generated by Algorithm 1.
Hence

φ(z, xn+1) ≤ φ(z, xn) −
(
1 −

κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn), ∀z ∈ (A + B)−10, (3.5)

where c and κ are constants in Lemma 2.5.

Proof. Let z ∈ (A + B)−10. From Lemma 2.5 (i) and (2.5), we have

φ(z, xn+1) = φ(z, J−1(Jyn − λn(Ayn − Axn)))
= V(z, Jyn − λn(Ayn − Axn))
= ‖z‖2 − 2〈z, Jyn − λn(Ayn − Axn)〉 + ‖Jyn − λn(Ayn − Axn)‖2

≤ ‖z‖2 − 2〈z, Jyn〉 + 2λn〈z, Ayn − Axn〉 + ‖Jyn‖
2 − 2λn〈yn, Ayn − Axn〉 + κ‖λn(Ayn − Axn)‖2

= ‖z‖2 − 2〈z, Jyn〉 + ‖yn‖
2 − 2λn〈yn − z, Ayn − Axn〉 + κλ2

n‖Ayn − Axn‖
2

= φ(z, yn) − 2λn〈yn − z, Ayn − Axn〉 + κλ2
n‖Ayn − Axn‖

2

= φ(z, xn) − φ(yn, xn) + 2〈yn − z, Jyn − Jxn〉 − 2λn〈yn − z, Ayn − Axn〉 + κλ2
n‖Ayn − Axn‖

2

= φ(z, xn) − φ(yn, xn) + κλ2
n‖Ayn − Axn‖

2 − 2〈yn − z, Jxn − Jyn − λn(Axn − Ayn)〉. (3.6)

Combining (3.4) and (3.6), we have

φ(z, xn+1) ≤ φ(z, xn) − φ(yn, xn) + κλ2
n
µ2

λ2
n+1

‖yn − xn‖
2

−2〈yn − z, Jxn − Jyn − λn(Axn − Ayn)〉. (3.7)

By Lemma 2.8, we have

φ(z, xn+1) ≤ φ(z, xn) −
(
1 −

κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn)

−2〈yn − z, Jxn − Jyn − λn(Axn − Ayn)〉. (3.8)

Now, we will show that

〈yn − z, Jxn − Jyn − λn(Axn − Ayn)〉 ≥ 0.

From the definition of yn, we note that Jxn−λnAxn ∈ Jyn +λnByn. Since B is maximal monotone, there
exists vn ∈ Byn such that Jxn − λnAxn = Jyn + λnvn, we have

vn =
1
λn

(
Jxn − Jyn − λnAxn

)
. (3.9)

Since 0 ∈ (A + B)z and Ayn + vn ∈ (A + B)yn, it follows from Lemma 2.12 that A + B is maximal
monotone. Hence

〈yn − z, Ayn + vn〉 ≥ 0. (3.10)
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Substituting (3.9) into (3.10), we have

1
λn
〈yn − z, Jxn − Jyn − λnAxn + λnAyn〉 ≥ 0.

Hence

〈yn − z, Jxn − Jyn − λn(Axn − Ayn)〉 ≥ 0. (3.11)

Combining (3.8) and (3.11), thus this lemma is proved. �

Theorem 3.4. Assume that Assumption 3.1 holds. Suppose, in addition, that J is weakly sequentially
continuous on E. Then the sequence {xn} generated by Algorithm 1 converges weakly to an element in
(A + B)−10.

Proof. Since limn→∞ λn exists and µ ∈
(
0,

√ c
κ

)
, it follows that limn→∞

(
1 − κµ2

c
λ2

n
λ2

n+1

)
= 1 − κµ2

c > 0. Thus

there exists n0 ∈ N such that

1 −
κµ2

c
λ2

n

λ2
n+1

> 0, ∀n ≥ n0. (3.12)

Combining (3.5) and (3.12), we have

φ(z, xn+1) ≤ φ(z, xn), ∀n ≥ n0.

This show that limn→∞ φ(z, xn) exists and hence {φ(z, xn)} is bounded. Applying Lemma 2.8, we also
have {xn} is bounded. From (3.5), we have(

1 −
κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn) ≤ φ(z, xn) − φ(z, xn+1). (3.13)

Thus we have

lim
n→∞

φ(yn, xn) = 0.

Applying Lemma 2.8, we also have

lim
n→∞
‖xn − yn‖ = 0. (3.14)

Since J is norm-to-norm uniformly continuous on bounded subsets of E, we have

lim
n→∞
‖Jxn − Jyn‖ = 0. (3.15)

Using the fact that A is Lipschitz continuous, we have

lim
n→∞
‖Axn − Ayn‖ = 0. (3.16)
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By the boundedness of {xn}, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗ ∈ E.
From (3.14), we have ynk ⇀ x∗. We will show that x∗ ∈ (A + B)−10. Let (v,w) ∈ G(A + B), we have
w − Av ∈ Bv. From the definition of ynk , we note that

Jxnk − λnk Axnk ∈ Jynk + λnk Bynk ,

which implies that

1
λnk

(
Jxnk − Jynk − λnk Axnk

)
∈ Bynk .

By the maximal monotonicity of B, we have〈
v − ynk ,w − Av −

1
λnk

(
Jxnk − Jynk − λnk Axnk

)〉
≥ 0

and by the monotonicity of A, we have

〈v − ynk ,w〉 ≥
〈
v − ynk , Av +

1
λnk

(
Jxnk − Jynk − λnk Axnk)

〉
= 〈v − ynk , Av − Axnk〉 +

1
λnk

〈v − ynk , Jxnk − Jynk〉

= 〈v − ynk , Av − Aynk〉 + 〈v − ynk , Aynk − Axnk〉 +
1
λnk

〈v − ynk , Jxnk − Jynk〉

≥ 〈v − ynk , Aynk − Axnk〉 +
1
λnk

〈v − ynk , Jxnk − Jynk〉.

Since limk→∞ λnk = λ > 0 and ynk ⇀ x∗, it follows from (3.15) and (3.16) that

〈v − x∗,w〉 ≥ 0.

By the monotonicity of A+B, we get 0 ∈ (A+B)x∗, that is, x∗ ∈ (A+B)−10. Hence x∗ ∈ (A+B)−10. Note
that (A + B)−10 is closed and convex. Put un = Π(A+B)−10(xn). It follows from Lemma 2.11 that there
exists x∗ ∈ (A + B)−10 such that un → x∗. Finally, we show that xn ⇀ x∗. Let {xnk} be a subsequence of
{xn} such that xnk ⇀ x̂ ∈ (A + B)−10. Then we have

〈x̂ − unk , Jxnk − Junk〉 ≤ 0

for all k ∈ N. Since un → x∗, xnk ⇀ x̂ and J is weakly sequentially continuous, we have

〈x̂ − x∗, Jx̂ − Jx∗〉 ≤ 0.

By the strict monotonicity of J, we obtain x∗ = x̂. In summary, we have shown that every
subsequence of {xn} has a further subsequence which converges weakly to x∗. We conclude that
xn ⇀ x∗ = limn→∞Π(A+B)−10(xn). This completes the proof. �
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Algorithm 2: Halpern-Tseng type splitting algorithm for monotone inclusion problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let u, x1 ∈ E be arbitrary. Set n = 1.
Step 1. Compute

yn = JB
λn

J−1(Jxn − λnAxn). (3.17)

If xn = yn, then stop and xn is a solution of the problem (1.1). Otherwise, go to Step 2.
Step 2. Compute

zn = J−1(Jyn − λn(Ayn − Axn)). (3.18)

Step 3. Compute

xn+1 = J−1(αnJu + (1 − αn)Jzn), (3.19)

where the step sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖Axn − Ayn‖
, λn + θn

}
if Axn − Ayn , 0,

λn + θn otherwise.
(3.20)

Set n := n + 1 and go to Step 1.

Theorem 3.5. Assume that Assumption 3.1 holds. If {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
then the sequence {xn} generated by Algorithm 2 converges strongly to x∗ ∈ (A + B)−10.

Proof. We will show that {xn} is bounded. Let z ∈ (A + B)−10. Using the same arguments as in the
proof of Lemma 3.3, we can show that

φ(z, zn) ≤ φ(z, xn) −
(
1 −

κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn). (3.21)

Since limn→∞ λn exists and µ ∈
(
0,

√ c
κ

)
, it follows that limn→∞

(
1 − κµ2

c
λ2

n
λ2

n+1

)
= 1 − κµ2

c > 0. Thus there

exists n0 ∈ N such that

1 −
κµ2

c
λ2

n

λ2
n+1

> 0, ∀n ≥ n0. (3.22)

Combining (3.21) and (3.22), we have

φ(z, zn) ≤ φ(z, xn), ∀n ≥ n0. (3.23)

By (2.4), we have

φ(z, xn+1) = φ(z, J−1(αnJu + (1 − αn)Jzn))
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≤ αnφ(z, u) + (1 − αn)φ(z, zn)
≤ αnφ(z, u) + (1 − αn)φ(z, xn)
≤ max{φ(z, u), φ(z, xn)}
...

≤ max{φ(z, u), φ(z, xn0)}.

This implies that {φ(z, xn)} is bounded. Applying Lemma 2.8, we also have {xn} is bounded.
Let x∗ = Π(A+B)−10(u). From (3.21), we have

φ(x∗, xn+1) = φ(x∗, J−1(αnJu + (1 − αn)Jzn))
≤ αnφ(x∗, u) + (1 − αn)φ(x∗, zn)

≤ αnφ(x∗, u) + (1 − αn)φ(x∗, xn) − (1 − αn)
(
1 −

κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn).

This implies that

(1 − αn)
(
1 −

κµ2

c
λ2

n

λ2
n+1

)
φ(yn, xn) ≤ φ(x∗, xn) − φ(x∗, xn+1) + αnK, (3.24)

where K = supn∈N{|φ(x∗, u) − φ(x∗, xn)|}.
Now, we will divide the rest of the proof into two cases.

Case 1. Suppose that there exists N ∈ N such that φ(x∗, xn+1) ≤ φ(x∗, xn) for all n ≥ N. Hence
limn→∞ φ(x∗, xn) exists. By our assumptions, we have from (3.24) that

lim
n→∞

φ(yn, xn) = 0

and hence

lim
n→∞
‖xn − yn‖ = 0. (3.25)

Since J is norm-to-norm uniformly continuous on bounded subsets of E, we have

lim
n→∞
‖Jxn − Jyn‖ = 0. (3.26)

Using the fact that A is Lipschitz continuous, we have

lim
n→∞
‖Axn − Ayn‖ = 0.

Then from (3.18), we have

‖Jzn − Jyn‖ = λn‖Axn − Ayn‖ → 0. (3.27)

Moreover from (3.26) and (3.27), we obtain

‖Jxn+1 − Jxn‖ ≤ ‖Jxn+1 − Jzn‖ + ‖Jzn − Jyn‖ + ‖Jyn − Jxn‖
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= αn‖Ju − Jzn‖ + ‖Jzn − Jyn‖ + ‖Jyn − Jxn‖

→ 0.

Since J−1 is norm-to-norm uniformly continuous on bounded subset of E∗, we have

lim
n→∞
‖xn+1 − xn‖ = 0. (3.28)

By the boundedness of {xn}, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̂ ∈ E and

lim sup
n→∞

〈xn − x∗, Ju − Jx∗〉 = lim
k→∞
〈xnk − x∗, Ju − Jx∗〉,

where x∗ = Π(A+B)−10(u). By a similar argument to that of Theorem 3.4, we can show that x̂ ∈ (A+B)−10.
Thus we have

lim sup
n→∞

〈xn − x∗, Ju − Jx∗〉 = 〈x̂ − x∗, Ju − Jx∗〉 ≤ 0.

From (3.28), we also have

lim sup
n→∞

〈xn+1 − x∗, Ju − Jx∗〉 ≤ 0. (3.29)

Finally, we show that xn → x∗. From Lemma 2.9, we have

φ(x∗, xn+1) = φ(x∗, J−1(αnJu + (1 − αn)Jzn))
= V(x∗, αnJu + (1 − αn)Jzn)
≤ V(x∗, αnJu + (1 − αn)Jzn − αn(Ju − Jx∗)) + 2αn〈xn+1 − x∗, Ju − Jx∗〉

= V(x∗, αnJx∗ + (1 − αn)Jzn) + 2αn〈xn+1 − x∗, Ju − Jx∗〉

= αnφ(x∗, x∗) + (1 − αn)φ(x∗, zn) + 2αn〈xn+1 − x∗, Ju − Jx∗〉

≤ (1 − αn)φ(x∗, xn) + 2αn〈xn+1 − x∗, Ju − Jx∗〉. (3.30)

This together with (3.29) and (3.30), so we can conclude by Lemma 2.13 that φ(x∗, xn)→ 0. Therefore
xn → x∗.
Case 2. Suppose that there exists a subsequence {Γni} of {Γn} such that Γni < Γni+1 for all i ∈ N. In this
case, we define σ : N→ N by

σ(n) = max{k ≤ n : Γk < Γk+1}

for all n ≥ n0 (for some n0 large enough). From Lemma 2.14, we have σ(n) is non-decreasing such
that limn→∞ σ(n) = ∞ and the following inequalities hold for all n ≥ n0:

Γσ(n) < Γσ(n)+1 and Γn ≤ Γσ(n)+1. (3.31)

Put Γn = φ(x∗, xn) for all n ∈ N. As proved in the Case 1, we obtain

(1 − ασ(n))
(
1 −

κµ2

c

λ2
σ(n)

λ2
σ(n)+1

)
φ(yσ(n), xσ(n)) ≤ φ(x∗, xσ(n)) − φ(x∗, xσ(n)+1) + ασ(n)K
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≤ ασ(n)K,

where K = supn∈N{|φ(x∗, u) − φ(x∗, xσ(n))|}. By our assumptions, we have

lim
n→∞

φ(yσ(n), xσ(n)) = 0

and hence

lim
n→∞
‖xσ(n) − yσ(n)‖ = 0.

Using the same arguments as in the proof of Case 1, we can show that

lim
n→∞
‖xσ(n)+1 − xσ(n)‖ = 0

and

lim sup
n→∞

〈xσ(n)+1 − x∗, Ju − Jx∗〉 ≤ 0.

From (3.30) and (3.31), we have

φ(x∗, xσ(n)+1) ≤ (1 − ασ(n))φ(x∗, xσ(n)) + ασ(n)〈xσ(n)+1 − x∗, Ju − Jx∗〉

≤ (1 − ασ(n))φ(x∗, xσ(n)+1) + ασ(n)〈xσ(n)+1 − x∗, Ju − Jx∗〉.

This implies that

φ(x∗, xn) ≤ φ(x∗, xσ(n)+1) ≤ 〈xσ(n)+1 − x∗, Ju − Jx∗〉.

Hence lim supn→∞ φ(x∗, xn) = 0 and so limn→∞ φ(x∗, xn) = 0. Therefore xn → x∗. This completes the
proof. �

4. Theoretical applications

4.1. The case of variational inequality problem

Let C be a nonempty, closed and convex subset of E. Let A : C → E∗ be a mapping. The variational
inequality problem is to find x∗ ∈ C such that

〈y − x∗, Ax∗〉 ≥ 0, ∀y ∈ C. (4.1)

The set of solutions of the problem (4.1) is denoted by VI(C, A). In particular, if A is a continuous and
monotone mapping, then VI(C, A) is closed and convex (see [7, 24]). Recall that the indicator function
of C given by

iC(x) =

{
0, if x ∈ C,
∞, if x < C.

It is known that iC is proper convex, lower semicontinuous and convex function with its subdifferential
∂iC is maximal monotone (see [35]). From [2], we know that

∂iC(v) = NC(v) = {u ∈ E∗ : 〈y − v, u〉 ≤ 0, ∀y ∈ C},
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where NC is the normal cone for C at a point v. Thus we can define the resolvent of ∂iC for λ > 0 by

J∂iC
λ (x) = (J + λ∂iC)−1Jx, ∀x ∈ E.

As shown in [40], for any x ∈ E and z ∈ C, z = J∂iC
λ (x) ⇐⇒ z = ΠC(x), where ΠC is the generalized

projection from E onto C.

Lemma 4.1. [36] Let C be a nonempty, closed convex subset of a Banach space E. Let A : C → E∗ be
a monotone and hemicontinuous operator and T : E → 2E∗ be an operator defined as follows:

Tv =

 Av + NC(v) if v ∈ C,

∅ if v < C.

Then T is maximal monotone and T−10 = VI(C, A).

If we set B = ∂iC, then we obtain the following results regarding the problem (4.1).

Assumption 4.2. (A1) The feasible set C is a nonempty, closed and convex subset of a real 2-uniformly
convex and uniformly smooth Banach space E.

(A2) The mapping A : E → E∗ is monotone and L-Lipschitz continuous.
(A3) The solution set of the problem (4.1) is nonempty, that is, VI(C, A) , ∅.

Algorithm 3: Tseng type splitting algorithm for variational inequality problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let x1 ∈ C be arbitrary. Set n = 1.
Step 1. Compute

yn = ΠC J−1(Jxn − λnAxn). (4.2)

Step 2. Compute

xn+1 = J−1(Jyn − λn(Ayn − Axn)), (4.3)

where the step sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖Axn − Ayn‖
, λn + θn

}
if Axn − Ayn , 0,

λn + θn otherwise.
(4.4)

Set n := n + 1 and go to Step 1.

Theorem 4.3. Assume that Assumption 4.2 holds. Suppose, in addition, that J is weakly sequentially
continuous on E. Then the sequence {xn} generated by Algorithm 3 converges weakly to an element in
(A + B)−10.
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Algorithm 4: Halpern-Tseng type splitting algorithm for variational inequality problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let u, x1 ∈ C be arbitrary. Set n = 1.
Step 1. Compute

yn = ΠC J−1(Jxn − λnAxn). (4.5)

Step 2. Compute

zn = J−1(Jyn − λn(Ayn − Axn)). (4.6)

Step 3. Compute

xn+1 = J−1(αnJu + (1 − αn)Jzn), (4.7)

where the step sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖Axn − Ayn‖
, λn + θn

}
if Axn − Ayn , 0,

λn + θn otherwise.
(4.8)

Set n := n + 1 and go to Step 1.

Theorem 4.4. Assume that Assumption 4.2 holds. If {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
then the sequence {xn} generated by Algorithm 4 converges strongly to x∗ ∈ VI(C, A).

4.2. The case of convex minimization problem

Let f : E → R be a convex function and g : E → R be a convex, lower semicontinuous and
non-smooth function. We consider the following convex minimization problem:

min
x∈E

f (x) + g(x). (4.9)

By Fermat’s rule, we know that above problem is equivalent to the problem of finding x ∈ E such that

0 ∈ ∇ f (x) + ∂g(x), (4.10)

where ∇ f is the gradient of f and ∂g is the subdifferential of g. In this situation, we assume that f
is a convex and differentiable function with its gradient ∇ f is L-Lipschitz continuous. Further, ∇ f
is cocoercive with a constant 1/L (see [31, Theorem 3.13]). This implies that ∇ f is monotone and
Lipschitz continuous. Moreover, ∂g is maximal monotone (see [35, Theorem A]). In this point of view,
we set A = ∇ f and B = ∂g, then we obtain the following results regarding the problem (4.9).

Assumption 4.5. (A1) The Banach space E is real 2-uniformly convex and uniformly smooth Banach
space.

(A2) The functions f : E → R is convex and differentiable and its gradient ∇ f is L-Lipschitz
continuous and g : E → R is convex and lower semicontinuous which f + g attains a minimizer.

AIMS Mathematics Volume 6, Issue 5, 4873–4900.



4890

Algorithm 5: Tseng type splitting algorithm for convex minimization problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let x1 ∈ E be arbitrary. Set n = 1.
Step 1. Compute

yn = J∂g
λn

J−1(Jxn − λn∇ f (xn)). (4.11)

Step 2. Compute

xn+1 = J−1(Jyn − λn(∇ f (yn) − ∇ f (xn))), (4.12)

where the step sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖∇ f (yn) − ∇ f (xn)‖
, λn + θn

}
if ∇ f (yn) − ∇ f (xn) , 0,

λn + θn otherwise.
(4.13)

Set n := n + 1 and go to Step 1.

Theorem 4.6. Assume that Assumption 4.5 holds. Suppose, in addition, that J is weakly sequentially
continuous on E. Then the sequence {xn} generated by Algorithm 5 converges weakly to a minimizer
of f + g.

Algorithm 6: Halpern-Tseng type splitting algorithm for convex minimization problem
Step 0. Given λ1 > 0 and µ ∈

(
0,

√ c
κ

)
. Choose a nonnegative real sequence {θn} such that∑∞

n=1 θn < ∞. Let u, x1 ∈ E be arbitrary. Set n = 1.
Step 1. Compute

yn = J∂g
λn

J−1(Jxn − λn∇ f (xn)). (4.14)

Step 2. Compute

zn = J−1(Jyn − λn(∇ f (yn) − ∇ f (xn))). (4.15)

Step 3. Compute

xn+1 = J−1(αnJu + (1 − αn)Jzn), (4.16)

where the step sizes are adaptively updated as follows:

λn+1 =

 min
{ µ‖xn − yn‖

‖∇ f (yn) − ∇ f (xn)‖
, λn + θn

}
if ∇ f (yn) − ∇ f (xn) , 0,

λn + θn otherwise.
(4.17)

Set n := n + 1 and go to Step 1.
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Theorem 4.7. Assume that Assumption 4.5 holds. If {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
then the sequence {xn} generated by Algorithm 6 converges strongly to a minimizer of f + g.

5. Numerical experiments

In this section, we provide some numerical experiments to illustrate the behaviour of our methods
and compare them with some existing methods.

Example 5.1. We consider the HpHard problem which is taken from [22]. Let A : Rm → Rm be an
operator defined by Ax = Mx + q with q ∈ Rm and

M = NNT + S + D,

where N is an m ×m matrix, S is an m ×m skew-symmetric matrix and D is an m ×m positive definite
diagonal matrix. The feasible set is C = R+

m. It is clear that A is monotone and Lipschitz continuous
with L = ‖M‖. In this experiments, we compare our Algorithm 3 and Algorithm 4 with the extragradient
method (EGM) proposed in [28] and the subgradient extragradient method (SEGM) proposed in [8].
The parameters are chosen as follows:
• Algorithm 3: λ1 = 0.4/‖M‖ and µ = 0.9;
• Algorithm 4: λ1 = 0.4/‖M‖, µ = 0.9, αn = 1

10000(n+2) and u = x1;
• EGM and SEGM: λ = 0.4/‖M‖.
All entries of N and S are generated randomly in (−5, 5), of D are in (0, 0.3), of q uniformly

generated from (−500, 0). For every m, we have generated two random samples with different choices
of M and q. We perform the numerical experiments with three different cases of m
(m = 100, 500, 1000). We take the starting point x1 = (1, 1, 1, . . . , 1)T ∈ Rm and use stopping criterion
‖xn − yn‖ ≤ ε = 10−6. The numerical results are reported in Table 1.

Table 1. Numerical results for Example 5.1.

m Algorithm 3 Algorithm 3 Algorithm 4 Algorithm 4 EGM SEGM
(θn = 0) (θn = 100/n1.1) (θn = 0) (θn = 100/n1.1)

iter. time iter. time iter. time iter. time iter. time iter. time
100 2454 0.02 1162 0.01 35112 1.31 25204 0.65 2454 0.03 2454 0.04

1920 0.04 917 0.02 35072 1.48 25203 0.66 1920 0.03 1920 0.05
500 2275 0.95 1104 0.29 35010 7.28 25201 5.12 2275 0.50 2275 0.65

2291 0.93 1107 0.43 34989 7.20 25198 5.06 2291 0.47 2291 0.59
1000 2027 8.08 996 4.25 34993 113.2 25200 78.2 2027 7.83 2027 7.96

2017 7.80 987 3.87 35003 109.8 25200 78.0 2017 7.01 2017 7.16

Example 5.2. We consider the problem (4.1) in L2([0, 2π]) with the inner product 〈x, y〉 =
∫ 2π

0
x(t)y(t)dt

and the norm ‖x‖ =

( ∫ 2π

0
x2(t)dt

)1/2

for all x, y ∈ L2([0, 2π]). Let A : L2([0, 2π]) → L2([0, 2π]) be an

operator defined by

(Ax)(t) =
1
2

max{0, x(t)}
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for all x ∈ L2([0, 2π]) and t ∈ [0, 2π]. It can be easily verified that A is monotone and Lipschitz
continuous with L = 1 (see [50, 51]). The feasible set is C = {x ∈ L2([0, 2π]) :

∫ 2π

0
(t2 + 1)x(t)dt ≤ 1}.

Observe that 0 ∈ VI(C, A) and so VI(C, A) , ∅. In this numerical experiment, we take all parameters
αn, λn and µ are the same as in Example 5.1. We perform numerical experiments with three different
cases of starting point x1 and use stopping criterion ‖xn − yn‖ ≤ ε = 10−3. The numerical results are
reported in Table 2.

Table 2. Numerical results for Example 5.2.

x1 Algorithm 3 Algorithm 3 Algorithm 4 Algorithm 4
(θn = 0) (θn = 0.001/(1.01)n) (θn = 0) (θn = 0.001/(1.01)n)

iter. time iter. time iter. time iter. time
1

100 sin(t) 7 9.9 7 8.9 7 9.8 7 10.1
1
3 t2e−4t 5 0.4 5 0.3 5 0.3 5 0.3

1
70 (1 − t2) 6 3.2 6 2.5 6 2.7 6 2.7

Example 5.3. Consider the minimization problem:

min
x∈R3
‖x‖1 + 2‖x‖22 + (−1, 2, 5)x + 1,

where x = (w1,w2,w3)T ∈ R3. Let f (x) = 2‖x‖22 + (−1, 2, 5)x + 1 and g(x) = ‖x‖1. Thus we have
∇ f (x) = 4x + (−1, 2, 5)T . It is easy to check that f is a convex and differentiable function and its
gradient ∇ f is Lipschitz continuous with L = 4. Moreover, g is a convex and lower semicontinuous
function but not differentiable on R3. From [21], we know that

J∂g
λ (x) = (I + λ∂g)−1(x)

=
(

max{|w1| − λ, 0}sgn(w1),max{|w2| − λ, 0}sgn(w2),max{|w3| − λ, 0}sgn(w3)
)T

for λ > 0. In this experiments, we compare our Algorithm 5 and Algorithm 6 with Algorithm (1.4) of
Cholamjiak [12]. The parameters are chosen as follows:

• Algorithm 5: λ1 = 0.1 and µ = 0.9;

• Algorithm 6: λ1 = 0.1, µ = 0.9, αn = 1
10000(n+1) and u = x1;

• Algorithm (1.4): all parameters αn, λn, δn, rn and en are the same as Example 4.2 in [12], and
u = x1.

We perform the numerical experiments with four different cases of starting point x1 and use stopping
criterion ‖xn+1 − xn‖ ≤ ε = 10−12. The numerical results are reported in Table 3.
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Table 3. Numerical results for Example 5.3.

x1 Algorithm 5 Algorithm 5 Algorithm 6 Algorithm 6 Algorithm (1.4)
(θn = 0) (θn = 100/n1.1) (θn = 0) (θn = 100/n1.1)

iter. time iter. time iter. time iter. time iter. time
(1, 2, 4)T 101 0.003 284 0.003 27818 0.10 25263 0.08 263957 0.33

(1,−7, 3)T 103 0.002 288 0.003 27809 0.12 25264 0.08 314417 0.38
(−100, 100, 50)T 111 0.004 315 0.004 27802 0.11 25252 0.09 1313442 1.58

(−1000,−5000,−800)T 127 0.005 356 0.01 27787 0.11 25241 0.07 8004199 9.4

Example 5.4. In signal processing, compressed sensing can be modeled as the following
under-determinated linear equation system:

y = Dx + ε, (5.1)

where x ∈ RN is a vector with m nonzero components to be recovered, y ∈ RM is the observed or
measured data with noisy ε, and D : RN → RM(M < N) is a bounded linear operator. It is known that
to solve (5.1) can be seen as solving the LASSO problem:

min
x∈RN

1
2
‖Dx − y‖22 + λ‖x‖1, (5.2)

where λ > 0. Following [19], we define Ax := ∇
(

1
2‖Dx − y‖22

)
= DT (Dx − y) and Bx := ∂(λ‖x‖1).

It is known that A is ‖D‖2-Lipschitz continuous and monotone. Moreover, B is maximal monotone
(see [35]).

In this experiment, the sparse vector x ∈ RN is generated from uniform distribution in the
interval [−2, 2] with m nonzero elements. The matrix D ∈ RM×N is generated from a normal
distribution with mean zero and one invariance. The observation y is generated by white Gaussian
noise with signal-to-noise ratio (SNR)=40. The restoration accuracy is measured by the mean squared
error (MSE) as follows:

En =
1
N
‖xn − x‖22 < 10−4, (5.3)

where xn is an estimated signal of x.
We compare our proposed Algorithm 1 and Algorithm 2 with the forward-backward splitting

algorithm (FBSA) (1.2), the Tseng’s splitting algorithm (TSA) (1.5) and the contraction
forward-backward splitting algorithm (CFBSA) proposed in ([43, Algorithm 3.1]). The parameters
are chosen as follows:
• Algorithm 1: θn = 0, λ1 = 0.0013 and µ = 0.5;
• Algorithm 2: θn = 0, λ1 = 0.0013, µ = 0.5, αn = 1

200n+5 and u = (1, 1, . . . , 1)T ;
• CFBSA: αn = 1

200n+5 , µ = 0.5, δ = 0.5, l = 0.5, γ = 0.45 and f (x) = x
5 ;

• TSA: λn = 0.2
‖D‖2 ;

• FBSA: λ = 2 × 10−5.
The starting points x1 of all methods are randomly chosen in RN . We perform the numerical test

with the following three cases:
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Case 1: N = 512, M = 256 and m = 20;
Case 2: N = 1024, M = 512 and m = 30;
Case 3: N = 2048, M = 1024 and m = 60;
The numerical results for all test are reported in Figures 1–6.

Original signal ( N=512, M=256, 20 spikes )
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Figure 1. Comparison of recovered signal by using different algorithms in Case 1.
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Figure 2. The plotting of MSE versus number of iterations in Case 1.
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Original signal ( N=1,024, M=512, 30 spikes )
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Figure 3. Comparison of recovered signal by using different algorithms in Case 2.
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Figure 4. The plotting of MSE versus number of iterations in Case 2.
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Original signal ( N=2,048, M=1,024, 60 spikes )
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Figure 5. Comparison of recovered signal by using different algorithms in Case 3.
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Figure 6. The plotting of MSE versus number of iterations in Case 3.
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6. Conclusions

In this paper, we propose Tseng’s splitting algorithms with non-monotone adaptive step sizes for
finding zeros of the sum of two monotone operators in the framework of Banach space. Under some
suitable conditions, we prove the weak and strong convergence results of the algorithms without the
knowledge of the Lipschitz constant of the mapping. Some applications related to the obtained results
are presented. Finally, several numerical experiments are performed to illustrate the convergence of
our algorithms and compared with many known methods.
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Abstract. In this paper, we propose a new modification of Popov’s subgradient extragradient method for solving
the variational inequality problem involving pseudo-monotone and Lipschitz-continuous mappings in the frame-
work of Banach spaces. The weak convergence theorem of the proposed method is established without the knowl-
edge of the Lipschitz constant of the Lipschitz continuous mapping. Finally, we provide several numerical ex-
periments of the proposed method including comparisons with other related methods. Our result generalizes and
extends many related results in the literature from Hilbert spaces to Banach spaces.
Keywords. Popov’s method; Variational inequality problem; Pseudo-monotone mapping; Banach space.

1. INTRODUCTION

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual space of E. We denote
by 〈x, f 〉 the value of f ∈ E∗ at x ∈ E, that is, 〈x, f 〉 = f (x). Let C be a nonempty, closed and
convex subset of E and let A : C→ E∗ be a mapping. The variational inequality problem (VIP)
is to find an element z ∈C such that

〈x− z,Az〉 ≥ 0, ∀x ∈C. (1.1)

The solution set of the VIP is denoted by V I(C,A). The VIP has been studied widely in many
real-world problems, such as, artificial intelligence, computer science, control engineering,
management science and operations research, and differential equations, fluid flow through
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porous media, contact problems in elasticity, transportation problems and economics equilib-
rium; see, e.g. [1, 2, 3, 4, 5, 6, 7] and the references therein.

A simple method for solving VIP in a real Hilbert space H is known as the projected gradient
method, which is defined by the following scheme:

xn+1 = PC(xn−λAxn), (1.2)

where PC is the projection operator onto the convex and closed subset C of H and λ > 0 is
a suitable stepsize. This method converges weakly to a solution of VIP under the following
Assumption (a1) or (a2)

(a1) A is strongly monotone and Lipschitz continuous, and λ ∈ (0, 2γ

L2 );
(a2) A is inverse strongly monotone and λ ∈ (0,2α),

where γ > 0 and L > 0 are strongly monotone and Lipschitz constants, respectively, and α > 0
is the inverse strongly monotone constant of A.

We remark that Assumptions (a1) and (a2) are strong. Without the strong monotonicity,
this method may diverges (see, e.g., [8]). In order to improve this drawback, Korpelevich
[9] introduced the so-called extragradient method for solving the VIP in a finite-dimensional
Euclidean space Rm as follows: {

yn = PC(xn−λAxn),

xn+1 = PC(xn−λAyn),
(1.3)

where C ⊂ Rm is a nonempty, closed and convex set, A : C→ Rm is monotone and L-Lipschitz
continuous, and λ ∈

(
0, 1

L

)
. It was proved that if V I(C,A) is nonempty, then the sequences {xn}

generated by (1.3) converges to an element in V I(C,A). The idea of the extragradient method
was successfully generalized and extended not only in Euclidean spaces but also in Hilbert and
Banach spaces. In recent years, the extragradient method was further studied intensively and it
has been extended in various ways by many authors; see, e.g., [10, 11, 12, 13, 14, 15, 16] and
the references therein. Note that the extragradient method was based on a double-projection
method onto the feasible set C. It needs to compute two projections onto C in each iteration
step. In fact, in some cases, the structure of the set C is not explicit or complicated. As a result,
the projection onto C might be difficult to compute. Moreover, in each iteration step of the
extragradient method, one has to compute two values of the mapping A at points xn and yn.

To deal with the improvement of the extragradient method (1.3), Popov [17] proposed the so-
called Popov’s extragradient method, which only requires to compute one value of the mapping
A at one point yn per iteration. The Popov’s extragradient method is of the form:{

xn+1 = PC(xn−λAyn),

yn+1 = PC(xn+1−λAyn),
(1.4)

where λ ∈
(

0, 1
3L

)
. In [17], the convergence of this method was proved in a finite dimensional

Euclidean space.
In [18], Censor, Gibali and Reich proposed the so-called subgradient extragradient method

for solving the VIP in a real Hilbert space H. They replaced the second projection onto C of the
extragradient method (1.3) by a projection onto a half-space, which is easier to compute. The
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subgradient extragradient method is of the form:
yn = PC(xn−λAxn),

Tn = {x ∈ H : 〈xn−λnAxn− yn,x− yn〉 ≤ 0},
xn+1 = PTn(xn−λAyn),

(1.5)

where C ⊂ H is a nonempty, closed and convex set, A : C→ H is monotone and L-Lipschitz
continuous, and λ ∈

(
0, 1

L

)
. However, this method was still required to compute the value of

the mapping A at two different points in each iteration step.
Recently, Malitsky and Semenov [19] combined the advantages of Popov’s extragradient

method (1.4) and subgradient extragradient method (1.5). They proposed the so-called Popov’s
subgradient extragradient method for solving VIP in a real Hilbert space H as follows:

yn+1 = PC(xn+1−λAyn),

Tn = {x ∈ H : 〈xn−λnAyn−1− yn,x− yn〉 ≤ 0},
xn+1 = PTn(xn−λAyn),

(1.6)

where λ ∈
(

0, 1
3L

)
. It was proved that the sequence {xn} generated by (1.6) converges weakly

to a solution of the VIP provided that V I(C,A) is nonempty. We remark that this method is not
only requires to compute one projection onto the feasible set C but it also compute one value
of the mapping A in each iteration step. In view of this, the Popov’s subgradient extragradient
method has received great attention in various ways; see, e.g., [20, 21, 22] and the references
therein. However, the Popov’s subgradient extragradient method (1.6) requires to know the
Lipschitz constant or at least to know some estimation of it.

Motivated and inspired by the previous works, in this paper, we extend the Popov’s subgra-
dient extragradient method (1.6) from Hilbert spaces to Banach spaces, which are 2-uniformly
convex and uniformly smooth. We prove the weak convergence result of the proposed algorithm
to a solution of th VIP when A is pseudo-monotone and Lipschitz continuous. The advantage
of our algorithm is that the stepsize does not requires to know the Lipschitz constant of the
Lipschitz continuous mapping.

The outline of this paper is organized as follows: In Section 2, some preliminaries and facts
are presented. In Section 3, we prove the weak convergence result of the proposed algorithm.
Finally, in Section 4, we perform several numerical experiments to show the efficiency and
advantages of the proposed algorithm. The result in this paper generalizes and extends many
known results in the literature.

2. PRELIMINARIES

Throughout this paper, we denote the set of real numbers and the set of positive integers by
R and N, respectively. Let E be a real Banach space and E∗ the dual space of E. For a sequence
{xn} ⊂ E, we denote xn→ x and xn ⇀ x by the strong convergence and the weak convergence
of {xn} to x, respectively. Let U = {x ∈ E : ‖x‖= 1} be the unit sphere of E.

Definition 2.1. [23, 24, 25] Let E be a Banach space.
(1) The modulus of convexity δE : [0,2]→ [0,1] is defined by

δE(ε) = inf
{

1− ‖x+y‖
2 : x,y ∈U,‖x− y‖ ≥ ε

}
.
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(2) The modulus of smoothness ρE : [0,∞)→ [0,∞) is defined by

ρE(t) = sup
{
‖x+ty‖+‖x−ty‖

2 −1 : x,y ∈U
}
.

Definition 2.2. [23, 24, 25] A Banach space E is said to be:

(1) strictly convex if ‖x+y‖
2 < 1 for all x,y ∈U and x 6= y;

(2) smooth if limt→0
‖x+ty‖−‖x‖

t exists for all x,y ∈U ;
(3) uniformly convex if δE(ε)> 0 for allε ∈ (0,2];
(4) uniformly smooth if limt→0

ρE(t)
t = 0;

(5) p-uniformly convex if there exist c> 0 and p≥ 2 such that δE(ε)≥ cε p for all ε ∈ (0,2];
(6) q-uniformly smooth if there exist κ > 0 and 1 < q≤ 2 such that ρE(t)≤ κtq for all t > 0.

Lemma 2.3. [23, 24, 25] Let E be a Banach space. Let 1 < q ≤ 2 < p < ∞ with 1
p +

1
q = 1.

Then the following statements hold:
(i) If E is p-uniformly convex (q-uniformly smooth), then E is uniformly convex (uniformly

smooth.
(ii) E is p-uniformly convex (q-uniformly smooth) if and only if its dual E∗ is q-uniformly

smooth (p-uniformly convex).
(iii) If E is uniformly convex (uniformly smooth), then E is strictly convex and reflexive

(reflexive and smooth).

Remark 2.4. Typical examples of both uniformly convex and uniformly smooth Banach spaces
are Lp and `p, where p > 1. More precisely, Lp and `p are max{p,2}-uniformly convex and
min{p,2}-uniformly smooth, while Hilbert spaces are 2-uniformly convex and 2-uniformly
smooth (see [26] for more details).

Definition 2.5. [23, 24, 25] Let E be a Banach space.
(1) The duality mapping J : E → 2E∗ is defined by Jx = { f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖ f‖2}

for all x ∈ E.
(2) The duality mapping J from E into E∗ is said to be weakly sequentially continuous if

for any sequence {xn} ⊂ E such that xn ⇀ x implies that Jxn ⇀
∗ Jx.

Lemma 2.6. [23, 24, 25] Let E be a Banach space and let J be the duality mapping on E. The
following facts are well-known:

(i) If E is smooth, then J is single-valued and monotone, that is,

〈x− y,Jx− Jy〉 ≥ 0, ∀x,y ∈ E.

Further, if E is strictly convex and 〈x− y,Jx− Jy〉= 0, then x = y.
(ii) If E is strictly convex, then J is one-to-one.

(iii) If E is uniformly smooth, then J is norm-to-norm uniformly continuous on bounded
subsets of E.

(iv) If E is reflexive, smooth and strictly convex, then J−1 is single-valued, one-to-one, sur-
jective and it is the duality mapping from E∗ into E.

(v) If E is a Hilbert space, then J is the identity mapping.

Definition 2.7. Let C be a nonempty subset of a Banach space E. A mapping A : C→ E∗ is
said to be:
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(1) monotone if

〈x− y,Ax−Ay〉 ≥ 0, ∀x,y ∈C;

(2) pseudo-monotone if

〈y− x,Ax〉 ≥ 0 =⇒ 〈y− x,Ay〉 ≥ 0, ∀x,y ∈C;

(3) Lipschitz continuous if there exists a constant L > 0 such that

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x,y ∈C;

(4) hemicontinuous if for each x,y ∈C, the mapping f : [0,1]→ E∗ defined by

f (t) = A(tx+(1− t)y)

is continuous with respect to the weak∗ topology of E∗.

Remark 2.8. Every monotone mapping is a pseudo-monotone mapping but converse is not true
in general. The example of a pseudo-monotone mapping but is not monotone can be found in
[27].

Definition 2.9. [28] Let E be a smooth Banach space. The Lyapunov function φ : E×E → R
is defined by

φ(x,y) = ‖x‖2−2〈x,Jy〉+‖y‖2, ∀x,y ∈ E.

If E is a Hilbert space, then φ(x,y) = ‖x− y‖2 for all x,y ∈ E. From the definition of φ , it is
clear that

(‖x‖−‖y‖)2 ≤ φ(x,y)≤ (‖x‖+‖y‖)2, ∀x,y ∈ E. (2.1)

From (2.1), we can see that φ(x,y) ≥ 0 and if E is additionally assumed to be strictly convex,
then

φ(x,y) = 0 ⇐⇒ x = y. (2.2)

Furthermore, the function φ has the following two important properties:

φ(x,y)+φ(y,x) = 2〈x− y,Jx− Jy〉, ∀x,y ∈ E (2.3)

and

φ(x,y) = φ(x,z)+φ(z,y)+2〈x− z,Jz− Jy〉, ∀x,y,z ∈ E. (2.4)

Following [28], we have the functional V : E×E∗→ R, which is defined by

V (x,x∗) = ‖x‖2−2〈x,x∗〉+‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗.

Then V is nonnegative and V (x,x∗) = φ(x,J−1x∗) for all x ∈ E and x∗ ∈ E∗.

Definition 2.10. [28] Let E be a reflexive, strictly convex and smooth Banach space. Let C
be a nonempty, closed convex subset of E. The generalized projection mapping is a mapping
ΠC : E → C that assigns an arbitrary element x ∈ E to the minimum element of the function
φ(y,x), that is, ΠCx = z, where z is the solution to the following minimization problem:

φ(z,x) = min
y∈C

φ(y,x).

Remark 2.11. If E is a Hilbert space, then ΠC is coincident with the metric projection, denoted
by PC.
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Lemma 2.12. [28] Let E be a reflexive, strictly convex and smooth Banach space and let C be
a nonempty, closed and convex subset of E. Let x ∈ E and z ∈C. Then the following statements
hold:

(i) z = ΠC(x) if and only if 〈y− z,Jz− Jx〉 ≥ 0, ∀y ∈C.
(ii) φ(y,ΠC(x))+φ(ΠC(x),x)≤ φ(y,x), ∀y ∈C.

Lemma 2.13. [29] Let E be a 2-uniformly convex Banach space. Then there exists a constant
δ ≥ 1 such that

1
δ
‖x− y‖2 ≤ φ(x,y), ∀x,y ∈ E.

Lemma 2.14. [10] Let C be a nonempty, closed and convex subset of a reflexive Banach space
E. Let A : C→ E∗ be a pseudo-monotone and hemicontinuous operator. Then

(i) z is a solution of VIP (1.1) if and only if 〈x− z,Ax〉 ≥ 0, ∀x ∈C.
(ii) V I(C,A) is closed and convex.

The following fact can be found in [30, Lemma 3.1].

Lemma 2.15. For any a,b ∈ R and ε > 0, the following inequality holds

2ab≤ a2

ε
+ εb2.

Proof. Since 0≤
(

1√
ε
a−
√

εb
)2

= a2

ε
−2ab+ εb2, we have 2ab≤ a2

ε
+ εb2. �

Lemma 2.16. Let {An} and {Bn} be two nonnegative real sequences such that

An+1 ≤An−Bn, ∀n≥ 1.

Then limn→∞ An exists and ∑
∞
n=1 Bn < ∞.

The following lemma will be needed in the proof of the main result.

Lemma 2.17. Let C be a nonempty, closed and convex subset of a real 2-uniformly convex
Banach space E, which is also uniformly smooth. Let {xn} be a sequence in E. Suppose that
the following two conditions hold:

(i) limn→∞ φ(u,xn) exists for each u ∈C;
(ii) every sequential weak limit point of {xn} belongs to C.

Suppose, in addition, that J is weakly sequentially continuous on E. Then {xn} converges
weakly to some element in C.

Proof. Since limn→∞ φ(u,xn) exists, we have that {φ(u,xn)} is bounded. Applying Lemma
2.13, we obtain that {xn} is bounded. By the reflexivity and the boundedness of {xn}, we can
suppose that there are two subsequences {xnk} and {xmk} of {xn} such that xnk ⇀ u and xmk ⇀ v
for some u,v∈C. From this, we see that limn→∞(φ(u,xn)−φ(v,xn)) exists. From the definition
of φ , we have

φ(u,xn)−φ(v,xn) = ‖u‖2−2〈u,Jxn〉+‖xn‖2− (‖v‖2−2〈v,Jxn〉+‖xn‖2)

= ‖u‖2−‖v‖2−2〈u− v,Jxn〉
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and then

‖u‖2−‖v‖2−2 lim
k→∞
〈u− v,Jxnk〉= ‖u‖

2−‖v‖2−2 lim
k→∞
〈u− v,Jxmk〉.

Since J is weakly sequentially continuous, we have 〈u−v,Ju〉= 〈u−v,Jv〉, that is, 〈u−v,Ju−
Jv〉= 0. By the strict convexity of E, we obtain u = v. This completes the proof. �

3. MAIN RESULT

In this section, we propose a modification of Popov’s subgradient extragradient method for
solving pseudo-monotone variational inequalities in Banach spaces. In order to prove conver-
gence of the proposed method, we need the following assumptions:

(A1) The set C is a nonempty, closed and convex subset of a real 2-uniformly convex Banach
space E, which is also uniformly smooth.

(A2) The mapping A : E→ E∗ is pseudo-monotone and L-Lipschitz continuous.
(A3) The duality mapping J is weakly sequentially continuous on E.
(A4) The solution set of the VIP is nonempty, that is, V I(C,A) 6= /0.

Algorithm 1 Modified Popov’s subgradient extragradient algorithm

Step 0: Give λ0,λ1 > 0 and µ ∈
(

0,
√

2−1
δ

)
, where δ is a constant given by Lemma 2.13. Let

x0,y0 ∈C be arbitrary.
Step 1: Compute {

x1 = ΠCJ−1(Jx0−λ0Ay0),
y1 = ΠCJ−1(Jx1−λ1Ay0).

(3.1)

Step 2: Given the current iterate xn,yn and yn−1, calculate xn+1 as follows:

xn+1 = ΠTnJ−1(Jxn−λnAyn), (3.2)

where

Tn = {x ∈ E : 〈x− yn,Jxn−λnAyn−1− Jyn〉 ≤ 0}. (3.3)

Step 3: Compute

yn+1 = ΠCJ−1(Jxn+1−λn+1Ayn), (3.4)

where

λn+1 =

 min
{

µ

√
2‖xn+1−yn‖2+ 1√

2
‖yn−yn−1‖2

2〈xn+1−yn,Ayn−1−Ayn〉 ,λn

}
if 〈xn+1− yn,Ayn−1−Ayn〉> 0,

λn otherwise.
(3.5)

If xn+1 = xn and yn−1 = yn (or xn+1 = yn = yn+1), then stop and yn is a solution of the VIP.
Otherwise, go to Step 1.

Lemma 3.1. Let {λn} be a sequence generated by (3.5). Then {λn} is nonincreasing and

lim
n→∞

λn = λ ≥min{µ

L
,λ1}.
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Moreover,

2〈xn+1− yn,Ayn−1−Ayn〉 ≤
µ

λn+1

(√
2‖xn+1− yn‖2 +

1√
2
‖yn− yn−1‖2

)
, ∀n≥ 1.

Proof. It is obvious from (3.5) that λn+1 ≤ λn for all n ≥ 1. For the case 〈xn+1− yn,Ayn−
Ayn−1〉> 0, Lemma 2.15 and the L-Lipschitz continuity of A, we have

µ

√
2‖xn+1− yn‖2 + 1√

2
‖yn− yn−1‖2

2〈xn+1− yn,Ayn−1−Ayn〉
≥ 2µ‖xn+1− yn‖‖yn− yn−1‖

2L‖xn+1− yn‖‖yn− yn−1‖
=

µ

L
.

Clearly,

λn+1 ≥min
{µ

L
,λn
}
.

By induction, we immediately obtain that {λn} is bounded from below by min{µ

L ,λ1}. Thus
there exists λ := limn→∞ λn ≥min{µ

L ,λ1}.
On the other hand, from the definition of λn, we have

λn+1 = min
{

µ

√
2‖xn+1− yn‖2 + 1√

2
‖yn− yn−1‖2

2〈xn+1− yn,Ayn−1−Ayn〉
,λn

}
≤ µ

√
2‖xn+1− yn‖2 + 1√

2
‖yn− yn−1‖2

2〈xn+1− yn,Ayn−1−Ayn〉
.

This implies that

2〈xn+1− yn,Ayn−1−Ayn〉 ≤
µ

λn+1

(√
2‖xn+1− yn‖2 +

1√
2
‖yn− yn−1‖2

)
, ∀n≥ 1.

�

Lemma 3.2. Let {xn} be a sequence generated by Algorithm 1. If xn+1 = xn and yn−1 = yn,
then yn is a solution of the VIP.

Proof. If xn+1 = xn, then xn = ΠTnJ−1(Jxn−λnAyn). By Lemma 2.12 (i), we have

〈x− xn,Jxn− J ◦ J−1(Jxn−λnAyn)〉 = 〈x− xn,Jxn− Jxn +λnAyn〉
= λn〈x− xn,Ayn〉 ≥ 0, ∀x ∈ Tn.

This implies that 〈x− yn,Ayn〉 ≥ 〈xn− yn,Ayn〉, ∀x ∈ Tn. It is easy to see that C ⊂ Tn, and

〈x− yn,Ayn〉 ≥ 〈xn− yn,Ayn〉, ∀x ∈C. (3.6)

On the other hand, by the definition of Tn, we have

〈x− yn,Jxn−λnAyn−1− Jyn〉 ≤ 0, ∀x ∈ Tn.

Since xn = xn+1, we have xn ∈ Tn. If yn−1 = yn, then 〈xn− yn,Jxn−λnAyn− Jyn〉 ≤ 0. From
(2.3), we see that

〈xn− yn,Ayn〉 ≥ 〈xn− yn,Jxn− Jyn〉 ≥
1
2

φ(xn,yn)≥ 0. (3.7)

Combining (3.6) and (3.7), we thus get 〈x− yn,Ayn〉 ≥ 0, ∀x ∈C. Hence, yn is a solution of the
VIP. �
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Lemma 3.3. Assume that Assumptions (A1)− (A4) hold. Let {xn} be a sequence generated by
Algorithm 1. For each n≥ 1, we have

An+1 ≤An− (1− (
√

2+1)θn)φ(yn,xn)− (1−
√

2θn−θn+1)φ(xn+1,yn), ∀p ∈V I(C,A),

where An = φ(p,xn)+θnφ(xn,yn−1) and θn =
µδλn
λn+1

.

Proof. Let p ∈V I(C,A). By Lemma 2.12 (ii), we have

φ(p,xn+1)

= φ(p,ΠTnJ−1(Jxn−λnAyn))

≤ φ(p,J−1(Jxn−λnAyn))−φ(xn+1,J−1(Jxn−λnAyn))

=V (p,Jxn−λnAyn)−V (xn+1,Jxn−λnAyn)

= ‖p‖2−2〈p,Jxn〉+2λn〈p,Ayn〉+‖Jxn−λnAyn‖2−‖xn+1‖2

+2〈xn+1,Jxn〉−2λn〈xn+1,Ayn〉−‖Jxn−λnAyn‖2

= ‖p‖2−2〈p,Jxn〉+‖xn‖2−
(
‖xn+1‖2−2〈xn+1,Jxn〉+‖xn‖2

)
−2λn〈xn+1− p,Ayn〉

= φ(p,xn)−φ(xn+1,xn)−2λn〈xn+1− p,Ayn〉
= φ(p,xn)−φ(xn+1,xn)−2λn〈xn+1− yn,Ayn〉−2λn〈yn− p,Ayn〉.

(3.8)

Since yn ∈ C, we have 〈yn− p,Ap〉 ≥ 0. By the pseudo-monotonicity of A, we have 〈yn−
p,Ayn〉 ≥ 0. It follows from (3.8) that

φ(p,xn+1)≤ φ(p,xn)−φ(xn+1,xn)−2λn〈xn+1− yn,Ayn〉. (3.9)

From (2.3), we see that

φ(xn+1,xn) = φ(xn+1,yn)+φ(yn,xn)+2〈xn+1− yn,Jyn− Jxn〉. (3.10)

Substituting (3.10) and (3.9), we have

φ(p,xn+1)≤ φ(p,xn)−φ(xn+1,yn)−φ(yn,xn)−2〈xn+1− yn,Jyn− Jxn〉−2λn〈xn+1− yn,Ayn〉
= φ(p,xn)−φ(xn+1,yn)−φ(yn,xn)+2λn〈xn+1− yn,Ayn−1−Ayn〉
+2〈xn+1− yn,Jxn−λnAyn−1− Jyn〉.

(3.11)
Since xn+1 ∈ Tn, we have 〈xn+1− yn,Jxn−λnAyn−1− Jyn〉 ≤ 0. This implies that

φ(p,xn+1)≤ φ(p,xn)−φ(xn+1,yn)−φ(yn,xn)+2λn〈xn+1− yn,Ayn−1−Ayn〉. (3.12)

From Lemma 3.1, we see that

2λn〈xn+1− yn,Ayn−1−Ayn〉 ≤ µ
λn

λn+1

(√
2‖xn+1− yn‖2 +

1√
2
‖yn−1− yn‖2

)
. (3.13)
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Now, we estimate ‖yn−1− yn‖2. Observe that

‖yn−1− yn‖2 ≤
(
‖yn− xn‖+‖xn− yn−1‖

)2

≤ ‖yn− xn‖2 +2‖yn− xn‖‖xn− yn−1‖+‖xn− yn−1‖2

≤ ‖yn− xn‖2 +(
√

2+1)‖yn− xn‖2 +
1√

2+1
‖xn− yn−1‖2 +‖xn− yn−1‖2

= (
√

2+2)‖yn− xn‖2 +
√

2‖xn− yn−1‖2. (3.14)

Substituting (3.14) into (3.13) and using Lemma 2.13, we have
2λn〈xn+1− yn,Ayn−1−Ayn〉

≤ µ
λn

λn+1

(√
2‖xn+1− yn‖2 +(

√
2+1)‖yn− xn‖2 +‖xn− yn−1‖2

)
≤ µ

λn

λn+1

(
δ
√

2φ(xn+1,yn)+δ (
√

2+1)φ(yn,xn)+δφ(xn,yn−1)
)

= θn

(√
2φ(xn+1,yn)+(

√
2+1)φ(yn,xn)+φ(xn,yn−1)

)
,

(3.15)

where θn =
µδλn
λn+1

. Substituting (3.15) into (3.12), we have

φ(p,xn+1)≤ φ(p,xn)−φ(xn+1,yn)−φ(yn,xn)

+θn

(√
2φ(xn+1,yn)+(

√
2+1)φ(yn,xn)+φ(xn,yn−1)

)
= φ(p,xn)+θnφ(xn,yn−1)− (1− (

√
2+1)θn)φ(yn,xn)− (1−

√
2θn)φ(xn+1,yn).

(3.16)
Adding the term θn+1φ(xn+1,yn) to both sides of (3.16), we get

φ(p,xn+1)+θn+1φ(xn+1,yn) ≤ φ(p,xn)+θnφ(xn,yn−1)− (1− (
√

2+1)θn)φ(yn,xn)

−(1−
√

2θn−θn+1)φ(xn+1,yn). (3.17)

Then (3.17) reduces to the following inequality:

An+1 ≤An− (1− (
√

2+1)θn)φ(yn,xn)− (1−
√

2θn−θn+1)φ(xn+1,yn), (3.18)

where An = φ(p,xn)+θnφ(xn,yn−1). �

Lemma 3.4. Assume that Assumptions (A1)− (A4) hold. Let {xn} be a sequence generated by
Algorithm 1. Suppose that there exists a subsequence {xnk} of {xn} such that {xnk} converges
weakly to z ∈ E. If limn→∞ ‖xn− yn‖= 0 and limn→∞ ‖yn+1− yn‖= 0, then z ∈V I(C,A).

Proof. Let {xnk} be the subsequence of {xn} such that xnk ⇀ z ∈ E. Since limn→∞ ‖xn−yn‖= 0
and {yn} ⊂C, we have ynk ⇀ z and z ∈C. From the definition of ynk , we see that

ynk+1 = ΠCJ−1(Jxnk+1−λnk+1Aynk).

By Lemma 2.12 (i), we have

〈x− ynk+1,Jynk+1− Jxnk+1 +λnk+1Aynk〉 ≥ 0, ∀x ∈C, (3.19)

which implies that

λnk+1〈x− ynk+1,Aynk〉 ≥ 〈x− ynk+1,Jxnk+1− Jynk+1〉, ∀x ∈C.
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Moreover, we have

〈x− ynk ,Aynk〉 ≥
1

λnk

〈x− ynk+1,Jxnk+1− Jynk+1〉+ 〈ynk+1− ynk ,Aynk〉.

Since limk→∞ λnk = λ > 0, {Aynk} is bounded and J is norm-to-norm uniform continuous, we
have

liminf
k→∞

〈x− ynk ,Aynk〉 ≥ 0. (3.20)

Let {εk} be a decreasing sequence of positive real numbers such that εk→ 0 as k→∞. For each
εk, we denote by N the smallest positive integer such that

〈x− ynk ,Aynk〉+ εk ≥ 0, ∀k ≥ N. (3.21)

It is clear that (3.21) can be written as

〈x+ εkvnk− ynk ,Aynk〉 ≥ 0, ∀k ≥ N (3.22)

for some vnk := w ∈ E satisfying 〈vnk ,Aynk〉= 1 (since Aynk 6= 0). By the pseudo-monotonicity
of A, we have

〈x+ εkvnk− ynk ,A(x+ εkvnk)〉 ≥ 0. (3.23)

Since ynk ⇀ z, εk → 0 and A is Lipschitz continuous (hence it is continuous), it follows from
(3.23) that

〈x− z,Ax〉 ≥ 0, ∀x ∈C. (3.24)

By Lemma 2.14 (ii), we obtain z ∈V I(C,A). �

Theorem 3.5. Assume that Assumptions (A1)− (A4) hold. Let {xn} be a sequence generated
by Algorithm 1. Then {xn} converges weakly to an element in V I(C,A).

Proof. Since limn→∞ λn exists and µ ∈
(

0,
√

2−1
δ

)
, we have

lim
n→∞

(1− (
√

2+1)θn) = lim
n→∞

(1−
√

2θn−θn+1) = 1− (
√

2+1)µδ = 1− µδ√
2−1

> 0.

Thus there exists n0 ∈ N such that

1− (
√

2+1)θn > 0 and 1−
√

2θn−θn+1 > 0, ∀n≥ n0,

which implies that

(1− (
√

2+1)θn)φ(yn,xn)+(1−
√

2θn−θn+1)φ(xn+1,yn)≥ 0, ∀n≥ n0.

Now, we can write (3.18) in the following form:

An+1 ≤An−Bn, ∀n≥ n0,

where Bn = (1− (
√

2+ 1)θn)φ(yn,xn)+ (1−
√

2θn−θn+1)φ(xn+1,yn). By Lemma 2.16, we
obtain limn→∞ An exists and

∞

∑
n=n0

Bn =
∞

∑
n=n0

[
(1− (

√
2+1)θn)φ(yn,xn)+(1−

√
2θn−θn+1)φ(xn+1,yn)

]
< ∞.

Thus we have limn→∞ φ(yn,xn) = limn→∞ φ(xn+1,yn) = 0. Using Lemma 2.13, we get

lim
n→∞
‖yn− xn‖= lim

n→∞
‖xn+1− yn‖= 0. (3.25)
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By the uniform continuity of J, we have

lim
n→∞
‖Jyn− Jxn‖= lim

n→∞
‖Jxn+1− Jyn‖= 0,

which implies that

‖Jyn− Jyn−1‖ ≤ ‖Jyn− Jxn‖+‖Jxn− Jyn−1‖→ 0.

Also, by the norm to norm uniform continuity of J−1, we have

lim
n→∞
‖yn− yn−1‖= 0. (3.26)

Since limn→∞ An exists and from (3.25), we have that {φ(p,xn)} is bounded. It follows from
Lemma 2.13 that {xn} is bounded. By the reflexivity of E, there exists a subsequence {xnk} of
{xn} such that xnk ⇀ z ∈ E. As proved in Lemma 3.4, we have z ∈ V I(C,A). In summary, we
have shown that

(i) limn→∞ φ(p,xn) exists for every p ∈V I(C,A);
(ii) every sequential weak limit point of {xn} is in V I(C,A).

Therefore, by Lemma 2.17, we conclude that {xn} converges weakly to an element in V I(C,A).
This completes the proof. �

4. NUMERICAL EXPERIMENTS

In this section, we provide several numerical experiments to illustrate the convergence and
the efficiency of our Algorithm 1 in solving the variational inequality problem. Moreover, we
also compare it with subgradient extragradient method (SEM) (1.5), Popov’s subgradient extra-
gradient method (PSEM) (1.6), Halpern’s subgradient extragradient method (HSEM) proposed
in ([11, Algorithm 3.5]) and modified subgradient extragradient method with an Armijo line
search rule (L-MSEM) proposed in ([31, Algorithm 3.1]). We have used the following values
of the control parameters for the whole numerical part:

(i) subgradient extragradient method (SEM):

λ =
0.7
L

, Dn = ‖xn+1− xn‖;

(ii) Popov’s subgradient extragradient method (PSEM):

λ =
0.7
3L

, x0 = y0, Dn = ‖xn+1− xn‖;

(iii) Halpern’s subgradient extragradient method (HSEM):

λ =
0.7
L

, αn =
1

n+2
, Dn = ‖xn+1− xn‖;

(iv) modified subgradient extragradient method with an Armijo line search rule (L-MSEM):

µ = 0.80, γ = 1, l = 0.20, Dn = ‖xn+1− xn‖;

(v) Algorithm 1 (modified Popov’s subgradient extragradient method (M-PSEM)):

µ = 0.33, λ0 = λ1 = 0.20, x0 = y0, Dn = ‖xn+1− xn‖.
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Example 4.1. We consider the HpHard problem which is taken from [32]. Let A : Rm→Rm be
an operator defined by Ax = Mx+q with q ∈ Rm and

M = NNT +B+D,

where N is an m×m matrix, B is an m×m skew-symmetric matrix and D is an m×m positive
definite diagonal matrix. The feasible set is

C = {x ∈ Rm : Qx≤ b},
where Q is an 100×m matrix and b is a nonnegative vector in Rm. It is clear that A is monotone
and Lipschitz continuous with L = ‖M‖ (hence the variational inequality has a unique solution).
For q = 0, the solution set of the corresponding variational inequality is V I(C,A) = {0}. We
perform numerical experiments with the starting point x0 = (1,1, . . . ,1)T and use ‖xn+1−xn‖<
ε = 10−3 to stop the iterative process. The numerical results of all methods have been reported
in the Figures 1-3.

0 20 40 60 80 100 120 140

Number of iterations
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10-2

10-1

100

101

0 0.5 1 1.5 2 2.5

Elapsed time [sec]
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100

101

FIGURE 1. Numerical comparison of M-PSEM with existing algorithms when
m = 10 for Example 4.1.
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FIGURE 2. Numerical comparison of M-PSEM with existing algorithms when
m = 50 for Example 4.1.

Example 4.2. In this example, we take E = L2([0,1]) with the norm

‖x‖2 =

(∫ 1

0
|x(t)|2dt

)1/2
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100
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FIGURE 3. Numerical comparison of M-PSEM with existing algorithms when
m = 100 for Example 4.1.

and the inner product

〈x,y〉=
∫ 1

0
x(t)y(t)dt

for all x,y ∈ L2([0,1]). The feasible set is C = {x ∈ E : ‖x‖ ≤ 1}. Define an integral operator
A : C→ E by

Ax(t) =
∫ 1

0

(
x(t)− f (t,s)g(x(s))

)
ds−h(t), x ∈C and t ∈ [0,1],

where

f (t,s) =
2tset+s

e
√

e2−1
, g(x) = cosx and h(t) =

2tet

e
√

e2−1
.

It was shown that A is monotone (hence it is pseudo-monotone) and Lipschitz continuous
with L = 2 (see [33]). The solution set of the corresponding variational inequality problem
is V I(C,A) = {0}. We perform numerical experiments with three different starting points and
use ‖xn+1− xn‖< ε = 10−4 to stop the iterative process. The numerical results of all methods
have been reported in the Figures 4-6.
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FIGURE 4. Numerical comparison of M-PSEM with existing algorithms when
x0 = 1 for Example 4.2.
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FIGURE 5. Numerical comparison of M-PSEM with existing algorithms when
x0 = t for Example 4.2.
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FIGURE 6. Numerical comparison of M-PSEM with existing algorithms when
x0 = et for Example 4.2.

Example 4.3. Consider the following pseudo-monotone variational inequalities with

Ax =


x1 + x2 + x3 + x4−4x2x3x4
x1 + x2 + x3 + x4−4x1x3x4
x1 + x2 + x3 + x4−4x1x2x4
x1 + x2 + x3 + x4−4x1x2x3

 .

The feasible set is C = {x ∈ R4 : 1 ≤ x1 ≤ 5, i = 1,2,3,4}. It is easy to see that Ax is not
monotone on C. Using the Monte Carlo approach [34], it can be shown that A is pseudo-
monotone on C. This problem has unique solution z = (5,5,5,5)T . Since the Lipschitz constant
is unknown, thus SEM, PSEM and HSEM do not applicable in this problem. We only perform
the numerical experiments of L-PSEM and M-MSEM with three different starting points x0 and
use ‖xn+1− xn‖< ε to stop the iterative process. The numerical results of mentioned methods
have been reported in the Tables 1 and 2.

In the last example, we use our proposed algorithm to solve the pseudo-convex minimization
problem in a finite dimension space E =Rm. Let C be a nonempty, closed and convex subset of
E. Recall that a differentiable function f : E→ R is called pseudo-convex if

〈∇ f (x),y− x〉 ≥ 0 =⇒ f (y)≥ f (x), ∀x,y ∈C,
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TABLE 1. Numerical tests of L-PSEM with different starting points for Example 4.3.

ε 0.01 0.001 0.0001 0.00001 0.01 0.001 0.0001 0.00001
x0 No. of Iter. No. of Iter. No. of Iter. No. of Iter. Time(s) Time(s) Time(s) Time(s)
(−2,2,8,10)T 3 3 3 3 0.0633 0.0701 0.0865 0.0723
(−1,2,2,5)T 3 3 3 3 0.0723 0.0721 0.0789 0.0768
(3,1,−5,−2)T 3 3 3 3 0.0770 0.0821 0.0871 0.0799

TABLE 2. Numerical tests of M-PSEM with different starting points for Example 4.3.

ε 0.01 0.001 0.0001 0.00001 0.01 0.001 0.0001 0.00001
x0 No. of Iter. No. of Iter. No. of Iter. No. of Iter. Time(s) Time(s) Time(s) Time(s)
(−2,2,8,10)T 5 5 5 5 0.0298 0.0234 0.0395 0.0415
(−1,2,2,5)T 5 5 5 5 0.0394 0.0440 0.0387 0.0382
(3,1,−5,−2)T 4 4 4 4 0.0806 0.0264 0.0271 0.0269

where ∇ f is the gradient of f . The pseudo-convex minimization problem is to find an element
z ∈C such that

f (z) = min
x∈C

f (x), (4.1)

where f is differentiable and pseudo-convex. This problem (4.1) is equivalent to the following
variational inequality problem [35, 36]:

〈∇ f (z),x− z〉 ≥ 0, ∀x ∈C. (4.2)

It is known that a differentiable function is pseudo-convex if and only if its gradient is a pseudo-
monotone mapping (see [37]).

Example 4.4. Consider the quadratic fractional programming problem in the following form
[34]:  min f (x) =

xT Qx+aT x+a0

bT x+b0
,

subject to x ∈ K = {x ∈ R4 : bT x+b0 > 0},
where

Q =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , a =


1
−2
−2
1

 , b =


2
1
1
0

 , a0 =−2 and b0 = 4.

It is easy to verify that Q is symmetric and positive definite on R4 and consequently f is pseudo-
convex on K. Hence ∇ f is pseudo-monotone. Using the quotient rule, we get

∇ f (x) =
(bT x+b0)(2Qx+a)−b(xT Q+aT x+a0)

(bT x+b0)2 .

In this point of view, we can set A = ∇ f in Theorem 3.5. We minimize f over C = {x∈R4 : 1≤
xi ≤ 10, i = 1,2,3,4} ⊂ K. This problem has a unique solution z = (1,1,1,1)T ∈C. Since the
Lipschitz constant is unknown, thus SEM, PSEM and HSEM do not applicable in this problem.
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We only perform the numerical experiments of L-PSEM and M-MSEM with three different
starting points x0 and use ‖xn+1−xn‖< ε to stop the iterative process. The numerical results of
mentioned methods have been reported in the Tables 3 and 4.

TABLE 3. Numerical tests of L-PSEM with different starting points for Example 4.4.

ε 0.01 0.001 0.0001 0.00001 0.01 0.001 0.0001 0.00001
x0 No. of Iter. No. of Iter. No. of Iter. No. of Iter. Time(s) Time(s) Time(s) Time(s)
(10,10,10,10)T 58 101 141 187 0.6008 1.4598 1.9081 3.7862
(10,20,30,40)T 73 113 156 233 0.9732 1.7781 2.2009 4.5341
(20,−20,20,−20)T 81 141 199 243 1.1023 1.8970 4.0032 4.9032

TABLE 4. Numerical tests of M-PSEM with different starting points for Example 4.4.

ε 0.01 0.001 0.0001 0.00001 0.01 0.001 0.0001 0.00001
x0 No. of Iter. No. of Iter. No. of Iter. No. of Iter. Time(s) Time(s) Time(s) Time(s)
(10,10,10,10)T 49 91 133 175 0.2203 0.4282 0.7989 0.8634
(10,20,30,40)T 69 102 148 191 0.2197 0.6281 1.2019 1.3451
(20,−20,20,−20)T 87 158 201 295 0.5214 1.3122 1.9514 2.4151

5. CONCLUSION

In recent years, several variants of the Popov’s subgradient extragradient method have been
studied intensively by many authors. Note that most of them were studied in Hilbert spaces.
In this paper, we extend the Popov’s subgradient extragradient method to Banach spaces. The
weak convergence theorem of the proposed algorithm was proved without the knowledge of the
Lipschitz constant of the mapping. Several numerical experiments are performed to illustrate
the performance of our algorithm.

Funding
The first author was supported by RMUTT Research Grant for New Scholar under Grant
NSF62D0602. The second author was supported by the Petchra Pra Jom Klao Doctoral Schol-
arship Academic for Ph.D. Program at KMUTT (Grant No. 39/2560).

REFERENCES

[1] V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, Springer Dordrecht Heidelberg Lon-
don, New York, 2010.

[2] D.P. Bertsekas, E.M. Gafni, Projection methods for variational inequalities with applications to the traffic
assignment problem, Math. Prog. Study 17 (1982), 139-159.

[3] S. Dafermos, Exchange price equilibria and variational inequalities, Math. Programming 46 (1990), 391-402.
[4] N. Kikuchi, J.T. Oden, Contact Problems in Elasticity, SIAM, Philadelphia, PA, 1988.
[5] T. Humphries, M. Loreto, B. Halter, W. O’Keeffe, L. Ramirez, Comparison of regularized and superiorized

methods for tomographic image reconstruction, J. Appl. Numer. Optim. 2 (2020), 77-99.
[6] N.T. An, Solving k-center problems involving sets based on optimization techniques, J. Global Optim. 76

(2020), 189–209.



18 P. SUNTHRAYUTH, H.U. REHMAN, P. KUMAM
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ABSTRACT
In this paper, we study the so-called generalized monotone
quasi-inclusion problem which is a generalization and exten-
sion of well-known monotone quasi-inclusion problem. We
propose a forward–backward splitting method for solving
this problem in the framework of reflexive Banach spaces.
Based on Bregman distance function, we prove a strong con-
vergence result of the proposed algorithm to a common
zero of the problem. As an application, we apply the main
result to the variational inequality problem. Finally, we pro-
vide some numerical examples to demonstrate our algorithm
performance. The results presented in this paper improve and
extend many known results in the literature.
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1. Introduction

Let E be a real Banach space. Let A : E → E and B : E � E be single and set-
valued operators, respectively. Consider the following so-calledmonotone quasi-
inclusion problem:

find z ∈ E such that 0 ∈ (A + B)z, (1)

where 0 is the zero vector in E. The solutions set of the problem (1) is denoted by
(A + B)−10 = {x ∈ E : 0 ∈ (A + B)x}. Many practical nonlinear problems aris-
ing in applied sciences such as in image recovery, signal processing and machine
learning can be formulated as this problem (see [1–3]). Moreover, this prob-
lem includes the core of many mathematical problems, as special cases, such
as: variational inequalities, split feasibility problem,minimization problem, Nash
equilibrium problem in noncooperative games and so on (see [4–6]).

A well-known method for approximating a solution of the problem (1) is
the forward–backward splitting algorithm which was introduced in [7,8]. This
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method is defined in a Hilbert space H by x1 ∈ H and

xn+1 = (I + λB)−1(I − λA)xn, ∀n ≥ 1, (2)

where λ > 0 and I denotes the identity operator of H. Note that the operators
(I + λB)−1 and I − λA are usually called the backward operator and the forward
operator, respectively. It is also known that, when A = 0, this method becomes
the proximal point algorithm which was considered and studied in [9]. In fact,
under appropriate conditions, the sequence generated by (2) converges weakly
to a solution of the problem (1).

Based on Halpern-type iteration, Takahashi et al. [10] proposed the following
modified forward–backward splitting algorithm in a Hilbert space H: for given
x1, u ∈ H and

xn+1 = βnxn + (1 − βn)(αnu + (1 − αn)JBλn(xn − λnAxn)), ∀n ≥ 1, (3)

where JBλn := (I + λnB)−1 is the resolvent of a maximal monotone operator B,
A is an α-inverse strongly monotone mapping, {αn}, {βn} ⊂ (0, 1) and {λn} ⊂
(0,∞). They proved that the sequence {xn} generated by (3) converges strongly
to a solution of the problem (1) under appropriate conditions.

Later, López et al. [6] extended the Halpern-type forward–backward splitting
method (3) to a q-uniformly smooth and uniformly convex Banach spaces E.
They developed an iterative scheme with errors an and bn in the following way:
for given x1, u ∈ E and

xn+1 = αnu + (1 − αn)(JBλn(xn − λn(Axn + an)) + bn), ∀n ≥ 1, (4)

where JBλn := (I + λnB)−1 is the resolvent of anm-accretive operator B,A is an α-
inverse strongly accretive mapping, {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1]. They also
proved that the sequence {xn} generated by (4) converges strongly to a solution
of the problem (1) under some appropriate conditions.

In 2016, Cholamjiak [11] introduced the following generalized forward–
backward splitting method for solving the problem (1) in a q-uniformly smooth
and uniformly convex Banach spaces E, with A is an α-inverse strongly accretive
operator and B is anm-accretive operator: for any u, x1 ∈ E and

xn+1 = αnu + βnxn + δnJBλn(xn − λnAxn), ∀n ≥ 1, (5)

where JBλn := (I + λnB)−1, {λn} ⊂ (0,∞), {αn}, {βn} and {δn} are sequences in
(0, 1) with αn + βn + δn = 1. It was shown that the sequence {xn} generated
by (5) converges strongly to an element in (A + B)−10.

In recent years, the forward–backward splitting algorithm for solving the
monotone quasi-inclusion problem has been studied and extended by numerous
authors in different styles (see [12–15]).
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On the other hand, we study the following generalized monotone quasi-
inclusion problem:

find z ∈ E such that 0 ∈
N⋂
i=1

(Ai + Bi)z, (6)

where Ai : E → E and Bi : E � E, i = 1, 2, . . . ,N are finite family of single
and set-valued operators, respectively. It is well-known that if N = 1, then the
problem (6) becomes the monotone quasi-inclusion problem (1).

Very recently, Chang et al. [12] proposed the following strong convergence
theorem of the splitting algorithm for finding a common zero of the problem (6)
in a q-uniformly smooth and uniformly convex Banach space.

Theorem 1.1: Let E be a q-uniformly smooth and uniformly convex Banach space.
For each i = 1, 2, . . . ,N, let Ai : E → E be anα-inverse strongly accretive of order q
and Bi : E � E be an m-accretive operator such that � := ⋂N

i=1(Ai + Bi)−10 �=
∅. Let g : E → E be a ρ-contractive mapping with ρ ∈ (0, 1/q). Let {xn} be the
sequence generated by x1 ∈ E and

xn+1 = αng(xn) + (1 − αn)Sλxn, ∀n ≥ 1, (7)

where

Sλ := β0I + β1JB1λ (I − λA1) + β2JB2λ (I − λA2) + · · · + βNJBNλ (I − λAN)

in which {βi}Ni=0 ⊂ (0, 1) with
∑N

i=0 βi = 1 and JBiλ := (I + λBi)−1 for i =
1, 2, . . . ,N. If the following conditions are satisfied:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii)

∑∞
n=1 |αn+1 − αn| < ∞;

(iii) 0 < λ ≤ (αq/κq)1/q−1, where κq is the q-uniform smoothness coefficient of E,

then {xn} defined by (7) converges strongly to a point z = Q�g(z) which is a
solution of the problem (6), where Q� is a sunny nonexpansive retraction of E
onto �.

Motivated by the previous works, it is noteworthy to mention the following
questions:

(1) Can we extend Theorem 1.1 originally proposed by Chang et al. [12] to a
general reflexive Banach space?

(2) Can we remove the condition
∑∞

n=1 |αn+1 − αn| < ∞ and relax the condi-
tion 0 < λ ≤ (αq/κq)1/q−1 in Theorem 1.1?

(3) Most of all the methods for solving the monotone quasi-inclusion problem
used the norm distance function. Can we extend those works by use the
Bregman distance function?
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The purpose of this paper is to provide affirmative answers to the above ques-
tions. Thus we propose a new forward–backward splitting method for solving
the generalized monotone quasi-inclusion problem (6) with Ai, i = 1, 2, . . . ,N
is a finite family of Bregman inverse strongly monotone mappings and Bi, i =
1, 2, . . . ,N is a finite family of maximal monotone mappings. Based on Breg-
man distance function, we prove a strong convergence result of the proposed
algorithm in reflexive Banach spaces.

This paper is organized as follows: In Section 2, we collect some definitions
and preliminaries that will be needed throughout the paper. In Section 3, we pro-
pose a strong convergence of the proposed algorithm. In Section 4, we provide an
application of our main result to the variational inequality problem in reflexive
Banach spaces. Finally, in Section 5, some numerical examples to demonstrate
our algorithm performance are provided.

2. Preliminaries

Throughout this paper, we denote by R and N the set of real numbers and the
set of positive integers, respectively. Let E be a real reflexive Banach space with
its dual space E∗. We write 〈x∗, x〉 for the value of a functional x∗ in E∗ at x in
E, that is, 〈x∗, x〉 = x∗(x). We denote by xn ⇀ x the weak convergence of {xn}
to x and xn → x the strong convergence of {xn} to x. Let f : E → (−∞,∞] be
a function. We denote by domf the domain of f, that is, domf = {x ∈ E : f (x) <

∞}. A function f : E → (−∞,∞] is said to be proper if domf �= ∅. It is also said
to be lower semicontinuous if the set {x ∈ E : f (x) ≤ r} is closed for all r ∈ R. The
function f is also said to be convex if f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y) for
all x, y ∈ E and α ∈ [0, 1]. For a proper lower semicontinuous convex function
f : E → (−∞,∞], the subdifferential of f defined by

∂f (x) = {x∗ ∈ E∗ : f (x) + 〈x∗, y − x〉 ≤ f (y), ∀y ∈ E}, x ∈ E.

The Fenchel conjugate of f is the function f ∗ : E∗ → (−∞,∞] defined by

f ∗(x∗) = sup
x∈E

{〈x∗, x〉 − f (x)}.

It is known that x∗ ∈ ∂f (x) is equivalent to f (x) + f ∗(x∗) = 〈x∗, x〉.
For any x ∈ int(domf ) and y ∈ E, the directional derivative of a convex func-

tion f at x in the direction y ∈ E given by

f ′+(x, y) = lim
t→0+

f (x + ty) − f (x)
t

. (8)

The function f is said to be Gâteaux differentiable at x if the limit (8) exists for
each y. In this case, f ′+(x, y) coincides with ∇f (x), the value of the gradient ∇f
of f at x. The function f is said to be Gâteaux differentiable if it is Gâteaux differ-
entiable for any x ∈ int(domf ). The function f is said to be Fréchet differentiable
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at x if the limit (8) is attained uniformly in ‖y‖ = 1 and f is said to be uniformly
Fréchet differentiable on a subset C of E if the limit (8) is attained uniformly for
x ∈ C and ‖y‖ = 1. It is known that if f is Gâteaux differentiable (Fréchet differ-
entiable, respectively), then f is continuous and∇f is norm-to-weak∗ continuous
(continuous, respectively) (see [16,17]).

A proper lower semicontinuous convex function f : E → (−∞,∞] is said to
be:

(1) essentially smooth if ∂f is both locally bounded and single-valued on its
domain;

(2) essentially strictly convex if (∂f )−1 is locally bounded on its domain and f is
strictly convex on every convex subset of domf ;

(3) Legendre if it is both essentially smooth and essentially strictly convex.

For a Legendre function f on a reflexive Banach space E, we have the following
properties:

(i) f is Legendre if and only if f ∗ is Legendre (see [[17], Corollary 5.5]);
(ii) (∂f )−1 = ∂f ∗ (see [[17], p. 83]);
(iii) ∇f is a bijection, and it satisfies

∇f = (∇f ∗)−1, ran∇f = dom∇f ∗ = int(dom f ∗) and

∇f ∗ = dom∇f = int(domf )

(see [[17], Theorem 5.10]).

Several interesting examples of Legendre functions are presented in [18]. One
important and interesting example of a Legendre function is f (x) = 1/p‖x‖p
(1 < p < ∞) when E is a smooth and strictly convex Banach space. In this
case, the gradient ∇f of f is coincident with the generalized duality mapping Jp
(1 < p < ∞) which is given by

Jp(x) = {x∗ ∈ E∗ : 〈x∗, x〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1}, ∀x ∈ E.

In particular, J2 = J is called the normalized duality mapping. If E is a Hilbert
space, then J = I, where I is the identity mapping of E. Let f : E → R be a
Gâteaux differentiable function. The functionDf : domf × int(domf ) → [0,∞)

defined by

Df (x, y) = f (x) − f (y) − 〈∇f (y), x − y〉 (9)

is called Bregman distance respect to f [19]. We remark that the Bregman dis-
tance is like to a metric but does not satisfy the triangle inequality nor symmetry.
Clearly, Df (x, x) = 0, but Df (x, y) = 0 does not imply x = y. In this case, when f
is Legendre, this indeed holds (see [[18], Lemma 7.3 (vi)]).
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Remark 2.1: If E is a uniformly smooth and uniformly convex Banach space and
f = 1

2‖ · ‖2, then ∇f = J and we have

D 1
2‖·‖2(x, y) = 1

2
(‖x‖2 − ‖y‖2 − 2〈x − y, J(y)〉)

= 1
2
(‖x‖2 + ‖y‖2 − 2〈x, J(y)〉)

= 1
2
φ(x, y)

for all x, y ∈ E. Such a φ is called the Lyapunov function which was studied in
[20,21]. Also, if E is a Hilbert space, then φ(x, y) = ‖x − y‖2 for all x, y ∈ E.

The Bregman distance has the following two important properties called the
three-point identity and the four-point identity, respectively: for any x ∈ domf and
any y, z ∈ int(domf ),

Df (x, y) + Df (y, z) − Df (x, z) = 〈∇f (z) − ∇f (y), x − y〉, (10)

and for any y,ω ∈ domf and any x, z ∈ int(domf ),

Df (y, x) − Df (y, z) − Df (ω, x) + Df (ω, z) = 〈∇f (z) − ∇f (x), y − ω〉. (11)

Let f : E → (−∞,∞] be a Gâteaux differentiable convex function. Themod-
ulus of total convexity of f at x ∈ domf is the function vf (x, ·) : [0,∞) → [0,∞]
defined by

vf (x, t) = inf{Df (y, x) : y ∈ domf , ‖y − x‖ = t}.
The function f is called totally convex at x if vf (x, t) > 0, whenever t>0. The
function f is called totally convex if it is totally convex at any point x ∈ int(domf )
and is said to be totally convex on bounded sets if vf (K, t) > 0 for any nonempty
bounded subset K of E and t>0, where the modulus of total convexity of the
function f on the setK is the function vf : int(domf ) × [0,∞) → [0,∞] defined
by

vf (K, t) = inf{vf (x, t) : x ∈ K ∩ domf }.
The function f is called uniformly convex on bounded subsets of E if ρr(t) > 0 for
all r, t>0, where ρr : [0,∞) → [0,∞) defined by

ρr(t) = inf
x,y∈Br ,‖x−y‖=t,α∈(0,1)

αf (x) + (1 − α)f (y) − f (αx + (1 − α)y)
α(1 − α)

,

where Br = {x ∈ E : ‖x‖ ≤ r} for all r>0. It is well-known that f is uniformly
convex on bounded sets if and only if f is totally convex on bounded sets (see
[22], Theorem 2.10). For a deeper information on totally convex and uniformly
convex functions, we refer the reader to [23,24].
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A Bregman projection with respect to f of x ∈ int(domf ) onto the nonempty,
closed and convex subset of domf is the unique vector PfC(x) ⊂ C satisfying

Df (P
f
C(x), x) = inf{Df (y, x) : y ∈ C}. (12)

It can be characterized by the following variational inequality [25,26]:

〈∇f (x) − ∇f (PfC(x)), y − PfC(x)〉 ≤ 0, ∀y ∈ C. (13)

Moreover, we have

Df (y, P
f
C(x)) + Df (P

f
C(x), x) ≤ Df (y, x), ∀y ∈ C. (14)

Remark 2.2: If E is a uniformly convex and uniformly smooth Banach space and
f = 1

2‖ · ‖2, then PfC coincides with the generalized projection C [27], and if E
is a Hilbert space, then PfC coincides the metric projection PC.

Let f : E → R be a Gâteaux differentiable convex function. Following [20,28],
we make use of the function Vf : E × E∗ → [0,∞) which is given by

Vf (x, x∗) = f (x) − 〈x, x∗〉 + f ∗(x∗), ∀x ∈ E, x∗ ∈ E∗. (15)

Clearly, Vf has the following properties:

Df (x,∇f ∗(x∗)) = Vf (x, x∗), ∀x ∈ E, x∗ ∈ E∗ (16)

and

Vf (x, x∗) + 〈y∗,∇f ∗(x∗) − x〉 ≤ Vf (x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗. (17)

We also known that if f : E → (−∞,∞] is a proper lower semicontinuous func-
tion, then f ∗ : E∗ → (−∞,∞] is a proper weak∗ lower semicontinuous convex
function (see [29]). HenceVf is convex in the second variable. Thus for all v ∈ E,

Df

(
v,∇f ∗

( N∑
i=1

ti∇f (xi)
))

≤
N∑
i=1

tiDf (v, xi), (18)

where {xi}Ni=1 ⊂ E and {ti}Ni=1 with
∑N

i=1 ti = 1.
Let C be a nonempty subset of a reflexive Banach space E. A point x ∈ C is

a fixed point of T if x = Tx and we denote by F(T) the set of fixed points of T,
that is, F(T) = {x ∈ C : x = Tx}. A point z in C is said to be an asymptotic fixed
point [21] of T if there exists a sequence {xn} in C such that xn ⇀ z as n → ∞
and limn→∞ ‖xn − Txn‖ = 0. We denote the asymptotic fixed point set of T by
F̂(T).

Let C be a nonempty subset of int(domf ). Recall that a mapping T : C →
int(domf ) is said to be:
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(1) Bregman quasi-nonexpansive ( BQNE ) if F(T) �= ∅ and

Df (p,Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F(T);

(2) Bregman relatively nonexpansive ( BRNE ) if F(T) �= ∅, F̂(T) = F(T) and

Df (p,Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F(T);

(3) Bregman strongly nonexpansive ( BSNE ) with F̂(T) �= ∅ if

Df (p,Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F̂(T)

and if whenever {xn} ⊂ C is bounded, p ∈ F̂(T) and

lim
n→∞(Df (p, xn) − Df (p,Txn)) = 0,

it follows that limn→∞ Df (xn,Txn) = 0.

Remark 2.3: From the definitions, it is obvious that if F̂(T) = F(T) �= ∅, then
BSNE ⇒ BRNE ⇒ BQNE.

Lemma2.4 ([30]): Let f : E → R be a Legendre function and let C be a nonempty,
closed and convex subset of E. If T : C → E is a BQNE operator, then F(T) is closed
and convex.

Lemma 2.5: Let f : E → R be a Legendre function. Let {Ti}Ni=1 : E → E be a
BQNE mapping such

⋂N
i=1 F(Ti) �= ∅ and {βi}Ni=0 ⊂ (0, 1) satisfy

∑N
i=0 βi = 1.

Define a mapping S : E → E by Sx := ∇f ∗(β0∇f (x) +∑N
i=1 βi∇f (Tix)) for all

x ∈ E. Then S is BQNE such that F(S) = ⋂N
i=1 F(Ti).

Proof: Let x ∈ E and z ∈ F(Ti) for i = 1, 2, . . . ,N. From (18), it follows that

Df (z, Sx) = Df (z,β0∇f ∗(∇f (x) +
N∑
i=1

βi∇f (Tix)))

≤ β0Df (z, x) +
N∑
i=1

βiDf (z,Tix)

≤ β0Df (z, x) +
N∑
i=1

βiDf (z, x)

= Df (z, x).

Hence S is a BQNE mapping. Since ∇f is a bijection, we have

∇f (Sx) − ∇f (x) =
N∑
i=1

βi∇f (Tix) − (1 − β0)∇f (x)
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=
N∑
i=1

βi∇f (Tix) −
N∑
i=1

βi∇f (x)

=
N∑
i=1

βi(∇f (Tix) − ∇f (x)). (19)

If x ∈ ⋂N
i=1 F(Ti), then we obtain from (19) that ∇f (Sx) − ∇f (x) = 0. This

implies x = Sx, that is, x ∈ F(S). So
⋂N

i=1 F(Ti) ⊂ F(S). To prove the reverse
conclusion, let x ∈ ⋂N

i=1 F(Ti), y ∈ E and z = Tiy with any i = 1, 2, . . . ,N.
From (10), we have

βi〈∇f (Tiy) − ∇f (y), x − y〉 = βi
(
Df (x, y) − Df (x,Tiy) + Df (y,Tiy)

)
≥ βi

(
Df (x, y) − Df (x, y) + Df (y,Tiy)

)
= βiDf (y,Tiy). (20)

Taking any y ∈ F(S). It follows from (19) that
∑N

i=1 βi(∇f (Tiy) − ∇f (y)) = 0.
Thus by (20), we have

0 =
N∑
i=1

βi〈∇f (Tiy) − ∇f (y), x − y〉 ≥
N∑
i=1

βiDf (y,Tiy).

This implies that Df (y,Tiy) = 0 for all i = 1, 2, . . . ,N. Since f is Legendre,
we have Tiy = y for all i = 1, 2, . . . ,N. So y ∈ ⋂N

i=1 F(Ti). Therefore F(S) =⋂N
i=1 F(Ti). �

For a set-valued operator A : E � E∗, we define its domain, range and graph
as follows:

dom A = {x ∈ E : Ax �= ∅},
ran A =

⋃
{Ax : x ∈ dom A}

and

G(A) = {(x∗, x) ∈ E∗ × E : x∗ ∈ Ax}.
An operator A is said to bemonotone if for each (x∗, x), (y∗, y) ∈ G(A),

〈x∗ − y∗, x − y〉 ≥ 0.

A monotone operator A is said to bemaximal, if its graph is not contained in the
graph of any other monotone operators on E. It is known that if A is maximal
monotone, then the set A−10 = {x ∈ E : 0 ∈ Ax} is closed and convex.

Let f : E → (−∞,∞] be a Gâteaux differentiable convex function and A :
E � E∗ be a maximal monotone operator. Then we can define the resolvent of
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A corresponding to f by ResfλA = (∇f + λA)−1 ◦ ∇f . It is known that ResfλA is
single-valued and F(ResfλA) = A−10 [31]. The Yosida approximation Aλ : E →
E∗, associated with A for λ > 0, is the mapping defined by

Aλ(x) = 1
λ

(∇f (x) − ∇f
(
ResfλA(x)

))
, ∀x ∈ E. (21)

From [[25], Proposition 2.7], we know that (ResfλA(x),Aλ(x)) ∈ G(A) and 0 ∈ Ax
if and only if 0 ∈ Aλ(x) for all x ∈ E and λ > 0. AmappingA : E � E∗ satisfying
ran(∇f − λA) ⊂ ran(∇f ) is called Bregman inverse strongly monotone if dom A
∩ int(domf )�= ∅ and for any x, y ∈ int(domf ) and each u ∈ Ax, v ∈ Ay,

〈u−v,∇f ∗(∇f (x) − u) − ∇f ∗(∇f (y) − v)〉 ≥ 0. (22)

Remark 2.6: The class of BISM is more general than the class of inverse strongly
monotone in Hilbert spaces. Indeed, if E is a Hilbert space and f = 1

2‖ · ‖2, then
the class of BISM becomes the class of inverse strongly monotone [25].

For any operator Af : E � E associated with A for λ > 0 is defined by

Af = ∇f ∗ ◦ (∇f − λA). (23)

Note that dom Af ⊂ domA ∩ int(domf ) and ran Af ⊂ int(domf ). It is known
that the operator A is Bregman inverse strongly monotone if and only if Af is a
single-valued mapping (see [[32], Lemma 3.5(c) and (d), p. 2109]).

Lemma 2.7: Let A : E → E∗ be a BISM mapping and B : E � E∗ be a maximal
monotone operator. Define a mapping Tλx := ResfλB ◦ Af (x) for x ∈ E and λ > 0.
Hence F(Tλ) = (A + B)−10.

Proof: Let x ∈ E and λ > 0. We see that

x = Tλx ⇔ x = ResfλB ◦ Af (x)

⇔ x = (∇f + λB)−1 ◦ ∇f ◦ (∇f ∗ ◦ (∇f − λA)x)

⇔ x = (∇f + λB)−1 ◦ (∇f − λA)x)

⇔ ∇f (x) − λAx ∈ ∇f (x) + λBx

⇔ 0 ∈ λ(A + B)x

⇔ 0 ∈ (A + B)x

⇔ x ∈ (A + B)−10.

Hence F(Tλ) = (A + B)−10. �
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Lemma 2.8 ([33]): Let f : E → R a strongly coercive Legendre function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of
E. Let A : E → E∗ be a BISM mapping and B : E � E∗ be a maximal monotone
operator. Then the following hold:

(i) Df (z,Res
f
λB ◦ Af (x)) + Df (Res

f
λB ◦ Af (x), x) ≤ Df (z, x) for all z ∈ (A +

B)−10, x ∈ E and λ > 0;
(ii) ResfλB ◦ Af is a BRNE mapping.

Lemma2.9 ([25]): Let f : E → R be a totally convex function. Suppose that x ∈ E,
if {Df (x, xn)} is bounded, then the sequence {xn} is bounded.

Lemma 2.10 ([34]): Let E be a Banach space and f : E → R be a Gâteaux differ-
entiable function which is uniformly convex on bounded subsets of E. Suppose that
{xn} and {yn} are two sequences in E. Then, limn→∞ Df (xn, yn) = 0 if and only if
limn→∞ ‖xn − yn‖ = 0.

Lemma 2.11 ([35]): Let {an} and {cn} be sequences of nonnegative real numbers
such that

an+1 ≤ (1 − δn)an + bn + cn, n ≥ 1,

where {δn} is a sequence in (0,1) and {bn} is a real sequence. Assume that∑∞
n=1 cn < ∞,

∑∞
n=1 δn = ∞ and lim supn→∞ bn/δn ≤ 0, then limn→∞ an =

0.

Lemma 2.12 ([36]): Let {�n} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {�n�

} of {�n} which satisfies
�n�

< �n�+1 for all � ∈ N. Define the sequence {σ(n)}n≥n0 of integers as follows:

σ(n) = max{k ≤ n : �k < �k+1},

where n0 ∈ N such that {k ≤ n0 : �k < �k+1} �= ∅. Then, the following hold:

(i) σ(n0) ≤ σ(n0 + 1) ≤ . . . and σ(n) → ∞;
(ii) �σ(n) ≤ �σ(n)+1 and �n ≤ �σ(n)+1, ∀n ≥ n0.

3. Main result

First, we have the following main theorem.

Theorem 3.1: Let E be a real reflexive Banach space. Let f : E → R be a strongly
coercive Legendre function, which is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of E. Let Ai : E → E∗, i = 1, 2, . . . ,N be a
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BISM mapping and Bi : E � E∗, i = 1, 2, . . . ,N be a maximal monotone oper-
ator. Suppose that � := ⋂N

i=1(Ai + Bi)−10 �= ∅. Let {xn} be a sequence generated
by u, x1 ∈ E and

xn+1 = ∇f ∗(αn∇f (u) + (1 − αn)Sλxn), ∀n ≥ 1, (24)

where

Sλ := β0∇f + β1∇f (ResfλB1 ◦ Af
1)

+ β2∇f (ResfλB2 ◦ Af
2) + · · · + βN∇f (ResfλBN ◦ Af

N) (25)

inwhich {βi}Ni=0 ⊂ (0, 1)with
∑N

i=0 βi = 1, {αn} ⊂ (0, 1) andλ > 0. Suppose that
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Then {xn} converges strongly to z = 

f
�(u).

Proof: Put Ti
λ := ResfλBi ◦ Af

i for i = 1, 2, . . . ,N. Clearly, F(Ti
λ) = (Ai + Bi)−10

for each i = 1, 2, . . . ,N. From definition of Sλ, we can write {xn} as

yn = ∇f ∗(β0∇f (xn) +∑N
i=1 βi∇f (Ti

λxn)),
xn+1 = ∇f ∗(αn∇f (u) + (1 − αn)∇f (yn)).

(26)

Since Ti
λ is a BQNE operator for each i = 1, 2, . . . ,N. Thus by Lemma 2.5, we

have

F(Sλ) =
N⋂
i=1

F(Ti
λ) =

N⋂
i=1

(Ai + Bi)−10. (27)

Let v ∈ � := ⋂N
i=1(Ai + Bi)−10 = ⋂N

i=1 F(Ti
λ). Thus by (18), we see that

Df (v, yn) = Df (v,∇f ∗(β0∇f (xn) +
N∑
i=1

βi∇(Ti
λxn)))

≤ β0Df (v, xn) +
N∑
i=1

βiDf (v,Ti
λxn)

≤ β0Df (v, xn) +
N∑
i=1

βiDf (v, xn)

= Df (v, xn). (28)

It follows that

Df (v, xn+1) = Df (v,∇f ∗(αn∇f (u) + (1 − αn)∇f (yn)))

≤ αnDf (v, u) + (1 − αn)Df (v, yn)
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≤ αnDf (v, u) + (1 − αn)Df (v, xn)

≤ max{Df (v, u),Df (v, xn)}. (29)

By induction, we obtain

Df (v, xn) ≤ max{Df (v, u),Df (v, x1)}, ∀n ≥ 1. (30)

This shows that {Df (v, xn)} is bounded. Since f is totally convex, it follows from
Lemma 2.9 that {xn} is bounded. Let z = 

f
�(u). By Lemma 2.8 (i), we have

Df (z, yn) ≤ β0Df (z, xn) +
N∑
i=1

βiDf (z,Ti
λxn)

≤ β0Df (z, xn) +
N∑
i=1

βi(Df (z, xn) − Df (Ti
λxn, xn))

= Df (z, xn) −
N∑
i=1

βiDf (Ti
λxn, xn). (31)

It follows that

Df (z, xn+1) ≤ αnDf (z, u) + (1 − αn)Df (z, yn)

≤ αnDf (z, u) + (1 − αn)[Df (z, xn) −
N∑
i=1

βiDf (Ti
λxn, xn)]

= αnDf (z, u) + (1 − αn)Df (z, xn) − (1 − αn)

N∑
i=1

βiDf (Ti
λxn, xn),

(32)

which implies that

(1 − αn)

N∑
i=1

βiDf (Ti
λxn, xn) ≤ Df (z, xn) − Df (z, xn+1) + αnM, (33)

whereM = supn∈N{|Df (z, u) − Df (z, xn)|}.
The rest of the our proof will be divided into two cases.
Case 1. Suppose that there exists n0 ∈ N such that {Df (z, xn)}n≥n0 is non-

increasing. So, we have limn→∞ Df (z, xn) exists. This implies that

Df (z, xn) − Df (z, xn+1) → 0. (34)

By our assumptions, it follows from (33) that

Df (Ti
λxn, xn) → 0 (35)
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for i = 1, 2, . . . ,N. Moreover, we have

Df (yn, xn) ≤ β0Df (xn, xn) +
N∑
i=1

βiDf (Ti
λxn, xn) → 0. (36)

By Lemma 2.10, we also have

‖Ti
λxn − xn‖ → 0 (37)

for i = 1, 2, . . . ,N and

‖yn − xn‖ → 0. (38)

Since f is uniformly Fréchet differentiable, it follows that ∇f is uniformly con-
tinuous on bounded subset of E (see [[37], Theorem 1.8, p. 13]). Thus we
have

‖∇f (yn) − ∇f (xn)‖ → 0 (39)

and hence

‖∇f (xn+1) − ∇f (xn)‖ ≤ ‖∇f (xn+1) − ∇f (yn)‖ + ‖∇f (yn) − ∇f (xn)‖
≤ αn‖∇f (u) − ∇f (yn)‖ + ‖∇f (yn) − ∇f (xn)‖
→ 0. (40)

Since f is strongly coercive and uniformly convex on bounded sets, it follows that
∇f ∗ is uniformly continuous on bounded subset of E∗ (see [[38], Proposition
3.6.4]). Thus we have

‖xn+1 − xn‖ → 0. (41)

By the reflexivity of a Banach space E and the boundedness of {xn}, there exists a
subsequence {xnk} of {xn} such that xnk ⇀ x̂ ∈ E as k → ∞ and

lim sup
n→∞

〈∇f (u) − ∇f (z), xn − z〉 = lim
k→∞

〈∇f (u) − ∇f (z), xnk − z〉. (42)

From (37), we note that ‖Ti
λxnk − xnk‖ → 0 for each i = 1, 2, . . . ,N. Hence

x̂ ∈ F̂(Ti
λ) = F(Ti

λ) for each i = 1, 2, . . . ,N. This implies that x̂ ∈ ⋂N
i=1 F(Ti

λ) =⋂N
i=1(Ai + Bi)−10. So

lim sup
n→∞

〈∇f (u) − ∇f (z), xn − z〉 ≤ 0. (43)

From (41), we also have

lim sup
n→∞

〈∇f (u) − ∇f (z), xn+1 − z〉 ≤ 0. (44)
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Finally, we show that xn → z. From (17) and (28), we have

Df (z, xn+1)

= Df (z,∇f ∗(αn∇f (u) + (1 − αn)∇f (yn))

= Vf (z,αn∇f (u) + (1 − αn)∇f (yn))

≤ Vf
(
z,αn∇f (u) + (1 − αn)∇f (yn) − αn(∇f (u) − ∇f (z))

)
+ 〈αn(∇f (u) − ∇f (z)), xn+1 − z〉

= Vf (z,αn∇f (z) + (1 − αn)∇f (yn) + αn〈∇f (u) − ∇f (z), xn+1 − z〉
≤ αnVf (z,∇f (z)) + (1 − αn)Vf (z,∇f (yn)) + αn〈∇f (u) − ∇f (z), xn+1 − z〉
= αnDf (z, z) + (1 − αn)Df (z, yn) + αn〈∇f (u) − ∇f (z), xn+1 − z〉
≤ (1 − αn)Df (z, xn) + αn〈∇f (u) − ∇f (z), xn+1 − z〉. (45)

Thus by Lemma 2.11, we can conclude that limn→∞ Df (z, xn) = 0. Therefore,
xn → z.

Case 2. Suppose that there exists a subsequence {n�} of {n} such that
Df (z, xn�

) < Df (z, xn�+1) for all � ∈ N. Define a positive integer sequence {σ(n)}
by

σ(n) = max{k ≤ n : Df (z, xk) < Df (z, xk+1)} (46)

for all n ≥ n0 (for some n0 large enough). By Lemma 2.12, we have {σ(n)} is a
non-decreasing sequence such that σn → ∞ as n → ∞ and

Df (z, xσ(n)) − Df (z, xσ(n)+1) ≤ 0. (47)

From (33), we have

Df (Ti
λxρ(n), xρ(n)) → 0 (48)

for i = 1, 2, . . . ,N. By the similar way proposed in Case 1, we can conclude that

‖Ti
λxρ(n) − xρ(n)‖ → 0 (49)

for i = 1, 2, . . . ,N and

‖xρ(n)+1 − xρ(n)‖ → 0. (50)

Furthermore, we can also show that

lim sup
n→∞

〈∇f (u) − ∇f (z), xσ(n)+1 − z〉 ≤ 0 (51)

and

Df (z, xσ(n)+1) ≤ (1 − ασ(n))Df (z, xσ(n)) + ασ(n)〈∇f (u) − ∇f (z), xσ(n)+1 − z〉.
(52)
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Using Lemma 2.11 again, we obtain limn→∞ Df (z, xσ(n)) = 0. We also have

lim
n→∞Df (z, xσ(n)+1) = lim

n→∞Df (z, xσ(n)) = 0. (53)

By Lemma 2.12, we see that

Df (z, xn) ≤ Df (z, xσ(n)+1). (54)

This implies that limn→∞ Df (z, xn) = 0. Therefore, xn → z. This completes the
proof. �

Remark 3.2: We remark that our work generalizes and improves many works in
the following ways:

(1) Our result generalizes the results of [6,11,13] from the problem of finding
a zero of the sum of two monotone operators in a q-uniformly smooth and
uniformly convex Banach space to the problem of finding a common zero of
the sum of a finite family of monotone operators in reflexive Banach spaces.

(2) The method of proof of our result is very different from the method of proof
of [6,11–13,15] in the sense that we use the Bregman distance function while
mentioned works used the norm distance function.

(3) The results of Chang et al. [[12], Theorem 3.1] and Chang et al. [[13],
Theorem 3.1] always assume that λ satisfies the condition 0 < λ ≤
(αq/κq)1/q−1, where κq is the q-uniform smoothness coefficient of E (see
[39] for more detail). However, our result is proved without the strict
assumption λ ≤ (αq/κq)1/q−1. Furthermore, we can remove the condition∑∞

n=1 |αn+1 − αn| < ∞ in mentioned works.

If we put Ai = 0 for all i = 1, 2, . . . ,N, then we have the following generalized
proximal point algorithm in reflexive Banach spaces.

Corollary 3.3: Let E be a real reflexive Banach space. Let f : E → R be a strongly
coercive Legendre function, which is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of E. Let Bi : E � E∗, i = 1, 2, . . . ,N be amaxi-
malmonotone operator. Suppose that� := ⋂N

i=1 B
−1
i 0 �= ∅. Let {xn} be a sequence

generated by u, x1 ∈ E and

xn+1 = ∇f ∗(αn∇f (u) + (1 − αn)Sλxn), ∀n ≥ 1, (55)

where

Sλ := β0∇f + β1∇f (ResfλB1) + β2∇f (ResfλB2) + · · · + βN∇f (ResfλBN )

inwhich {βi}Ni=0 ⊂ (0, 1)with
∑N

i=0 βi = 1, {αn} ⊂ (0, 1) andλ > 0. Suppose that
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Then {xn} converges strongly to z = 

f
�(u).
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If we put N = 1, then we have the following result for the classical for-
ward–backward splitting method in reflexive Banach spaces.

Corollary 3.4: Let E be a real reflexive Banach space. Let f : E → R be a strongly
coercive Legendre function, which is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of E. Let A : E → E∗ be a BISM mapping and
B : E � E∗ be a maximal monotone operator. Suppose that � := (A + B)−10 �=
∅. Let {xn} be a sequence generated by u, x1 ∈ E and

xn+1 = ∇f ∗(αn∇f (u) + (1 − αn)Sλxn), ∀n ≥ 1, (56)

where

Sλ := β0∇f + (1 − β0)∇f (ResfλB ◦ Af )

in which β0 ⊂ (0, 1), {αn} ⊂ (0, 1) and λ > 0. Suppose that limn→∞ αn = 0 and∑∞
n=1 αn = ∞. Then {xn} converges strongly to z = 

f
�(u).

If E is a uniformly convex Banach space which also uniformly smooth and
f (x) = 1

2‖x‖2 for all x ∈ E, then we have the following result.

Corollary 3.5: Let E be a real uniformly convex and uniformly smooth Banach
space. Let Ai : E → E∗, i = 1, 2, . . . ,N be a BISM mapping with respect to the
functional f = 1

2‖ · ‖2 and Bi : E � E∗, i = 1, 2, . . . ,N be a maximal mono-
tone operator. Suppose that � := ⋂N

i=1(Ai + Bi)−10 �= ∅. Let {xn} be a sequence
generated by u, x1 ∈ E and

xn+1 = J−1(αnJ(u) + (1 − αn)Sλxn), ∀n ≥ 1, (57)

where

Sλ := β0J + β1J(QB1
λ J−1(J − λA1))

+ β2J(QB2
λ J−1(J − λA2)) + · · · + βNJ(QBN

λ J−1(J − λAN))

inwhich {βi}Ni=0 ⊂ (0, 1)with
∑N

i=0 βi = 1, {αn} ⊂ (0, 1) andλ > 0. Suppose that
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Then {xn} converges strongly to z = �(u).

We consequently obtain the following result in a real Hilbert space.

Corollary 3.6: Let H be a real Hilbert space. Let Ai : H → H, i = 1, 2, . . . ,N be
an inverse strongly monotone mapping and Bi : H � H, i = 1, 2, . . . ,N be amax-
imal monotone operator. Suppose that � := ⋂N

i=1(Ai + Bi)−10 �= ∅. Let {xn} be a
sequence generated by u, x1 ∈ H and

xn+1 = αnu + (1 − αn)Sλxn, ∀n ≥ 1, (58)
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where

Sλ := β0I + β1(I + λB1)−1(I − λA1)

+ β2(I + λB2)−1(I − λA2) + · · · + βN(I + λBN)−1(I − λAN)

inwhich {βi}Ni=0 ⊂ (0, 1)with
∑N

i=0 βi = 1, {αn} ⊂ (0, 1) andλ > 0. Suppose that
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Then {xn} converges strongly to z = P�(u).

4. Application to the variational inequality problem

Let E be a real reflexive Banach space. Let f : E → (−∞,∞] be a Legendre and
totally convex function, A : E → E∗ be a BISM mapping and C be a nonempty,
closed and convex subset of domA. The variational inequality problem (VIP) is
to find z ∈ C such that

〈Az, x − z〉 ≥ 0, ∀x ∈ C. (59)

The set of solutions of VIP is denoted by VI(C,A). Recall that an indicator
function of C given by

iC(x) =
{
0, if x ∈ C;
∞, if x /∈ C. (60)

It is known that iC is proper convex, lower semicontinuous and convex function
and its subdifferential ∂iC is maximal monotone (see [40]). Moreover, we know
that

∂iC(x) =
{
NC(x), if x ∈ C;
∅, if x /∈ C, (61)

where NC is the normal cone of C given by

NC(x) = {x∗ ∈ E∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ C}. (62)

Thus we can define the resolvent associated with ∂iC for λ > 0 by

Resfλ∂iC(x) = (∇f + λ∂iC)−1 ◦ ∇f (x), ∀x ∈ E.

So we have for any x ∈ E and y ∈ C,

z = Resfλ∂iC(x) ⇔ ∇f (x) ∈ ∇f (z) + ∂iC(z)

⇔ ∇f (x) ∈ ∇f (z) + λNC(z)

⇔ ∇f (x) − ∇f (z) ∈ λNC(z)

⇔ 1
λ
〈∇f (x) − ∇f (z), y − z〉 ≤ 0, ∀y ∈ C
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⇔ 〈∇f (x) − ∇f (z), y − z〉 ≤ 0, ∀y ∈ C

⇔ z = PfC(x),

where PfC is the Bregman projection from E onto C.

Proposition 4.1 ([26]): Let f : E → (−∞,∞] be a Legendre and totally convex
function. Let A : E → E∗ be a BISMmapping. If C is a nonempty, closed and convex
subset of dom A ∩ int(domf ), then VI(C,A) = F(PfC ◦ Af ).

In fact, if we set Bi = ∂iCi for all i = 1, 2, . . . ,N in Theorem 3.1, then by
Proposition 4.1 we obtain the following result.

Theorem 4.2: Let f : E → R be a strongly coercive Legendre function, which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets
of E. Let Ai : E → E∗, i = 1, 2, . . . ,N be a BISM mapping. Let Ci,i = 1, 2, . . . ,N,
be nonempty, closed and convex subsets of E such that Ci ⊆ dom Ai ∩ int(domf ).
Suppose that � := ⋂N

i=1 VI(Ci,Ai) �= ∅. Let {xn} be a sequence generated by
u, x1 ∈ E and

xn+1 = ∇f ∗(αn∇f (u) + (1 − αn)Sλxn), ∀n ≥ 1, (63)

where

Sλ := β0∇f + β1∇f (PfC1
◦ Af

1) + β2∇f (PfC2
◦ Af

2) + · · · + βN∇f (PfCN
◦ Af

N)

(64)

inwhich {βi}Ni=0 ⊂ (0, 1)with
∑N

i=0 βi = 1, {αn} ⊂ (0, 1) andλ > 0. Suppose that
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Then {xn} converges strongly to z = 

f
�(u).

5. Numerical experiments

In this section, we provide some numerical experiments which show the effi-
ciency and implementation of the proposed algorithm. The numerical tests are
performed in MATLAB R2014a running on an HP Compaq 510, Core(TM) 2
Duo CPU T5870 with 2.0GHz and 2GB RAM.

Example 5.1: Consider the minimization problem:

min
x∈R3

h(x),

where h(x) = ‖x‖1 + 1
2‖x‖22 + (2,−3, 4)Tx + 1 for all x = (w1,w2,w3) ∈ R

3.
Let F(x) = 1

2‖x‖22 + (2,−3, 4)Tx + 1 and G(x) = ‖x‖1. This problem is equiv-
alent to the following problem: find an element x∗ ∈ R

3 such that

∇F(x∗) + ∂G(x∗) � 0, (65)
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where ∇F(x) = x + (2,−3, 4) and

∂G(x) =

⎧⎪⎨
⎪⎩(ξ1, ξ2, ξ3) : ξi =

⎧⎪⎨
⎪⎩
1 if wi > 0,
−1 if wi < 0,
[−1, 1] if wi = 0,

for all i = 1, 2, 3

⎫⎪⎬
⎪⎭ . (66)

Then the element x∗ = (w∗
1,w

∗
2,w

∗
3) is a solution of the problem (65) if and only

if

w∗
1 + ξ1 + 2 � 0,

w∗
2 + ξ2 − 3 � 0,

w∗
3 + ξ3 + 4 � 0,

where (ξ1, ξ2, ξ3) are defined by (66). This implies that x∗ = (−1, 2,−3) is a
unique solution of the problem (65) and minx∈R3 h(x) = F(x∗) + G(x∗) = −7.

It is easy to see thatA = ∇F is BISM and B = ∂G is maximal monotone. From
[41], we know that

J∂Gλ (x) = (I + λ∂G)−1(x)

= (
max{|w1| − λ, 0}sgn(w1), max{|w2|

− λ, 0}sgn(w2), max{|w3| − λ, 0}sgn(w3)
)

for λ > 0.
In this numerical experiment, we perform numerical tests of our algorithm

and compare it with algorithms of Takahashi et al. [Algorithm (4)] and
Cholamjiak [Algorithm (5)]. The parameters in the algorithms are chosen as
follows:

• Our algorithm: λ = 1.45, αn = 1/n, β0 = 0.001, β1 = 0.999
• Algorithm (3): λn = 0.45, αn = 1/n, βn = 0.8
• Algorithm (5): λn = 0.45, αn = 1/2n, βn = 0.75 − 1/4n, δn = 0.25 − 1/4n

We use the stopping rule TOLn = ‖xn+1 − xn‖ < ε with ε = 10−6 to stop
the iterative process.When x1 = (−10, 5, 10) and u = (1,−1,−2), we obtain the
numerical results in Table 1.

The behaviours of TOLn in Table 1 are illustrated in Figure 1.

Table 1. Table of numerical results for Example 5.1.

Algorithms TOLn n xn h(xn) Time (s)

Our algorithm 9.99605 × 10−7 1608 (−0.99914, 1.99871,−2.99957) −6.99999 0.016
Algorithm (3) 9.99985 × 10−7 2893 (−0.99845, 1.99768,−2.99922) −6.99999 0.031
Algorithm (5) 9.99950 × 10−7 4083 (−0.99782, 1.99673,−2.99891) −6.99999 0.047
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Figure 1. The behaviour of TOLn in Table 1.

In the last example, we present numerical results of our proposed algorithm to
solve the variational inequality problem.

Example 5.2: Let Ci and Qi, i = 1, 2, 3 be nonempty, closed and convex subsets
of R4 such that

⋂3
i=1 Ci �= ∅. We consider the problem of finding an element

x∗ ∈ R
4 such that

x∗ ∈
3⋂

i=1
argmin

x∈Ci
fi(x) �= ∅, (67)

where fi(x) = ‖x − PQix‖ for all x ∈ R
4 and i = 1, 2, 3. It is easy to see that above

problem is equivalent to the following problem: find an element x∗ ∈ R
4 such that

x∗ ∈
3⋂

i=1
argmin

x∈Ci
gi(x), (68)

where gi(x) = 1
2‖x − PQix‖2 for all x ∈ R

4 and i = 1, 2, 3. We know that an
element x∗ ∈ R

4 is a solution of the problem (68) if and only if

x∗ ∈
3⋂

i=1
VI(Ci,∇gi), (69)

with ∇gi = I − PQi for all i = 1, 2, 3. We now consider the problem (67) with Ci
and Qi, i = 1, 2, 3 defined as follows:

C1 = {(x1, x2, x3, x4) : x1 + x2 − x3 − x4 = 1},
C2 = {(x1, x2, x3, x4) : x1 − x2 − x3 + x4 = −1},
C3 = {(x1, x2, x3, x4) : x1 + 2x2 − x3 + 2x4 = 6},
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Table 2. Table of numerical results for Example 5.2.

ε n TOLn xn Time (s)

λ = 0.25
10−5 2337 9.993713 × 10−6 (0.017550, 1.999930, 0.010653, 1.013655) 0.125
10−6 7629 9.999805 × 10−7 (0.005429, 2.000000, 0.003332, 1.004194) 0.421
10−7 24124 9.999752 × 10−8 (0.001717, 2.000000, 0.001053, 1.001326) 1.359
λ = 2.5
10−5 1296 9.998373 × 10−6 (0.009583, 2.000000, 0.008349, 1.002469) 0.078
10−6 4097 9.999497 × 10−7 (0.003031, 2.000000, 0.002641, 1.000781) 0.218
10−7 12955 9.999143 × 10−8 (0.000958, 2.000000, 0.000835, 1.000247) 0.719
λ = 3.75
10−5 1246 9.990594 × 10−6 (0.009128, 2.000000, 0.008272, 1.001712) 0.077
10−6 3938 9.996261 × 10−7 (0.002888, 2.000000, 0.002617, 1.000541) 0.217
10−7 12450 9.999422 × 10−8 (0.000913, 2.000000, 0.000827, 1.000171) 0.702

Figure 2. The behaviour of TOLn with the stopping rule TOLn < 10−5.

and

Q1 = {(x1, x2, x3, x4) : x21 + x22 + x23 + x24 ≤ 9},
Q2 = {(x1, x2, x3, x4) : (x1 − 1)2 + (x2 + 1)2 + x23 + x24 ≤ 11},
Q3 = {(x1, x2, x3, x4) : (x1 + 1)2 + (x2 − 1)2 + (x3 + 1)2 + (x4 − 2)2 ≤ 10}.

Denote by� the set of solutions of the problem (67). PuttingC := C1 ∩ C2 ∩ C3,
it is easy to see that

C = {(t, 2, t, 1) : t ∈ R}
and C ∩ Qi �= ∅ for all i = 1, 2, 3. Thus we have

� = {x∗ = (t, 2, t, 1) : x∗ ∈ Qi, i = 1, 2, 3} = {(t, 2, t, 1) : t ∈ [0, 1]}.

In order to find a solution of the problem (67), we apply Theorem 4.2 for
solving the problem (69) with Ai = ∇gi for all i = 1, 2, 3, x1 = (3, 4, 5, 6),
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Figure 3. The behaviour of TOLn with the stopping rule TOLn < 10−6.

Figure 4. The behaviour of TOLn with the stopping rule TOLn < 10−7.

u = (1,−2, 3, 4), βi = 1/4 for all i = 0, 1, 2, 3 and αn = 1/n for all n ≥ 1. We
consider the different three cases of step-sizes λ = 0.25, λ = 2.5 and λ = 3.75,
and we use the stopping rule TOLn = ‖xn+1 − xn‖ < ε to stop the iterative
process. So we obtain the numerical results in Table 2.

Remark 5.3: In the case that u = (1,−2, 3, 4), we obtain x∗ = P�(u) =
(0, 2, 0, 1).

The behaviours of TOLn in Table 2 are illustrated in Figures 2–4 as follows:
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ABSTRACT
In this paper, we propose a generalized viscosity explicit
method for finding zeros of the sum of two accretive opera-
tors in the framework of Banach spaces. The strong conver-
gence theoremof suchmethod is proved under some suitable
assumption on the parameters. As applications, we apply our
main result to the variational inequality problem, the convex
minimization problem and the split feasibility problem. The
numerical experiments to illustrate the behaviour of the pro-
posed method including compare it with other methods are
also presented.
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1. Introduction

The starting point of this paper, we consider initial value problem (IVP) in the
following form:

x′(t) = f
(
x(t)

)
, x(t0) = x0. (1)

In real life, many mathematical model have been formulated as this problem.
It is well known that most of ordinary differential equations (ODEs) are not
analytically solvable. Numerical methods have become a powerful method for
numerically solving time-dependent ordinary and partial differential equations,
as is required in computer simulations of physical processes such as groundwater
flow and the wave equation. One of famous method is known as implicit mid-
point method (or modified Euler’s method) (see [1–3] for more detail). Given a
time interval [t0,T], the method firstly computes the step size h = (T − t0)/N,
where N is the number of steps of h and select the mesh {tn}Nn=0 of time steps
tn ∈ [t0,T], through the formula tn = t0 + nh for n = 0, 1, . . . ,N − 1. It pro-
vides to generate a sequence {yn}Nn=0 of approximation of solution at each time
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step tn, i.e. yn ≈ x(tn). The implicit midpoint method (IMM) is given by the
following procedure:

y0 = x0,

yn+1 = yn + hf
(
yn + yn+1

2

)
, n = 0, 1, . . . ,N − 1.

(2)

It is known that if f : R
M → R

M is a Lipschitz continuous and sufficiently
smooth function, then the sequence {yn} converges to the exact solution of (1)
as h → 0 uniformly on t ∈ [t0,T]. If the function f is written as f (x) = x − g(x),
then (2) becomes

y0 = x0,

yn+1 = yn + h
[
yn + yn+1

2
− g

(
yn + yn+1

2

)]
, n = 0, 1, . . . ,N − 1

(3)

and the critical points of (1) is the fixed point problems x = g(x).
Let H be a real Hilbert space and let C be a non-empty, closed and convex

subset ofH. We denote by I the identity operator onH. Let T : C → C be a non-
linearmapping. The fixed points set ofT is denoted by F(T) := {x ∈ C : x = Tx}.
A mapping T : C → C is called non-expansive if

‖Tx − Ty‖ ≤ ‖x − y‖ ∀ x, y ∈ C.

A mapping f : C → C is called a contraction, if there exists constant θ ∈ (0, 1)
such that

‖f (x) − f (y)‖ ≤ θ‖x − y‖ ∀ x, y ∈ C.

In recent years, several types of iterative method have been constructed for fixed
point problems in various settings. One classical method, due to Mann’ iteration
[4] which is defined by x0 ∈ C and

xn+1 = αnxn + (1 − αn)Txn ∀ n ≥ 0, (4)

where T is a self-mapping on C and {αn} is a sequence in [0, 1]. It is know that
Mann’s iteration process has only weak convergence.

Motivated by IMM (2) andMann’s iteration (4), Alghamdi et al. [5] introduced
the following two algorithms for a non-expansive mapping T: for given x0 ∈ H
and

xn+1 = xn − tn
[
xn + xn+1

2
− T

(
xn + xn+1

2

)]
∀ n ≥ 0, (5)

xn+1 = (1 − tn)xn + tnT
(
xn + xn+1

2

)
∀ n ≥ 0, (6)

where {tn} ⊂ (0, 1). They proved that the above two algorithms converge weakly
to a point in F(T).
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In 2015, Xu et al. [6] applied the viscosity approximation method introduced
by Moudafi [7] to the IMM for a non-expansive mapping T. They proposed the
following viscosity implicit midpoint method: for given x0 ∈ C and

xn+1 = αnf (xn) + (1 − αn)T
(
xn + xn+1

2

)
∀ n ≥ 0, (7)

where f is a contractive mapping on C and {αn} is a sequence in (0, 1). It was
proved that the sequence {xn} generated by (7) converges strongly to a fixed point
of T.

Later, Ke and Ma [8] improved the viscosity implicit midpoint method (7) by
replacing the midpoint by any point of interval [xn, xn+1]. They introduced the
following generalized viscosity implicit method to approximating the fixed point
of a non-expansive mapping T: for given x0 ∈ C and

xn+1 = αnf (xn) + (1 − αn)T(tnxn + (1 − tn)xn+1) ∀ n ≥ 0. (8)

They also proved that the sequence {xn} generated by (8) converges strongly to a
point in F(T).

However, it is noted that the computation by implicit method is not a simple
task in general because this method need to compute at every time steps and
it can be much harder to implement. To overcome this difficulty, we consider
the method so-called an explicit midpoint method (EMM) which given by the
following finite difference scheme [9, 10]:

y0 = x0,

ȳn+1 = yn + hf (yn),

yn+1 = yn + hf
(
yn + ȳn+1

2

)
∀ n ≥ 0.

(9)

It is generally remarked that the EMM (9) calculates the system status at a future
time from the currently known system status while IMM(2) calculates the system
status involving both the current state of the system and the later one (see [9, 11]).

In 2017, Marino et al. [12] combined the generalized viscosity implicit mid-
point method (8) with the EMM (9) for solving the fixed point problem of
a quasi-non-expansive mapping T. They introduced the following generalized
viscosity explicit midpoint method: for any x1 ∈ C and

x̄n+1 = βnxn + (1 − βn)Txn,

xn+1 = αnf (xn) + (1 − αn)T(tnxn + (1 − tn)x̄n+1) ∀ n ≥ 1.
(10)

They also showed that the sequence {xn} generated by (10) converges strongly to a
fixed point ofT under certain assumptions imposed on the parameters {αn}, {βn}
and {tn}.
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On the other hand, let us consider the following variational inclusion problems:
find x∗ ∈ H such that

0 ∈ (A + B)x∗, (11)

where A : H → H is an operator, B : H → 2H is a set-valued operator and 0 is
a zero vector in H. The solutions set of (11) is denoted by (A + B)−10 := {x ∈
H : 0 ∈ (A + B)x}. This problem includes, as special cases, convex program-
ming, variational inequalities, equilibrium problem, split feasibility problem and
minimization problem. To be more precise, some concrete problems in signal
processing, image recovery, statistical regression and machine learning can be
modelled mathematically as this form (see [13–16]).

One of the most successful methods for solving problem (11) is for-
ward–backward algorithm (FBA) ([17–20]) which is given by x1 ∈ H and

xn+1 = (I + λB)−1(xn − λAxn) ∀ n ≥ 1, (12)

where λ > 0. In the context of this method, the operators (I + λB)−1 and I −
λA are often referred to as the backward and forward operators, respectively.
However, this method has only weak convergence.

In order to obtain strong convergence result, Takahashi et al. [21] (see also
[22]) proposed the following modified FBA based on Halpern’s iteration: for any
u, x1 ∈ H and

xn+1 = αnu + (1 − αn)JBλn(xn − λnAxn) ∀ n ≥ 1, (13)

where A : H → H is a monotone operator, B : H → 2H is a maximal monotone
operator and JBλn := (I + λnB)−1 is a resolvent operator of B. They proved that
the sequence {xn} generated by (13) converges strongly to a point in (A + B)−10.

López et al. [23] proposed the following modified FBA with error sequences
{an}, {bn} in q-uniformly smooth and uniformly convex Banach spaces E: for
given u, x1 ∈ E and

xn+1 = αnu + (1 − αn)(JBλn(xn − λn(Axn + an)) + bn) ∀ n ≥ 1. (14)

where JBλn := (I + λnB)−1, {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1]. They proved that the
sequence {xn} generated by (14) converges strongly to a point in (A + B)−10.

In [24], Cholamjiak proposed the following new general type of FBA for
accretive operators with error {en} in Banach spaces E: for given u, x1 ∈ E and

xn+1 = αnu + ηnxn + δnJBλn(xn − λnAxn) + en ∀ n ≥ 1, (15)

where JBλn := (I + λnB)−1, {λn} ⊂ (0,∞) and {αn}, {ηn}, {δn} are sequences in
[0, 1] with αn + ηn + δn = 1. He proved that the sequence {xn} generated by (15)
converges strongly to a point in (A + B)−10 under some appropriate conditions.



OPTIMIZATION 5

Shehu and Cai [25] extended iterative method (13) by combining the viscosity
approximation method and FBA in a uniformly smooth and uniformly convex
Banach space E: for given x1 ∈ E and

xn+1 = αnf (xn) + (1 − αn)JBλn(xn − λnAxn) ∀ n ≥ 1, (16)

where f : E → E is a contraction with a constant θ ∈ (0, 1), {λn} ⊂ (0,∞) and
{αn} ⊂ (0, 1). It was proved that the sequence {xn} generated by (16) converges
strongly to a point in (A + B)−10 under some appropriate conditions.

In 2018, Chang et al. [26] proposed the following strong convergence theorem
of a generalized viscosity implicit rules for solving the variational inclusion
problem (11) in a q-uniformly smooth and uniformly convex Banach space.

Theorem 1.1: Let E be a q-uniformly smooth and uniformly convex Banach space.
Let A : E → E be an α-isa of order q and B : E → 2E be an m-accretive operator
such that (A + B)−10 �= ∅. Let f : E → E be a θ-contractive mapping with θq ∈
(0, 1). Let {xn} be the sequence generated by x1 ∈ E and

xn+1 = αnf (xn) + (1 − αn)JBλ (I − λA)(tnxn + (1 − tn)xn+1) ∀ n ≥ 1, (17)

where JBλ := (I + λB)−1, κq is the q-uniform smoothness coefficient of E, {tn} and
{αn} are sequences in (0, 1) and λ is a positive real number satisfying the following
conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2)

∑∞
n=1 |αn+1 − αn| < ∞;

(C3) 0 < ε ≤ tn ≤ tn+1 < 1;
(C4) 0 < λ ≤ (αq/κq)1/(q−1).

Then {xn} converges strongly to x∗ = Q(A+B)−10f (x∗), where Q(A+B)−10 is a
sunny non-expansive retraction of E onto (A + B)−10.

In this paper, motivated and inspired by the works of Chang et al. [26] and
Marino et al. [12], we propose a generalized viscosity explicit method for solv-
ing the variational inclusion problem (11) in the framework of Banach spaces.
We prove its strong convergence of the proposed algorithm under some suitable
assumption on the parameters. As applications, we apply our main result to the
variational inequality problem, the convex minimization problem and the split
feasibility problem. Finally, we provide several numerical experiments to illus-
trate the behaviour of the proposed method and compare it with other methods.
The result obtained in this paper improves and extends many known results in
the literature.
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2. Basic definitions and preliminaries

In this section, we collect some preliminary results whichwill be used throughout
the paper.

Let E and E∗ be a real Banach space and the dual space of E, respectively. The
modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ε) = inf
{
1 − ‖x + y‖

2
: x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
.

Themodulus of smoothness of E is the function θE : R
+ := [0,∞) → R

+ defined
by

θE(τ ) = sup
{‖x + τy‖ + ‖x − τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
.

Definition 2.1: Suppose that p, q>1. A Banach space E is said to be

(1) Uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2].
(2) p-Uniformly convex if there is a cp > 0 such that δE(ε) ≥ cpεp for all ε ∈

(0, 2].
(3) Uniformly smooth if limτ→0 θE(τ )/τ = 0.
(4) q-Uniformly smooth if there exists a cq > 0 such that θE(τ ) ≤ cqτ q for all

τ > 0.

If E is q-uniformly smooth, then q ≤ 2 and E is also uniformly smooth.
Further, E is p-uniformly convex (q-uniformly smooth) if and only if E∗ is q-
uniformly smooth (p-uniformly convex), where p ≥ 2 and 1 < q ≤ 2 satisfy
1/p + 1/q = 1. It is well known that a Hilbert space H is 2-uniformly smooth.
Typical examples of both uniformly convex and uniformly smooth Banach
spaces are �p and Lp spaces, where p>1. More precisely, �p and Lp spaces are
min{p, 2}-uniformly smooth for every p>1.

The generalized duality mapping Jq : E → 2E
∗
is defined by

Jq(x) = {x̄ ∈ E∗ : 〈x, x̄〉 = ‖x‖q, ‖x̄‖ = ‖x‖q−1},
where 〈·, ·〉 denotes the generalized duality pairing between elements of E and E∗.

In particular, J2 := J is called the normalized duality mapping. If E is smooth,
then Jq is single-valued, which is denoted by jq. If E: = H is a real Hilbert space,
then J = I.

Using the concept of sub-differentials, we know the following inequality:

Lemma 2.2 ([27]): Let q>1 and E be a real normed space with the generalized
duality mapping Jq. Then, for any x, y ∈ E, we have

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x + y)〉, (18)

where jq(x + y) ∈ Jq(x + y).
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Definition 2.3: Let C a be non-empty, closed and convex subsets of E and Q be
a mapping of E onto C. Then Q is said to be:

(1) Sunny if Q(Qx + t(x − Qx)) = Qx for all x ∈ C and t ≥ 0.
(2) Retraction if Qx = x for all x ∈ C.
(3) A sunny non-expansive retraction ifQ is sunny, non-expansive and a retrac-

tion from E onto C.

It is known that if E: = H is a real Hilbert space, then a sunny non-expansive
retraction Q is coincident with the metric projection from E onto C. Moreover,
if E is uniformly smooth and T is a non-expansive mapping of C into itself with
F(T) �= ∅, then F(T) is a sunny non-expansive retract from E onto C (see [28]).
We know that in a uniformly smooth Banach space E, a retraction Q : E → C is
sunny and non-expansive, if and only if 〈x − Qx, jq(y − Qx)〉 ≤ 0 for all x ∈ E
and y ∈ C (see [29]).

LetA : E → 2E be a set-valued operator.We denote the domain of an operator
A byD(A) = {x ∈ E : Ax �= ∅}. Let q>1. An operator A is said to be accretive of
order q if for each x, y ∈ D(A), there exists jq(x − y) ∈ Jq(x − y) such that

〈u − v, jq(x − y)〉 ≥ 0, u ∈ Ax and v ∈ Ay.

An accretive operator A is said to be α-inverse strongly accretive (α-isa) of order
q if for each x, y ∈ D(A), there exists α > 0 and jq(x − y) ∈ Jq(x − y) such that

〈u − v, jq(x − y)〉 ≥ α‖Ax − Ay‖q, u ∈ Ax and v ∈ Ay.

In a real Hilbert space H, A : C → H is called α-inverse strongly monotone (α-
ism).

An accretive operatorA is said to bem-accretive if and only ifA is accretive and
R(I + λA) = E for all λ > 0, whereR(I + λA) is the range of I + λA (see [30]).
For an accretive operatorA, we can define amapping JAλ : R(I + λA) → D(A) by
JAλ = (I + λA)−1 for each λ > 0. Such JAλ are called the resolvents of A for λ > 0.

Lemma 2.4 ([31]): The following statements hold:

(1) If JAλ is a resolvent of A for λ > 0, then JAλ is a single valued non-expansive
mapping with F(JAλ ) = A−10, where A−10 = {x ∈ D(A) : 0 ∈ Ax}.

(2) In a real Hilbert space, an operator A is m-accretive if and only if A is maximal
monotone.

Let A : E → E be an α-isa of order q and B : E → 2E anm-accretive operator.
In what follows, we shall use the following notation:

Tλ = JBλ (I − λA) = (I + λB)−1(I − λA), λ > 0.
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Lemma 2.5 ([23]): The following statements hold:

(i) For λ > 0, F(Tλ) = (A + B)−10.
(ii) For 0 < λ ≤ s and x ∈ E, ‖x − Tλx‖ ≤ 2‖x − Tsx‖.

Lemma 2.6 ([23]): Let E be a uniformly convex and q-uniformly smooth Banach
spaces. Assume that A is a single-valued α-isa of order q in E. Let r > 0, there exists
a continuous, strictly increasing and convex function φ : R

+ → R
+ with φ(0) = 0

such that

‖Tλx − Tλy‖q ≤ ‖x − y‖q − λ(αq − λq−1κq)‖Ax − Ay‖q

− φ(‖(I − JBλ )(I − λA)x − (I − JBλ )(I − λA)y‖)
for all x, y ∈ Br := {x ∈ E : ‖x‖ ≤ r}, where κq is the q-uniform smoothness coef-
ficient of E. In particular, if 0 < λ < (αq/κq)1/(q−1), then Tλ is non-expansive.

Lemma 2.7 ([32]): Let C be a non-empty, closed and convex subset of a uniformly
smooth Banach space E. Let T : C → C be a non-expansive self-mapping such that
F(T) �= ∅ and f : C → C be a contraction with coefficient θ ∈ (0, 1). Then a net
sequence defined by zt = tf (zt) + (1 − t)Tzt , ∀ t ∈ (0, 1) converges strongly as
t → 0 to a point x∗ ∈ F(T).

Lemma 2.8 ([33]): Assume {sn} is a sequence of non-negative real numbers such
that

sn+1 ≤ (1 − δn)sn + δnτn ∀ n ≥ 1

and

sn+1 ≤ sn − ηn + θn ∀ n ≥ 1,

where {δn} is a sequence in (0, 1), {ηn} is a sequence of non-negative real numbers
and {τn}, and {θn} are real sequences such that

(i)
∑∞

n=1 δn = ∞;
(ii) limn→∞ θn = 0;
(iii) limk→∞ ηnk = 0 implies lim supk→∞ τnk ≤ 0 for any subsequence of real

numbers {nk} of {n}.

Then limn→∞ sn = 0.

3. Main result

In this section, we propose a generalized viscosity implicit rule for solving the
variational inclusion problem (11) and prove its strong convergence theorem of
the generated sequence by the proposed method.
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Theorem 3.1: Let E be a real uniformly convex and q-uniformly smooth Banach
space E. Let A : E → E be an α-isa of order q and let B : E → 2E is an m-accretive
operator. Let f : E → E be a contraction with a constant θ ∈ (0, 1). Assume that
(A + B)−10 �= ∅. For any x1 ∈ E, let {xn} be a sequence generated by
x̄n+1 = βnxn + (1 − βn)JBλn(xn − λnAxn),

xn+1 = αnf (xn) + (1 − αn)JBλn(I − λnA)(tnxn + (1 − tn)x̄n+1) ∀ n ≥ 1,
(19)

where {λn} ⊂ (0,∞), and {αn}, {βn} and {tn} are sequences in (0, 1) which satisfy
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) lim infn→∞(1 − tn)(1 − βn) > 0;
(C3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < (αq/κq)1/(q−1).

Then {xn} converges strongly to an element x∗ = Q(A+B)−1 f (x∗), where
Q(A+B)−10 is a sunny non-expansive retraction of E onto (A + B)−10.

Proof: For each n ≥ 1, put Tn := JBλn(I − λnA). Let z ∈ (A + B)−10 and by the
non-expansivity of Tn, we have

‖x̄n+1 − z‖ = ‖βn(xn − z) + (1 − βn)(Tnxn − Tnz)‖
≤ βn‖xn − z‖ + (1 − βn)‖Tnxn − Tnz‖
≤ βn‖xn − z‖ + (1 − βn)‖xn − z‖
= ‖xn − z‖.

It follows that

‖xn+1 − z‖ = ‖αn(f (xn) − z) + (1 − αn)(Tn(tnxn + (1 − tn)x̄n+1) − Tnz)‖
≤ αn‖f (xn) − z‖ + (1 − αn)‖Tn(tnxn + (1 − tn)x̄n+1) − Tnz‖
≤ αn‖f (xn) − f (z)‖ + αn‖f (z) − z‖

+ (1 − αn)‖tn(zn − z) + (1 − tn)(x̄n+1 − z)‖
≤ αnθ‖xn − z‖ + (1 − αn)(tn‖xn − z‖ + (1 − tn)‖x̄n+1 − z‖)

+ αn‖f (z) − z‖
= αnθ‖xn − z‖ + (1 − αn)tn‖xn − z‖ + (1 − αn)(1 − tn)‖xn − z‖

+ αn‖f (z) − z‖

= (1 − (1 − θ)αn)‖xn − z‖ + (1 − θ)αn
‖f (z) − z‖

1 − θ

≤ max
{
‖xn − z‖, ‖f (z) − z‖

1 − θ

}
.
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By induction, we obtain

‖xn − z‖ ≤ max
{
‖x1 − z‖, ‖f (z) − z‖

1 − θ

}
∀ n ≥ 1.

Hence {xn} is bounded. For each n ≥ 1, put zn := tnxn + (1 − tn)x̄n+1. Let x∗ =
Q(A+B)−10f (x∗). By Lemma 2.6, we have

‖Tnzn − x∗‖q = ‖JBλn(I − λnA)zn − JBλn(I − λnA)x∗‖q

≤ ‖zn − x∗‖q − λn(αq − λ
q−1
n κq)‖Azn − Ax∗‖q

− φ(‖zn − λnAzn − Tnzn + λnAx∗‖). (20)

In a similar way, we also have

‖Tnxn − x∗‖q ≤ ‖xn − x∗‖q − λn(αq − λ
q−1
n κq)‖Axn − Ax∗‖q

− φ(‖xn − λnAxn − Tnxn + λnAx∗‖).

It follows that

‖zn − x∗‖q ≤ tn‖xn − x∗‖q + (1 − tn)‖x̄n+1 − x∗‖q
≤ tn‖xn − x∗‖q + (1 − tn)

× [
βn‖xn − x∗‖q + (1 − βn)‖Tnxn − x∗‖q]

≤ tn‖xn − x∗‖q + (1 − tn)

×
[
βn‖xn − x∗‖q + (1 − βn)

(
‖xn − x∗‖q − λn(αq − λ

q−1
n κq)

×‖Axn − Ax∗‖q − φ(‖xn − λnAxn − Tnxn + λnAx∗‖)
)]

≤ ‖xn − x∗‖q − (1 − tn)(1 − βn)
(
λn(αq − λ

q−1
n κq)‖Axn − Ax∗‖q

+φ(‖xn − λnAxn − Tnxn + λnAx∗‖)
)
. (21)

Substituting (21) into (20), we get

‖Tnzn − x∗‖q ≤ ‖xn − x∗‖q − (1 − tn)(1 − βn)
(
λn(αq − λ

q−1
n κq)

× ‖Axn − Ax∗‖q + φ(‖xn − λnAxn − Tnxn + λnAx∗‖)
)

− λn(αq − λ
q−1
n κq)‖Azn − Ax∗‖q

− φ(‖zn − λnAzn − Tnzn + λnAx∗‖). (22)
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From Lemma 2.2 and (22), we have

‖xn+1 − x∗‖q
= ‖αn(f (xn) − x∗) + (1 − αn)(Tnzn − x∗)‖q
= ‖αn(f (xn) − f (x∗)) + αn(f (x∗) − x∗) + (1 − αn)(Tnzn − x∗)‖q
≤ ‖αn(f (xn) − f (x∗)) + (1 − αn)(Tnzn − x∗)‖q

+ qαn〈f (x∗) − x∗, jq(xn+1 − x∗)〉
≤ αn‖f (xn) − f (x∗)‖q + (1 − αn)‖Tnzn − x∗‖q

+ qαn〈f (x∗) − x∗, jq(xn+1 − x∗)〉
≤ αn‖f (xn) − f (x∗)‖q + (1 − αn)

[‖xn − x∗‖q − (1 − tn)(1 − βn)

× (
λn(αq − λ

q−1
n κq)‖Axn − Ax∗‖q

+ φ(‖xn − λnAxn − Tnxn + λnAx∗‖))− λn(αq − λ
q−1
n κq)‖Azn − Ax∗‖q

− φ(‖zn − λnAzn − Tnzn + λnAx∗‖)]+ qαn〈f (x∗) − x∗, jq(xn+1 − x∗)〉
≤ (

1 − (1 − θ)αn
)‖xn − x∗‖q − Kn

(
λn(αq − λ

q−1
n κq)‖Axn − Ax∗‖q

+ φ(‖xn − λnAxn − Tnxn + λnAx∗‖))
− (1 − αn)

(
λn(αq − λ

q−1
n κq)‖Azn − Ax∗‖q

+ φ(‖zn − λnAzn − Tnzn + λnAxq‖)
)

+ qαn〈f (x∗) − x∗, jq(xn+1 − x∗)〉, (23)

where Kn := (1 − αn)(1 − tn)(1 − βn). We note that lim infn→∞ Kn > 0 and
lim infn→∞ λn(αq − λ

q−1
n κq) > 0. For each n ≥ 1, we set

sn : = ‖xn − x∗‖q,
δn : = (1 − θ)αn,

τn : = q
1 − θ

〈f (x∗) − x∗, jq(xn+1 − x∗)〉,

ηn : = Kn(λn(αq − λ
q−1
n κq)‖Axn − Ax∗‖q

+ φ(‖xn − λnAxn − Tnxn + λnAx∗‖))
+ (1 − αn)(λn(αq − λ

q−1
n κq)‖Azn − Ax∗‖q

+ φ(‖zn − λnAzn − Tnzn + λnAx∗‖)),
θn : = qαn〈f (x∗) − x∗, jq(xn+1 − x∗)〉.

Then (23) reduces to the following formulae:

sn+1 ≤ (1 − δn)sn + δnτn ∀ n ≥ 1 (24)
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and

sn+1 ≤ sn − ηn + θn ∀ n ≥ 1. (25)

By (C1), we see that
∑∞

n=1 δn = ∞ and limn→∞ θn = 0. In order to complete
the proof, using Lemma 2.8, it remains to show that limk→∞ ηnk = 0 implies that
lim supk→∞ τnk ≤ 0 for any subsequence {ηnk} of {ηn}. Let {nk} be a subsequence
of {n} such that limk→∞ ηnk = 0. So by our assumptions and the properties of φ,
we obtain

lim
k→∞

‖Aznk − Ax∗‖ = lim
k→∞

‖znk − λnkAznk − Tnkznk + λnkAx
∗‖ = 0

and

lim
k→∞

‖Axnk − Ax∗‖ = lim
k→∞

‖xnk − λnkAxnk − Tnkxnk + λnkAx
∗‖ = 0.

Consequently,

lim
k→∞

‖Tnkznk − znk‖ = 0 and lim
k→∞

‖Tnkxnk − xnk‖ = 0. (26)

Since lim infn→∞ λn > 0, there is λ > 0 such that λn ≥ λ for all n ≥ 1. In
particular, λnk ≥ λ for all k ≥ 1. Then, by Lemma 2.5 (ii), we have

‖Tλxnk − xnk‖ ≤ 2‖Tnkxnk − xnk‖.

From (26), we obtain

lim
k→∞

‖Tλxnk − xnk‖ = 0. (27)

Let zt = tf (zt) + (1 − t)Tλzt , ∀t ∈ (0, 1). Then it follows from Lemma 2.7
that {zt} converges strongly to a fixed point x∗ ∈ F(Tλ) = (A + B)−10. From
Lemma 2.2, we have

‖zt − xnk‖q = ‖t(f (zt) − xnk) + (1 − t)(Tλzt − xnk)‖q
≤ (1 − t)q‖Tλzt − xnk‖q + qt〈f (zt) − xnk , jq(zt − xnk)〉
= (1 − t)q‖Tλzt − xnk‖q + qt〈f (zt) − zt , jq(zt − xnk)〉

+ qt〈zt − xnk , jq(zt − xnk)〉
≤ (1 − t)q

(‖Tλzt − Tλxnk‖ + ‖Tλxnk − xnk‖
)q

+ qt〈f (zt) − zt , jq(zt − xnk)〉 + qt‖zt − xnk‖q

≤ (1 − t)q
(‖zt − xnk‖ + ‖Tλxnk − xnk‖

)q
+ qt〈f (zt) − zt , jq(zt − xnk)〉 + qt‖zt − xnk‖q,
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which implies that

〈f (zt) − zt , jq(xnk − zt)〉 ≤ (1 − t)q

qt
(‖zt − xnk‖ + ‖Tλxnk − xnk‖

)q
+ qt − 1

qt
‖zt − xnk‖q.

From (27), we obtain

lim sup
k→∞

〈f (zt) − zt , jq(xnk − zt)〉 ≤ (1 − t)q

qt
M + qt − 1

qt
M

=
(

(1 − t)q + qt − 1
qt

)
M, (28)

whereM = lim supk→∞ ‖zt − xnk‖q, t ∈ (0, 1).We see that ((1 − t)q + qt − 1)/
qt → 0 as t → 0. Since jq is norm-to-norm uniformly continuous on bounded
subsets of E and zt → x∗, we have

‖jq(xnk − zt) − jq(xnk − x∗)‖ → 0 as t → 0.

So we have

|〈f (zt) − zt , jq(xnk − zt)〉 − 〈f (x∗) − x∗, jq(xnk − x∗)〉|
= |〈f (zt) − f (x∗) + f (x∗) − x∗ + x∗ − zt , jq(xnk − zt)〉

− 〈f (x∗) − x∗, jq(xnk − x∗)〉|
= |〈f (zt) − f (x∗), jq(xnk − zt)〉 + 〈f (x∗) − x∗, jq(xnk − zt)〉

+ 〈x∗ − zt , jq(xnk − zt)〉 − 〈f (x∗) − x∗, jq(xnk − x∗)〉|
≤ |〈f (x∗) − x∗, jq(xnk − zt) − jq(xnk − x∗)〉| + |〈f (zt) − f (x∗), jq(xnk − zt)〉|

+ |〈x∗ − zt , jq(xnk − zt)〉|
≤ ‖f (x∗) − x∗‖‖jq(xnk − zt) − jq(xnk − x∗)‖

+ (1 + θ)‖zt − x∗‖‖xnk − zt‖q−1.

Hence as t → 0, we have

〈f (zt) − zt , jq(xnk − zt)〉 → 〈f (x∗) − x∗, jq(xnk − x∗)〉.
From (28), as t → 0, it follows that

lim sup
k→∞

〈f (x∗) − x∗, jq(xnk − x∗)〉 ≤ 0. (29)

On the other hand, we have

‖Tnkzn − xnk‖ ≤ ‖Tnkznk − znk‖ + ‖znk − xnk‖
≤ ‖Tnkznk − znk‖ + (1 − tnk)(1 − βnk)‖Tnkxnk − xnk‖
≤ ‖Tnkznk − znk‖ + ‖Tnkxnk − xnk‖.
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This together with (26) implies that

lim
k→∞

‖Tnkznk − xnk‖ = 0. (30)

Further, we have

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − Tnkznk‖ + ‖Tnkznk − xnk‖
≤ αnk‖f (xnk) − Tnkznk‖ + ‖Tnkznk − xnk‖.

This together with (30) implies

lim
k→∞

‖xnk+1 − xnk‖ = 0. (31)

Combining (29) and (31), we get

lim sup
k→∞

〈f (x∗) − x∗, jq(xnk+1 − x∗)〉 ≤ 0. (32)

This implies that limk→∞ τnk ≤ 0. Then, by Lemma 2.8, we conclude that
limn→∞ sn = 0. Hence xn → x∗ as n → ∞. This completes the proof. �

Remark 3.2: We point out main issue on our work as follows:

(1) The method of proof of our result is very different from ones of [12, 21, 26,
34–37]. In particular, we remove the assumptions ‘

∑∞
n=1 |αn+1 − αn| < ∞’

and ‘0 < ε ≤ tn ≤ tn+1 < 1’ in Theorem 3.1 of [8, 26, 34]. Moreover, we
remove the assumption limn→∞(λn+1 − λn) = 0 in Theorem 3.1 of [37].

(2) The method of proof of our result is more simple with respect to the result
of Chang et al. [26].

From [38], we obtain the following results.

Corollary 3.3: Let E := �q (or Lq) with 1 < q ≤ 2. Let A : E → E be an α-isa of
order q and let B : E → 2E is an m-accretive operator. Let f : E → E be a contrac-
tion with a constant θ ∈ (0, 1). Assume that (A + B)−10 �= ∅. For any x1 ∈ E, let
{xn} be a sequence generated by

x̄n+1 = βnxn + (1 − βn)JBλn(xn − λnAxn),

xn+1 = αnf (xn) + (1 − αn)JBλn(I − λnA)(tnxn + (1 − tn)x̄n+1) ∀n ≥ 1, (33)

where {λn} ⊂ (0,∞), and {αn}, {βn} and {tn} are sequences in (0, 1) which satisfy
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) lim infn→∞(1 − tn)(1 − βn) > 0;
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(C3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < (αq/κq)1/(q−1), where κq =
(1 + tq−1

q )/((1 + tq)q−1) and tq is the unique solution of the equation (q −
2)tq−1 + (q − 1)tq−2 − 1 = 0, 0 < t < 1.

Then {xn} converges strongly to an element x∗ = Q(A+B)−1 f (x∗), where
Q(A+B)−10 is a sunny non-expansive retraction of E onto (A + B)−10.

Corollary 3.4: Let E := �p (or Lp) with 2 ≤ p < ∞. Let A : E → E be an α-isa
of order 2 and let B : E → 2E is an m-accretive operator. Let f : E → E be a con-
traction with a constant θ ∈ (0, 1). Assume that (A + B)−10 �= ∅. For any x1 ∈ E,
let {xn} be a sequence generated by

x̄n+1 = βnxn + (1 − βn)JBλn(xn − λnAxn),

xn+1 = αnf (xn) + (1 − αn)JBλn(I − λnA)(tnxn + (1 − tn)x̄n+1) ∀ n ≥ 1,
(34)

where {λn} ⊂ (0,∞), and {αn}, {βn} and {tn} are sequences in (0, 1) which satisfy
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) lim infn→∞(1 − tn)(1 − βn) > 0;
(C3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2α/(p − 1).

Then {xn} converges strongly to an element x∗ = Q(A+B)−1 f (x∗), where
Q(A+B)−10 is a sunny non-expansive retraction of E onto (A + B)−10.

Corollary 3.5: Let H be a Hilbert space H. Let A : H → H be an α-ism and let
B : H → 2H be a maximal monotone operator. Let f : H → H be a contraction
mapping with a constant θ ∈ (0, 1). Suppose that (A + B)−10 �= ∅. For any x1 ∈
H, let {xn} be a sequence generated by

x̄n+1 = βnxn + (1 − βn)JBλn(xn − λnAxn),

xn+1 = αnf (xn) + (1 − αn)JBλn(I − λnA)(tnxn + (1 − tn)x̄n+1) ∀ n ≥ 1,
(35)

where {λn} ⊂ (0, 2α), and {αn}, {βn} and {tn} are sequences in (0, 1) which satisfy
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) lim infn→∞(1 − tn)(1 − βn) > 0;
(C3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2α.

Then {xn} converges strongly to an element x∗ = P(A+B)−10f (x∗), where
P(A+B)−10 is a metric projection of H onto (A + B)−10.
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4. Some applications

4.1. Application to variational inequality problem

Let C be a non-empty, closed and convex subset of a real Hilbert spaceH. Let A :
C → H be a nonlinear monotone operator. The variational inequality problem
(VIP) is to find x∗ ∈ C such that

〈Ax∗, z − x∗〉 ≥ 0 ∀ z ∈ C. (36)

The set of solutions of VIP is denoted byVI(C,A). Let iC be an indicator function
of C given by

iC(x) =
{
0, if x ∈ C;
∞, if x /∈ C.

(37)

Denote NC the normal cone of C, i.e.

NC(u) = {z ∈ H : 〈z, v − u〉 ≤ 0, ∀ v ∈ C}.

It is also known that iC is proper convex and lower semi continuous function
and sub-differential ∂iC is maximal monotone operator (see [39]). We define the
resolvent operator J∂iCλ of iC for λ > 0 by

J∂iCλ (x) := (I + λ∂iC)−1(x) ∀ x ∈ H,

where

∂iC(u) = {z ∈ H : iC(v) + 〈z, v − u〉 ≤ iC(u), ∀ u ∈ H}
= {z ∈ H : 〈z, v − u〉 ≤ 0, ∀v ∈ C} = NC(u), u ∈ C.

So we have

u = J∂iCλ (x) ⇔ x − u ∈ λNC(u)

⇔ 〈x − u, v − u〉 ≤ 0 ∀ v ∈ C

⇔ u = PC(x),

where PC is the metric projection from H onto C. Further, we also have (A +
∂iC)−10 = VI(C,A) (see [37]).

If we set B = ∂iC in Theorem 3.1, then we obtain the following result.

Theorem4.1: Let A : C → H be anα-ism such that VI(C,A) �= ∅. Let f : C → C
be a contraction with a constant θ ∈ (0, 1). For any x1 ∈ C, let {xn} be a sequence
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generated by

x̄n+1 = βnxn + (1 − βn)PC(xn − λnAxn),

xn+1 = αnf (xn) + (1 − αn)PC(I − λnA)(tnxn + (1 − tn)x̄n+1) ∀ n ≥ 1,
(38)

where {λn} ⊂ (0, 2α), and {αn}, {βn} and {tn} are sequences in (0, 1) which satisfy
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) lim infn→∞(1 − tn)(1 − βn) > 0;
(C3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2α.

Then {xn} converges strongly to a point in VI(C,A).

4.2. Application to convexminimization problem

Let g : H → R be a convex smooth function and h : H → R be a proper convex
and lower semicontinuous function. The convex minimization problem is to find
x∗ ∈ H such that

g(x∗) + h(x∗) = min
x∈H {g(x) + h(x)}. (39)

By Fermat’s rule, it is known that the problem (39) is equivalent to the problem
of finding x∗ ∈ H such that

0 ∈ ∇g(x∗) + ∂h(x∗),

where ∇g is a gradient of g and ∂h is a subdifferential of h. It is also known if ∇g
is (1/α)-Lipschitz continuous, then it is also α-ism (see [40]). In fact, we can set
A = ∇g and B = ∂h in Theorem 3.1. So we obtain the following result.

Theorem 4.2: Let g : H → R be a convex and differentiable function with (1/α)-
Lipschitz continuous gradient ∇g and let h : H → R be a convex and lower
semicontinuous function such that g + h attains a minimizer. Let f : H → H be
a contraction with a constant θ ∈ (0, 1). For any x1 ∈ H, let {xn} be a sequence
generated by

x̄n+1 = βnxn + (1 − βn)J∂hλn
(xn − λn∇g(xn)),

xn+1 = αnf (xn) + (1 − αn)J∂hλn
(I − λn∇g)(tnxn + (1 − tn)x̄n+1) ∀ n ≥ 1,

(40)

where {λn} ⊂ (0, 2α), and {αn}, {βn} and {tn} are sequences in (0, 1) which satisfy
the following conditions:
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(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) lim infn→∞(1 − tn)(1 − βn) > 0;
(C3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2α.

Then {xn} converges strongly to minimizer of g+ h.

4.3. Application to split feasibility problem

Let C and Q be non-empty, closed and convex subsets of Hilbert spaces H1 and
H2, respectively. Let T : H1 → H2 be a linear bounded operator with its adjoint
T∗. The split feasibility problem (SFP) is to find

x∗ ∈ C such that Tx∗ ∈ Q. (41)

The SFP can be used to model the intensity-modulated radiation therapy (see
[41–43]). To solve the SFP (41), we can rewrite it as the following convexly

Table 1. Comparison of Algorithm (19), Algorithm (17), Algorithm (15) and
Algorithm (16) for Example 5.1.

Algorithm (19) Algorithm (17) Algorithm (16) Algorithm (15)

Case 1 No. of Iter. 34 43 44 1806
Case 2 No. of Iter. 34 43 44 803

5 10 15 20 25 30 35 40

Number of iterations

10-5

100

E
n

Algorithm (19)
Algorithm (17)
Algorithm (16)
Algorithm (15)

Figure 1. The error plotting of iterations in Case 1.
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5 10 15 20 25 30 35

Number of iterations

10-5

100

E
n

Algorithm (19)
Algorithm (17)
Algorithm (16)
Algorithm (15)

Figure 2. The error plotting of iterations in Case 2.

Table 2. Comparison of Algorithm (19), Algorithm (16) and Algorithm
(15) for Example 5.3.

Algorithm (19) Algorithm (16) Algorithm (15)

Case 1 No. of Iter. 2028 4052 12,204
CPU 0.4311 0.4707 1.4134

Case 2 No. of Iter. 3776 7547 22,718
CPU 13.8184 13.9072 41.6642

Case 3 No. of Iter. 7347 14,688 44,201
CPU 100.2134 100.3403 302.2716

constrained minimization problem:

min
x∈C

g(x),

where g(x) := 1
2‖(I − PQ)Tx‖2. Note that the function g is differentiable convex

and has a Lipschitz gradient given by∇g = T∗(I − PQ)T. Further,∇g is 1/‖T‖2-
ism, where ‖T‖2 is the spectral radius of T∗T (see [13]). Thus, we have the SFP
equivalent to the variational inclusion problem (11) with A = ∇g and B = ∂iC.
It follows that

0 ∈ ∇g(x∗) + ∂iC(x∗) ⇔ 0 ∈ x∗ + λ∂iC(x∗) − (x∗ − λ∇g(x∗))

⇔ x∗ − λ∇g(x∗) ∈ x∗ + λ∂iC(x∗)

⇔ x∗ = (I + λ∂iC)−1(x∗ − λ∇g(x∗))

⇔ x∗ = PC(x∗ − λ∇g(x∗)).
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Original signal ( N=1,024, M=512, 30 spikes )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Measured values with noise ( SNR=40 )

50 100 150 200 250 300 350 400 450 500

-10
0

10

Recovered signal by Algorithm (19) ( 2,028 iterations, CPU=0.4311 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Recovered signal by Algorithm (16) ( 4,052 iterations, CPU=0.4707 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Recovered signal by Algorithm (15) ( 12,204 iterations, CPU=1.4134 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Figure 3. Comparison of recovered signal by using different algorithms in Case 1.

Theorem 4.3: Let C and Q be non-empty, closed and convex subsets of Hilbert
spaces H1 andH2, respectively. Let T : H1 → H2 be a bounded linear operator with
its adjoint T∗ andT �= 0. Let f : C → C be a contractionwith a constant θ ∈ (0, 1).
Suppose that the solution sets of SFP is non-empty. For any x1 ∈ C, let {xn} be a
sequence generated by

x̄n+1 = βnxn + (1 − βn)PC(xn − λnT∗(I − PQ)Txn),

xn+1 = αnf (xn) + (1 − αn)PC(I − λnT∗(I − PQ)T)

× (tnxn + (1 − tn)x̄n+1) ∀ n ≥ 1, (42)

where {λn} ⊂ (0, 2/‖T‖2), and {αn}, {βn} and {tn} are sequences in (0, 1) which
satisfy the following conditions:
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Figure 4. MSE versus number of iterations in Case 1.

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) lim infn→∞(1 − tn)(1 − βn) > 0;
(C3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2/‖T‖2.

Then {xn} converges strongly to solution of SFP.

5. Numerical experiments

In this section, we provide numerical experiments to illustrate the behaviour
of the our Algorithm (19) and also compare it with Algorithm (17) in [26],
Algorithm (15) in [24] and Algorithm (16) in [25].

Example 5.1: We consider the example in an infinite dimensional Banach spaces
outside Hilbert spaces which is taken from [24] (see also [44]). Let E = �3 and
x = (x1, x2, x3, . . .) ∈ �3. Let A,B : �3 → �3 be defined by

Ax = 2x + (1, 1, 1, 0, 0, 0, 0, . . .) and Bx = 5x for x ∈ �3.

It is to see thatA is 1/2-isa of order 2 and B is anm-accretive operator withR(I +
λB) = �3 for all λ > 0. Moreover,

JBλ (x − λAx) = 1 − 2λ
1 + 5λ

x − λ

1 + 5λ
(1, 1, 1, 0, 0, 0, 0, . . .),

for all x ∈ �3. It is not difficult to check that (A + B)−10 = {(−1
7 ,−1

7 ,−1
7 , 0, 0, 0,

0, . . .)}.
Since, in �3, we have q = 2 and κ2 = 2.Due toα = 1

2 , thenwe can chooseλn =
1
10 for all n ∈ N. We take αn = (1/2n), βn = 1/(3(n + 1)), δn = n/(3(n + 3)),
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Original signal ( N=2,048, M=1,024, 60 spikes )
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Measured values with noise ( SNR=40 )
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Recovered signal by Algorithm (19) ( 3,776 iterations, CPU=13.8184 )
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Recovered signal by Algorithm (16) ( 7,547 iterations, CPU=13.9072 )

200 400 600 800 1000 1200 1400 1600 1800 2000
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Recovered signal by Algorithm (15)  ( 22,718 iterations, CPU=41.6642 )
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1

Figure 5. Comparison of recovered signal by using different algorithms in Case 2.

ηn = 1 − (1/2n) − (n/(3(n + 3))), tn = 1
2 for all n ∈ N and f (x) = x/2 in those

algorithms. In our numerical experiments, we consider the following two cases
of starting point x1:

Case 1 : x1 = (71.23,−42.51,−1.42, 0, 0, 0, . . .);
Case 2 : x1 = (−27.53,−22.47, 4.64, 0, 0, 0, . . .).
Let u be randomly generated in �3. We choose the stopping criterion is En =

‖xn+1 − xn‖ < 10−5. The numerical results are reported in Table 1 and Figures 1
and 2.

Remark 5.2: From Table 1 and Figures 1 and 2, we see that our Algorithm (19)
has a number of iterations less than Algorithm (17) of Chang et al. [26],
Algorithm (16) of Shehu and Cai [25] and Algorithm (15) of Cholamjiak [24].
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Figure 6. MSE versus number of iterations in Case 2.

It is shown that our proposed algorithm has good convergence
behaviour.

Example 5.3: In this example, we consider the signal recovery by compressed
sensing which refers to a signal acquisition and reconstruction technique. In
signal processing, compressed sensing can be modelled as the following under
determinated linear equation system:

y = Tx + ε, (43)

where x ∈ R
N is a vector withm non-zero components to be recovered, y ∈ R

M

is the observed or measured data with noisy ε, and T : R
N → R

M(M < N) is a
bounded linear observation operator. It is know that problem (43) can be seen as
solving the following LASSO problem:

min
x∈RN

1
2
‖y − Tx‖22 subject to ‖x‖1 ≤ t, (44)

where t>0 is a given constant. In particular, ifC = {x ∈ R
N : ‖x‖1 ≤ t} andQ =

{y}, then the LASSO problem can be considered as the SFP (41).
The sparse vector x ∈ R

N is generated from uniform distribution in the inter-
val [−2, 2] withm non-zero elements. The matrix T ∈ R

M×N is generated from
a normal distribution with mean zero and one invariance. The observation y is
generated bywhiteGaussian noise with signal-to-noise ratio SNR = 40. The pro-
cess is started with t = m and starting point x1 is randomly generated inR

N . The
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Original signal ( N=4,096, M=2,048, 100 spikes )
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Figure 7. Comparison of recovered signal by using different algorithms in Case 3.

restoration accuracy is measured by the mean squared error as follows:

En = 1
N

‖xn − x∗‖22 < 10−5, (45)

where x∗ is an estimated signal of x.
We perform numerical computations for Algorithm (19) and also compare

with Algorithm (15) and Algorithm (16). Take αn = (1/(1500(n + 5))), βn =
(1/(3(n + 10))), tn = (n/(5700(n + 1))), δn = (n/(3(n + 3))), λn = 1/‖T‖2
for all n ∈ N, f (x) = x/2 and u = (1, 1, . . . , 1) ∈ R

N .
In our numerical experiments, we consider the following three cases of N,M

andm:
Case 1 : N = 1024,M = 512 andm = 30;
Case 2 : N = 2048,M = 1024 andm = 60;
Case 3 : N = 4096,M = 2048 andm = 100.
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Figure 8. MSE versus number of iterations in Case 3.

Then the numerical results are reported in Table 2 and Figures 3–8.

Remark 5.4: FromTable 2 and Figures 3–8, we see that our Algorithm (19) has a
number of iterations and cpu time less thanAlgorithm (16) of Shehu andCai [25]
and Algorithm (15) of Cholamjiak [24]. It is shown that our algorithm highly
improves those algorithms. This is the primary advantage of our algorithm in
comparison with other algorithms.
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1. Introduction

Let E be a real Banach space. Consider the following so-called monotone inclusion
problem: find x∗ ∈ E such that

0 ∈ (A+B)x∗, (1.1)

where A : E → E and B : E → 2E are single and set-valued mappings, respectively and
0 is a zero vector in E. In particular case, when A = 0, then the problem (1.1) becomes
the inclusion problem introduced by Rockafellar [1] and when E = Rn, then the problem

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2020 by TJM. All rights reserved.
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(1.1) becomes the generalized equation introduced by Robinson [2]. The set of solutions
of the problem (1.1) is denoted by (A+B)−10. Many practical nonlinear problems arising
in applied sciences such as in machine learning, image processing, statistical regression
and linear inverse problem can be formulated as this problem (see [3–5]).

A well-known method for solving the problem (1.1) in Hilbert spaces H, is the forward-
backward algorithm [6] which is defined by the following manner:{

x1 ∈ H,
xn+1 = JBλ (xn − λAxn), ∀n ≥ 1,

(1.2)

where JBλ := (I + λB)−1 is a resolvent of B for λ > 0. Here, I denotes the identity
operator of H. It was proved that the sequence generated by (1.2) converge weakly to a
point in (A+B)−10 under the assumption that A is α-cocoercivity, that is,

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ H

and λ is chosen in (0, 2α).
In order to get strong convergence, Takashashi et al. [7] introduced the following

modified forward–backward algorithm in Hilbert spaces H:{
x1, u ∈ H,
xn+1 = βnxn + (1− βn)(αnu+ (1− αn)JBλn(xn − λnAxn)), ∀n ≥ 1,

(1.3)

where A is an α-cocoercive mapping on H and {λn} ⊂ (0,∞). They also proved the
strong convergence of the generated by (1.3) converges strongly to a point in (A+B)−10
under appropriate conditions on {αn} and {βn}.

López et al. [8] established a strong convergence theorem of the forward-backward
algorithm (1.2) in a q-uniformly smooth and uniformly convex Banach spaces E. They
introduced a modified forward-backward algorithm with errors an and bn in the following
way: {

x1, u ∈ E,
xn+1 = αnu+ (1− αn)(JBλn(xn − λn(Axn + an)) + bn), ∀n ≥ 1,

(1.4)

where JBλn := (I + λnB)−1 is the resolvent of an m-accretive operator B, A is an α-
cocoercive mapping, {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1]. They also proved that the sequence
{xn} generated by (1.4) converges strongly to a point in (A+B)−10.

In recent years, various modifications of forward-backward algorithm have been con-
structed and modified by many authors in several settings (see, e.g., [9–16]). It can be
seen that, the cocoercivity of A of most of methods is strong assumption. To avoid this
strong assumption, Tseng [17] introduced the following algorithm in Hilbert spaces H,
later it is known as Tseng’s splitting algorithm:

x1 ∈ H,
yn = JBλn(I − λnA)xn,

xn+1 = yn − λn(Ayn −Axn), ∀n ≥ 1,

(1.5)

where A is Lipschitz continuous with a constant L > 0. It was shown that the sequence
{xn} generated by (1.5) converges weakly to a solution of (1.1) provided the step-size λn

is chosen in
(

0, 1
L

)
.
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On the other hand, the fixed point problem is problem of finding a point x∗ ∈ E such
that

x∗ = Tx∗, (1.6)

where T : E → E is a nonlinear mapping. The set of solutions of problem (1.6) is
denoted by F (T ) = {x ∈ E : x = Tx}. In real life, many mathematical models have been
formulated as this problem.

In this paper, we study the following problem: find x∗ ∈ E such that

x∗ ∈ F (T ) ∩ (A+B)−10. (1.7)

Currently, there have been many authors who interested in finding a common solution
of the fixed point problem (1.6) and the monotone inclusion problem (1.1) (see, e.g.,
[16, 18–23]).

Motivated by the works in the literature, we introduce two Halpern-Tseng type for
solving the monotone inclusion problem and the fixed point problem of a relatively non-
expansive mapping in the framework of Banach spaces. We prove the strong convergence
results of the proposed methods under some appropriate conditions. Finally, we provide
numerical experiments to compressed sensing in signal recovery. The results presented in
this paper are improve and generalize many known results in this direction.

2. Preliminaries

Let E be a real Banach space with its dual space E∗. We denote 〈x, f〉 by the value
of a functional f in E∗ at x in E, that is, 〈x, f〉 = f(x). For a sequence {xn} in E, the
strong convergence and the weak convergence of {xn} to x ∈ E are denoted by xn → x
and xn ⇀ x, respectively. The set of all real numbers is denoted by R, while N stands for
the set of nonnegative integers. Let SE denote the unit sphere of E. The space E is said
to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ SE . The space E is said to be uniformly smooth if the limit (2.1)
converges uniformly in x, y ∈ SE . It is said to be strictly convex if ‖(x + y)/2‖ < 1
whenever x, y ∈ SE and x 6= y. The space E is said to be uniformly convex if and only if
δE(ε) > 0 for all ε ∈ (0, 2], where δE is the modulus of convexity of E defined by

δE(ε) = inf
{

1− ‖x+y‖
2 : x, y ∈ SE , ‖x− y‖ ≥ ε

}
for all ε ∈ [0, 2]. Let p ≥ 2. The space E is said to be p-uniformly convex if there is a
c > 0 such that δE(ε) ≥ cεp for all ε ∈ (0, 2]. Let 1 < q ≤ 2. The space E is said to be
q-uniformly smooth if there exists a c > 0 such that ρE(t) ≤ ctq for all t > 0, where ρE is
the modulus of smoothness of E defined by

ρE(t) = sup
{
‖x+ty‖+‖x−ty‖

2 − 1 : x, y ∈ SE
}

for all t ≥ 0. Let 1 < q ≤ 2 < p <∞ with 1
p + 1

q = 1. It is observe that every p-uniformly

convex (q-uniformly smooth) space is uniformly convex (uniformly smooth) space. It is
known that E is p-uniformly convex (q-uniformly smooth) if and only if its dual E∗ is
q-uniformly smooth (p-uniformly convex) (see [24]). If E is uniformly convex then E is
reflexive and strictly convex and if E is uniformly smooth then E is reflexive and smooth
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(see [25]). Moreover, we know that for every p > 1, Lp and `p spaces are min{p, 2}-
uniformly smooth and max{p, 2}-uniformly convex, while Hilbert space is 2-uniformly
smooth and 2-uniformly convex (see [26] for more details).

Definition 2.1. Let C be a nonempty subset of E. Recall that a mapping A : C → E∗

is said to be:

(i) cocoercive if there exists a constant γ > 0 such that 〈Ax − Ay, x − y〉 ≥
γ‖Ax−Ay‖2 for all x, y ∈ C;

(ii) monotone if 〈Ax−Ay, x− y〉 ≥ 0 for all x, y ∈ C;
(iii) L-Lipschitz continuous if there exists a constant L > 0 such that ‖Ax−Ay‖ ≤
L‖x− y‖ for all x, y ∈ C;

(iv) hemicontinuous if for each x, y ∈ C, the mapping f : [0, 1] → E∗ defined by
f(t) = A(tx+ (1− t)y) is continuous with respect to the weak∗ topology of E∗.

Remark 2.2. It is easy to see that if A is cocoercive, then A is monotone and Lipschitz
continuous but converse is not true in general.

Definition 2.3. The normalized duality mapping J : E → 2E
∗

is defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, ∀x ∈ E,
where 〈·, ·〉 denotes the duality pairing between E and E∗.

If E is a Hilbert space, then J = I is the identity mapping on E. It is known that E
is smooth if and only if J is single-valued from E into E∗ and if E is a reflexive, smooth
and strictly convex, then J−1 is single-valued, one-to-one, surjective and it is the duality
mapping from E∗ into E. Moreover, if E is uniformly smooth then J is norm-to-norm
uniformly continuous on bounded subsets of E (see [25] for more details).

Lemma 2.4. [27, 28] (i) Let E be a 2-uniformly smooth Banach space. Then there exists
a constant κ > 0 such that

‖x− y‖2 ≤ ‖x‖2 − 2〈y, Jx〉+ κ‖y‖2, ∀x, y ∈ E.
(ii) Let E be a 2-uniformly convex Banach space. Then there exists a constant c > 0 such
that

‖x− y‖2 ≥ ‖x‖2 − 2〈y, Jx〉+ c‖y‖2, ∀x, y ∈ E.

Remark 2.5. It is well-known that κ = c = 1 whenever E is a Hilbert space. Moreover,
we refer to [28] for the exact values of the constants κ and c.

Next, we recall the following Lyapunov function which introduced in [29]:

Definition 2.6. Let E be a smooth Banach space. The Lyapunov functional φ : E×E →
R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E.

In the particular case in which E is a Hilbert space, then φ(x, y) = ‖x − y‖2 for all
x, y ∈ E. It is obvious from the definition of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2, ∀x, y ∈ E
and

φ(x, J−1(αJy + (1− α)Jz) ≤ αφ(x, y) + (1− α)φ(x, z), ∀x, y, z ∈ E, α ∈ [0, 1]. (2.2)
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In addition, the function φ satisfies the following three point identity :

φ(x, y) = φ(x, z)− φ(y, z) + 2〈y − x, Jy − Jz〉, ∀x, y, z ∈ E.

Lemma 2.7. [30] Let E be a 2-uniformly convex Banach space. Then there exists a
constant c > 0 such that

c‖x− y‖2 ≤ φ(x, y), ∀x, y ∈ E,
where c is the constant in Lemma 2.4 (ii).

Lemma 2.8. [31] Let E be a uniformly convex Banach space. Then there exists a con-
tinuous strictly increasing convex function g : [0, 2r)→ [0,∞) such that g(0) = 0 and

φ(x, J−1(αJy + (1− α)Jz) ≤ αφ(x, y) + (1− α)φ(x, z)− α(1− α)g(‖Jy − Jz‖)
for all α ∈ [0, 1], x ∈ E and y, z ∈ Br := {ω : ‖ω‖ ≤ r} for some r > 0.

The following important fact can be found in [32]. For two sequences {xn} and {yn}
in a uniformly convex and uniformly smooth Banach space E. Then

‖xn − yn‖ → 0 ⇔ ‖Jxn − Jyn‖ → 0 ⇔ φ(xn, yn)→ 0. (2.3)

Let C be a nonempty subset of a smooth Banach space E. A point p ∈ C is a fixed
point of T if p = Tp and we denote by F (T ) the set of fixed points of T . A mapping
T : C → C is called relatively nonexpansive if it satisfies the following conditions:

(i) F (T ) 6= ∅;
(ii) φ(p, Tx) ≤ φ(p, x) for all p ∈ F (T ) and x ∈ C;
(iii) I −T is demi-closed at zero, that is, whenever a sequence {xn} in C such that
xn ⇀ p and limn→∞ ‖xn − Txn‖ = 0, it follows that p ∈ F (T ).

Remark 2.9. If T satisfies (i) and (ii), then T is called relatively quasi-nonexpansive. In
a Hilbert space H, we know that φ(x, y) = ‖x− y‖2 for all x, y ∈ H. Hence, if T : C → C
is relatively quasi-nonexpansive, then it is quasi-nonexpansive, that is, ‖Tx−p‖ ≤ ‖x−p‖
for all p ∈ F (T ) and x ∈ C.

Lemma 2.10. [33] Let E be a strictly convex and smooth Banach space. Let C be a
closed and convex subset of E. If T : C → C be a relatively nonexpansive mapping, then
F (T ) is closed and convex.

We make use of the following mapping V : E × E∗ → R studied in [29]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗.
Obviously, V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗.

Lemma 2.11. [29] Let E be a reflexive, strictly convex and smooth Banach space. Then

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.

Let E be a reflexive, strictly convex and smooth Banach space. Let C be a nonempty,
closed convex subset of E. Then we know that for any x ∈ E, there exists a unique point
z ∈ C such that

φ(z, x) = min
y∈C

φ(y, x).

Such a mapping ΠC : E → C defined by z = ΠC(x) is called the generalized projection.
If E is a Hilbert space, then ΠC is coincident with the metric projection denoted by PC .
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Lemma 2.12. [29] Let E be a reflexive, strictly convex and smooth Banach space. Let
C be a nonempty, closed, and convex subset of E. For each x ∈ E and z ∈ C. Then the
following statements hold:

(i) z = ΠC(x) if and only if 〈y − z, Jx− Jz〉 ≤ 0, ∀y ∈ C.
(ii) φ(y,ΠC(x)) + φ(ΠC(x), x) ≤ φ(y, x), ∀y ∈ C.

Let B : E → 2E
∗

be a multi-valued mapping. The effective domain of B is denoted
by D(B) = {x ∈ E : Bx 6= ∅} and the range of B is also denoted by R(B) =

⋃
{Bx :

x ∈ D(B)}. The set of zeros of B is denoted by B−10 = {x ∈ D(B) : 0 ∈ Bx}. A
multi-valued mapping B from E into E∗ is said to be monotone if

〈x− y, u− v〉 ≥ 0, ∀x, y ∈ D(B), u ∈ Bx and v ∈ By.
A monotone operator B on E is said to be maximal if its graph G(B) = {(x, y) ∈ E×E∗ :
x ∈ D(B), y ∈ Bx} is not properly contained in the graph of any other monotone operator
on E. In other words, the maximality of B is equivalent to R(J + λB) = E∗ for λ > 0
(see [34, Theorem 1.2]). It is known that if B is maximal monotone, then B−10 is closed
and convex (see [35]). For a maximal monotone operator B, we define the resolvent of B
by JBλ (x) = (J + λB)−1Jx for x ∈ E and λ > 0. It is also known that B−10 = F (JBλ ).

Lemma 2.13. [34] Let E be a reflexive Banach space. Let A : E → E∗ be a mono-
tone, hemicontinuous and bounded mapping. Let B : E → 2E

∗
be a maximal monotone

mapping. Then A+B is a maximal monotone mapping.

Lemma 2.14. Let E be a reflexive, strictly convex and smooth Banach space. Let A :
E → E∗ be a mapping and B : E → 2E

∗
be a maximal monotone mapping. Then the

following statements hold:

(i) Define a mapping Tλx := JBλ ◦ J−1(J − λA)x for x ∈ E and λ > 0, then
F (Tλ) = (A+B)−10.

(ii) (A+B)−10 is closed and convex.

Proof. (i) Let x ∈ E and λ > 0. We see that

x = Tλx ⇔ x = JBλ ◦ J−1(J − λA)x

⇔ x = (J + λB)−1J ◦ J−1(J − λA)x

⇔ Jx− λAx ∈ Jx+ λBx

⇔ 0 ∈ (A+B)x

⇔ x ∈ (A+B)−10.

Hence F (Tλ) = (A+B)−10.
(ii) By Lemma 2.13, we know that A + B is maximal monotone, then we can show

that the set (A+B)−10 = {x ∈ E : 0 ∈ (A+B)x} is closed and convex.

Lemma 2.15. [36] Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + γnδn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence of real numbers such that

(i)
∑∞
n=1 γn =∞;
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(ii) lim supn→∞ δn ≤ 0 or
∑∞
n=1 |γnδn| <∞.

Then limn→∞ an = 0.

Lemma 2.16. [37] Let {an} be sequences of real numbers such that there exists a subse-
quence {ni} of {n} such that ani < ani+1 for all i ∈ N. Then there exists an increasing
sequence {mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all
(sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk := max{j ≤ k : aj ≤ aj+1}.

3. Main Results

In this section, we introduce two Halpern-Tseng type for finding a common solution
of the monotone inclusion problem and the fixed point problem in Banach spaces. From
now on, let E be a real 2-uniformly convex and uniformly smooth Banach space. Let the
mapping A : E → E∗ be monotone and L-Lipschitz continuous and B : E → 2E

∗
be

a maximal monotone operator. Let T : E → E be a relatively nonexpansive mapping.
Assume that Ω := F (T )∩(A+B)−10 6= ∅. To prove the strong convergence results, we also
need to assume that {αn} and {βn} are sequences in (0, 1), such that {βn} ⊂ [a, b] ⊂ (0, 1)
for some a, b > 0 and limn→∞ αn =∞ and

∑∞
n=1 αn =∞.

Algorithm 1 Halpern-Tseng type algorithm

Step 0. Let u, x1 ∈ E be arbitrary. Set n = 1.

Step 1. Compute

yn = JBλnJ
−1(Jxn − λnAxn). (3.1)

Step 2. Compute

zn = J−1(Jyn − λn(Ayn −Axn)). (3.2)

Step 3. Compute

xn+1 = J−1(αnJu+ (1− αn)(βnJzn + (1− βn)JTzn)). (3.3)

Set n := n+ 1 and go to Step 1.

Lemma 3.1. Let {xn} be a sequence generated by Algorithm 3. Then

φ(p, zn) ≤ φ(p, xn)−
(

1− κλ2
nL

2

c

)
φ(yn, xn), ∀p ∈ (A+B)−10,

where c and κ are the constants in Lemma 2.4.
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Proof. Let p ∈ (A+B)−10. By Lemma 2.4 (ii), we have

φ(p, zn) = φ(p, J−1(Jyn − λn(Ayn −Axn)))

= V (p, Jyn − λn(Ayn −Axn))

= ‖p‖2 − 2〈p, Jyn − λn(Ayn −Axn)〉+ ‖Jyn − λn(Ayn −Axn)‖2

≤ ‖p‖2 − 2〈p, Jyn〉+ 2λn〈p,Ayn −Axn〉+ ‖Jyn‖2 − 2λn〈yn, Ayn −Axn〉
+κ‖λn(Ayn −Axn)‖2

= ‖p‖2 − 2〈p, Jyn〉+ ‖yn‖2 − 2λn〈yn − p,Ayn −Axn〉+ κλ2
n‖Ayn −Axn‖2

= φ(p, yn)− 2λn〈yn − p,Ayn −Axn〉+ κλ2
n‖Ayn −Axn‖2

= φ(p, xn) + φ(xn, yn) + 2〈xn − p, Jyn − Jxn〉 − 2λn〈yn − p,Ayn −Axn〉
+κλ2

n‖Ayn −Axn‖2

= φ(p, xn) + φ(xn, yn)− 2〈yn − xn, Jyn − Jxn〉+ 2〈yn − p, Jyn − Jxn〉
−2λn〈yn − p,Ayn −Axn〉+ κλ2

n‖Ayn −Axn‖2

= φ(p, xn)− φ(yn, xn) + 2〈yn − p, Jyn − Jxn〉 − 2λn〈yn − p,Ayn −Axn〉
+κλ2

n‖Ayn −Axn‖2 + κλ2
n‖Ayn −Axn‖2

= φ(p, xn)− φ(yn, xn) + κλ2
n‖Ayn −Axn‖2

−2〈yn − p, Jxn − Jyn + κλ2
n‖Ayn −Axn‖2 − λn(Axn −Ayn)〉. (3.4)

By Lemma 2.7, we have

φ(p, zn) ≤ φ(p, xn)−
(

1− κλ2
nL

2

c

)
φ(yn, xn) + κλ2

n‖Ayn −Axn‖2

−2〈yn − p, Jxn − Jyn − λn(Axn −Ayn)〉. (3.5)

We now show that

〈yn − p, Jxn − Jyn − λn(Axn −Ayn)〉 ≥ 0.

From the definition of {yn}, we note that Jxn − λnAxn ∈ Jyn + λnByn. Since B is
maximal monotone, there exists vn ∈ Byn such that Jxn − λnAxn = Jyn + λnvn, it
follows that

vn =
1

λn

(
Jxn − Jyn − λnAxn

)
. (3.6)

Since 0 ∈ (A+ B)p and Ayn + vn ∈ (A+ B)yn, it follows from Lemma 2.13 that A+ B
is maximal monotone. Hence

〈yn − p,Ayn + vn〉 ≥ 0. (3.7)

Substituting (3.6) into (3.7), we have

1

λn
〈yn − p, Jxn − Jyn − λnAxn + λnAyn〉 ≥ 0,

which implies that

〈yn − p, Jxn − Jyn − λn(Axn −Ayn)〉 ≥ 0. (3.8)

Combining (3.5) and (3.8), we have

φ(p, zn) ≤ φ(p, xn)−
(

1− κλ2
nL

2

c

)
φ(yn, xn). (3.9)
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Theorem 3.2. Let {xn} be a sequence generated by Algorithm 3. Suppose that {λn} be a

sequence in
(
0,
√
c√
κL

)
such that {λn} ⊂ [a′, b′] ⊂

(
0,
√
c√
κL

)
for some a′, b′ > 0. Then {xn}

converges strongly to x∗ ∈ Ω, where x∗ = ΠΩ(u).

Proof. We first show that {xn} is bounded. Let z ∈ Ω. Since λn ∈
(
0,
√
c√
κL

)
, we have

1− κλ2
nL

2

c > 0. This implies by Lemma 3.1 that

φ(z, zn) ≤ φ(z, xn). (3.10)

Put wn = J−1(βnJzn + (1− βn)JTzn) for all n ∈ N. Thus by (2.2) and (3.10), we have

φ(z, wn) ≤ βnφ(z, zn) + (1− βn)φ(z, Tzn)

≤ βnφ(z, zn) + (1− βn)φ(z, zn)

≤ φ(z, xn). (3.11)

Using (3.11), we obtain

φ(z, xn+1) ≤ αnφ(z, u) + (1− αn)φ(z, wn)

≤ αnφ(z, u) + (1− αn)φ(z, xn)

≤ max{φ(z, u), φ(z, xn)}
...

≤ max{φ(z, u), φ(z, x1)}.

This implies that {φ(z, xn)} is bounded. Applying Lemma 2.7, we have {xn} is bounded,
so are {yn} and {zn}.

Let x∗ = ΠΩ(u). From Lemma 2.8 and (3.9), we have

φ(x∗, wn) ≤ βnφ(x∗, zn) + (1− βn)φ(x∗, T zn)− βn(1− βn)g(‖Jzn − JTzn‖)
≤ βnφ(x∗, zn) + (1− βn)φ(x∗, zn)− βn(1− βn)g(‖Jzn − JTzn‖)

≤ βnφ(x∗, zn) + (1− βn)
{
φ(x∗, xn)−

(
1− κλ2

nL
2

c

)
φ(yn, xn)

}
−βn(1− βn)g(‖Jzn − JTzn‖)

≤ φ(x∗, xn)− (1− βn)
(

1− κλ2
nL

2

c

)
φ(yn, xn)

−βn(1− βn)g(‖Jzn − JTzn‖). (3.12)

Then we have

φ(x∗, xn+1)

≤ αnφ(x∗, u) + (1− αn)
{
φ(x∗, xn)− (1− βn)

(
1− κλ2

nL
2

c

)
φ(yn, xn)

−βn(1− βn)g(‖Jzn − JTzn‖)
}

= αnφ(x∗, u) + (1− αn)φ(x∗, xn)− (1− αn)(1− βn)
(

1− κλ2
nL

2

c

)
φ(yn, xn)

−(1− αn)βn(1− βn)g(‖Jzn − JTzn‖).
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This implies that

(1− αn)(1− βn)
(

1− κλ2
nL

2

c

)
φ(yn, xn) + (1− αn)βn(1− βn)g(‖Jzn − JTzn‖)

≤ φ(x∗, xn)− φ(x∗, xn+1) + αnK, (3.13)

where K = supn∈N{|φ(x∗, u)− φ(x∗, xn)|}.
The rest of the proof will be divided into two cases:

Case 1. Suppose that there exists N ∈ N such that φ(x∗, xn+1) ≤ φ(x∗, xn) for all
n ≥ N . This implies that limn→∞ φ(x∗, xn) exists. By our assumptions, we have from
(3.13) that

lim
n→∞

φ(yn, xn) = 0 and lim
n→∞

g(‖Jzn − JTzn‖) = 0. (3.14)

Consequently,

lim
n→∞

‖xn − yn‖ = 0 and lim
n→∞

‖Jzn − JTzn‖ = 0. (3.15)

Moreover, we also have

lim
n→∞

‖Jxn − Jyn‖ = 0. (3.16)

Since A is Lipschitz continuous, we have

lim
n→∞

‖Axn −Ayn‖ = 0 (3.17)

and hence

‖Jzn − Jyn‖ = λn‖Axn −Ayn‖
→ 0. (3.18)

Combining (3.16) and (3.18), we obtain

‖Jxn − Jzn‖ ≤ ‖Jxn − Jyn‖+ ‖Jyn − Jzn‖
→ 0. (3.19)

Moreover from (3.15) and (3.19), we obtain

‖Jxn+1 − Jxn‖ ≤ ‖Jxn+1 − Jwn‖+ ‖Jwn − Jzn‖+ ‖Jzn − Jxn‖
= αn‖Ju− Jwn‖+ (1− βn)‖JTzn − Jzn‖+ ‖Jzn − Jxn‖
→ 0. (3.20)

Then we have from (3.19) and (3.20) that

lim
n→∞

‖xn − zn‖ = 0 (3.21)

and

lim
n→∞

‖xn+1 − xn‖ = 0. (3.22)

By the boundedness of {xn}, there exists a subsequence {xnk} of {xn} such that xnk ⇀
x̂ ∈ E and

lim sup
n→∞

〈xn − x∗, Ju− Jx∗〉 = lim
k→∞

〈xnk − x∗, Ju− Jx∗〉.
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From (3.21), we also have znk ⇀ x̂. Since ‖zn − Tzn‖ → 0 and I − T is demi-closed at
zero, we have x̂ ∈ F (T ). We next show that x̂ ∈ (A+B)−10. Let (v, w) ∈ G(A+B), we
have w −Av ∈ Bv. Since

(J − λnkA)xnk ∈ (J + λnkB)ynk .

It follows that

1

λnk

(
Jxnk − Jynk − λnkAxnk

)
∈ Bynk .

Since B is maximal monotone, we have〈
v − ynk , w −Av +

1

λnk

(
Jxnk − Jynk − λnkAxnk

)〉
≥ 0

Using the monotonicity of A, we have

〈v − ynk , w〉 ≥
〈
v − ynk , Av +

1

λnk

(
Jxnk − Jynk − λnkAxnk)

〉
= 〈v − ynk , Av −Axnk〉+

1

λnk
〈v − ynk , Jxnk − Jynk〉

= 〈v − ynk , Av −Aynk〉+ 〈v − ynk , Aynk −Axnk〉

+
1

λnk
〈v − ynk , Jxnk − Jynk〉

≥ 〈v − ynk , Aynk −Axnk〉+
1

λnk
〈v − ynk , Jxnk − Jynk〉.

Since ynk ⇀ x̂, it follows from (3.16) and (3.17) that

〈v − x̂, w〉 ≥ 0.

By the monotonicity of A + B, we get 0 ∈ (A + B)x̂, that is, x̂ ∈ (A + B)−10. So
x̂ ∈ Ω := F (T ) ∩ (A+B)−10. Thus we have

lim sup
n→∞

〈xn − x∗, Ju− Jx∗〉 = 〈x̂− x∗, Ju− Jx∗〉 ≤ 0.

From (3.22), we also have

lim sup
n→∞

〈xn+1 − x∗, Ju− Jx∗〉 ≤ 0. (3.23)

Finally, we show that xn → x∗. By Lemma 2.11, we have

φ(x∗, xn+1) = φ(x∗, J−1(αnJu+ (1− αn)Jwn))

= V (x∗, αnJu+ (1− αn)Jwn)

≤ V (x∗, αnJu+ (1− αn)Jwn − αn(Ju− Jx∗))
+2αn〈xn+1 − x∗, Ju− Jx∗〉

= V (x∗, αnJx
∗ + (1− αn)Jwn) + 2αn〈xn+1 − x∗, Ju− Jx∗〉

= φ(x∗, J−1(αnJx
∗ + (1− αn)Jwn)) + 2αn〈xn+1 − x∗, Ju− Jx∗〉

≤ αnφ(x∗, x∗) + (1− αn)φ(x∗, wn) + 2αn〈xn+1 − x∗, Ju− Jx∗〉
≤ (1− αn)φ(x∗, xn) + 2αn〈xn+1 − x∗, Ju− Jx∗〉. (3.24)

This together with (3.23) and (3.24), so we can conclude by Lemma 2.15 that φ(x∗, xn)→
0. Therefore, xn → x∗.
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Case 2. Suppose that there exists a subsequence {φ(x∗, xni)} of {φ(x∗, xn)} such that

φ(x∗, xni) < φ(x∗, xni+1)

for all i ∈ N. By Lemma 2.16, there exists a nondecreasing sequence {mk} ⊂ N such that
limk→∞mk =∞ and the following inequalities hold for all k ∈ N:

φ(x∗, xmk) ≤ φ(x∗, xmk+1) (3.25)

and

φ(x∗, xk) ≤ φ(x∗, xmk). (3.26)

As proved in the Case 1, we obtain

(1− αmk)(1− βmk)
(

1−
κλ2

mk
L2

c

)
φ(ymk , xmk)

+(1− αmk)βmk(1− βmk)g(‖Jzmk − JTzmk‖)
≤ φ(x∗, xmk)− φ(x∗, xmk+1) + αmkK

≤ αmkK,

where K = supk∈N{|φ(x∗, u)− φ(x∗, xmk)|}. By our assumptions, we have

lim
k→∞

φ(ymk , xmk) = 0 and lim
k→∞

g(‖Jzmk − JTzmk‖) = 0.

Consequently,

lim
k→∞

‖xmk − ymk‖ = 0 and lim
k→∞

‖Jzmk − JTzmk‖ = 0.

Using the same arguments as in the proof of Case 1, we can show that

lim
k→∞

‖xmk+1 − xmk‖ = 0

and

lim sup
k→∞

〈xmk+1 − x∗, Ju− Jx∗〉 ≤ 0.

From (3.24) and (3.25), we have

φ(x∗, xmk+1) ≤ (1− αmk)φ(x∗, xmk) + αmk〈xmk+1 − x∗, Ju− Jx∗〉
≤ (1− αmk)φ(x∗, xmk+1) + αmk〈xmk+1 − x∗, Ju− Jx∗〉.

This implies that

φ(x∗, xmk+1) ≤ 〈xmk+1 − x∗, Ju− Jx∗〉.

Then we have

lim sup
k→∞

φ(x∗, xmk+1) ≤ 0. (3.27)

Combining (3.26) and (3.27) we obtain

lim sup
k→∞

φ(x∗, xk) ≤ 0.

Hence lim supk→∞ φ(x∗, xk) = 0 and so xk → x∗. This completes the proof.

If we take T = I in Theorem 3.2, then we obtain the following result regarding the
monotone quasi-inclusion problem (1.1).
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Corollary 3.3. Let E be a real 2-uniformly convex and uniformly smooth Banach space.
Let the mapping A : E → E∗ be monotone and L-Lipschitz continuous and B : E → 2E

∗

be a maximal monotone mapping. Assume that (A+B)−10 6= ∅. Let {xn} be a sequence
generated by

x1, u ∈ E,
yn = JBλnJ

−1(Jxn − λnAxn),

xn+1 = J−1(αnJu+ (1− αn)(Jyn − λn(Ayn −Axn))), ∀n ≥ 1,

(3.28)

where {λn} is a sequence in
(
0, 1

L

)
such that {λn} ⊂ [a′, b′] ⊂

(
0, 1

L

)
for some a′, b′ > 0.

Suppose that {αn} is a sequence in (0, 1) such that limn→∞ αn =∞ and
∑∞
n=1 αn =∞.

Then the sequence {xn} generated by (3.28) converges strongly to x∗ ∈ (A+B)−10, where
x∗ = Π(A+B)−10(u).

We next propose a strong convergence theorem of another modification of Tseng’s
splitting algorithm with line search for solving the monotone inclusion problem and the
fixed point problem in Banach spaces. It is noted that this proposed algorithm does not
required to know the Lipschitz constant of the Lipschitz continuous mapping.

Algorithm 2 Halpern-Tseng type algorithm with Armijo-type line search

Step 0. Given γ > 0, l ∈ (0, 1) and µ ∈
(
0,
√

c
κ

)
. Let u, x1 ∈ E be arbitrary. Set n = 1.

Step 1. Compute

yn = JBλnJ
−1(Jxn − λnAxn), (3.29)

where λn = γlmn and mn is the smallest nonnegative integer m such that

λn‖Axn −Ayn‖ ≤ µ‖xn − yn‖. (3.30)

Step 2. Compute

zn = J−1(Jyn − λn(Ayn −Axn)). (3.31)

Step 3. Compute

xn+1 = J−1(αnJu+ (1− αn)(βnJzn + (1− βn)JTzn)). (3.32)

Set n := n+ 1 and go to Step 1.

Lemma 3.4. The Armijo line search rule defined by (3.30) is well defined and

min{γ, µl
L
} ≤ λn ≤ γ.

Proof. Since A is L-Lipschitz continuous on E, we have

‖Axn −A(JBγlmnJ
−1(Jxn − γlmnAxn))‖ ≤ L‖xn − JBγlmnJ−1(Jxn − γlmnAxn)‖.

Using the fact that L > 0 and µ > 0, we get

µ

L
‖Axn −A(JBγlmnJ

−1(Jxn − γlmnAxn))‖ ≤ µ‖xn − JBγlmnJ−1(Jxn − γlmnAxn)‖.

This implies that (3.30) holds for all γlmn ≤ µ
L and so λn is well defined. Obviously,

λn ≤ γ. If λn = γ, then the lemma is proved. Otherwise, if λn < γ, then we have from
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(3.30) that

‖Axn −A
(
JBλn

l

J−1
(
Jxn −

λn
l
Axn

))∥∥ >
µ
λn
l

∥∥xn − JBλn
l

J−1
(
Jxn −

λn
l
Axn

)∥∥.
Again by the L-Lipschitz continuity of A, we obtain λn >

µl
L . This completes the proof.

Lemma 3.5. Let {xn} be a sequence generated by Algorithm 3. Then

φ(p, zn) ≤ φ(p, xn)−
(

1− κµ2

c

)
φ(yn, xn), ∀p ∈ (A+B)−10,

where c and κ are the constants in Lemma 2.4.

Proof. From (3.30), we see that ‖Axn − Ayn‖ ≤ µ
λn
‖xn − yn‖. By using the same argu-

ments as in the proof of Lemma 3.1, we can show that this lemma holds.

Theorem 3.6. Let {xn} be a sequence generated by Algorithm 3. Then {xn} converges
strongly to x∗ ∈ Ω.

Proof. By using the same arguments as in the proof of Theorem 3.2, we immediately
obtain the proof.

If we take T = I in Theorem 3.6, then we obtain the following result regarding the
monotone quasi-inclusion problem (1.1).

Corollary 3.7. Let E be a real 2-uniformly convex and uniformly smooth Banach space.
Let the mapping A : E → E∗ be monotone and L-Lipschitz continuous and B : E → 2E

∗

be a maximal monotone operator. Assume that (A+ B)−10 6= ∅. Given γ > 0, l ∈ (0, 1)
and µ ∈

(
0,
√

c
κ

)
. Let {xn} be a sequence generated by

x1, u ∈ E,
yn = JBλnJ

−1(Jxn − λnAxn),

xn+1 = J−1(αnJu+ (1− αn)(Jyn − λn(Ayn −Axn))), ∀n ≥ 1,

(3.33)

where λn = γlmn and mn is the smallest nonnegative integer m such that

λn‖Axn −Ayn‖ ≤ µ‖xn − yn‖.
Suppose that {αn} is a sequence in (0, 1) such that limn→∞ αn =∞ and

∑∞
n=1 αn =∞.

Then the sequence {xn} generated by (3.33) converges strongly to x∗ ∈ (A+B)−10, where
x∗ = Π(A+B)−10(u).

4. Numerical Experiments

In this section, we provide numerical experiments to the signal recovery in compressed
sensing by using our proposed algorithms. Moreover, we also compare the mentioned
algorithms with Tseng’s splitting algorithm (1.5). In signal recovery, compressed sensing
can be modeled as the following under determinated linear equation system:

y = Cx+ ε (4.1)

where x ∈ RN is a vector with m nonzero components to be recovered, y ∈ RM is the
observed or measured data with noisy ε, and C : RN → RM (M < N) is a bounded linear
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observation operator. It is known that to solve (4.1) can be seen as solving the LASSO
problem [5]:

min
x∈Rn

1

2
‖Cx− y‖22 + λ‖x‖1, (4.2)

where λ > 0. In this case, we set A = ∇f the gradient of f , where f(x) = 1
2‖Cx − y‖

2
2

and B = ∂g the subdifferential of g, where g(x) = λ‖x‖1. Then the LASSO problem
(4.2) can be considered as the monotone quasi-inclusion problem (1.1). It is known
that ∇f(x) = Ct(Cx − y) and it is ‖C‖2-Lipschitz continuous and monotone (see [3]).
Moreover, ∂g is maximal monotone (see [1]).

In this experiment, the sparse vector x ∈ RN is generated from uniform distribution in
the interval [−2, 2] with m nonzero elements. The matrix C ∈ RM×N is generated from
a normal distribution with mean zero and one invariance. The observation y is generated
by white Gaussian noise with signal-to-noise ratio (SNR)=40. The restoration accuracy
is measured by the mean squared error (MSE) as follows:

En =
1

N
‖xn − x‖22 < 10−5, (4.3)

where xn is an estimated signal of x. In our numerical test, we compare our Algorithm 3
and Algorithm 3 (T = I) with Tseng’s splitting algorithm (1.5).

We take αn = 1
15(n+5) and λn = 0.3

‖C‖2 in Algorithm 3 and take λn = 0.3
‖C‖2 in Tseng’s

splitting algorithm (1.5). For Alogorithm 3, we take αn = 1
15(n+5) , γ = 5, µ = 0.5,

l = 0.3. The point u is chosen to be (1, 1, 1, . . . , 1) ∈ RN and the starting point x1 is
randomly generated in RN . We perform the numerical test with the following four cases:

Case 1: N = 512, M = 256 and m = 10;
Case 2: N = 1024, M = 512 and m = 30;
Case 3: N = 2048, M = 1024 and m = 60;
Case 4: N = 4096, M = 2048 and m = 100.
The numerical results are reported as follows:

Table 1. The comparison of the proposed algorithms with Tseng’s split-
ting algorithm

Algorithm 3 Algorithm 3 Tseng’s splitting algorithm
Case 1 No. of Iter. 1,850 4,864 5,689

Case 2 No. of Iter. 3,320 10,186 12,753

Case 3 No. of Iter. 7,126 19,076 24,666

Case 4 No. of Iter. 14,889 40,743 48,652

We next demonstrate the graphs of original signal and recovered signal by Algorithm
3, Algorithm 3 and Tseng’s splitting algorithm. The number of iterations are reported in
the Figures 1-8, respectively.
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Original signal ( N=512, M=256, 10 spikes )
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Figure 1: The comparison of recovered signal by using different algorithms in Case 1.
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Figure 2: The plotting of MSE versus number of iterations in Case 1.
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Original signal ( N=1,024, M=512, 30 spikes )
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Figure 3: The comparison of recovered signal by using different algorithms in Case 2.
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Figure 4: The plotting of MSE versus number of iterations in Case 2.
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Original signal ( N=2,048, M=1,024, 60 spikes )
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Figure 5: The comparison of recovered signal by using different algorithms in Case 3.
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Figure 6: The plotting of MSE versus number of iterations in Case 3.
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Original signal ( N=4,096, M=2,048, 100 spikes )
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Figure7: The comparison of recovered signal by using different algorithms in Case 4.
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Figure 8: The plotting of MSE versus number of iterations in Case 4.
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1 Introduction

Let X be a real Banach space,we consider the following so-called variational inclusion
problem: find a point x ∈ X such that

0 ∈ Ax + Bx, (1.1)

where A : X → X is an operator and B : X → 2X is a set-valued operator. The set
of solutions of (1.1) is denoted by (A + B)−10.

Variational inclusions have been studied widely in applied sciences. They pro-
vide a unified framework for studying many real-world problems arising economics,
structural analysis, mechanics, optimization problems, signal processing and image
recovery. Furthermore, it is well known that this problem includes, as special cases,
convex programming, variational inequalities, split feasibility problem and minimiza-
tion problem.

In a Hilbert space H , a classical method for solving this problem is the forward-
backward splitting method [9] which is defined by the following manner: x1 ∈ H
and

xn+1 = (I + r B)−1(xn − r Axn), n ≥ 1, (1.2)

where r > 0. We see that each step of iterates involves only with A as the forward
step and B as the backward step, but not the sum of A and B. This method generalizes
the proximal point algorithm [10] and the gradient method [11].

In 2010, Takahashi et al. [20] introduced the following iteration process formaximal
monotone operators with nonlinear operator in Hilbert spaces H : x, x1 ∈ C and

xn+1 = βnxn + (1 − βn)S(αnx + (1 − αn)Jλn (xn − λn Axn)), n ≥ 1, (1.3)

where {αn}, {βn} ⊂ (0, 1), {λn} is a positive sequence, A : C → H is an inverse-
strongly monotone mapping, B : D(B) ⊂ C → 2H is a maximal monotone operator,
and S is a nonexpansive mapping on C . They showed that the sequence {xn} gener-
ated by (1.3) converges strongly to a point in F(S) ∩ (A + B)−10 under some mild
conditions.

For solving the problem (1.1) in Banach spaces X , López et al. [21] introduced
the following Halpern-type forward-backward method. For an initial point u, x1 ∈ X ,
define a sequence {xn} by

xn+1 = αnu + (1 − αn)(J
B
rn (xn − rn(Axn + an)) + bn), (1.4)

where J B
r is the resolvent of B, {rn} ⊂ (0,∞), {αn} ⊂ (0, 1] and {an}, {bn} are

error sequences in X . It was proved that the sequence {xn} generated by (1.4) strongly
converges to a zero point of the sum of A and B under some appropriate conditions.

Recently, Yang et al. [25] introduced the following algorithm for solving the fixed
point problem of a nonexpansive mapping S in a Hilbert space:

xn+1 = βSxn + (1 − β)PC [(1 − αn)xn], n ≥ 1. (1.5)



22 P. Cholamjiak et al.

It was proved that the sequence {xn} generated by (1.5) converges strongly to the
minimum-norm fixed point of S.

We know that, in many practical optimization problems with physical and engi-
neering background, it is needed to find minimum-norm solution of given problems.
We note that finding minimum-norm solutions attracted recently many researcher’s
interest, due to the fact that these algorithms have extensive applications in a variety
applied areas such as inverse problems, partial differential equations, linear program-
ming, image recovery, signal processing and so on (see [6,12,13]).

Motivated and inspired by the above results, we study an explicit parallel algorithm
for solving variational inclusion problem for the sumof accretive andm-accretive oper-
ators and fixed point problems in the framework of q-uniformly smooth and uniformly
convex Banach spaces. We prove its strong convergence under some mild conditions.
Finally, we provide some applications to the main result. The results presented in this
paper extend and improve the corresponding results in the literature.

2 Preliminaries

Throughout this paper, we denote by X and X∗ the real Banach space and the dual
space of X , respectively. Let C be a nonempty subset of a real Banach space X . A
mapping S : C → C is said to be L-Lipschitzian if there exists a constant L > 0 such
that

‖Sx − Sy‖ ≤ L‖x − y‖, ∀x, y ∈ C .

If L = 1, then S is a nonexpansive mapping. We denote the fixed points set of the
mapping S by F(S), i.e., F(S) = {x ∈ C : x = Sx}.

Let q > 1 be a real number. The generalized duality mapping Jq : X → 2X
∗
is

defined by

Jq(x) = {
jq(x) ∈ X∗ : 〈x, jq(x)〉 = ‖x‖q , ‖ jq(x)‖ = ‖x‖q−1

}
,

where 〈·, ·〉 denotes the duality pairing between X and X∗. In particular, Jq = J2
is called the normalized duality mapping and Jq(x) = ‖x‖q−2 J2(x) for x �= 0. If
X := H is a real Hilbert space, then J = I , where I is the identity mapping. It is well
known that if X is smooth, then Jq is single-valued, which is denoted by jq (see [19]).

We use the notation xn⇀x stands for theweak convergence of {xn} to x and xn → x
stands for the strong convergence of {xn} to x . For q > 1, we say that a generalized
dualitymapping jq isweakly sequentially continuous if for each {xn} ⊂ X with xn⇀x ,
then jq(xn)⇀∗ jq(x).

The modulus of convexity of X is the function δ : (0, 2] → [0, 1] defined by

δ(ε) = inf
{
1 − ‖x+y‖

2 : x, y ∈ X , ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε
}

.

A Banach space X is said to be uniformly convex if δ(ε) > 0 for all ε ∈ (0, 2].
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The modulus of smoothness of X is the function ρ : R+ := [0,∞) → R
+ defined

by

ρ(t) = sup
{ ‖x+t y‖+‖x−t y‖

2 − 1 : x, y ∈ X , ‖x‖ = ‖y‖ = 1
}

.

A Banach space X is said to be uniformly smooth if ρX (t)
t → 0 as t → 0. Suppose

that 1 < q ≤ 2, then X is said to be q-uniformly smooth if there exists c > 0 such
that ρ(t) ≤ ctq for all t > 0. If X is q-uniformly smooth, then X is also uniformly
smooth. For a Hilbert space H , L p space and l p space, we note that

H , L p and l p are

{
2 − uniformly smooth, if 2 ≤ p < ∞,

p − uniformly smooth, if 1 < p ≤ 2.

Furthermore, the following facts are well known (see [1,23]).

(1) For 2 ≤ p < ∞, the spaces of L p and l p are 2-uniformly smooth with Kq =
K2 = p − 1.

(2) For 1 < p ≤ 2, the spaces of L p and l p are p-uniformly smooth with Kq =
Kp = (1 + t p−1

p )(1 + tp)1−p, where tp is the unique solution of the equation

(p − 2)t p−1 + (p − 1)t p−2 − 1 = 0, 0 < t < 1.

(3) Every Hilbert space is 2-uniformly smooth with Kq = K2 = 1.
(4) For 1 < p < ∞, the spaces of L p and l p are uniformly smooth and uniformly

convex. More precisely, L p is min{p, 2}-uniformly smooth for every p > 1.

Let A : X → 2X be a set-valued mapping. We denote the domain and range of
an operator A : X → 2X by D(A) = {x ∈ X : Ax �= ∅} and R(A) = ⋃{Az : z ∈
D(A)}, respectively. Let q > 1. A set-valued mapping A : D(A) ⊂ X → 2X is said
to be accretive of order q if for each x, y ∈ D(A), there exists jq(x − y) ∈ Jq(x − y)
such that

〈u − v, jq(x − y)〉 ≥ 0, u ∈ Ax and v ∈ Ay.

An accretive operator A is said to be m-accretive if R(I + λA) = X for all λ > 0.
For an accretive operator A, we can define a mapping J A

λ : R(I + λA) → D(A)

by J A
λ = (I + λA)−1 for each λ > 0. Such J A

λ are called the resolvents of A for
λ > 0. In a real Hilbert space, an operator A ism-accretive if and only if A is maximal
monotone (see [19]).

Let α > 0 and q > 1. A mapping A : C → X is said to be α-inverse strongly
accretive (α-isa) of order q if for each x, y ∈ X , there exists jq(x − y) ∈ Jq(x − y)
such that

〈Ax − Ay, jq(x − y)〉 ≥ α‖Ax − Ay‖q .

If X := H is a real Hilbert space, then A : C → H is called α-inverse strongly
monotone (α-ism). It is obvious that if A is an α-ism then A is 1/α-Lipschitzian.
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Lemma 2.1 [21] Let X be a q-uniformly smooth Banach space. Let A : C → X be
an α-isa of order q. Then the following inequality holds for all x, y ∈ C:

‖(I − λA)x − (I − λA)y‖q ≤ ‖x − y‖q − λ(αq − Kqλ
q−1)‖Ax − Ay‖q , (2.1)

wherer κq is the q-uniformly smoothness coefficient of X. In particular, if 0 < λ <
( αq
Kq

) 1
q−1 , then I − λA is nonexpansive.

Let C be a nonempty, closed and convex subset of a real Banach space X and let
D be a nonempty subset of C . A retraction from C to D is a mapping Q : C → D
such that Qx = x for all x ∈ D. A mapping Q : C → D is said to be sunny if

Q(t x + (1 − t)Qx) = Qx,

whenever t x + (1− t)Qx ∈ C for x ∈ C and t ≥ 0. A sunny nonexpansive retraction
is a sunny retraction which is also nonexpansive (see [19]). It is well known that if
X := H is a real Hilbert space, then a sunny nonexpansive retraction QC is coincident
with the metric projection PC from H onto C .

Lemma 2.2 [16] Let C be a closed and convex subset of a smooth Banach space X.
Let Q : X → C be a retraction. Then the following are equivalent:

(a) Q is sunny and nonexpansive;
(b) 〈x − Qx, jq(y − Qx)〉 ≤ 0 for all x ∈ X and y ∈ C.

Lemma 2.3 [21] Let X be a Banach space. Let A : X → X be an α-isa of order q
and B : X → 2X be an m-accretive operator. Then we have

F(J B
λ (I − λA)) = (A + B)−10.

Lemma 2.4 [23] Let q > 1 and let X be a real normed space with the generalized
duality mapping jq . Then, for each x, y ∈ X, we have

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x + y)〉

for all jq(x + y) ∈ Jq(x + y).

Lemma 2.5 [23] Let p > 1 and r > 0 be two fixed real numbers and X be a Banach
space. Then the following are equivalent.

(i) X is uniformly convex;
(ii) There is a strictly increasing, continuous and convex function g : R+ → R

+ such
that g(0) = 0 and

g(‖x − y‖) ≤ ‖x‖p − p〈x, jp(y)〉 + (p − 1)‖y‖p, ∀x, y ∈ Br .

Lemma 2.6 [5] Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space X and S : C → C be a nonexpansivemapping. Then I−S is demiclosed
at zero, that is, xn⇀x and xn − Sxn → 0 implies x = Sx .
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Lemma 2.7 [18] Let {xn} and {yn} be bounded sequences in a Banach space X and let
{βn} be a sequence in [0, 1]with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose
xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ −
‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Proposition 2.8 [14] Let q > 1. Then the following inequality holds:

aq − bq ≤ qaq−1(a − b),

for arbitrary positive real numbers a, b.

Lemma 2.9 [24] Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − γn)an + γnδn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0 γn = ∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 |γnδn| < ∞.

Then, limn→∞ an = 0.

Lemma 2.10 (The Resolvent Identity [3]) For λ,μ > 0 and x ∈ X, we have

J B
λ x = J B

μ

(μ

λ
x +

(
1 − μ

λ

)
J B
λ x

)
.

Using the resolvent identity, we have the following lemma.

Lemma 2.11 For each λ,μ > 0 then

‖J B
λ x − J B

μ x‖ ≤
∣∣∣∣
λ − μ

λ

∣∣∣∣ ‖J B
λ x − x‖ for all x ∈ X .

Lemma 2.12 Let X be a real q-uniformly smooth Banach space. Let B be an m-
accretive operator on X and let J B

λ be a resolvent of B for λ > 0. Then we have

‖J B
λ x − J B

λ y‖q ≤ 〈x − y, jq(J
B
λ x − J B

λ y)〉, ∀x, y ∈ X .

Proof For any x, y ∈ X and λ > 0, we set u = J B
λ x and v = J B

λ y. By definition of
the accretive operator, we have x−u ∈ λBu and y−v ∈ λBv. Since B ism-accretive,
we have

0 ≤ 〈x − u − (y − v), jq(u − v)〉
= 〈x − y, jq(u − v)〉 − 〈u − v, jq(u − v)〉
= 〈x − y, jq(u − v)〉 − ‖u − v‖q ,
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which implies that

‖u − v‖q ≤ 〈x − y, jq(u − v)〉,

i.e.,

‖J B
λ x − J B

λ y‖q ≤ 〈x − y, jq(J
B
λ x − J B

λ y)〉, ∀x, y ∈ X .

��

3 Main result

In this section, we now are in position to give a proof of our main result.

Theorem 3.1 Let C be a nonempty, closed and convex subset of a q-uniformly smooth
and uniformly convexBanach spaces X which admits aweakly sequentially continuous
duality mapping jq : X → X∗. Let A : C → X be an α-isa of order q and let
B : D(B) ⊂ C → 2X be an m-accretive operator. Let J B

λ = (I + λB)−1 be a
resolvent of B for λ > 0 and let S : C → C be a nonexpansive mapping such that
� := F(S) ∩ (A + B)−10 �= ∅. For given x1 ∈ C, let {xn} be a sequence defined by

{
yn = (1 − γ )Sxn + γ J B

λn
((1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(3.1)

where γ ∈ (0, 1), {αn}, {βn} ⊂ (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1;

(C3) 0 < a′ ≤ λn < λn
1−αn

≤ b′ <
( αq
Kq

) 1
q−1 and limn→∞ |λn+1 − λn| = 0.

Then, the sequence {xn} defined by (3.1) converges strongly to a point x∗ = Q�0,
where Q� is a sunny nonexpansive retraction of C onto �.

Proof First, we will show that {xn} is bounded. Set zn = J B
λn

((1 − αn)xn − λn Axn)
for all n ≥ 1. Taking p ∈ �, we obtain

p = Sp = J B
λn

(p − λn Ap) = J B
λn

(
αn p + (1 − αn)

(
p − λn

1 − αn
Ap

))
.

Since J B
λn

and I − λn
1−αn

A are nonexpansive (see Lemma 2.1), we have

‖zn − p‖
=

∥∥∥∥J
B
λn

(
(1 − αn)

(
I − λn

1 − αn
A

)
xn

)
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−J B
λn

(
αn p + (1 − αn)

(
I − λn

1 − αn
A

)
p

)∥∥∥∥

≤
∥∥∥∥αn(−p) + (1 − αn)

[(
I − λn

1 − αn
A

)
xn −

(
I − λn

1 − αn
A

)
p

]∥∥∥∥

≤ αn‖p‖ + (1 − αn)

∥∥∥∥

(
I − λn

1 − αn
A

)
xn −

(
I − λn

1 − αn
A

)
p

∥∥∥∥

≤ (1 − αn)‖xn − p‖ + αn‖p‖. (3.2)

Hence, it follows that

‖yn − p‖ = ‖(1 − γ )(Sxn − p) + γ (zn − p)‖
≤ (1 − γ )‖Sxn − p‖ + γ ‖zn − p‖
≤ (1 − γ )‖xn − p‖ + γ

[
(1 − αn)‖xn − p‖ + αn‖p‖

]

= (1 − αnγ )‖xn − p‖ + αnγ ‖p‖.

Then, we see that

‖xn+1 − p‖ = ‖βn(xn − p) + (1 − βn)(yn − p)‖
≤ βn‖xn − p‖ + (1 − βn)

[
(1 − αnγ )‖xn − p‖ + αnγ ‖p‖]

= [
1 − (1 − βn)αnγ

]‖xn − p‖ + (1 − βn)αnγ ‖p‖
≤ max{‖xn − p‖, ‖p‖}.

By induction, we have

‖xn − p‖ ≤ max {‖x1 − p‖, ‖p‖} , ∀n ≥ 1.

Hence, {xn} is bounded.
Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Set zn = J B

λn
un , where un =

(1 − αn)xn − λn Axn . We observe that

‖zn+1 − zn‖
= ‖J B

λn+1
un+1 − J B

λn
un‖

≤ ‖J B
λn+1

un+1 − J B
λn+1

un‖ + ‖J B
λn+1

un − J B
λn
un‖

≤ ‖un+1 − un‖ + ‖J B
λn+1

un − J B
λn
un‖

= ‖(1 − αn+1)xn+1 − λn+1Axn+1 − ((1 − αn)xn − λn Axn)‖
+‖J B

λn+1
un − J B

λn
un‖

=
∥∥∥∥(αn − αn+1)xn + (1 − αn+1)

[(
I − λn+1

1 − αn+1
A

)
xn+1

−
(
I − λn+1

1 − αn+1
A

)
xn

]
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+(λn − λn+1)Axn

∥∥∥∥ + ‖J B
λn+1

un − J B
λn
un‖

≤ |αn+1 − αn|‖xn‖ + (1 − αn+1)

∥∥∥∥

(
I − λn+1

1 − αn+1
A

)
xn+1

−
(
I − λn+1

1 − αn+1
A

)
xn

∥∥∥∥

+|λn+1 − λn|‖Axn‖ + ‖J B
λn+1

un − J B
λn
un‖

≤ (1 − αn+1)‖xn+1 − xn‖ + |αn+1 − αn|‖xn‖ + |λn+1 − λn|‖Axn‖
+‖J B

λn+1
un − J B

λn
un‖.

On the other hand, by Lemma 2.11, we have

‖J B
λn+1

un − J B
λn
un‖ ≤ |λn+1 − λn|

λn+1
‖J B

λn+1
un − un‖.

Then, it follows that

‖zn+1 − zn‖ ≤ (1 − αn+1)‖xn+1 − xn‖ + |αn+1 − αn|‖xn‖ + |λn+1 − λn|‖Axn‖
+|λn+1 − λn|

λn+1

∥∥∥J B
λn+1

un − un
∥∥∥ . (3.3)

Note that xn+1 = βnxn + (1− βn)yn , where yn = (1− γ )Sxn + γ zn . Then, we have

‖yn+1 − yn‖ = ‖(1 − γ )(Sxn+1 − Sxn) + γ (zn+1 − zn)‖
≤ (1 − γ )‖Sxn+1 − Sxn‖ + γ ‖zn+1 − zn‖
≤ (1 − γ )‖xn+1 − xn‖ + γ ‖zn+1 − zn‖. (3.4)

Substituting (3.3) into (3.4), we have

‖yn+1 − yn‖
≤ (1 − γ )‖xn+1 − xn‖ + γ

[
(1 − αn+1)‖xn+1 − xn‖ + |αn+1 − αn|‖xn‖

+|λn+1 − λn|‖Axn‖ + |λn+1 − λn|
λn+1

‖J B
λn+1

un − un‖
]

≤ (1 − αn+1γ )‖xn+1 − xn‖ +
(

|αn+1 − αn| + |λn+1 − λn| + |λn+1 − λn|
a′

)
M,

where M > 0 is an appropriate constant. From (C1) and (C3), we have

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖
) ≤ 0.
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So by Lemma 2.7, we conclude that

lim
n→∞ ‖xn − yn‖ = 0. (3.5)

Consequently,

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1 − βn)‖xn − yn‖ = 0. (3.6)

Next, we show that limn→∞ ‖xn − Sxn‖ = 0. By the convexity of ‖ · ‖q for all
q > 1 and 2.1, we see that

‖un − p‖q (3.7)

=
∥∥∥∥(1 − αn)

[(
xn − λn

1 − αn
Axn

)
−

(
p − λn

1 − αn
Ap

)]
+ αn(−p)

∥∥∥∥

q

≤ (1 − αn)

∥∥∥∥

(
xn − λn

1 − αn
Axn

)
−

(
p − λn

1 − αn
Ap

)∥∥∥∥

q

+ αn‖p‖q

≤ (1 − αn)

[
‖xn − p‖q − λn

1 − αn

(
αq − Kqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q

]
+ αn‖p‖q

≤ ‖xn − p‖q − λn

(
αq − Kqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q + αn‖p‖q . (3.8)

Hence, we have

‖yn − p‖q
= ‖(1 − γ )(Sxn − p) + γ (J B

λn
un − p)‖q

≤ (1 − γ )‖Sxn − p‖q + γ ‖J B
λn
un − p‖q

≤ (1 − γ )‖xn − p‖q + γ ‖un − p‖q
≤ (1 − γ )‖xn − p‖q

+ γ

[
‖xn − p‖q − λn

(
αq − Kqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q + αn‖p‖q

]

= ‖xn − p‖q − λnγ

(
αq − Kqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q + αnγ ‖p‖q .

Consequently,

‖xn+1 − p‖q
≤ βn‖xn − p‖q + (1 − βn)‖yn − p‖q
≤ βn‖xn − p‖q

+ (1−βn)

[
‖xn − p‖q−λnγ

(
αq− Kqλ

q−1
n

(1−αn)q−1

)
‖Axn−Ap‖q+αnγ ‖p‖q

]
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= ‖xn − p‖q − λn(1 − βn)γ

(
αq − Kqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q

+ αnγ (1 − βn)‖p‖q ,

which implies by (C2), (C3) and Proposition 2.8 that

λn(1 − βn)γ

(
αq − Kqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q

≤ a′(1 − b)γ
(
αq − kq(b

′)q−1)‖Axn − Ap‖q
≤ ‖xn − p‖q − ‖xn+1 − p‖q + αnγ (1 − βn)‖p‖q
≤ q‖xn − p‖q−1(‖xn − p‖ − ‖xn+1 − p‖) + αnγ (1 − βn)‖p‖q
≤ q‖xn − p‖q−1‖xn+1 − xn‖ + αnγ (1 − βn)‖p‖q .

Then, by (C1), (C3) and (3.6), we obtain

lim
n→∞ ‖Axn − Ap‖ = 0. (3.9)

On the other hand, by Proposition 2.12 and Lemma 2.5, we have

‖zn − p‖q
= ‖J B

λn
((1 − αn)xn − λn Axn) − J B

λn
(p − λn Ap)‖q

≤ 〈(1 − αn)xn − λn Axn − (p − λn Ap), jq(zn − p)〉
≤ 1

q

[
‖(1 − αn)xn − λn Axn − (p − λn Ap)‖q + (q − 1)‖zn − p‖q

−g(‖(1 − αn)xn − λn(Axn − Ap) − zn‖)
]
,

which implies that

‖zn − p‖q
≤ ‖(1 − αn)xn − λn Axn − (p − λn Ap)‖q

− g(‖(1 − αn)xn − λn(Axn − Ap) − zn‖)
≤ αn‖p‖q + ‖xn − p‖q − g(‖(1 − αn)xn − λn(Axn − Ap) − zn‖).

Then, it follows that

‖yn − p‖q
≤ (1 − γ )‖Sxn − p‖q + γ ‖zn − p‖q
≤ (1 − γ )‖xn − p‖q + γ ‖zn − p‖q
≤ (1 − γ )‖xn − p‖q
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+ γ

[
αn‖p‖q + ‖xn − p‖q − g(‖(1 − αn)xn − λn(Axn − Ap) − zn‖)

]

= ‖xn − p‖q + αnγ ‖p‖q − γ g(‖(1 − αn)xn − λn(Axn − Ap) − zn‖).
(3.10)

Consequently,

‖xn+1 − p‖q
≤ βn‖xn − p‖q + (1 − βn)‖yn − p‖q
≤ βn‖xn − p‖q

+ (1 − βn)

[
‖xn−p‖q+αnγ ‖p‖q−γ g(‖(1−αn)xn−λn(Axn − Ap)−zn‖)

]

= ‖xn − p‖q + αnγ (1 − βn)‖p‖q
− (1 − βn)γ g(‖(1 − αn)xn − λn(Axn − Ap) − zn‖),

which implies from (C2) that

(1 − βn)γ g(‖(1 − αn)xn − λn(Axn − Ap) − zn‖)
≤ (1 − b)γ g(‖(1 − αn)xn − λn(Axn − Ap) − zn‖)
≤ ‖xn − p‖q − ‖xn+1 − p‖q − αnγ (1 − βn)‖xn − p‖q + αnγ (1 − βn)‖p‖q
≤ q‖xn − p‖q−1(‖xn − p‖ − ‖xn+1 − p‖) − αnγ (1 − βn)‖xn − p‖q

+ αnγ (1 − βn)‖p‖q
≤ q‖xn − p‖q−1‖xn − xn+1‖ − αnγ (1 − βn)‖xn − p‖q + αnγ (1 − βn)‖p‖q .

Then, by (C1), (C3) and (3.6), we have

lim
n→∞ g(‖(1 − αn)xn − λn(Axn − Ap) − zn‖) = 0.

Since g is a continuous function, by (3.9), we obtain that

lim
n→∞ ‖xn − zn‖ = 0. (3.11)

Since yn = (1− γ )Sxn + γ zn , we have (1− γ )(xn − Sxn) = xn − yn + γ (zn − xn).
From (3.5) and (3.11), we obtain

(1 − γ )‖xn − Sxn‖ ≤ ‖xn − yn‖ + γ ‖xn − zn‖ → 0 as n → ∞. (3.12)

Next, we show that

lim sup
n→∞

〈x∗, jq(x∗ − zn)〉 ≤ 0,
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where x∗ = Q�0 . Since {xn} is bounded, there exists a subsequence {xni } of {xn}
such that

lim sup
n→∞

〈x∗, jq(x∗ − xn)〉 = lim
i→∞〈x∗, jq(x∗ − xni )〉.

By the reflexivity of X and the boundedness of {xn}, without loss of generality, we
may assume that xni ⇀z ∈ C as i → ∞. By (3.12) and Lemma 2.6, we get z ∈ F(S).
Further, we show that z ∈ (A + B)−10. Let v ∈ Bu. Note that

zn = J B
λ ((1 − αn)xn − λn Axn).

Then, we have

(1 − αn)xn − λn Axn ∈ (I + λB)zn ⇐⇒ 1

λn

(
(1 − tn)xn − λn Axn − zn

) ∈ Bzn .

Since B is m-accretive, we have for all (u, v) ∈ B,

〈
1

λn

(
(1 − αn)xn − λn Axn − zn

) − v, jq(zn − u)

〉
≥ 0

⇐⇒ 〈(1 − αn)xn − λn Axn − zn − λnv, jq(zn − u)〉 ≥ 0.

It follows that

〈Axn + v, jq(zn − u)〉 ≤ 1

λn
〈xn − zn, jq(zn − u)〉 + αn

λn
〈−xn, jq(zn − u)〉

≤ 1

λn
‖xn − zn‖‖zn − u‖q−1 + αn

λn
‖xn‖‖zn − u‖q−1

≤ (‖xn − zn‖ + αn
)
K ,

where K > 0 is an appropriate constant. Since xn − zn → 0, xn⇀z, A is Lipschitz
continuous and jq is weakly sequentially continuous, we obtain 〈Az+v, jq(z−u)〉 ≤
0, that is 〈−Az−v, jq(z−u)〉 ≥ 0, this implies that−Az ∈ Bz, that is z ∈ (A+B)−10.
Hence z ∈ � := F(S) ∩ (A + B)−10. From (3.11), we get

lim sup
n→∞

〈x∗, jq(x∗ − zn)〉 = lim sup
n→∞

〈x∗, jq(x∗ − xn)〉
= lim

i→∞〈x∗, jq(x∗ − xni )〉
= 〈x∗, jq(x∗ − z)〉 ≤ 0. (3.13)
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Finally, we show that xn → x∗. From Lemma 2.4, we have

‖yn − x∗‖q
≤ (1 − γ )‖Sxn − x∗‖q + γ ‖zn − x∗‖q
≤ (1 − γ )‖xn − x∗‖q

+ γ

∥∥∥∥(1 − αn)

[(
I − λn

1 − αn
A

)
xn −

(
I − λn

1 − αn
A

)
x∗

]
+ αn(−x∗)

∥∥∥∥

q

≤ (1 − γ )‖xn − x∗‖q + γ (1 − αn)
q
∥∥∥∥

(
I − λn

1 − αn
A

)
xn −

(
I − λn

1 − αn
A

)
x∗

∥∥∥∥

q

+qαnγ 〈−x∗, jq(zn − x∗)〉
≤ (1 − γ )‖xn − x∗‖q + γ (1 − αn)

q‖xn − x∗‖q + qαnγ 〈x∗, jq(x∗ − zn)〉
≤ (1 − αnγ )‖xn − x∗‖q + qαnγ 〈x∗, jq(x∗ − zn)〉.

Then, it follows that

‖xn+1 − x∗‖q
= βn‖xn − x∗‖q + (1 − βn)‖yn − x∗‖q

≤ βn‖xn − x∗‖q + (1 − βn)

[
(1 − αnγ )‖xn − x∗‖q + qαnγ 〈x∗, jq(x∗ − zn)〉

]

≤ (
1 − αnγ (1 − βn)

)‖xn − x∗‖q + qαnγ (1 − βn)〈x∗, jq(x∗ − zn)〉.

Therefore, by Lemma 2.9, we conclude that xn → x∗. ��
As a direct consequence of Theorem 3.1, we get the following results:

Corollary 3.2 Let C be a nonempty, closed and convex subset of a 2-uniformly smooth
and uniformly convexBanach spaces X which admits aweakly sequentially continuous
duality mapping. Let A : C → X be an α-isa and let B : D(B) ⊂ C → 2X be an
m-accretive operator. Let J B

λ = (I + λB)−1 be a resolvent of B for λ > 0 and let
S : C → C be a nonexpansive mapping such that � := F(S)∩ (A+ B)−10 �= ∅. For
given x1 ∈ C, let {xn} be a sequence defined by

{
yn = (1 − γ )Sxn + γ J B

λn
((1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(3.14)

where γ ∈ (0, 1), {αn}, {βn} ⊂ (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1;
(C3) 0 < a′ ≤ λn < λn

1−αn
≤ b′ < α

K 2 and limn→∞ |λn+1 − λn| = 0.

Then, the sequence {xn} defined by (3.14) converges strongly to a point x∗ = Q�0,
where Q� is a sunny nonexpansive retraction of C onto �.
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Corollary 3.3 Let C be a nonempty, closed and convex subset of a Hilbert space H.
Let A : C → H be an α-ism and let B : D(B) ⊂ C → 2H be a maximal monotone
operator. Let J B

λ = (I + λB)−1 be a resolvent of B for λ > 0 and let S : C → C be
a nonexpansive mapping such that � := F(S) ∩ (A+ B)−10 �= ∅. For given x1 ∈ C,
let {xn} be a sequence defined by

{
yn = (1 − γ )Sxn + γ J B

λn
((1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(3.15)

where γ ∈ (0, 1), {αn}, {βn} ⊂ (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1;
(C3) 0 < a′ ≤ λn < λn

1−αn
≤ b′ < 2α and limn→∞ |λn+1 − λn| = 0.

Then, the sequence {xn} defined by (3.15) converges strongly to a point x∗ = P�0,
where P� is a metric projection of C onto �.

4 Applications

In this section, we shall utilize Theorem 3.1 to give some applications in the framework
of Hilbert spaces. Let C be a nonempty, closed and convex subset of a real Hilbert
space H . Consider the following particular variational inequality problem: find x̂ ∈ C
such that

〈x̂, x̂ − x〉 ≤ 0, ∀x ∈ C . (4.1)

It is well known that (4.1) is equivalent to solve minimization problem: find x̄ ∈ C
such that

‖x̂‖ = min
x∈C ‖x‖. (4.2)

That is, x̂ is the minimum-norm solution. In other words, x̂ is the metric projection of
the origin onto C , i.e., x̂ = PC0, where PC is the metric projection from H onto C .

4.1 Applications to variational inequality problem

LetC be a nonempty, closed and convex subset of a real Hilbert space H . Let A : C →
H be a nonlinear monotone operator. The classical variational inequality problem is
to find x̂ ∈ C such that

〈Ax̂, y − x〉 ≥ 0, ∀y ∈ C . (4.3)
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The set of solutions of problem (4.3) is denoted by V I (C, A). Variational inequality
problemwhichwas first introduced by Stampacchi [17] in 1964 in the field of potential
theory.

Let g : H → (−∞,∞] be a proper convex lower semi-continuous function. The
subdifferential ∂g of g is defined by

∂g(x) = {y ∈ H : g(z) ≥ g(x) + 〈z − x, y〉, ∀z ∈ H}, ∀x ∈ H .

It is known that ∂g is maximal monotone (see [15]). Let iC be the indicator function
of C defined by

iC (x) =
{
0, x ∈ C;
∞, x /∈ C .

(4.4)

Since iC is a proper lower semicontinuous convex function on H , the subdifferential
∂iC of iC is a maximal monotone operator. So, we can define the resolvent J ∂iC

λ of
∂iC for λ > 0 by

J ∂iC
λ x = (I + λ∂iC )−1x

for all x ∈ H . Then, we have for each x ∈ H and u ∈ C , u = J ∂iC
λ x ⇐⇒ u = PCx

and (A+ ∂iC )−10 = V I (C, A) (see [20]). Put B = ∂iC in Theorem 3.1, we obtained
the following result.

Theorem 4.1 Let A : C → H be an α-ism and let S : C → C be a nonexpansive
mapping such that � := F(S) ∩ V I (C, A) �= ∅. For given x1 ∈ C, let {xn} be a
sequence defined by

{
yn = (1 − γ )Sxn + γ PC ((1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(4.5)

where γ ∈ (0, 1), {αn}, {βn} ⊂ (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1;
(C3) 0 < a′ ≤ λn < λn

1−αn
≤ b′ < 2α and limn→∞ |λn+1 − λn| = 0.

Then, the sequence {xn} defined by (4.5) converges strongly to the minimum-norm
common element of �.

4.2 Applications to equilibrium problem

Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let G :
C × C → R be a bifunction, where R is the set of all real numbers. The equilibrium
problem is to find x̂ ∈ C such that
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G(x̂, y) ≥ 0, (4.6)

for all y ∈ C . The set of solutions of problem (4.6) is denoted by EP(G). Numerous
problems in physics, economics, optimization and applied sciences can be reduced to
find solutions of equilibrium problems. For solving the equilibrium problem, let us
assume that a bifunction G : C × C → R satisfies the following conditions:

(A1) G(x, x) = 0 for all x ∈ C ;
(A2) G is monotone, i.e., G(x, y) + G(y, x) ≤ 0 for all x ∈ C ;
(A3) for all x, y, z ∈ C , lim supt↓0 G(t z + (1 − t)y, y) ≤ G(x, y);
(A4) for all x ∈ C , G(x, ·) is convex and lower semi-continuous.

Lemma 4.2 [4] Let G : C ×C → R satisfying the conditions (A1)− (A4). Let λ > 0
and x ∈ H. Then there exists z ∈ C such that

G(z, y) + 1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C .

Lemma 4.3 [8] Assume that G : C × C → R satisfies the conditions (A1) − (A4).
For λ > 0 and x ∈ H, define a mapping Tλ : H → C as follows:

Tλ(x) = {
z ∈ C : G(z, y) + 1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
, ∀x ∈ H .

Then, the following hold:

(1) Tλ is single-valued;
(2) Tλ is firmly nonexpansive, i.e., for each x, y ∈ H,

‖Tλx − Tλy‖2 ≤ 〈Tλx − Tλy, x − y〉;

(3) F(Tλ) = EP(G);
(4) EP(G) is closed and convex.

We call such Tλ the resolvent of G for λ > 0.

Lemma 4.4 [20] Let G : C × C → R be a bifunction that satisfies the conditions
(A1) − (A4). Let AG be a multivalued mapping of H into itself defined by

AGx =
{ {z ∈ H : G(x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, x ∈ C;

∅, x /∈ C .

Then, E P(G) = A−1
G 0 and AG is a maximal monotone operator with D(AG) ⊂ C.

Further, for any x ∈ H and λ > 0, the resolvent Tλ of G coincides with the resolvent
of AG, that is,

Tλx = (I + λAG)−1x .

Put B = AG in Theorem 3.1, we obtained the following result.
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Theorem 4.5 Let A : C → H be an α-ism. Let G : C × C → R be a bifunction
which satisfies the conditions (A1)− (A4). Let Tλ be the resolvent of G for λ > 0 and
let S : C → C be a nonexpansive mapping such that � := F(S) ∩ EP(G) �= ∅. For
given x1 ∈ C, let {xn} be a sequence defined by

{
yn = (1 − γ )Sxn + γ Tλn ((1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(4.7)

where γ ∈ (0, 1), {αn}, {βn} ⊂ (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1;
(C3) 0 < a′ ≤ λn < λn

1−αn
≤ b′ < 2α and limn→∞ |λn+1 − λn| = 0.

Then, the sequence {xn} defined by (4.7) converges strongly to the minimum-norm
common element of �.

4.3 Applications to convexminimization problem

LetC be a nonempty, closed and convex subset of a real Hilbert space H . Let f : H →
R be a convex smooth function and g : H → R be a convex, lower-semicontinuous
and nonsmooth function. The convex minimization problem is to find x̂ ∈ C such that

f (x̂) + g(x̂) ≤ min
x∈C { f (x) + g(x)}. (4.8)

The set of solutions of problem (4.8) is denoted by CMP( f , g). By Fermat’s rule, it
is known that the problem (4.8) is equivalent to the problem of finding x̂ ∈ C such
that

0 ∈ ∇ f (x̂) + ∂g(x̂),

where ∇ f is a gradient of f and ∂g is a subdifferential of g. It is also known that if
∇ f is (1/L)-Lipschitzian, then it is L-ism (see [2]). Further, ∂g is maximal monotone
(see [15]). In fact, set A = ∇ f and B = ∂g in Theorem 3.1, we obtained the following
result.

Theorem 4.6 Let f : H → R be a convex and differentiable function with (1/L)-
Lipschitz continuous gradient ∇ f and g : H → R be a convex and lower semi-
continuous function such that D(∂g) ⊂ C. Let S : C → C be a nonexpansive
mapping such that � := F(S) ∩ CMP( f , g) �= ∅. For given x1 ∈ C, let {xn} be a
sequence defined by

{
yn = (1 − γ )Sxn + γ J ∂g

λn
((1 − αn)xn − λn∇ f (xn)),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(4.9)
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where γ ∈ (0, 1), {αn}, {βn} ⊂ (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1;
(C3) 0 < a′ ≤ λn < λn

1−αn
≤ b′ < 2

L and limn→∞ |λn+1 − λn| = 0.

Then, the sequence {xn} defined by (4.9) converges strongly to the minimum-norm
common element of �.

4.4 Applications to split feasibility problem

Let C and Q be nonempty, closed and convex subsets of Hilbert spaces H1 and H2,
respectively. Let A : C ⊂ H1 → H2 be a linear bounded operator. The split feasibility
problem is to find

x̂ ∈ C such that Ax̂ ∈ Q. (4.10)

The set of solutions of problem (4.10) is denoted by  := C ∩ A−1(Q) = {x ∈ C :
Ax ∈ Q}. The split feasibility problem in finite-dimensional Hilbert spaces was first
introduced by Censor and Elfving [7] for modeling inverse problems which arise from
phase retrievals and inmedical image reconstruction. Consider the proximity function

f (x) = 1

2
‖Ax − PQ Ax‖2, ∀x ∈ H .

The function f is continuously differentiable with gradient given by [22]

∇ f (x) = A∗(I − PQ)Ax,

where A∗ is the adjoint operator of A. Further, ∇ f is ‖A‖2-Lipschitz continuity this
implies the gradient operator∇ f is 1/‖A‖2-ism. It is observed that x̂ ∈ C is a solution
of (4.10) if and only if 0 ∈ ∇ f (x̂) = A∗(I − PQ)Ax̂ . Set A = ∇ f and B = 0 in
Theorem 3.1, we obtain the following result.

Theorem 4.7 Let A : H1 → H2 be a bounded linear operator and let S : C → C be
a nonexpansive mapping such that � := F(S) ∩  �= ∅. For given x1 ∈ C, let {xn}
be a sequence defined by

{
yn = (1 − γ )Sxn + γ PC [(1 − αn)xn − λn A∗(I − PQ)Axn],
xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,

(4.11)

where γ ∈ (0, 1), {αn}, {βn} ⊂ (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1;
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(C3) 0 < a′ ≤ λn < λn
1−αn

≤ b′ < 2
‖A‖2 and limn→∞ |λn+1 − λn| = 0.

Then, the sequence {xn} defined by (4.11) converges strongly to the minimum-norm
common element of �.

4.5 Applications to linear inverse problem

Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let T :
H → H be a bounded linear operator and d ∈ H . The constrained linear inverse
problem is to find

x̂ ∈ C such that T x̂ = d. (4.12)

It is well known that the problem (4.12) is equivalent to the following minimization
problem:

min
x∈C

1

2
‖T x − d‖2.

The set of solutions of problem (4.12) is denoted by  = {x ∈ C : x = T−1d}.
Consider the functional

f (x) = 1

2
‖T x − d‖2.

From [6], it is known that

∇ f (x) = T ∗(T x − d).

Further, ∇ f is ‖T ‖2-Lipschitzian and hence ∇ f is also 1/‖T ‖2-ism. It is observed
that x̂ ∈ C is a solution of (4.12) if and only if 0 ∈ ∇ f (x̂) = T ∗(T x̂ − d). Set
A = ∇ f and B = 0 in Theorem 3.1, we obtain the following result.

Theorem 4.8 Let T : H → H be a bounded linear operator and d ∈ H. Let S : C →
C be a nonexpansive mapping such that � := F(S) ∩  �= ∅. For given x1 ∈ C, let
{xn} be a sequence defined by

{
yn = (1 − γ )Sxn + γ PC ((1 − αn)xn − λnT ∗(T xn − d)),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(4.13)

where γ ∈ (0, 1), {αn}, {βn} ⊂ (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1;
(C3) 0 < a′ ≤ λn < λn

1−αn
≤ b′ < 2

‖T ‖2 and limn→∞ |λn+1 − λn| = 0.

Then, the sequence {xn} defined by (4.13) converges strongly to the minimum-norm
common element of �.
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ABSTRACT
In this work, we introduce a modified extragradient method for solving
the fixed point problem of a nonexpansive mapping and the variational
inclusion problem for two accretive operators in the framework of Banach
spaces. We then prove its strong convergence under certain assumptions
imposed on the parameters. As applications, we apply our main result to
the variational inequality problem, split feasibility problem and the LASSO
problem.
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1. Introduction

Variational inequality theory has been studied widely in several branches of pure and applied sci-
ences. In particular, applications of variational inequalities span as diverse disciplines as differential
equations, time-optimal control, optimization, mathematical programming, mechanics, economic
and other applied science problems. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. The variational inequality problem is to find a point x∗ ∈ C such that

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C, (1)

where A : C → H is a mapping. The set of solutions of problem (1) is denoted by VI(C,A). In
recent years, several methods have been invented and modified for solving the variational inequality
problem.

A simple method for solving problem (1) is projection method which is defined by the following
manner: For a given x0 ∈ C and

xn+1 = PC(xn − λAxn), ∀n ≥ 0, (2)

where PC is themetric projection ofH intoC, λ is a positive real number. In fact, this method requires
a slightly strong assumption that operators are strongly monotone or inverse strongly monotone [1].

To avoid this assumption, Korpelevich [2] (see also [3]) introduced the extragradient method for
solving saddle point problems, and later, this method was successfully studied and extended for
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solving variational inequalities both Euclidean and Hilbert spaces. More precisely, the extragradient
method is defined by the following way: For a given x1 ∈ C and

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn), ∀n ≥ 1.
(3)

In fact, the convergence of the extragradient method only requires that the operator A is mono-
tone and Lipschitz continuous. However, this method has only weak convergence. In recent years,
some modifications of an extragradient method have been constructed so that it generates a strongly
convergent sequence (see, e.g. [4–8]and the references cited therein).

We next consider the variational inclusion problem which is the problem of finding:

find x∗ ∈ H such that 0 ∈ (A + B)x∗, (4)

where A : H → H and B : H � H are single and multi-valued mappings, respectively, and 0 is a
zero vector in H. The set of solutions of problem (4) is denoted by (A + B)−10. This problem is a
fundamental problem in optimization theory and it is a generalization of many mathematical prob-
lems such as convex programming, variational inequalities, split feasibility problemandminimization
problem [9–11]. Moreover, it has wide applications in machine learning, image processing, statistical
regression and linear inverse problem.

A one classical method for solving the problem (4) is the forward–backward algorithm [12,13]
which is defined by the following manner: for any fixed x1 ∈ H,

xn+1 = JBλ (xn − λAxn), ∀n ≥ 1, (5)

where JBλ := (I + λB)−1 is a resolvent ofB forλ > 0. It is known that ifA is inverse stronglymonotone,
then the sequence {xn} defined by (5) converges weakly to a solution of the problem (4). This method
includes, in particular, the proximal point algorithm [14–16] and the gradient method [17,18].

In order to obtain strong convergence, Takahashi et al. [19] introduced the followingHalpern-type
iterative method for a maximal monotone operator B on H: for given x1, u ∈ H and

xn+1 = βnxn + (1 − βn)(αnu + (1 − αn)JBλn(xn − λnAxn)), ∀n ≥ 1, (6)

where A is an α-inverse strongly monotone mapping onH. They also proved the strong convergence
of algorithm (6) to a solution of problem (4).

For solving problem (4) in the framework of Banach spaces E, López et al. [9] introduced the
following Halpern-type forward–backward method: x1, u ∈ E and

xn+1 = αnu + (1 − αn)(JBλn(xn − rn(Axn + an)) + bn), ∀n ≥ 1, (7)

where JBλ is the resolvent of B, {λn} ⊂ (0,∞), {αn} ⊂ (0, 1] and {an}, {bn} are error sequences in E. It
was proved that the sequence {xn} generated by (7) strongly converges to a zero point of the sum of
A and B under some appropriate conditions.

Recently, Pholasa et al. [20] extended the result of Takahashi et al. [19] to Banach spaces. It was
proved that {xn} converges strongly to a point in (A + B)−10.

Due to the importance and interesting of such a problem, many researchers have developed iter-
ative methods for solving problem (4) in several approaches (see [21–28]and the references cited
therein).

On the other hand, we consider the fixed point problem which is problem of finding a point

x∗ ∈ C such that x∗ = Sx∗, (8)

where S : C → C is a nonlinearmapping. The set of solutions of problem (8) is denoted byF(S). In real
life, many mathematical models have been formulated as this problem. Currently, many mathemati-
cians are interested in finding a common solution of the fixed point problem (8) and the variational
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inclusion problem (4). We aim to find a point x∗ such that

x∗ ∈ F(S) ∩ (A + B)−10. (9)

In the case of A : C → H is an inverse strongly monotone mapping and S : C → C is a nonexpansive
mapping, Manaka and Takahashi [29] introduced the following iteration process in Hilbert spacesH:
x1 ∈ C and

xn+1 = αnxn + (1 − αn)SJλn(xn − λnAxn), ∀n ≥ 1, (10)

where {αn} ⊂ (0, 1), {λn} is a positive sequence, B : D(B) ⊂ C → 2H is a maximal monotone oper-
ator. They showed that the sequence {xn} generated by (10) converges weakly to a point in F(S) ∩
(A + B)−10 under some mild conditions.

Recently, Takahashi et al. [11] introduced an iterative scheme for finding a common element of
F(S) ∩ (A + B)−10 and obtained the following strong convergence theorem.

Theorem T: Let C be a closed and convex subset of a real Hilbert space H. Let A be an α-inverse
strongly-monotone mapping of C into H and let B be a maximal monotone operator on H such that
the domain of B is included in C. Let Jλ = (I + λB)−1 be the resolvent of B for λ > 0 and let S be a
nonexpansive mapping of C into itself such that F(S) ∩ (A + B)−10 �= ∅. Let x1 = x ∈ C and let {xn} ⊂
C be a sequence generated by

xn+1 = βnxn + (1 − βn)S(αnx + (1 − αn)Jλn(xn − λnAxn)), ∀n ≥ 1, (11)

where {λn} ⊂ (0, 2α), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < a ≤ λn ≤ b < 2α;
(iii) 0 < c ≤ βn ≤ d < 1.

Then, {xn} converges strongly to a point of F(S) ∩ (A + B)−10 provided asymptotically regular
assumption on {λn}.

In this paper, motivated and inspired by the idea of Korpelevich’s extragradient method, we intro-
duce an iterativemethod for solving the variational inclusion problem for two accretive operators and
fixed point problem of a nonexpansive mapping in the framework of Banach spaces. We then prove
its strong convergence under some mild assumption on the control conditions. As applications, we
apply our main result to the variational inequality problem, split feasibility problem and the LASSO
problem. The results presented in this paper extend and generalize the corresponding results in the
literature.

2. Preliminaries

In this section, we collect some definitions and lemmas which will be used in the sequel. In what
follows, we shall use the following notations: xn → x mean that {xn} converges strongly to x and
xn ⇀ xmean that {xn} converges weakly to x. Let E and E∗ be real Banach spaces and the dual space
of E, respectively. Let C be a subset of E and S be a self-mapping of C. We use F(S) to denote the fixed
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points of S. Recall that a mapping S : C → C is said to be nonexpansive, if

‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C.

Themodulus of convexity of E is the function δ : (0, 2] → [0, 1] defined by

δE(ε) = inf
{
1 − ‖x + y‖

2
: x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
.

Themodulus of smoothness of E is the function ρE : R+ := [0,∞) → R
+ defined by

ρE(τ ) = sup
{‖x + τy‖ + ‖x − τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
.

Definition 2.1: A Banach space E is said to be

• uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2];
• uniformly smooth if limτ→0 ρE(τ )/τ = 0;
• q-uniformly smooth if there exists a κq > 0 such that ρE(τ ) ≤ κqτ

q for all τ > 0.

If E is q-uniformly smooth, then q ≤ 2 and E is also uniformly smooth and if E is uniformly convex
Banach space (uniformly smooth Banach space), then E is also reflexive and strictly convex [30]. It is
known that Hilbert space H is 2-uniformly smooth. Further, sequence space �p and Lebesgue space
Lp are min{p, 2}-uniformly smooth for every p > 1 [31].

Definition 2.2: Let q> 1. The generalized duality mapping Jq : E � E∗ is defined by

Jq(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖q, ‖ f ∗‖ = ‖x‖q−1}, (12)

where 〈·, ·〉 denotes the generalized duality pairing between elements of E and E∗.

In particular, J2 := J is called the normalized duality mapping. It is known that Jq(x) = ‖x‖q−2J(x)
for x �= 0 and that Jq is the subdifferential of the functional (1/q)‖ · ‖q. If E is uniformly smooth, the
generalized duality mapping Jq is one-to-one and single-valued, which is denoted by jq. Furthermore,
jq satisfies jq = j−1

p , where jq = j−1
p is the generalized duality mapping of E∗ with 1/p + 1/q = 1 (see

[32] for more details). If E is a Hilbert space H, then j is the identity operator I, which is linear in
Hilbert spaces. Inversely, if the operator j is linear in E, then E is a Hilbert space.

The following examples of generalized duality mapping can be found in [30,33].

Example 2.3: Let x = (x1, x2, . . .) ∈ �p (1 < p < ∞). Then the generalized duality mapping jp in �p
is given by

jp(x) = (|x1|p−1sgn(x1), |x2|p−1sgn(x2), . . .) ∈ �q,

where 1/p + 1/q = 1.

Example 2.4: Let x ∈ Lp(G) (1 < p < ∞). Then the generalized duality mapping jp in Lp is given by

jp(x) = |x(t)|p−1sgn(x(t)) ∈ Lq(G), t ∈ G,

where 1/p + 1/q = 1.
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Example 2.5: For the Sobolev space Wm
p (G). Let x ∈ Wm

p (G) (1 < p < ∞). Then the generalized
duality mapping jp inWm

p (G) is given by

jp(x) =
∑

|α|≤m

(−1)αDα
(|Dαx(t)|p−1sgn(Dαx(t))

) ∈ W−m
q , m > 0, t ∈ G,

where 1/p + 1/q = 1.

Lemma 2.6 ([34]): Let q> 1 and E be a real normed space with the generalized duality mapping Jq.
Then, for any x, y ∈ E, we have

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x + y)〉, (13)

where jq(x + y) ∈ Jq(x + y).

The following lemma can be obtained from the result in [31] (see also Theorem 2.8.17 of [33]).

Lemma 2.7: Let p> 1 and r> 0 be two fixed real numbers and E be a uniformly convex Banach space.
Then there exist strictly increasing, continuous and convex functions g, h : R+ → R

+ with g(0) = 0
and h(0) = 0 such that

(i) ‖λx + (1 − λ)y‖p ≤ λ‖x‖p + (1 − λ)‖y‖p − λ(1 − λ)g(‖x − y‖);
(ii) h(‖x − y‖) ≤ ‖x‖p − p〈x, jp(y)〉 + (p − 1)‖y‖p

for all x, y ∈ Br and jp(y) ∈ Jp(y), where Br := {x ∈ E : ‖x‖ ≤ r}.

The following lemma is an analogue of Lemma 2.7 (i).

Lemma 2.8: Let p> 1 and r> 0 be two fixed real numbers and E be a uniformly convex Banach space.
Then there exist strictly increasing, continuous and convex function g : R+ → R

+ with g(0) = 0 such
that

‖λx + μy + γ z‖p ≤ λ‖x‖p + μ‖y‖p + γ ‖z‖p − λμg(‖x − y‖)
for all x, y, z ∈ Br and λ,μ, γ ∈ [0, 1] with λ + μ + γ = 1.

Definition 2.9: Let C be a nonempty, closed and convex subset of E and Q be a mapping of E onto
C. Then Q is said to be

(1) sunny if Q(Qx + t(x − Qx)) = Qx for all x ∈ C and t ≥ 0;
(2) retraction if Qx = x for all x ∈ C;
(3) a sunny nonexpansive retraction if Q is sunny, nonexpansive and a retraction from E onto C.

It is known that if E: = H is a real Hilbert space, then a sunny nonexpansive retraction Q is
coincident with the metric projection from E onto C. Moreover, if E is uniformly smooth and S is
a nonexpansive mapping of C into itself with F(S) �= ∅, then F(S) is a sunny nonexpansive retract
from E onto C [35]. We know that in a uniformly smooth Banach space E, a retraction Q : E → C is
sunny and nonexpansive, if and only if 〈x − Qx, jq(y − Qx)〉 ≤ 0 for all x ∈ E and y ∈ C [36].

LetA : E � E be a set-valuedmapping.Wedenote the domain and range of an operatorA : E � E
by D(A) = {x ∈ E : Ax �= ∅} and R(A) = ⋃{Az : z ∈ D(A)}, respectively. Let q> 1. A set-valued
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mapping A : D(A) ⊂ E � E is said to be accretive of order q if for each x, y ∈ D(A), there exists
jq(x − y) ∈ Jq(x − y) such that

〈u − v, jq(x − y)〉 ≥ 0, u ∈ Ax and v ∈ Ay.

An accretive operator A is said to be m-accretive if R(I + λA) = E for all λ > 0. In a real Hilbert
space, an operator A ism-accretive if and only if A is maximal monotone [37].

Let α > 0 and q> 1. AmappingA : C → E is said to be α-inverse strongly accretive (α-isa) of order
q if for each x, y ∈ E, there exists jq(x − y) ∈ Jq(x − y) such that

〈Ax − Ay, jq(x − y)〉 ≥ α‖Ax − Ay‖q.

If E: = H is a real Hilbert space, then A : C → H is called α-inverse strongly monotone (α-ism).
Let A be anm-accretive operator on E, we useA−10 to denote the set of all zeros of A, i.e., A−10 =

{x ∈ D(A) : 0 ∈ Ax}. For an accretive operator A, we can define a single valued operator JAλ : R(I +
λA) → D(A) by JAλ = (I + λA)−1 for each λ > 0, which is called the resolvent of A for λ. It is known
that the resolvent operator JAλ is single-valued nonexpansive with F(JAλ ) = A−10 [37]. Further, JAλ is
firmly nonexpansive [27], i.e.,

‖JAλ x − JAλ y‖q ≤ 〈x − y, jq(JAλ x − JAλ y)〉, ∀x, y ∈ E.

Lemma 2.10 ([9]): Let C be a subset of a real q-uniformly smooth Banach space E and A : C → E be
an α-isa of order q. Then the following inequality holds for all x, y ∈ C:

‖(I − λA)x − (I − λA)y‖q ≤ ‖x − y‖q − λ(αq − κqλ
q−1)‖Ax − Ay‖q, (14)

where κq > 0 is the q-uniform smoothness coefficient of E. In particular, if 0 < λ ≤ (αq/κq)1/(q−1),
then I − λA is nonexpansive.

Lemma 2.11 ([9]): If TA,B
λ := JBλ (I − λA), then the following statements hold:

(i) For λ > 0, F(TA,B
λ ) = (A + B)−10.

(ii) For 0 < λ ≤ r and x ∈ E, ‖x − TA,B
λ x‖ ≤ 2‖x − TA,B

r x‖.

We now give the following examples of a resolvent operator.

Example 2.12 ([25]): Let E = �3 with norm ‖x‖ = (
∑∞

k=1 |xk|3)1/3 for x = (x1, x2, x3, . . .) ∈ �3. Let
A,B : �3 → �3 be defined

Ax = 2x + (1, 1, 1, 0, 0, 0, 0, . . .) and Bx = 5x for x ∈ �3.

It is to see that A is 1/2-isa of order 2 and B is an m-accretive operator with R(I + λB) = �3 for all
λ > 0. Moreover,

JBλ (x − λAx) = 1 − 2λ
1 + 5λ

x − λ

1 + 5λ
(1, 1, 1, 0, 0, 0, 0, . . .),

for all x ∈ �3.
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Example 2.13: LetE = R
+ := [0,∞)with the absolute-value norm. LetA,B : R+ → R

+ be defined
as

Ax = 3 ln(x + 1) and Bx = 2x for x ∈ R
+.

By Mean Value Theorem, it is easy to show that | ln(x + 1) − ln(y + 1)| ≤ |x − y| for all x, y ∈ R
+.

Without loss of generality, we may assume that x ≥ y. Then, for each x, y ∈ R
+

〈Ax − Ay, x − y〉 = (
3 ln(x + 1) − 3 ln(y + 1)

)
(x − y)

≥ 3
(
ln(x + 1) − ln(y + 1)

)2
= 1

9
(
3 ln(x + 1) − 3 ln(y + 1)

)2
= 1

9
|Ax − Ay|2,

i.e. A is a 1/9-ism. Moreover, we also have

〈Bx − By, x − y〉 = (2x − 2y)(x − y) = 2|x − y|2 ≥ 0

and R(I + λB) = R
+ for all λ > 0. Then, we can write the explicit resolvent of B for λ > 0 in the

following form:

JBλ (x − λAx) = (I + λB)−1(x − λAx)

= 1
1 + 2λ

x − 3λ
1 + 2λ

ln(x + 1),

for all x ∈ R
+ with (A + B)−10 = {0}.

Lemma 2.14 ([38]): Let C be a nonempty, closed and convex subset of a uniformly convex Banach
space E and S : C → C be a nonexpansive mapping. Then I−S is demiclosed at zero, i.e. xn ⇀ x and
xn − Sxn → 0, we have x = Sx.

Lemma2.15 ([39]): Let C be a nonempty, closed and convex subset of a uniformly smooth Banach space
E. Let T : C → C be a nonexpansive self-mapping such that F(T) �= ∅ and f : C → C be a contraction
with coefficient ρ ∈ (0, 1). Let {zt} be a net sequence defined by

zt = tf (zt) + (1 − t)Tzt , ∀t ∈ (0, 1).

Then, {zt} converges strongly as t → 0 to a point x∗ ∈ F(T).

Proposition 1 ([40]): Let q> 1. Then the following inequality holds:

aq − bq ≤ qaq−1(a − b), (15)

for arbitrary positive real numbers a, b.

Lemma 2.16 ([41]): Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − θn)an + θnδn,

where {θn} is a sequence in (0, 1) and {δn} is a sequence in R such that
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(i)
∑∞

n=1 θn = ∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=1 |θnδn| < ∞.

Then, limn→∞ an = 0.

Lemma 2.17 ([42]): Let {�n} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {�ni} of {�n} which satisfies �ni < �ni+1 for all i ∈ N. Define the
sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : �k < �k+1},

where n0 ∈ N such that {k ≤ n0 : �k < �k+1} �= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;
(ii) �τn ≤ �τ(n)+1 and �n ≤ �τ(n)+1, ∀n ≥ n0.

3. Main result

Throughout this paper, we assume that E be a q-uniformly smooth and uniformly convex Banach
space. Let f : E → E be a contraction with constant ρ ∈ (0, 1) and S : E → E be a nonexpansivemap-
ping. Let A : E → E be an α-isa of order q and B : E � E be an m-accretive operator. Assume that
� := F(S) ∩ (A + B)−10 �= ∅.

Algorithm 3.1: Modified viscosity-type extragradient method for variational inclusion and fixed point
problems

Initialization: Given x1 ∈ E be arbitrary.
Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1: Compute

yn = JBλn(xn − λnAxn)

Step 2: Compute

zn = JBλn(xn − λnAyn + rn(yn − xn))

Step 3: Compute

xn+1 = αnf (xn) + βnxn + γnSzn,

where JBλn = (I + λnB)−1, {αn}, {βn}, {γn} ⊂ (0, 1) with αn + βn + γn = 1, {rn} ⊂ (0, 1) and {λn} ⊂
(0,∞).

Set n: = n+ 1 and go to Step 1.

Lemma 3.2: Let {xn} be the sequence generated by Algorithm 3.1, then {xn} is bounded.

Proof: Let z ∈ � := F(S) ∩ (A + B)−10, it is observed that

z = Sz = JBλn(z − λnAz) = JBλn

(
(1 − rn)z + rn

(
z − λn

rn
Az
))

.
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From (14), we have

‖yn − z‖q = ‖JBλn(xn − λnAxn) − JBλn(z − λnAz)‖q

≤ ‖xn − z‖q − λn(αq − κqλ
q−1
n )‖Axn − Az‖q. (16)

This implies that

‖yn − z‖ ≤ ‖xn − z‖.
By the convexity of ‖ · ‖q for all q> 1 and (16), we see that

‖zn − z‖q

=
∥∥∥∥JBλn

(
(1 − rn)xn + rn

(
yn − λn

rn
Ayn

))
− JBλn

(
(1 − rn)z + rn

(
z − λn

rn
Az
))∥∥∥∥q

≤ (1 − rn)‖xn − z‖q + rn

∥∥∥∥
(
I − λn

rn
A
)
yn −

(
I − λn

rn
A
)
z
∥∥∥∥q

≤ (1 − rn)‖xn − z‖q + rn
[
‖yn − z‖q − λn

rn

(
αq − κqλ

q−1
n

rq−1
n

)
‖Ayn − Az‖q

]

≤ (1 − rn)‖xn − z‖q + rn
[
‖xn − z‖q − λn(αq − κqλ

q−1
n )‖Axn − Az‖q

− λn

rn

(
αq − κqλ

q−1
n

rq−1
n

)
‖Ayn − Az‖q

]

= ‖xn − z‖q − rnλn(αq − κqλ
q−1
n )‖Axn − Az‖q − λn

(
αq − κqλ

q−1
n

rq−1
n

)
‖Ayn − Az‖q. (17)

This implies that

‖zn − z‖ ≤ ‖xn − z‖.
Then, we have

‖xn+1 − z‖ = ‖αn( f (xn) − z) + βn(xn − z) + γn(Szn − z)‖
≤ αn‖ f (xn) − z‖ + βn‖xn − z‖ + γn‖Szn − z‖
≤ αn‖ f (xn) − f (z)‖ + αn‖ f (z) − z‖ + βn‖xn − z‖ + γn‖zn − z‖
≤ (1 − αn(1 − ρ))‖xn − z‖ + αn‖ f (z) − z‖

≤ max{‖xn − z‖, 1
1 − ρ

‖ f (z) − z‖}.

By induction, we have

‖xn − z‖ ≤ max
{
‖x1 − z‖, 1

1 − ρ
‖ f (z) − z‖

}
, ∀n ≥ 1.

Thus {xn} is bounded, so are {yn}, {Szn} and {Axn}. �

Theorem 3.3: Suppose that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;



10 P. SUNTHRAYUTH AND P. CHOLAMJIAK

(C2) 0 < a ≤ βn ≤ b < 1;
(C3) 0 < λ ≤ λn < λn/rn ≤ μ < (αq/κq)1/(q−1) and 0 < r ≤ rn < 1.

Then, the sequence {xn} generated by Algorithm 3.1 converges strongly to an element x∗ = Q�f (x∗),
where Q� is the sunny nonexpansive retraction of E onto �.

Proof: Let x∗ ∈ �. From (13) and (17), we have

‖xn+1 − z‖q
= ‖αn( f (xn) − x∗) + βn(xn − x∗) + γn(Szn − x∗)‖q
= ‖αn( f (xn) − f (x∗)) + αn( f (x∗) − x∗) + βn(xn − x∗) + γn(Szn − x∗)‖q
≤ ‖αn( f (xn) − f (x∗)) + βn(xn − x∗) + γn(Szn − x∗)‖q + qαn〈 f (x∗) − x∗, jq(xn+1 − x∗)〉
≤ αn‖ f (xn) − f (x∗)‖q + βn‖xn − x∗‖q + γn‖Szn − x∗‖q − βnγng(‖xn − Szn‖)

+ qαn〈 f (x∗) − x∗, jq(xn+1 − x∗)〉

≤ αnρ‖xn − x∗‖q + βn‖xn − x∗‖q + γn

[
‖xn − x∗‖q − rnλn(αq − κqλ

q−1
n )‖Axn − Ax∗‖q

− λn

(
αq − κqλ

q−1
n

rq−1
n

)
‖Ayn − Ax∗‖q

]
− βnγng(‖xn − Szn‖) + qαn〈 f (x∗) − x∗, jq(xn+1 − x∗)〉

= (1 − (1 − ρ)αn)‖xn − x∗‖q − γn

[
rnλn(αq − κqλ

q−1
n )‖Axn − Ax∗‖q

+ λn

(
αq − κqλ

q−1
n

rq−1
n

)
‖Ayn − Ax∗‖q

]

− βnγng(‖xn − Szn‖) + qαn〈 f (x∗) − x∗, jq(xn+1 − x∗)〉. (18)

For each n ≥ 1, we put

�n = ‖xn − x∗‖q,
θn = (1 − ρ)αn,

ηn = γn

[
rnλn(αq − κqλ

q−1
n )‖Axn − Ax∗‖q + λn

(
αq − κqλ

q−1
n

rq−1
n

)
‖Ayn − Ax∗‖q

]

+ βnγng(‖xn − Szn‖),
δn = qαn〈 f (x∗) − x∗, jq(xn+1 − x∗)〉.

Then (18) becomes to the following formulae:

�n+1 ≤ (1 − θn)�n − ηn + δn, ∀n ≥ 1, (19)

and

�n+1 ≤ (1 − θn)�n + δn, ∀n ≥ 1. (20)

We next show the strong convergence of {�n} by the following two cases:
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Case 1. Suppose that there exists n0 ∈ N such that {�n} is non-increasing. Then

�n − �n+1 → 0.

From (19), we have

0 ≤ ηn ≤ �n − �n+1 + δn − θn�n.

Since θn → 0 and δn → 0, we have ηn → 0. This implies that

lim
n→∞ ‖Axn − Ax∗‖ = 0 (21)

and

lim
n→∞ ‖Ayn − Ax∗‖ = 0. (22)

By the property of g, we also have

lim
n→∞ ‖xn − Szn‖ = 0. (23)

Since JBλn is firmly nonexpansive and by Lemma 2.8 (ii), we have

‖yn − x∗‖q

= ‖JBλn(xn − λnAxn) − JBλn(x
∗ − λnAx∗)‖q

≤ 〈xn − λnAxn − (x∗ − λnAx∗), jq(yn − x∗)〉

≤ 1
q
[‖xn − λnAxn − (x∗ − λnAx∗)‖q + (q − 1)‖yn − x∗‖q − h1(‖xn − λn(Axn − Ax∗) − yn‖)],

which implies that

‖yn − x∗‖q ≤ ‖xn − λnAxn − (x∗ − λnAx∗)‖q − h1(‖xn − λn(Axn − Ax∗) − yn‖)
≤ ‖xn − x∗‖q − h1(‖xn − λn(Axn − Ax∗) − yn‖). (24)

Combining (17) and (24), we have

‖xn+1 − x∗‖q
≤ αn‖ f (xn) − x∗‖q + βn‖xn − x∗‖q + γn‖Szn − x∗‖q

≤ αn‖ f (xn) − x∗‖q + βn‖xn − x∗‖q + γn
[
(1 − rn)‖xn − x∗‖q + rn‖yn − x∗‖q]

≤ αn‖ f (xn) − x∗‖q + βn‖xn − x∗‖q + γn
[
(1 − rn)‖xn − x∗‖q

+ rn(‖xn − x∗‖q − h1(‖xn − λn(Axn − Ax∗) − yn‖))
]

≤ αn‖ f (xn) − x∗‖q + ‖xn − x∗‖q − γnrnh1(‖xn − λn(Axn − Ax∗) − yn‖),

which implies that

γnrnh1(‖xn − λn(Axn − Ax∗) − yn‖) ≤ �n − �n+1 + αn‖ f (xn) − x∗‖q.

Since h1 is a continuous function, by (21), we get

lim
n→∞ ‖xn − yn‖ = 0. (25)
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In a similar way, we have

‖zn − x∗‖q

= ‖JBλn(xn − λnAyn + rn(yn − xn)) − JBλn(x
∗ − λnAx∗)‖q

≤ 〈xn − λnAyn + rn(yn − xn) − (x∗ − λnAx∗), jq(zn − x∗)〉

≤ 1
q

[
‖xn − λnAyn + rn(yn − xn) − (x∗ − λnAx∗)‖q + (q − 1)‖zn − x∗‖q

− h2(‖xn + rn(yn − xn) − λn(Ayn − Ax∗) − zn‖)
]
,

which implies that

‖zn − x∗‖q ≤ ‖xn − λnAyn + rn(yn − xn) − (x∗ − λnAx∗)‖q
− h2(‖xn + rn(yn − xn) − λn(Ayn − Ax∗) − zn‖)

≤ ‖xn − x∗‖q − h2(‖xn + rn(yn − xn) − λn(Ayn − Ax∗) − zn‖).

It follows that

‖xn+1 − x∗‖q
≤ αn‖ f (xn) − x∗‖q + βn‖xn − x∗‖q + γn‖Szn − x∗‖q

≤ αn‖ f (xn) − x∗‖q + βn‖xn − x∗‖q + γn
[‖xn − x∗‖q

− h2(‖xn + rn(yn − xn) − λn(Ayn − Ax∗) − zn‖)
]

≤ αn‖ f (xn) − x∗‖q + ‖xn − x∗‖q − γnh2(‖xn + rn(yn − xn) − λn(Ayn − Ax∗) − zn‖),

which implies that

γnh2(‖xn + rn(yn − xn) − λn(Ayn − Ax∗) − zn‖)) ≤ �n − �n+1 + αn‖ f (xn) − x∗‖q.

Since h2 is a continuous function, by (22) and (25), we get

lim
n→∞ ‖xn − zn‖ = 0. (26)

From (23) and (26), we obtain

‖xn − Sxn‖ ≤ ‖xn − Szn‖ + ‖Szn − Sxn‖
≤ ‖xn − Szn‖ + ‖zn − xn‖
→ 0. (27)

For each n ≥ 1, we put Tn := JBλn(I − λnA). Then from (25), we have

lim
n→∞ ‖xn − Tnxn‖ = 0. (28)

Since 0 < λ ≤ λn for all n ≥ 1. By Lemma 2.11 (ii), we have

‖TA,B
λ xn − xn‖ ≤ 2‖Tnxn − xn‖

→ 0. (29)
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Define a mapping W : E → E by Wx := STA,B
λ x for all x ∈ E. We see that F(W) = F(S) ∩ (A +

B)−10. Then, we have

‖xn − STA,B
λ xn‖ ≤ ‖xn − Sxn‖ + ‖Sxn − STA,B

λ xn‖
≤ ‖xn − Sxn‖ + ‖xn − TA,B

λ xn‖
→ 0. (30)

Let zt = tf (zt) + (1 − t)Wzt , ∀t ∈ (0, 1). Then it follows from Lemma 2.15 that {zt} converges
strongly to a fixed point x∗ ∈ F(Tλ). From Lemma 2.6, we have

‖zt − xn‖q = ‖t( f (zt) − xn) + (1 − t)(Wzt − xn)‖q
≤ (1 − t)q‖Wzt − xn‖q + qt〈 f (zt) − xn, jq(zt − xn)〉
= (1 − t)q‖Wzt − xn‖q + qt〈 f (zt) − zt , jq(zt − xn)〉 + qt〈zt − xn, jq(zt − xn)〉
≤ (1 − t)q

(‖Wzt − Tλxn‖ + ‖Wxn − xn‖
)q

+ qt〈 f (zt) − zt , jq(zt − xn)〉 + qt‖zt − xn‖q

≤ (1 − t)q
(‖zt − xn‖ + ‖Wxn − xn‖

)q + qt〈 f (zt) − zt , jq(zt − xn)〉 + qt‖zt − xn‖q,
which implies that

〈 f (zt) − zt , jq(xn − zt)〉 ≤ (1 − t)q

qt
(‖zt − xn‖ + ‖Wxn − xn‖

)q + qt − 1
qt

‖zt − xn‖q.

From (24), we obtain

lim sup
k→∞

〈 f (zt) − zt , jq(xn − zt)〉 ≤ (1 − t)q

qt
M + qt − 1

qt
M

=
(

(1 − t)q + qt − 1
qt

)
M, (31)

where M = lim supn→∞ ‖zt − xn‖q, t ∈ (0, 1). We see that ((1 − t)q + qt − 1)/qt → 0 as t → 0.
Since jq is norm-to-norm uniformly continuous on bounded subsets of E and zt → x∗, we have

‖jq(xn − zt) − jq(xn − x∗)‖ → 0 as t → 0.

So we have

|〈 f (zt) − zt , jq(xn − zt)〉 − 〈 f (x∗) − x∗, jq(xn − x∗)〉|
= |〈 f (zt) − f (x∗) + f (x∗) − x∗ + x∗ − zt , jq(xn − zt)〉 − 〈 f (x∗) − x∗, jq(xn − x∗)〉|
= |〈 f (zt) − f (x∗), jq(xn − zt)〉 + 〈 f (x∗) − x∗, jq(xn − zt)〉 + 〈x∗ − zt , jq(xn − zt)〉

− 〈 f (x∗) − x∗, jq(xn − x∗)〉|
≤ |〈 f (x∗) − x∗, jq(xn − zt) − jq(xn − x∗)〉| + |〈 f (zt) − f (x∗), jq(xn − zt)〉|

+ |〈x∗ − zt , jq(xn − zt)〉|
≤ ‖ f (x∗) − x∗‖‖jq(xn − zt) − jq(xn − x∗)‖ + (1 + θ)‖zt − x∗‖‖xn − zt‖q−1.

Hence, as t → 0, we have

〈 f (zt) − zt , jq(xn − zt)〉 → 〈 f (x∗) − x∗, jq(xn − x∗)〉.
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From (31), as t → 0, it follows that

lim sup
n→∞

〈 f (x∗) − x∗, jq(xn − x∗)〉 ≤ 0. (32)

By (C1) and (23), we have

‖xn+1 − xn‖ = ‖αnf (xn) + βnxn + (1 − αn − βn)Szn − xn‖
= ‖αn( f (xn) − Szn) + (1 − βn)(Szn − xn)‖
≤ αn‖ f (xn) − Szn‖ + (1 − βn)‖Szn − xn‖
→ 0. (33)

Combining (32) and (33), we get

lim sup
n→∞

〈 f (x∗) − x∗, jq(xn+1 − x∗)〉 ≤ 0. (34)

By Lemma 2.16 and (34), we can conclude that �n → 0. Hence, xn → x∗ as n → ∞.
Case 2. Suppose that there exists a subsequence {�ni} of {�n} such that �ni < �ni+1 for all i ∈ N.

Let us define a mapping τ : N → N by

τ(n) = max{k ≤ n : �k < �k+1}.
Then, by Lemma 2.17, we have

�τ(n) ≤ �τ(n)+1 and �n ≤ �τ(n)+1.

Put �n = ‖xn − x∗‖q for all n ∈ N. Following the proof line in Case 1, we can show that

lim
n→∞ ‖xτ(n)+1 − xτ(n)‖ = 0 (35)

and

lim sup
n→∞

〈 f (x∗) − x∗, jq(xτ(n)+1 − x∗)〉 ≤ 0. (36)

Since �τ(n) ≤ �τ(n)+1 and ατ(n) > 0, by (20), we have

‖xτ(n) − x∗‖q ≤ q
1 − ρ

〈 f (x∗) − x∗, jq(xτ(n)+1 − x∗)〉

and hence

lim sup
n→∞

‖xτ(n) − x∗‖q ≤ 0.

So, we have

lim
n→∞ ‖xτ(n) − x∗‖q = 0.

By Proposition 1 and (35), we see that

‖xτ(n)+1 − x∗‖q − ‖xτ(n) − x∗‖q � ‖xτ(n) − x∗‖q−1(‖xτ(n)+1 − x∗‖ − ‖xτ(n) − x∗‖)
� ‖xτ(n) − x∗‖q−1‖xτ(n)+1 − xτ(n)‖
→ 0.

Since �n ≤ �τ(n)+1. So, we have

‖xn − x∗‖q ≤ ‖xτ(n)+1 − x∗‖q = ‖xτ(n) − x∗‖q + (‖xτ(n)+1 − x∗‖q − ‖xτ(n) − x∗‖q) → 0.

Hence, xn → x∗ as n → ∞. This completes the proof. �
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We also obtain the convergence theorem of a modified viscosity-type extragradient method in a
real Hilbert space. It is well known that κ2 = 1 [31]. Then, from Theorem 3.3, we have the following
result.

Corollary 3.4: Let H be a real Hilbert space. Let S : H → H be a nonexpansive mapping such that
F(S) �= ∅. Let A : H → H be an α-ism and let B : H � H be a maximal monotone operator such
that (A + B)−10 �= ∅. Assume that � := F(S) ∩ (A + B)−10 �= ∅. Choose an initial guess x1 ∈ H, let
{xn}∞n=1 be a sequence generated by

yn = JBλn(xn − λnAxn),

zn = JBλn(xn − λnAyn + rn(yn − xn)),

xn+1 = αnf (xn) + βnxn + γnSzn, ∀n ≥ 1,

(37)

where JBλn = (I + λnB)−1, {αn}, {βn}, {γn} and {rn} ⊂ (0, 1) such that αn + βn + γn = 1, {λn} ⊂
(0,∞). Suppose that conditions (C1), (C2) hold and λn and rn satisfy

0 < λ ≤ λn <
λn

rn
≤ μ < 2α and 0 < r ≤ rn < 1.

Then, the sequence {xn} generated by (37) converges strongly to an element x∗ = P�u′, where P� is the
metric projection of H onto �.

Remark 3.5: (1) Our result is proved with a new technique and new assumption on the control
conditions. In addition, we can remove asymptotically regular assumption on {λn}.

(2) Our result is applicable for the family of nonexpansive mappings, for example, Wn-mapping, a
countable family of nonexpansive mappings and nonexpansive semigroups.

(3) Our result holds in �p and Lp spaces with κ2 = p − 1 for 2 ≤ p < ∞ and κp = (1 + tp−1
p )(1 +

tp)1−p for 1 < p ≤ 2, where tp is the unique solution of the equation (p − 2)tp−1 + (p −
1)tp−2 − 1 = 0, 0 < t < 1 [31].

4. Some applications

In this section, we give some applications of Theorem 3.3 to important mathematical problems in the
framework of Hilbert spaces.

4.1. Application to variational inequality problem

LetC be a nonempty, closed and convex subset of a realHilbert spaceH. LetA : C → H be a nonlinear
monotone operator. The following problem so-called variational inequality problem is to find x∗ ∈ C
such that

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C. (38)

The set of solutions of problem (38) is denoted by VI(C,A). Note that if the variational inequality
problem (38) is consistent, it is easy to see that x∗ solves problem (38) if and only if it solves the fixed
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point equation

x∗ = PC(x∗ − λAx∗), (39)

wherePC is ametric projection fromH ontoC and λ > 0. Let iC be the indicator function ofC defined
by

iC(x) =
{
0, if x ∈ C;
∞, if x /∈ C.

(40)

Denote NC by the normal cone of C, i.e.

NC(u) = {z ∈ H : 〈z, v − u〉 ≤ 0, ∀v ∈ C}.
It is known that iC is a proper, convex and lower semi-continuous function and sub-differential ∂iC
is a maximal monotone operator [10]. We define the resolvent operator J∂iCλ of iC for λ > 0 by

J∂iCλ (x) = (I + λ∂iC)−1(x), ∀x ∈ H,

where

∂iC(u) = {z ∈ H : iC(v) + 〈z, v − u〉 ≤ iC(u), ∀u ∈ H}
= {z ∈ H : 〈z, v − u〉 ≤ 0, ∀v ∈ C} = NC(u), u ∈ C.

So, we have

u = J∂iCλ (x) ⇔ x − u ∈ λNC(u)

⇔ 〈x − u, v − u〉 ≤ 0, ∀v ∈ C

⇔ u = PC(x),

where PC is the metric projection from H onto C. Further, we also have (A + ∂iC)−10 = VI(C,A)

[11].
Then, we can set B = ∂iC in Algorithm 3.1. So we obtain the following Algorithm 4.1.

Algorithm4.1: Modified viscosity-type extragradientmethod for variational inequality and fixed point
problems

Initialization: Given x1 ∈ C be arbitrary.
Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1: Compute

yn = PC(xn − λnAxn)

Step 2: Compute

zn = PC(xn − λnAyn + rn(yn − xn))

Step 3: Compute

xn+1 = αnf (xn) + βnxn + γnSzn,

where {αn}, {βn}, {γn} ⊂ (0, 1) with αn + βn + γn = 1, {rn} ⊂ (0, 1) and {λn} ⊂ (0,∞).
Set n: = n+ 1 and go to Step 1.

Theorem 4.2: Suppose that conditions (C1), (C2) hold and λn and rn satisfy

0 < λ ≤ λn <
λn

rn
≤ 2α and 0 < r ≤ rn < 1.

Then, the sequence {xn} generated by Algorithm 4.1 converges strongly to a common element of F(S) ∩
VI(C,A).
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4.2. Application to split feasibility problem

Let H1 and H2 be two Hilbert spaces. The split feasibility problem (SFP) is to find

x̂ ∈ C such that Tx̂ ∈ Q, (41)

whereC andQ are closed convex subsets of Hilbert spacesH1 andH2, respectively, and T : H1 → H2
is a bounded linear operator with its adjoint T∗. The set of solutions of SFP is denoted by � := C ∩
T−1(Q) = {x ∈ C : Tx ∈ Q}. The SFP was first introduced, in a finite dimensional Hilbert space, by
Censor-Elfving [43] in 1994 for modelling inverse problems in radiation therapy treatment planning
which arise from phase retrieval and in medical image reconstruction [44].

It is known that x̂ solves the SFP (41) if and only if x̂ is the solution of the following minimization
problem [45]:

min
x∈C

g(x) := 1
2‖Tx − PQTx‖2.

Note that the function g is differentiable convex and has a Lipschitz gradient given by ∇g = T∗(I −
PQ)T. Further,∇g is 1/‖T‖2-ism, where ‖T‖2 is the spectral radius of T∗T [46]. Hence, x∗ solves the
SFP if and only if x∗ solves the variational inclusion problem of finding x∗ ∈ H1 such that

0 ∈ ∇g(x∗) + ∂iC(x∗) ⇔ 0 ∈ x∗ + λ∂iC(x∗) − (x∗ − λ∇g(x∗))

⇔ x∗ − λ∇g(x∗) ∈ x∗ + λ∂iC(x∗)

⇔ x∗ = (I + λ∂iC)−1(x∗ − λ∇g(x∗))

⇔ x∗ = PC(x∗ − λ∇g(x∗)).

For solving the SFP, Byrne [44] introduces the following so-called CQ-iterative procedure for approx-
imating a solution of SFP, which is defined by

xn+1 = PC(xn − λT∗(I − PQ)Txn), ∀n ≥ 1, (42)

where 0 < λ < 2α with α = 1/‖T‖2. Here, ‖T‖2 is the spectral radius of T∗T. It was shown that the
sequence {xn} converges weakly to a solution of the SFP.

In fact, we set A = ∇g and B = ∂iC in Algorithm 3.1. So we obtain the following Algorithm 4.3.

Algorithm 4.3: Modified viscosity-type extragradient method for split feasibility and fixed point
problems

Initialization: Given x1 ∈ C be arbitrary.
Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1: Compute

yn = PC(xn − λnT∗(I − PQ)Txn)

Step 2: Compute

zn = PC(xn − λnT∗(I − PQ)Tyn + rn(yn − xn))

Step 3: Compute

xn+1 = αnf (xn) + βnxn + γnSzn,

where {αn}, {βn}, {γn} ⊂ (0, 1) with αn + βn + γn = 1, {rn} ⊂ (0, 1) and {λn} ⊂ (0,∞).
Set n: = n+ 1 and go to Step 1.

Theorem 4.4: Suppose that conditions (C1), (C2) hold and λn and rn satisfy

0 < λ ≤ λn <
λn

rn
≤ μ <

2
‖T‖2 and 0 < r ≤ rn < 1.

Then, the sequence {xn} generated byAlgorithm 4.3 converges strongly to a common element of F(S) ∩ �.
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4.3. Application to LASSO problem

The LASSO is abbreviation for the least absolute shrinkage and selection operator [47], which can be
formulated as a convex constrained optimization problem:

min
x∈H

1
2
‖Tx − b‖22 subject to ‖x‖1 ≤ t, (43)

whereT : H → H is a bounded operator onH, b is a given vector inH and t> 0. Let� be the solution
set of LASSO (43). The LASSO has received much attention due to the involvement of the �1 norm
which promotes sparsity, phenomenon of many practical problems arising in statics model, image
compression, compressed sensing and signal processing theory.

According to the optimization theory, it is known that the solution to the LASSO problem (43)
is a minimizer of the following convex unconstrained minimization problem so-called Basis Pursuit
denoising problem:

min
x∈H g(x) + h(x), (44)

where g(x) := (1/2)‖Tx − b‖22, h(x) := λ‖x‖1 and λ ≥ 0 is a regularization parameter.We know that
∇g(x) = T∗(Tx − b) is 1/‖T∗T‖-ism. So, we have x∗ solves the LASSO if and only if x∗ solves the
variational inclusion problem of finding x∗ ∈ H such that

0 ∈ ∇g(x∗) + ∂h(x∗) ⇔ 0 ∈ x∗ + λ∂h(x∗) − (x∗ − λ∇g(x∗))

⇔ x∗ − λ∇g(x∗) ∈ x∗ + λ∂h(x∗)

⇔ x∗ = (I + λ∂h)−1(x∗ − λ∇g(x∗))

⇔ x∗ = proxh(x
∗ − λ∇g(x∗)),

where proxh(x) is the proximal of h(x) := λ‖x‖1 is given by

proxh(x) = argminu∈H

{
λ‖u‖1 + 1

2
‖u − x‖22

}
, ∀x ∈ H,

which is separable in indices. Then, for x ∈ H,

proxh(x) = proxλ‖·‖1(x)

=
(
proxλ|·|(x1), proxλ|·|(x2), . . . , proxλ|·|(xn)

)
,

where proxλ|·|(xk) = sgn(xk)max{|xk| − λ, 0} for k = 1, 2, . . . , n.
In order to solve the LASSO problem, Xu [48] (see also [49]) proposed the following proximal-

gradient algorithm (PGA):

xn+1 = proxh(xn − λnT∗(Txn − b)). (45)

He proved that the PGA (45) converges weakly to a solution of the LASSO problem (43).
In fact, we set A = ∇g and B = ∂h in Algorithm 3.1, we obtain the following Algorithm 4.5.

Algorithm 4.5: Modified viscosity-type extragradient method for LASSO and fixed point problems
Initialization: Given x1 ∈ H be arbitrary.
Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
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Step 1: Compute

yn = proxh(xn − λnT∗(Txn − b))

Step 2: Compute

zn = proxh(xn − λnT∗(Tyn − b) + rn(yn − xn))

Step 3: Compute

xn+1 = αnf (xn) + βnxn + γnSzn,

where {αn}, {βn}, {γn} ⊂ (0, 1) with αn + βn + γn = 1, {rn} ⊂ (0, 1) and {λn} ⊂ (0,∞).
Set n: = n+ 1 and go to Step 1.

Theorem 4.6: Suppose that conditions (C1), (C2) hold and λn and rn satisfy

0 < λ ≤ λn <
λn

rn
≤ μ <

2
‖T∗T‖ and 0 < r ≤ rn < 1.

Then, the sequence {xn} generated byAlgorithm 4.5 converges strongly to a common element of F(S) ∩ �.
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Abstract
In this paper, we propose an iterative technique with residual vectors for finding a common
element of the set of fixed points of a relatively nonexpansive mapping and the set of solu-
tions of a split inclusion problem (SIP) with a way of selecting the stepsizes without prior
knowledge of the operator norm in the framework of p-uniformly convex and uniformly
smooth Banach spaces. Then strong convergence of the proposed algorithm to a common
element of the above two sets is proved. As applications, we apply our result to find the set
of common fixed points of a family of mappings which is also a solution of the SIP. We also
give a numerical example and demonstrate the efficiency of the proposed algorithm. The
results presented in this paper improve and generalize many recent important results in the
literature.
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1 Introduction

Let H1 and H2 be two Hilbert spaces. Let B1 : H1 � H1 and B2 : H2 � H2 be two
set-valued maximal monotone operators and A : H1 → H2 be a bounded linear operator.
Moudafi (2011) introduced the following so-called split inclusion problem (SIP):

Find x∗ ∈ H1 such that 0 ∈ B1(x
∗) and 0 ∈ B2(Ax

∗). (1.1)

The set of solutions of problem (1.1) is denoted by �, i.e., � := {x∗ ∈ H1 : x∗ ∈
B−1
1 (0) and Ax∗ ∈ B−1

2 (0)}. In fact, we know that the split inclusion problem is a gener-
alization of the inclusion problem and the split feasibility problem. Next, we provide some
special cases of SIP (1.1).

• Let f : H1 → R ∪ {+∞} and g : H2 → R ∪ {+∞} be proper, lower semicontinuous
and convex functions. If we take B1 = ∂ f and B2 = ∂g, where ∂ f and ∂g are the
subdifferential of f and g, then the SIP (1.1) becomes the following so-called proximal
split feasibility problem:

Find x∗ ∈ argmin f such that Ax∗ ∈ argmin g, (1.2)

where argmin f = {x ∈ H1 : f (x) ≤ f (y), ∀y ∈ H1} and argmin g = {x ∈
H2 : g(x) ≤ g(y), ∀y ∈ H2}. In particular, if we take f (x) = 1

2‖Mx − b‖2 and
g(x) = 1

2‖Nx − c‖2, where M and N are matrices, and b, c ∈ H1, then the SIP (1.2)
becomes the least square problem. This problem has been intensively studied, especially,
in Hilbert spaces; see for instance (Moudafi and Thakur 2014).

• Let C and Q be nonempty, closed, and convex subsets of real Hilbert spaces H1 and
H2, respectively. If B1 = NC , B2 = NQ , where NC and NQ are the normal cones of C
and Q, respectively, then the SIP (1.2) becomes the following so-called split feasibility
problem:

Find x∗ ∈ C such that Ax∗ ∈ Q. (1.3)

This problemwasfirst introduced, in afinite dimensionalHilbert space, byCensor andElfving
(1994) for modeling inverse problems in radiation therapy treatment planning which arise
from phase retrieval and in medical image reconstruction, especially intensity modulated
therapy (Censor et al. 2006).

To solve the SIP (1.1), Byrne et al. (2011) gave the following convergence theorem in
infinite dimensional Hilbert spaces:

Theorem 1.1 Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear
operator with its adjoint operator A∗. Let B1 : H1 � H1 and B2 : H2 � H2 be set-valued
maximal monotone mappings, λ > 0 and γ ∈ (

0, 2
‖A‖2

)
. Suppose that � 
= ∅. For given

x1 ∈ H1, let {xn} be the sequence defined by
xn+1 = J B1

λ (xn − γ A∗(I − J B2
λ )Axn), ∀n ≥ 1. (1.4)

Then {xn} converges weakly to an element x∗ ∈ �.

In order to obtain strong convergence, Kazmi and Rizvi (2014) proposed an algorithm
for solving SIP (1.1) with fixed points of a nonexpansive mapping T . They obtained the
following result:
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Theorem 1.2 Let H1 and H2 be real Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator and f : H1 → H1 be a contraction mapping with a constant α ∈ (0, 1). Let
B1 : H1 � H1 and B2 : H2 � H2 be set-valued maximal monotone mappings, λ > 0. Let
T : H1 → H1 be a nonexpansive mapping such that F(T ) ∩ � 
= ∅. For a given x1 ∈ H1

arbitrarily, let the iterative sequences {un} and {xn} be generated by
{
un = J B1

λ (xn − γ A∗(I − J B2
λ )Axn),

xn+1 = αn f (xn) + (1 − αn)Tun, ∀n ≥ 1,
(1.5)

where γ ∈ (
0, 2

‖A‖2
)
and {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,

∑∞
n=1 αn =

∞ and
∑∞

n=1 |αn+1 − αn | < ∞. Then the sequences {un} and {xn} both converge strongly
to x∗ ∈ F(T ) ∩ �, where x∗ = PF(T )∩� f (x∗).

On the other hand, Takahashi and Takahashi (2016) first introduced the SIP outside Hilbert
spaces. Let E1 and E2 be two Banach spaces. Let B1 : E1 � E1 and B2 : E2 � E2 be two
set-valued maximal monotone operators and A : E1 → E2 be a bounded linear operator.
They proposed the SIP in Banach spaces as follows:

Find x∗ ∈ E1 such that 0 ∈ B1(x
∗) and 0 ∈ B2(Ax

∗). (1.6)

In recent years, many authors have constructed several iterative methods for solving SIP
(see, e.g., Sitthithakerngkiet et al. 2018; Takahashi and Takahashi 2016; Takahashi 2015,
2017; Takahashi and Yao 2015; Suantai et al. 2018; Jailoka and Suantai 2017; Ogbuisi and
Mewomo 2017; Alofi et al. 2016).

Very recently, Alofi et al. (2016) introduced an algorithm based on Halpern’s iteration for
solving SIP (1.1) in a uniformly convex and smooth Banach space. They proved the following
strong convergence theorem:

Theorem 1.3 Let H be a Hilbert space and let E be a uniformly convex and smooth Banach
space. Let JE be the duality mapping on E. Let B1 : H � H and B2 : E � E∗ be maximal
monotone operators, respectively. Let J B1

λ be the resolvent of B1 for λ > 0 and let J B2
μ be

the metric resolvent of B for μ > 0. Let A : H → E be a bounded linear operator with its
adjoint A∗ such that A 
= 0. Suppose that � 
= ∅. Let {un} be a sequence in H such that
un → u. Let x1 ∈ H and let {xn} ⊂ H be a sequence generated by

{
yn = αnun + (1 − αn)J

B1
λn

(xn − λn A∗(I − J B2
μn )Axn),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(1.7)

where {λn}, {μn} ⊂ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy the following conditions:

lim
n→∞ αn = 0 and

∞∑

n=1

αn = ∞

0 < a ≤ λn‖A‖2 ≤ b < 2, 0 < k ≤ μn, 0 < c ≤ βn ≤ d < 1,

for some a, b, c, d ∈ R. Then {xn} converges strongly to x∗ ∈ �, where x∗ = P�u.

However, it is observed that several iterative methods suggested require the computation of
the norm of the bounded linear operator ‖A‖, which may not be calculated easily in general.
In this work, motivated by the previous works, we introduce an iterative technique with
residual vectors for solving the fixed point problem of a relatively nonexpansive mapping
and SIP with a way of selecting the step sizes without prior knowledge of the operator norm
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in the framework of p-uniformly convex and uniformly smooth Banach spaces. We prove
its strong convergence of proposed algorithm to a common element of the set fixed points of
a relatively nonexpansive mapping and the solutions of the SIP. As applications, we apply
our result to finding the set of common fixed points of a family of mappings which is also a
solution of the SIP. We also give some numerical examples and demonstrate the efficiency
of the proposed algorithm. The results obtained in this paper improve and generalize many
known results in the literature.

2 Preliminaries

Let E and E∗ be real Banach spaces and the dual space of E , respectively. Let E1 and E2

be real Banach spaces and let A : E1 → E2 be a bounded linear operator with its adjoint
operator A∗ : E∗

2 → E∗
1 which is defined by

〈A∗ ȳ, x〉 := 〈ȳ, Ax〉, ∀x ∈ E1, ȳ ∈ E∗
2 .

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE (ε) = inf

{
1 − ‖x+y‖

2 : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
.

The modulus of smoothness of E is the function ρE : R+ := [0,∞) → R
+ defined by

ρE (τ ) =
{

‖x+τ y‖+‖x−τ y‖
2 − 1 : ‖x‖ = ‖y‖ = 1

}
.

Definition 2.1 A Banach space E is said to be

1. uniformly convex if δE (ε) > 0 for all ε ∈ (0, 2];
2. p-uniformly convex (or to have a modulus of convexity of power type p) if there is a

cp > 0 such that δE (ε) ≥ cpε p for all ε ∈ (0, 2];
3. uniformly smooth if limτ→0

ρE (τ )
τ

= 0;
4. q-uniformly smooth if there exists a cq > 0 such that ρE (τ ) ≤ cqτ q for all τ > 0.

From theDefinition 2.1, we observe that every p-uniformly convex space is uniformly convex
and if E is q-uniformly smooth, then E is also uniformly smooth. It is known that (Agarwal
et al. 2009)

{
E is p-uniformly convex if and only if E∗ is q-uniformly smooth,

E is q-uniformly smooth if and only if E∗ is p-uniformly convex,
(2.1)

where p ≥ 2 and 1 < q ≤ 2 are conjugate exponents, i.e., p, q satisfy 1
p + 1

q = 1 (see Xu
and Roach 1991). For the sequence spaces �p , Lebesgue spaces L p and Sobolev spacesWm

p ,
we also know that (Agarwal et al. 2009; Hanner 1956; Xu and Roach 1991)
{

�p, L p and Wm
p are 2-uniformly convex and p-uniformly smooth with 1 < p ≤ 2,

�p, L p and Wm
p are q-uniformly convex and 2-uniformly smooth with 2 ≤ q < ∞.

Definition 2.2 A continuous strictly increasing function ϕ : R+ → R
+ is said to be a gauge

if ϕ(0) = 0 and limt→∞ ϕ(t) = ∞.
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Definition 2.3 The mapping J E
ϕ : E � E∗ associated with a gauge function ϕ defined by

J E
ϕ (x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖ϕ(‖x‖), ‖ f ‖ = ϕ(‖x‖), ∀x ∈ E},

is called the duality mapping with gauge ϕ, where 〈·, ·〉 denotes the duality pairing between
E and E∗.

Ifϕ(t) = t , then J E
ϕ = J E

2 = J is thenormalizeddualitymapping. In particular,ϕ(t) = t p−1,
where p > 1, the duality mapping J E

ϕ = J E
p is called the generalized duality mappingwhich

is defined by

J E
p (x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖p, ‖ f ‖ = ‖x‖p−1}.

It is well known that if E is uniformly smooth, the generalized duality mapping J E
p is norm

to norm uniformly continuous on bounded subsets of E (see Reich 1981). Furthermore, J E
p is

one-to-one, single-valued and satisfies J E
p = (J E∗

q )−1, where J E∗
q is the generalized duality

mapping of E∗ (see Reich 1992; Cioranescu 1990 for more details).
For a gauge ϕ, the function � : R+ → R

+ defined by

�(t) =
∫ t

0
ϕ(s)ds

is a continuous convex strictly increasing differentiable function on R
+ with �′(t) = ϕ(t)

and limt→∞ �(t)
t = ∞. Therefore, � has a continuous inverse function �−1.

We next recall the Bregman distance, which was introduced and studied in Bregman
(1967).

Definition 2.4 Let E be a real smooth Banach space. The Bregman distance Dϕ(x, y)
between x and y in E is defined by

Dϕ(x, y) = �(‖y‖) − �(‖x‖) − 〈Jϕ(x), y − x〉.
We note that the Bregman distance Dϕ does not satisfy the well-known properties of a metric
because Dϕ is not symmetric and does not satisfy the triangle inequality. Moreover, the
Bregman distance has the following important properties:

Dϕ(x, y) = Dϕ(x, z) + Dϕ(z, y) + 〈J E
ϕ x − J E

ϕ z, z − y〉, (2.2)

Dϕ(x, y) + Dϕ(y, x) = 〈J E
ϕ x − J E

ϕ y, x − y〉, (2.3)

for all x, y, z ∈ E .
In the case ϕ(t) = t p−1, where p > 1, the distance Dϕ = Dp is called the p-Lyapunov

function which was studied in Bonesky et al. (2008) and it is given by

Dp(x, y) = 1

q
‖x‖p − 〈J E

p x, y〉 + 1

p
‖y‖p,

where p, q are conjugate exponents. For the p-uniformly convex space, the Bregman distance
has the following relation (see Schöpfer et al. 2008):

τ‖x − y‖p ≤ Dp(x, y) ≤ 〈J E
p x − J E

p y, x − y〉, (2.4)

where τ > 0 is some fixed number. If p = 2, we get

D2(x, y) := φ(x, y) = ‖x‖2 − 2〈J x, y〉 + ‖y‖2,
where φ is called the Lyapunov function which was introduced by Alber (1993, 1996).
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The following Lemma can be obtained from Theorem 2.8.17 of Agarwal et al. (2009) (see
also Lemma 5 of Kuo and Sahu 2013).

Lemma 2.5 Let p > 1, r > 0 and E be a Banach space. Then the following statements are
equivalent:

(i) E is uniformly convex;
(ii) There exists a strictly increasing convex function g∗

r : R+ → R
+ with g∗

r (0) = 0 such
that

∥
∥

N∑

k=1

αk xk
∥
∥p ≤

N∑

k=1

αk‖xk‖p − αiα j g
∗
r (‖xi − x j‖),

for all i, j ∈ {1, 2, . . . , N }, xk ∈ Br := {x ∈ E : ‖x‖ ≤ r}, αk ∈ (0, 1) with∑N
k=1 αk = 1, where k ∈ {1, 2, . . . , N }.

Lemma 2.6 (Xu 1991) Let 1 < q ≤ 2 and E be a Banach space. Then the following
statements are equivalent:

(i) E is q-uniformly smooth;
(ii) there is a constant κq > 0 which is called the q-uniform smoothness coefficient of E

such that for all x, y ∈ E

‖x − y‖q ≤ ‖x‖q − q〈y, J E
q (x)〉 + κq‖y‖q . (2.5)

In what follows, we shall use the following notations: xn → x means that {xn} converges
strongly to x and xn⇀x means that {xn} converges weakly to x . LetC be a closed and convex
subset of E and let T be a mapping from C into itself. We denote F(T ) by the set of all
fixed points of T , i.e., F(T ) = {x ∈ C : x = T x}. A point z ∈ C is called an asymptotic
fixed point (Reich 1996) of T , if there exists a sequence {xn} in C which converges weakly
to z and limn→∞ ‖xn − T xn‖ = 0. We denote F̂(T ) by the set of asymptotic fixed points of
T . A mapping T : C → C is called Bregman relatively nonexpansive (Butnariu et al. 2001,
2003; Censor and Reich 1996; Matsushita and Takahashi 2005), if the following conditions
are satisfied:

(R1) F(T ) = F̂(T ) 
= ∅;
(R2) Dp(T x, z) ≤ Dp(x, z), ∀z ∈ F(T ), ∀x ∈ C .

Let E be a p-uniformly convex Banach space which is also uniformly smooth. Following
Censor and Lent (1981) and Alber (1993), we make use of the function Vp : E∗ × E → R

+
which is defined by

Vp(x
∗, x) = 1

q
‖x∗‖q − 〈x∗, x〉 + 1

p
‖x‖p (2.6)

for all x ∈ E and x∗ ∈ E∗, where p, q are conjugate exponents. Then Vp is nonnegative and
convex in the first variable. It is observed that

Vp(x
∗, x) = Dp(J

E∗
q (x∗), x) (2.7)

for all x ∈ E and x∗ ∈ E∗. In addition,

Vp(x
∗, x) ≤ Vp(x

∗ − y∗, x) + 〈J E∗
q (x∗) − x, y∗〉 (2.8)

for all x ∈ E and x∗ ∈ E∗.
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Lemma 2.7 (Bonesky et al. 2008) Let p > 1 and E be a real p-uniformly convex
and uniformly smooth Banach space. For x ∈ E and a sequence {xn} in E. Then,
limn→∞ Dp(xn, x) = 0 ⇐⇒ limn→∞ ‖xn − x‖ = 0.

Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive
Banach space E . Then we know that for any x ∈ E , there exists a unique element z ∈ C
such that

Dp(x, z) = min
y∈C Dp(x, y). (2.9)

The mapping �C : E → C defined by z = �C x is called the generalized projection of E
onto C .

Lemma 2.8 (Kuo and Sahu 2013) Let C be a nonempty, closed and convex subset of a p-
uniformly convex and uniformly smooth Banach space E and let x ∈ E. Then the following
assertions hold:

(i) z = �C x if and only if 〈J E
p (x) − J E

p (z), y − z〉 ≤ 0, ∀y ∈ C.
(ii) Dp(�C x, y) + Dp(x,�C x) ≤ Dp(x, y), ∀y ∈ C.

Let B : E � E∗ be a mapping. The effective domain of B is denoted by D(B), i.e.,
D(B) = {x ∈ E : Bx 
= ∅}. A multi-valued mapping B is said to be monotone if

〈u − v, x − y〉 ≥ 0, ∀x, y ∈ D(B), u ∈ Bx and v ∈ By. (2.10)

A monotone operator B on E is said to be maximal if its graph is not properly contained in
the graph of any other monotone operator on E .

Let E be a p-uniformly convex and uniformly smooth Banach space and let B : E � E∗
be a maximal monotone operator. Then, for x ∈ E and λ > 0, we define a mapping QB

λ :
E → D(B) by

QB
λ (x) := (I + λ(J E

p )−1B)−1(x) for all x ∈ E . (2.11)

This mapping is called the metric resolvent of B for λ > 0. The set of null points of B is
defined by B−1(0) = {z ∈ E : 0 ∈ Bz}. We know that B−1(0) is closed and convex (see
Takahashi 2000). We see that

0 ∈ J E
p (QB

λ (x) − x) + λBQB
λ (x). (2.12)

Further, F(QB
λ ) = B−1(0) for λ > 0 (see Zeidler 1984). From Kuo and Sahu (2013), we

also know that

〈QB
λ (x) − QB

λ (y), J E
p (x − QB

λ (x)) − J E
p (y − QB

λ (y))〉 ≥ 0, (2.13)

for all x, y ∈ E and if B−1(0) 
= ∅, then
〈J E

p (x − QB
λ (x)), QB

λ (x) − z〉 ≥ 0, (2.14)

for all x ∈ E and z ∈ B−1(0).
In addition, we can define a single-valued mapping RB

λ : E → D(B) so-called the
resolvent of B by (Kohsaka and Takahashi 2005)

RB
λ (x) := (J E

p + λB)−1 J E
p (x) for all x ∈ E .

It is known that RB
λ is a relatively nonexpansive mapping and F(RB

λ ) = B−1(0) for λ > 0
(see Kuo and Sahu 2013).
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Lemma 2.9 (Kohsaka and Takahashi 2005) Let B : E � E∗ be a maximal monotone
operator with B−1(0) 
= ∅ and let RB

λ be a resolvent operator of B for λ > 0. Then

Dp(R
B
λ (x), z) + Dp(R

B
λ (x), x) ≤ Dp(x, z),

for all x ∈ E and z ∈ B−1(0).

The following Theorem is proved by Kohsaka and Takahashi (see Kohsaka and Takahashi
2005, Lemma 7.2).

Lemma 2.10 (Kohsaka and Takahashi 2005) Let B : E � E∗ be a monotone operator. Then
B is maximal if and only if for each λ > 0,

R(J E
p + λB) = E∗,

where R(J E
p + λB) is the range of J E

p + λB.

The following lemma was proved by Suantai et al. (2018).

Lemma 2.11 Let E1 and E2 be uniformly convex and smooth Banach spaces. Let A : E1 →
E2 be a bounded linear operator with the adjoint operator A∗. Let RB1

λ be the resolvent

operator of a maximal monotone operator B1 for λ1 > 0 and QB2
λ2

be a metric resolvent of
a maximal monotone operator B2 for λ2 > 0. Suppose that � 
= ∅. Let r > 0 and x∗ ∈ E1.
Then x∗ is a solution of problem (1.6) if and only if

x∗ = RB1
λ1

(J
E∗
1

q (J E1
p (x∗) − r A∗ J E2

p (I − QB2
λ2

)Ax∗)).

Lemma 2.12 Let E be a real p-uniformly convex and uniformly smooth Banach spaces.
Suppose that x ∈ E and {xn} is a sequence in E. Then the following statements are equivalent:
(a) {Dp(xn, x)} is bounded;
(b) {xn} is bounded.

Proof For the implication (a) �⇒ (b) was proved in Reich and Sabach (2010). For the
converse implication (b) �⇒ (a), we assume that x ∈ E and {xn} are bounded. From (2.4),
we observe that

Dp(xn, x) ≤ 〈J E
p xn − J E

p x, xn − x〉
≤ ‖J E

p xn − J E
p x‖‖xn − x‖

≤ M,

for all n ∈ N, where M = supn≥1{‖xn‖, ‖xn‖p−1, ‖x‖, ‖x‖p−1}. This implies that
{Dp(xn, x)} is bounded. ��

Lemma 2.13 (Reich 1979) Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − γn)an + γnδn, ∀n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that limn→∞ γn = 0,∑∞
n=1 γn = ∞ and lim supn→∞ δn ≤ 0. Then limn→∞ an = 0.
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Lemma 2.14 (Maingé 2008) Let {�n} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {�ni } of {�n} which satisfies �ni < �ni+1

for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : �k < �k+1},
where n0 ∈ N such that {k ≤ n0 : �k < �k+1} 
= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ . . . and τ(n) → ∞;
(ii) �τn ≤ �τ(n)+1 and �n ≤ �τ(n)+1, ∀n ≥ n0.

Lemma 2.15 Let E be a real p-uniformly convex and uniformly smooth Banach space. Let
z, xk ∈ E (k = 1, 2, . . . , N ) and αk ∈ (0, 1) with

∑N
k=1 αk = 1. Then, we have

Dp

(
J E∗
q

( N∑

k=1

αk J
E
p (xk)

)
, z

)
≤

N∑

k=1

αk Dp(xk, z) − αiα j g
∗
r

(‖J E
p (xi ) − J E

p (x j )‖
)
,

for all i, j ∈ {1, 2, . . . , N }.
Proof Since p-uniformly convex, hence it is uniformly convex. From Lemma 2.5, we have

Dp

(
J E∗
q

( N∑

k=1

αk J
E
p (xk)

)
, z

)

= Vp

( N∑

k=1

αk J
E
p (xk), z

)

= 1

q

∥∥
N∑

k=1

αk J
E
p (xk)

∥∥q −
〈

N∑

k=1

αk J
E
p (xk), z

〉

+ 1

p
‖z‖p

≤ 1

q

N∑

k=1

αk‖J E
p (xk)‖q − αiα j g

∗
r (‖J E

p (xi ) − J E
p (x j )‖) −

〈
N∑

k=1

αk J
E
p (xk), z

〉

+ 1

p
‖z‖p

= 1

q

N∑

k=1

αk‖J E
p (xk)‖q −

N∑

k=1

αk〈J E
p (xk), z〉 + 1

p
‖z‖p − αiα j g

∗
r (‖J E

p (xi ) − J E
p (x j )‖)

=
N∑

k=1

αk Dp(xk, z) − αiα j g
∗
r (‖J E

p (xi ) − J E
p (x j )‖),

for all i, j ∈ {1, 2, . . . , N }. This completes the proof. ��

3 Algorithm and strong convergence theorem

In this section, we introduce an iterative algorithm for finding a common element of the set of
solutions of split inclusion problem (1.6) and the set of fixed points of a Bregman relatively
nonexpansive mapping. More specifically, we assume the following assumptions:

• E1 and E2 are p-uniformly convex and uniformly smooth Banach spaces;
• B1 : E1 � E∗

1 and B2 : E2 � E∗
2 are maximal monotone operators such that B−1

1 (0) 
=
∅ and B−1

2 (0) 
= ∅, respectively;
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12 Page 10 of 25 P. Cholamjiak et al.

• RB1
λ1

is the resolvent operator of a maximal monotone B1 for λ1 > 0 and QB2
λ2

is the
metric resolvent operator of a maximal monotone B2 for λ2 > 0;

• A : E1 → E2 is a bounded linear operator with its adjoint operator A∗ : E∗
2 → E∗

1 ;• T : E1 → E1 is a Bregman relatively nonexpansive mapping such that F(T ) = F̂(T ) 
=
∅;

• The set of solution of SIP is consistent, i.e., � 
= ∅;
• � := F(T ) ∩ � 
= ∅;
• εn denotes the residual vector in E1 such that limn→∞ εn = u ∈ E1.

Algorithm 3.1 Choose an initial guess u1 ∈ E1; let {xn}∞n=1 and {un}∞n=1 be sequences
generated by

{
xn = RB1

λ1
(J

E∗
1

q (J E1
p (un) − λn A∗ J E2

p (I − QB2
λ2

)Aun))

un+1 = J
E∗
1

q (αn J
E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (T xn)), ∀n ≥ 1,

(3.1)

where {αn}, {βn} and {γn} are sequences in (0, 1) such that αn + βn + γn = 1. Suppose that
stepsize λn is a bounded sequence chosen in such a way that

0 < ε ≤ λn ≤
(

q‖(I − QB2
λ2

)Aun‖p

κq‖A∗ J E2
p (I − QB2

λ2
)Aun‖q

− ε

) 1
q−1

, n ∈ N , (3.2)

for some ε > 0, where the index set N := {n ∈ N : (I − QB2
λ2

)Aun 
= 0} and λn = λ (λ
being any nonnegative value), otherwise. Note that the choice in (3.2) of the stepsize λn is
independent of the norms ‖A‖.
Lemma 3.2 Let {xn}∞n=1 and {un}∞n=1 be sequences generated byAlgorithm3.1. Then, {xn}∞n=1
and {un}∞n=1 are bounded.

Proof. By the choice of λn , we observe that

λ
q−1
n ≤ q‖(I − QB2

λ2
)Aun‖p

κq‖A∗ J E2
p (I − QB2

λ2
)Aun‖q

− ε

⇐⇒ κqλ
q−1
n ‖A∗ J E2

p (I − QB2
λ2

)Aun‖q ≤ ‖(I − QB2
λ2

)Aun‖p − εκq‖A∗ J E2
p (I − QB2

λ2
)Aun‖q

⇐⇒ εκq

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q ≤ ‖(I − QB2
λ2

)Aun‖p − κqλ
q−1
n

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q .
(3.3)

Let z ∈ �. From (2.14), we observe that

〈J E2
p (I − QB2

λ2
)Aun, Aun − Az〉

= ‖(I − QB2
λ2

)Aun‖p + 〈J E2
p (I − QB2

λ2
)Aun, Q

B2
λ2

(Aun) − Az〉
≥ ‖(I − QB2

λ2
)Aun‖p. (3.4)

Set vn := J
E∗
1

q (J E1
p (un) − λn A∗ J E2

p (I − QB2
λ2

)Aun) for all n ≥ 1. By (3.4) and Lemma 2.6,
we have

Dp(xn , z) ≤ Dp(vn , z)

= Dp
(
J
E∗
1

q (J
E1
p (un) − λn A

∗ J E2p (I − Q
B2
λ2

)Aun), z
)
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= 1

q
‖J E

∗
1

q (J
E1
p (un)−λn A

∗ J E2p (I − Q
B2
λ2

)Aun)‖p−〈J E1p (un)−λn A
∗ J E2p (I−Q

B2
λ2

)Aun , z〉+ 1

p
‖z‖p

= 1

q
‖J E1p (un) − λn A

∗ J E2p (I − Q
B2
λ2

)Aun)‖q − 〈J E1p (un) − λn A
∗ J E2p (I − Q

B2
λ2

)Aun , z〉 + 1

p
‖z‖p

≤ 1

q
‖J E1p (un)‖q − λn〈Aun , J

E2
p (I − Q

B2
λ2

)Aun〉 + κqλ
q
n

q
‖A∗ J E2p (I − Q

B2
λ2

)Aun‖q − 〈J E1p (un), z〉

+λn〈J E2p (I − Q
B2
λ2

)Aun , Az〉 + 1

p
‖z‖p

= 1

q
‖un‖p − 〈J E1p (un), z〉

+ 1

p
‖z‖p + λn〈J E2p (I − Q

B2
λ2

)Aun , Az − Aun〉 + κqλ
q
n

q
‖A∗ J E2p (I − Q

B2
λ2

)Aun‖q

= Dp(un , z) + λn〈J E2p (I − Q
B2
λ2

)Aun , Az − Aun〉 + κqλ
q
n

q
‖A∗ J E2p (I − Q

B2
λ2

)Aun‖q

≤ Dp(un , z) − λn

(
‖(I − Q

B2
λ2

)Aun‖p − κqλ
q−1
n

q
‖A∗ J E2p (I − Q

B2
λ2

)Aun‖q
)

, (3.5)

which implies by (3.3) that

Dp(xn, z) ≤ Dp(un, z).

Since limn→∞ εn = u ∈ E1, which implies that {εn} is bounded, then from Lemma 2.12, we
have {Dp(εn, z)} is bounded. So there exists a constant K > 0 such that Dp(εn, z) ≤ K for
all n ≥ 1. From Lemma 2.15, we have

Dp(xn+1, z) ≤ Dp(un+1, z)

= Dp(J
E∗
1

q (αn J
E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (T xn)), z)

≤ αnDp(εn, z) + βnDp(xn, z) + γnDp(T xn, z)

−βnγng
∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

≤ αnDp(εn, z) + (1 − αn)Dp(xn, z) − βnγng
∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

≤ αnK + (1 − αn)Dp(xn, z)

≤ max{K , Dp(xn, z)}
...

≤ max{K , Dp(x1, z)}. (3.6)

By induction, we have {Dp(xn, z)} is bounded. Hence, {xn} is bounded and so are {un} and
{Aun}.

Theorem 3.3 Let {xn}∞n=1 and {un}∞n=1 be sequences generated by Algorithm 3.1. Suppose
that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < k ≤ βnγn ≤ 1 for some k ∈ (0, 1).

Then {xn}∞n=1 and {un}∞n=1 converge strongly to x∗ = ��u, where �� is the generalized
projection from E1 onto �.

Proof Let x∗ = �F(T )∩�u. From (2.7) and (3.6), we have
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12 Page 12 of 25 P. Cholamjiak et al.

Dp(xn+1, x
∗)

≤ Dp(un+1, x
∗)

= Vp
(
αn J

E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (T xn), x

∗)

≤ Vp(αn J
E1
p (εn)+βn J

E1
p (xn)+γn J

E1
p (T xn) − αn(J

E1
p (εn)− J E1

p (x∗), x∗))

+αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉
= Vp(αn J

E1
p (x∗)+βn J

E1
p (xn)+γn J

E1
p (T xn), x

∗)+αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉
= Dp(J

E∗
1

q (αn J
E1
p (x∗) + βn J

E1
p (xn) + γn J

E1
p (T xn)), x

∗)

+αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉
≤ αnDp(x

∗, x∗) + βnDp(xn, x
∗) + γnDp(T xn, x

∗) − βnγng
∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

+αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉
≤ (1 − αn)Dp(xn, x

∗) − βnγng
∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

+αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉. (3.7)

We now divide the proof into two cases:

Case 1 Suppose that there exists n0 ∈ N such that {Dp(xn, x∗)}∞n=n0 is non-increasing. So
we have {Dp(xn, x∗)}∞n=1 converges and it is bounded. From (3.7), we have

0 ≤ kg∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

≤ βnγng
∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

≤ Dp(xn, x
∗) − Dp(xn+1, x

∗) + αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉. (3.8)

This implies that

lim
n→∞ g∗

r (‖J E1
p (xn) − J E1

p (T xn)‖) = 0.

By the property of g∗
r , we have

lim
n→∞ ‖J E1

p (xn) − J E1
p (T xn)‖ = 0. (3.9)

Since J
E∗
1

q is uniformly norm-to-norm continuous on bounded subsets of E∗
1 , then

lim
n→∞ ‖xn − T xn‖ = 0. (3.10)

By Lemma 2.7, we also have

lim
n→∞ Dp(xn, T xn) = 0. (3.11)

By the boundedness of {xn} and the reflexivity of E1, there exists a subsequence {xni } of {xn}
such that xni ⇀x̂ ∈ E1. From (3.10), we obtain x̂ ∈ F̂(T ) = F(T ). From (3.3), (3.5) and
(3.6), we see that
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ε2κq

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q ≤ λn

(
‖(I − QB2

λ2
)Aun‖p − κqλ

q−1
n

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q
)

≤ Dp(un, x̂) − Dp(xn, x̂)

≤ αn−1Dp(εn−1, x̂) + Dp(xn−1, x̂) − Dp(xn, x̂) → 0 as n → ∞,

which implies that

lim
n→∞ ‖A∗ J E2

p (I − QB2
λ2

)Aun‖ = 0. (3.12)

From (3.5) and (3.6), we have

ε‖(I − QB2
λ2

)Aun‖p ≤ λn‖(I − QB2
λ2

)Aun‖p

≤ Dp(un, x̂) − Dp(xn, x̂) + κqλ
q
n

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q

≤ αn−1Dp(εn−1, x̂) + Dp(xn−1, x̂) − Dp(xn, x̂)

+κqλ
q
n

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q → 0 as n → ∞.

Hence

lim
n→∞ ‖Aun − QB2

λ2
Aun‖ = 0. (3.13)

Then, we have

‖J E1
p (vn) − J E1

p (un)‖ ≤ λn‖A∗ J E2
p (I − QB2

λ2
)Aun‖

≤ λn‖A∗‖‖J E2
p (I − QB2

λ2
)Aun‖

≤ λn‖A∗‖‖Aun − QB2
λ2

Aun‖p−1 → 0 as n → ∞,

which implies that

lim
n→∞ ‖J E1

p (vn) − J E1
p (un)‖ = 0. (3.14)

Since J
E∗
1

q is norm-to-norm uniformly continuous on bounded subsets of E∗
1 ,

lim
n→∞ ‖vn − un‖ = 0. (3.15)

By Lemma 2.9 and (3.6), we have

Dp(xn, vn) = Dp(R
B1
λ1

vn, vn)

≤ Dp(vn, x̂) − Dp(xn, x̂)

≤ Dp(un, x̂) − Dp(xn, x̂)

≤ αn−1Dp(εn−1, x̂) + Dp(xn−1, x̂) − Dp(xn, x̂) → 0 as n → ∞.

Thus, we have

lim
n→∞ ‖RB1

λ1
vn − vn‖ = lim

n→∞ ‖xn − vn‖ = 0. (3.16)

Since xni ⇀x̂ ∈ E1, we also have vni ⇀x̂ ∈ E1. From (3.16), we get x̂ ∈ F(RB1
λ1

) ∈ B−1
1 (0).

From (3.15) and (3.16), we obtain

‖xn − un‖ ≤ ‖xn − vn‖ + ‖vn − un‖ → 0 as n → ∞. (3.17)
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Since xni ⇀x̂ ∈ E1 and from (3.17), we also get uni ⇀x̂ ∈ E1. From (2.14), we have

‖(I − QB2
λ2

)Ax̂‖p = 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), Ax̂ − QB2

λ2
Ax̂〉

= 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), Ax̂ − Auni 〉

+ 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), Auni − QB2

λ2
Auni 〉

+ 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), QB2

λ2
Auni − QB2

λ2
Ax̂〉

≤ 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), Ax̂ − Auni 〉

+ 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), Auni − QB2

λ2
Auni 〉. (3.18)

Since A is continuous, we have Auni ⇀Ax̂ as i → ∞. Then, we have

‖Ax̂ − QB2
λ2

Ax̂‖ = 0,

that is, Ax̂ = QB2
λ2

Ax̂ . This shows that Ax̂ ∈ F(QB2
λ2

) = B−1
2 (0). So x̂ ∈ �. Therefore, we

conclude that x̂ ∈ � := F(T ) ∩ �.
Now, we see that

Dp(un+1, xn) ≤ Dp(J
E∗
1

q (αn J
E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (T xn)), xn)

≤ αnDp(εn, xn) + βnDp(xn, xn) + γnDp(T xn, xn) → 0 as n → ∞,

and hence

lim
n→∞ ‖un+1 − xn‖ = 0. (3.19)

So, we have

‖un+1 − un‖ ≤ ‖un+1 − xn‖ + ‖xn − un‖ → 0 as n → ∞. (3.20)

We now choose a subsequence {xni } of {xn} such that
lim sup
n→∞

〈J E1
p (u) − J E1

p (x∗), xn − x∗〉 = lim
i→∞〈J E1

p (u) − J E1
p (x∗), xni − x∗〉,

where x∗ = ��u. From (3.17) and Lemma 2.8, we get

lim sup
n→∞

〈J E1
p (u) − J E1

p (x∗), un − x∗〉 = lim sup
n→∞

〈J E1
p (u) − J E1

p (x∗), xn − x∗〉
= lim

i→∞〈J E1
p (u) − J E1

p (x∗), xni − x∗〉
= 〈J E1

p (u) − J E1
p (x∗), x̂ − x∗〉 ≤ 0.

From (3.20), we also have

lim sup
n→∞

〈J E1
p (u) − J E1

p (x∗), un+1 − x∗〉 ≤ 0. (3.21)

By (3.7), we note that

Dp(xn+1, x
∗) ≤ (1 − αn)Dp(xn, x

∗) + αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉
= (1 − αn)Dp(xn, x

∗) + αn〈J E1
p (εn) − J E1

p (u), un+1 − x∗〉
+αn〈J E1

p (u) − J E1
p (x∗), un+1 − x∗〉.
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Since εn → u implies J E1
p (εn) → J E1

p (u). Considering this together with (3.21), we con-
clude by Lemma 2.13 that Dp(xn, x∗) → 0 as n → ∞. Therefore,S xn → x∗ ∈ �.

Case 2 Suppose that there exists a subsequence {�ni } of {�n} such that �ni < �ni+1 for all
i ∈ N. Let us define a mapping τ : N → N by

τ(n) = max{k ≤ n : �k < �k+1}.
Then, by Lemma 2.14, we obtain

�τ(n) ≤ �τ(n)+1 and �n ≤ �τ(n)+1.

Put �n = Dp(xn, x∗) for all n ∈ N. Then, we have from (3.6) that

0 ≤ lim
n→∞(Dp(xτ(n)+1, x

∗) − Dp(xτ(n), x
∗))

≤ lim
n→∞(Dp(ετ(n), x

∗) + (1 − ατ(n))Dp(xτ(n), x
∗) − Dp(xτ(n), x

∗))

= lim
n→∞ ατ(n)

(
Dp(ετ(n), x

∗) − Dp(xτ(n), x
∗)) = 0,

which implies that

lim
n→∞(Dp(xτ(n)+1, x

∗) − Dp(xτ(n), x
∗)) = 0. (3.22)

Following the proof line in Case 1, we can show that

lim
n→∞ ‖xτ(n) − T xτ(n)‖ = 0,

lim
n→∞ ‖A∗ J E2

p (I − QB2
λ2

Auτ(n)‖ = 0,

lim
n→∞ ‖Auτ(n) − QB2

λ2
Auτ(n)‖ = 0,

lim
n→∞ ‖xτ(n) − vτ(n)‖ = lim

n→∞ ‖xτ(n) − uτ(n)‖ = 0

and

lim
n→∞ ‖uτ(n)+1 − uτ(n)‖ = 0.

Furthermore, we can show that

lim sup
n→∞

〈J E1
p (u) − J E1

p (x∗), uτ(n)+1 − x∗〉 ≤ 0.

From (3.7), we have

Dp(xτ(n)+1, x
∗) ≤ (1 − ατ(n))Dp(xτ(n), x

∗) + ατ(n)〈J E1
p (ετ(n)) − J E1

p (x∗), uτ(n)+1 − x∗〉,
which implies that

ατ(n)Dp(xτ(n), x
∗) ≤ Dp(xτ(n), x

∗) − Dp(xτ(n)+1, x
∗)

+ατ(n)〈J E1
p (ετ(n)) − J E1

p (x∗), uτ(n)+1 − x∗〉.
Since �τ(n) ≤ �τ(n)+1 and ατ(n) > 0, we get

Dp(xτ(n), x
∗) ≤ 〈J E1

p (ετ(n)) − J E1
p (x∗), uτ(n)+1 − x∗〉

= 〈J E1
p (ετ(n)) − J E1

p (u), uτ(n)+1 − x∗〉 + 〈J E1
p (u)− J E1

p (x∗), uτ(n)+1−x∗〉.
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Since ετ(n) → u implies J E1
p (ετ(n)) → J E1

p (u). Hence, limn→∞ Dp(xτ(n), x∗) = 0. From
(3.22), we obtain

Dp(xn, x
∗) ≤ Dp(xτ(n)+1, x

∗) = Dp(xτ(n), x
∗) + (Dp(xτ(n)+1, x

∗)
−Dp(xτ(n), x

∗)) → 0 as n → ∞,

which implies that Dp(xn, x∗) → 0. That is xn → x∗ as n → ∞. This completes
the proof. ��

We consequently obtain the following result in Hilbert spaces:

Corollary 3.4 Let H1 and H2 be Hilbert spaces. Let B1 : H1 � H1 and B2 : H2 � H2 be
maximal monotone operators such that B−1

1 (0) 
= ∅ and B−1
2 (0) 
= ∅, respectively. Let RB1

λ1

be the resolvent operator of a maximal monotone B1 for λ1 > 0 and let QB2
λ2

be the metric
resolvent operator of a maximal monotone B2 for λ2 > 0. Let A : H1 → H2 be a bounded
linear operator with its adjoint operator A∗ : H2 → H1. Let T : H1 → H1 be a relatively
nonexpansive mapping such that F(T ) = F̂(T ) 
= ∅. Assume that � := F(T ) ∩ � 
= ∅.
Choose an initial guess u1 ∈ H1; let {xn}∞n=1 and {un}∞n=1 be sequences generated by

{
xn = RB1

λ1
(un − λn A∗(I − QB2

λ2
)Aun)

un+1 = αnεn + βnxn + γnT xn, ∀n ≥ 1,
(3.23)

where {εn} ⊂ H1 is a residual vector such that εn → u, and {αn}, {βn} and {γn} are sequences
in (0, 1) such that αn +βn + γn = 1. Suppose that stepsize λn is a bounded sequence chosen
in such a way that

0 < ε ≤ λn ≤ 2‖(I − QB2
λ2

)Aun‖2
‖A∗(I − QB2

λ2
)Aun‖2

− ε, n ∈ N , (3.24)

for some ε > 0, where the index set N := {n ∈ N : (I − QB2
λ2

)Aun 
= 0} and λn = λ (λ
being any nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < k ≤ βnγn ≤ 1 for some k ∈ (0, 1).

Then {xn}∞n=1 and {un}∞n=1 converge strongly to x∗ = ��u.

4 Convergence theorems for a family of mappings

In this section, we apply our result to the common fixed point problems of a family of
mappings.

4.1 A countable family of relatively nonexpansivemappings

Definition 4.1 (Aoyama et al. 2007) Let C be a subset of a real p-uniformly convex and
uniformly smooth Banach space E . Let {Tn}∞n=1 be a sequence of mappings of C in to E
such that

⋂∞
n=1 F(Tn) 
= ∅. Then {Tn}∞n=1 is said to satisfy the AKTT-condition if, for any

bounded subset B of C ,
∞∑

n=1

sup
z∈B

{‖J E
p (Tn+1z) − J E

p (Tnz)‖} < ∞.
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As in Suantai et al. (2012), we can prove the following Proposition:

Proposition 4.2 Let C be a nonempty, closed and convex subset of a real p-uniformly convex
and uniformly smooth Banach space E. Let {Tn}∞n=1 be a sequence of mappings of C such that⋂∞

n=1 F(Tn) 
= ∅ and {Tn}∞n=1 satisfies the AKTT-condition. Suppose that for any bounded
subset B of C. Then there exists the mapping T : B → E such that

T x = lim
n→∞ Tnx, ∀x ∈ B (4.1)

and

lim
n→∞ sup

z∈B
‖J E

p (T z) − J E
p (Tnz)‖ = 0.

In the sequel, we say that ({Tn}, T ) satisfies the AKTT-condition if {Tn}∞n=1 satisfies the
AKTT-condition and T is defined by (4.1) with

⋂∞
n=1 F(Tn) = F(T ).

Theorem 4.3 Let E1 and E2 be p-uniformly convex and uniformly smoothBanach spaces. Let
B1 : E1 � E∗

1 and B2 : E2 � E∗
2 be maximal monotone operators such that B−1

1 (0) 
= ∅
and B−1

2 (0) 
= ∅, respectively. Let RB1
λ1

be the resolvent operator of a maximal monotone B1

forλ1 > 0 and let QB2
λ2

be themetric resolvent operator of amaximalmonotone B2 forλ2 > 0.
Let A : E1 → E2 be a bounded linear operator with its adjoint operator A∗ : E∗

2 → E∗
1 .

Let {Tn}∞n=1 be a countable family of Bregman relatively nonexpansive mappings on E1 such
that F(Tn) = F̂(Tn) for all n ≥ 1. Assume that � := ⋂∞

n=1 F(Tn) ∩ � 
= ∅. Choose an
initial guess u1 ∈ E1, and let {xn}∞n=1 and {un}∞n=1 be sequences generated by

{
xn = RB1

λ1
(J

E∗
1

q (J E1
p (un) − λn A∗ J E2

p (I − QB2
λ2

)Aun))

un+1 = J
E∗
1

q (αn J
E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (Tnxn)), ∀n ≥ 1,

(4.2)

where {εn} ⊂ E1 is a residual vector such that εn → u, and {αn}, {βn} and {γn} are sequences
in (0, 1) such that αn +βn + γn = 1. Suppose that stepsize λn is a bounded sequence chosen
in such a way that

0 < ε ≤ λn ≤
(

q‖(I − QB2
λ2

)Aun‖p

κq‖A∗ J E2
p (I − QB2

λ2
)Aun‖q

− ε

) 1
q−1

, n ∈ N , (4.3)

for some ε > 0, where the index set N := {n ∈ N : (I − QB2
λ2

)Aun 
= 0} and λn = λ (λ
being any nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < k ≤ βnγn ≤ 1 for some k ∈ (0, 1).

Suppose in addition that ({Tn}∞n=1, T ) satisfies the AKTT-condition and F(T ) = F̂(T ). Then
{xn}∞n=1 and {un}∞n=1 converge strongly to x

∗ = ��u, where�� is the generalized projection
from E1 onto �.

Proof To this end, it suffices to show that limn→∞ ‖xn−T xn‖ = 0. By following the method
of proof in Theorem 3.3, we can show that {xn} is bounded and limn→∞ ‖xn − Tnxn‖ = 0.
Since J E1

p is uniformly continuous on bounded subsets of E1, we have

lim
n→∞ ‖J E1

p (xn) − J E1
p (Tnxn)‖ = 0.
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By Proposition 4.2, we see that

‖J E1
p (xn) − J E1

p (T xn)‖ ≤ ‖J E1
p (xn) − J E1

p (Tnxn)‖ + ‖J E1
p (Tnxn) − J E1

p (T xn)‖
≤ ‖J E1

p (xn) − J E1
p (Tnxn)‖

+ sup
x∈{xn}

‖J E1
p (Tnx) − J E1

p (T x)‖ → 0 as n → ∞.

Since J
E∗
1

q is norm-to-norm uniformly continuous on bounded subsets of E∗
1 ,

lim
n→∞ ‖xn − T xn‖ = 0.

This completes the proof. ��

4.2 A semigroup of relatively nonexpansivemappings

Definition 4.4 A one-parameter family S = {Tt }t≥0 from E into E is said to be a nonexpan-
sive semigroup if it satisfies the following conditions:

(S1) T0x = x for all x ∈ E ;
(S2) Ts+t = TsTt for all s, t ≥ 0;
(S3) for each x ∈ C the mapping t �→ Tt x is continuous;
(S4) for each t ≥ 0, Tt is nonexpansive, i.e.,

‖Tt x − Tt y‖ ≤ ‖x − y‖, ∀x, y ∈ E .

Remark 4.5 We denote by F(S) the set of all common fixed points of S, i.e., F(S) =⋂
t≥0 F(Tt ).

We now give some examples of semigroup operator. The following classical examples
were one of the main sources for the development of semigroup theory (see Engel and Nagel
2000):

Example 4.6 Let E be a real Banach space and let L(E) be the space of all bounded linear
operators on E . For A ∈ L(E) and define a bounded linear operator Tt by

Tt := et A =
∞∑

n=0

tn An

n! ,

for t ≥ 0. Then, the operator Tt is a semigroup on E .

Example 4.7 Let E := L p(Rn), 1 ≤ p < ∞. Consider the initial value problem for the heat
equation:

∂u
∂t = �u, for x ∈ R

n and t > 0,

u(x, 0) = f (x), for x ∈ R
n,

(4.4)

where � = ∑n
i=1

∂2

∂x2i
is the Laplacian operator on E . We can solve the heat equation using

Fourier transform and the solution (4.4) can be written as follows:

u(x, t) = 1√
(4π t)n

∫

Rn
e

−‖s−ξ‖2
4t f (ξ)dξ,
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where t > 0, s ∈ R
n and f ∈ E . Then, we can write the solution u(x, t) in the form of

convolution integral as follows:

u(x, t) = (Kt ∗ f )(x),

where Kt is heat kernel given by Kt (x) = 1√
(4π t)n

e
−‖x‖2

4t . Then the solution of (4.4) can be
written as follows:

Tt f (x) := u(x, t) = (Kt ∗ f )(x).

We can check that the operator Tt f (x) is a semigroup on E .

Definition 4.8 A one-parameter family S = {Tt }t≥0 : E → E is said to be a fam-
ily of uniformly Lipschitzian mappings if there exists a bounded measurable function
Lt : (0,∞) → [0,∞) such that

‖Tt x − Tt y‖ ≤ Lt‖x − y‖, ∀x, y ∈ E .

We now first give the following definition:

Definition 4.9 A one-parameter family S = {Tt }t≥0 : E → E is said to be a Bregman rela-
tively nonexpansive semigroup if it satisfies (S1), (S2), (S3) and the following conditions:

(a) F(S) = F̂(S) 
= ∅;
(b) Dp(Tt x, z) ≤ Dp(x, z), ∀x ∈ E, z ∈ F(S) and t ≥ 0.

Using idea in Aleyner and Censor (2005), Aleyner and Reich (2005) and Benavides et al.
(2002), we define the following concept:

Definition 4.10 A continuous operator semigroup S = {Tt }t≥0 : E → E is said to be
uniformly asymptotically regular (in short, u.a.r.) if for all s ≥ 0 and any bounded subset B
of E such that

lim
t→∞ sup

x∈B
‖J E

p (Tt x) − J E
p

(
TsTs x

)‖ = 0.

Theorem 4.11 Let E1 and E2 be p-uniformly convex and uniformly smooth Banach spaces.
Let B1 : E1 � E∗

1 and B2 : E2 � E∗
2 be maximal monotone operators such that B

−1
1 (0) 
=

∅ and B−1
2 (0) 
= ∅, respectively. Let RB1

λ1
be the resolvent operator of amaximalmonotone B1

forλ1 > 0 and let QB2
λ2

be themetric resolvent operator of amaximalmonotone B2 forλ2 > 0.
Let A : E1 → E2 be a bounded linear operator with its adjoint operator A∗ : E∗

2 → E∗
1 . Let

S = {Tt }t≥0 be a u.a.r. Bregman relatively nonexpansive semigroup of uniformly Lipschitzian
mappings on E1 into E1 with a bounded measurable function Lt : (0,∞) → [0,∞) such
that F(S) := ⋂

h≥0 F(Th) 
= ∅. Assume that � := F(S) ∩ � 
= ∅. Choose an initial guess
u1 ∈ E1; let {xn}∞n=1 and {un}∞n=1 be sequences generated by

{
xn = RB1

λ1
(J

E∗
1

q (J E1
p (un) − λn A∗ J E2

p (I − QB2
λ2

)Aun))

un+1 = J
E∗
1

q (αn J
E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (Ttn xn)), ∀n ≥ 1,

(4.5)

where {εn} ⊂ E1 is a residual vector such that εn → u, and {αn}, {βn} and {γn} are sequences
in (0, 1) such that αn +βn + γn = 1. Suppose that stepsize λn is a bounded sequence chosen
in such a way that

0 < ε ≤ λn ≤
(

q‖(I − QB2
λ2

)Aun‖p

κq‖A∗ J E2
p (I − QB2

λ2
)Aun‖q

− ε

) 1
q−1

, n ∈ N , (4.6)
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for some ε > 0, where the index set N := {n ∈ N : (I − QB2
λ2

)Aun 
= 0} and λn = λ (λ
being any nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < k ≤ βnγn ≤ 1 for some k ∈ (0, 1);
(C3) {tn} ⊂ (0,∞) with limn→∞ tn = ∞.

Then {xn}∞n=1 and {un}∞n=1 converge strongly to x∗ = ��u, where �� is the generalized
projection from E1 onto �.

Proof We only have to show that limn→∞ ‖xn − Tt xn‖ = 0 for all t ≥ 0. By following the
method of proof in Theorem 3.3, we can show that {xn} is bounded and

lim
n→∞ ‖xn − Ttn xn‖ = 0. (4.7)

Since {Tt }t≥0 is a uniformly of Lipschitzian mappings with a bounded measurable function
Lt . Then, we have

‖Tt Ttn xn − Tt xn‖ ≤ Lt‖Ttn xn − xn‖
≤ sup

t≥0
{Lt }‖Ttn xn − xn‖ → 0 as n → ∞.

Since J E1
p is uniformly norm-to-norm continuous on bounded subsets of E1, then we also

have

lim
n→∞ ‖J E1

p (Tt Ttn xn) − J E1
p (Tt xn)‖ = 0. (4.8)

For each t ≥ 0, we note that

‖J E1
p (xn) − J E1

p (Tt xn
)‖ ≤ ‖J E1

p (xn) − J E1
p (Ttn xn)‖ + ‖J E1

p (Ttn xn) − J E1
p (Tt Ttn xn)‖

+‖J E1
p (Tt Ttn xn) − J E1

p (Tt xn)‖
≤ ‖J E1

p (xn) − J E1
p (Ttn xn)‖ + ‖J E1

p (Tt Ttn xn) − J E1
p (Tt xn)‖

+ sup
x∈{xn}

‖J E1
p (Ttn x) − J E1

p (Tt Ttn )x‖.

Since {Tt }t≥0 is a u.a.r. Bregman relatively nonexpansive semigroup with limn→∞ tn = ∞,
then from (4.7) and (4.8), we get

lim
n→∞ ‖J E1

p (xn) − J E1
p (Tt xn)‖ = 0

for all t ≥ 0. Since J
E∗
1

q is uniformly norm-to-norm continuous on bounded subsets of E∗
1 ,

we get

lim
n→∞ ‖xn − Tt xn‖ = 0.

This completes the proof. ��

5 Numerical experiments

In this section, we give some numerical examples to support our main theorem.
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Table 1 Numerical results of
Algorithm 5.2 with different
choices of N and M

The choices of N and M No. of iterations cpu (time)

N = 50, M = 50 250 0.007260

N = 100, M = 50 290 0.010884

N = 200, M = 200 357 0.031999

N = 150, M = 300 347 0.024889

N = 500, M = 1000 460 0.260444
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Fig. 1 The convergence behavior of En for N = 50 and M = 50

Example 5.1 For each x = (x1, x2, . . . , xN ) ∈ R
N . Let f : RN → R∪{+∞} and g : RN →

R ∪ {+∞} be defined by

f (x) := ‖x‖2 and g(x) = −
N∑

i=1

log xi .

Then, we have

proxλ f (x)

⎧
⎨

⎩

(
1 − λ

‖x‖2

)
x; ‖x‖2 ≥ λ

0; ‖x‖2 < λ

(5.1)

and

proxλg(x)i =
xi +

√
x2i + 4λ

2

for i = 1, 2, 3, . . . , N . Let a mapping T : RN → R
N be defined by

T x = (2 − x1, 2 − x2, 2 − x3, . . . , 2 − xN ).

We aim to solve the following SIP and the fixed point problem: find x∗ ∈ � ∩ F(T ), i.e.,
find x∗ ∈ argmin f such that Ax∗ ∈ argmin g and x∗ is a fixed point of T , where A is a real
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Fig. 2 The convergence behavior of En for N = 100 and M = 50
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Fig. 3 The convergence behavior of En for N = 200 and M = 200

N × M matrix. So our iterative scheme (3.1) becomes

{
xn = prox f

λ1

[
un − λn At (Aun − proxgλ2(Aun))

]

un+1 = αnεn + βnxn + γnT xn, ∀n ≥ 1.
(5.2)

Let λ1 = λ2 = 1, αn = 1
20n+1 , βn = 0.5, γn = 10n−0.5

20n+1 and λn = ‖Aun−proxgλ2
(Aun)‖2

‖At (Aun−proxgλ2
(Aun))‖2 .

The stopping criterion is defined by En = ‖un+1 − un‖ < 10−6. The matrix A is generated
from a normal distribution with mean zero and one variance. For an initial guess x1 ∈ R

N

and residual vector εn ∈ R
N randomly, we obtain the following numerical results, given in

Table 1 and Figs. 1, 2, 3, 4 and 5:
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Fig. 4 The convergence behavior of En for N = 150 and M = 300
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Fig. 5 The convergence behavior of En for N = 500 and M = 1000
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Abstract In this paper, we study a general viscosity explicit rule for approx-
imating the solutions of the variational inclusion problem for the sum of two
monotone operators. We then prove its strong convergence under some new
conditions on the parameters in the framework of Hilbert spaces. As applica-
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problem. We also give some numerical examples to support our main result.
The results presented in this paper extend and improve the corresponding
results in the literature.

Keywords Monotone operator, Hilbert space, strong convergence, iterative
method.

MSC(2010) 47H09, 47H10, 47J25, 47J05.

1. Introduction

Let H be a real Hilbert space. In this paper, we study the variational inclusion
problem (VIP) which is the problem of finding z ∈ H such that

0H ∈ (A+B)z (1.1)

where A : H → H is an operator, B : H ( H is a set-valued operator and 0H is a
zero vector in H. The set of solutions of VIP is denoted by (A+B)−10H .

It is known that the variational inclusion problem is a generalization of variation-
al inequalities, equilibrium problem, split feasibility problem, convex minimization
problem and linear inverse problem (see [23, 33, 37]). Moreover, the variational in-
clusion problem has many applications in applied sciences, engineering, economics
and medical sciences especially image and signal processing, statistical regression
and machine learning (see, e.g. [6, 34,39]).
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A popular method for solving the VIP is the forward–backward algorithm (FBA)
[3, 16,21,40] which is defined by the following manner: x1 ∈ H and

xn+1 = JBr (xn − rAxn), ∀n ≥ 1, (1.2)

where A : H → H is a monotone operator and B : H → H is a maximal monotone
operator and JBr := (I + rB)−1 is a resolvent operator of B for r > 0. It was
shown that the sequence {xn}} generated by FBA converges weakly to a solution
of VIP. This method also includes, in particular, the proximal point algorithm
[5,13,18,27,32] and the gradient method [4, 17].

In order to obtain the strong convergence, Lopez et al. [23] introduced the fol-
lowing Halpern iteration for solving the VIP: x1 ∈ H and

xn+1 = αnu+ (1− αn)JBrn(xn − rn(Axn + an) + bn), ∀n ≥ 1, (1.3)

where u ∈ H is a given point, {an} and {bn} are sequences in H, A : H → H is a
monotone operator and B : H → H is a maximal monotone operator. They proved
that the sequence {xn} generated by (1.3) converges strongly to a solution of VIP.

Lin and Takahashi [22] proposed the following modified FBA by using the vis-
cosity approximation method introduced by Moudafi [29]: x1 ∈ H and

xn+1 = αnh(xn) + (1− αn)JBrn(xn − rnAxn), ∀n ≥ 1, (1.4)

where h : H → H is a contraction, A : H → H is a monotone operator and
B : H → H is a maximal monotone operator. They proved that the sequence {xn}
generated by (1.4) converges strongly to a solution of VIP.

In recent years, some modifications of FBA have been investigated extensively by
many researchers in the several setting (see, e.g., [1,8,12,14,15,19,20,30,31,35,38]).

Takahashi et al. [37] introduced the following iteration for solving the fixed point
problem of a nonexpansive mapping and the variational inclusion problem:

xn+1 = βnxn + (1− βn)T (αnu+ (1− αn)JBrn(xn − rnAxn)), ∀n ≥ 1, (1.5)

where u ∈ H is a given point, T is a nonexpansive mapping, A : H → H is a
monotone operator and B : H → H is a maximal monotone operator. Under
suitable conditions, they proved that the sequence {xn} generated by (1.5) converges
strongly to a common solution.

On the other hand, a typical problem is to minimize a quadratic function over
the set of the fixed points of a nonexpansive mapping T on a real Hilbert space H:

minx∈F (T )
1
2 〈Gx, x〉 − f(x), (1.6)

where A is a linear bounded operator and f is a potential function for γh (i.e.,
f ′(x) = γh(x) for x ∈ H).

Using the viscosity approximation method, Marino and Xu [26] introduced the
following general iterative process for a nonexpansive mapping T on H:

xn+1 = αnγh(xn) + (I − αnG)Txn, ∀n ≥ 1, (1.7)

where h is a contraction on H and 0 < γ < γ̄
θ . They proved that the sequence

{xn} generated by (1.7) converges strongly to a unique solution of the variational
inequality

〈(γh−G)z, x− z〉 ≤ 0, ∀x ∈ F (T ), (1.8)
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which is also the optimality condition for the minimization problem (1.6).
Very recently, Marino et al. [25] introduced the following general viscosity ex-

plicit rule in real Hilbert spaces:{
x̄n+1 = βnxn + (1− βn)Txn,

xn+1 = αnγh(xn) + (I − αnG)T (tnxn + (1− tn)x̄n+1), ∀n ≥ 1,
(1.9)

where T is a nonexpansive mapping and h is a contraction on H. They proved
that the sequence {xn} generated by (1.9) strongly converges to a fixed point of T ,
which is also the unique solution of the variational inequality (1.8).

Motivated by the works in the literature, we aim to propose a new general
viscosity explicit rule for solving variational inclusion (1.1) in the framework of
Hilbert spaces. We prove its strong convergence under some suitable condition on
the parameters. As applications, we apply our main result to the split feasibility
problem and the LASSO problem. Some numerical experiments are also given in
this paper.

2. Preliminaries and lemmas

In this section, we provide some basic definitions and lemmas which will be used in
our proof.

Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T : C → C be a nonlinear mapping. We denote F (T ) by the set of fixed points of
T .
• A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

• A mapping T : C → C is said to be contractive if there exists a constant
θ ∈ (0, 1) such that

‖Tx− Ty‖ ≤ θ‖x− y‖, ∀x, y ∈ C.

• A mapping G : H → H is said to be strongly positive if there is a constant
γ̄ > 0 such that

〈Gx, x〉 ≥ γ̄‖x‖2, ∀x ∈ H. (2.1)

Let A : H ( H be a set-valued operator. We denote the domain of an operator
A by dom(A) = {x ∈ H : Ax 6= ∅}. The set of all zero points of A is denoted by
A−10H , i.e.,

A−10H = {x ∈ H : 0H ∈ Ax}

where 0H is a zero vector of H.
• An operator A is said to be monotone if for each x, y ∈ dom(A),

〈u− v, x− y〉 ≥ 0, u ∈ Ax and v ∈ Ay.

• An operator A is said to be α-inverse strongly monotone if for each x, y ∈
dom(A), there exists α > 0 such that

〈u− v, x− y〉 ≥ α‖Ax−Ay‖2, u ∈ Ax and v ∈ Ay.
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• A monotone operator A is said to be maximal if the graph of A is not prop-
erty contained in the graph of any other monotone operators. It is known that a
monotone operator A is maximal if and only if R(I + rA) = H for all r > 0, where
R(I + rA) is the range of I + rA.

In this case, we can define the resolvent operator of A for r by JAr = (I+rA)−1 :
H → dom(A). It is known that JAr is single-valued and nonexpansive. Moreover,
F (JAr ) = A−10H (see [36]).

Let C be a nonempty, closed and convex subset of a real Hilbert space H. The
nearest point projection of H onto C is denoted by PC with the property

‖x− PCx‖ ≤ ‖x− y‖

for all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. It
is well known that PC satisfies

〈x− PCx, y − PCx〉 ≤ 0

for all x ∈ H and y ∈ C (see [36]).
We next recall some facts which will be needed in the rest of this paper.

Lemma 2.1 ( [36]). Let H be a real Hilbert space. Then the following statements
hold:

(i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 for all x, y ∈ H;

(ii) ‖tx+(1−t)y‖2 = t‖x‖2 +(1−t)‖y‖2−t(1−t)‖x−y‖2 for t ∈ R and x, y ∈ H.

Lemma 2.2 ( [26]). Assume G is a strongly positive linear bounded operator on a
Hilbert space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖G‖−1. Then, ‖I−ρG‖ ≤ 1−ργ̄.

Let A : H → H be an α-inverse strongly monotone and B : H ( H be a
maximal monotone operator. In what follows, we shall use the following notation:

Tr = JBr (I − rA) = (I + rB)−1(I − rA), r > 0.

Lemma 2.3 ( [23]). The following statements hold:

(i) For r > 0, F (Tr) = (A+B)−10.

(ii) For 0 < r ≤ s and x ∈ H, ‖x− Trx‖ ≤ 2‖x− Tsx‖.

Lemma 2.4 ( [23]). Let H be a real Hilbert space. Assume that A is an α-inverse
strongly monotone in H. Then, given r > 0, we have

‖Trx− Try‖2 ≤ ‖x− y‖2 − r(2α− r)‖Ax−Ay‖2

−‖(I − JBr )(I − rA)x− (I − JBr )(I − rA)y‖2,

for all x, y ∈ Br := {z ∈ H : ‖z‖ ≤ r}. In particular, if 0 < r < 2α, then Tr is
nonexpansive.

Lemma 2.5 ( [26]). Let H be a real Hilbert space. Let T be a nonexpansive mapping
on H such that F (T ) 6= ∅, G be a strongly positive linear bounded operator on H
and h be a contraction on H with coefficient θ ∈ (0, 1) and 0 < γ < γ̄/θ. Let {zt}
be a net which is defined by

zt = tγh(zt) + (I − tG)Tzt, ∀t ∈ (0, 1).
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Then {zt} converges strongly as t → 0+ to a point z ∈ F (T ), which solves the
variational inequality:

〈γh(z)−Gz, x− z〉 ≤ 0, ∀x ∈ F (T ).

Lemma 2.6 ( [42]). Assume that {sn} is a sequence of nonnegative real numbers
such that

sn+1 ≤ (1− γn)sn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞
n=1 γn =∞;

(ii) lim supn→∞
δn
γn
≤ 0 or

∑∞
n=1 |δn| <∞.

Then, limn→∞ sn = 0.

Lemma 2.7 ( [24]). Let {sn} be sequences of real numbers such that there exists
a subsequence {ni} of {n} such that sni < sni+1 for all i ∈ N. Then there exists
an increasing sequence {mk} ⊂ N such that limk→∞mk = ∞ and the following
properties are satisfied by all (sufficiently large) numbers k ∈ N:

smk
≤ smk+1 and sk ≤ smk+1.

In fact, mk := max{j ≤ k : sj ≤ sj+1}.

3. Main results

In this section, we introduce a new general viscosity explicit rule for solving the VIP
and prove the strong convergence theorem of the proposed method in real Hilbert
spaces.

Theorem 3.1. Let H be a real Hilbert space. Let A : H → H be an α-inverse
strongly monotone operator and B : H ( H be a maximal monotone operator such
that (A+B)−10 6= ∅. Let G : H → H be a strongly positive linear bounded operator
with coefficient γ̄ > 0 and h : H → H be a contraction with coefficient θ ∈ (0, 1)
such that 0 < γ < γ̄/θ. Choose an initial guess x1 ∈ H, let {xn}∞n=1 be a sequence
generated by{

x̄n+1 = βnxn + (1− βn)JBrn(xn − rnAxn),

xn+1 = αnγh(xn) + (I − αnG)JBrn(I − rnA)(tnxn + (1− tn)x̄n+1), ∀n ≥ 1,

(3.1)
where {rn} ⊂

(
0, 2α

)
, and {αn}, {βn} and {tn} are sequences in (0, 1). Suppose

that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(C2) lim infn→∞(1− tn)(1− βn) > 0;

(C3) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2α.

Then {xn}∞n=1 converges strongly to an element z = P(A+B)−10γh(z).
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Proof. Since αn → 0 as n → ∞, we may assume, without loss of generality, that
αn < ‖G‖−1 for all n ≥ 1. For each n ≥ 1, we put Tn := JBrn(I − rnA). Let
z ∈ (A+B)−10. By the nonexpansivity of Tn, we have

‖x̄n+1 − z‖ = ‖βn(xn − z) + (1− βn)(Tnxn − Tnz)‖
≤ βn‖xn − z‖+ (1− βn)‖Tnxn − Tnz‖
≤ βn‖xn − z‖+ (1− βn)‖xn − z‖
= ‖xn − z‖.

By Lemma 2.2, we have

‖xn+1 − z‖
= ‖αn(γh(xn)−Gz) + (I − αnG)(Tn(tnxn + (1− tn)x̄n+1)− Tnz)‖
≤ αn‖γh(xn)−Gz‖+ ‖I − αnG‖‖Tn(tnxn + (1− tn)x̄n+1)− Tnz‖
≤ αnγ‖h(xn)− h(z)‖+ αn‖γh(z)−Gz‖

+(1− αnγ̄)‖‖tn(zn − z) + (1− tn)(x̄n+1 − z)‖
≤ αnγθ‖xn−z‖+(1−αnγ̄)(tn‖xn−z‖+(1−tn)‖x̄n+1−z‖)+αn‖γh(z)−Gz‖

≤ (1− (γ̄ − γθ)αn)‖xn − z‖+ (γ̄ − γθ)αn
‖γh(z)−Gz‖

γ̄ − γθ

≤ max

{
‖xn − z‖,

‖γh(z)−Gz‖
γ̄ − γθ

}
.

By induction, we obtain

‖xn − z‖ ≤ max

{
‖x1 − z‖,

‖γh(z)−Gz‖
γ̄ − γθ

}
, ∀n ≥ 1.

Hence {xn} is bounded.
For each n ≥ 1, we put zn := tnxn + (1− tn)x̄n+1. By Lemma 2.4, we have

‖Tnzn − z‖2

= ‖JBrn(I − rnA)zn − JBrn(I − rnA)z‖2 (3.2)

≤ ‖zn − z‖2 − rn(2α− rn)‖Azn −Az‖2 − ‖zn − rnAzn − Tnzn + rnAz‖2.

Also,

‖zn − z‖2

≤ tn‖xn − z‖2 + (1− tn)‖x̄n+1 − z‖2

≤ tn‖xn − z‖2 + (1− tn)

[
βn‖xn − z‖2 + (1− βn)‖Tnxn − z‖2

]
≤ tn‖xn − z‖2 + (1− tn)

[
βn‖xn − z‖2 + (1− βn)

(
‖xn − z‖2

−rn(2α− rn)‖Axn −Az‖2 − ‖xn − rnAxn − Tnxn + rnAz‖2
)]

≤ ‖xn − z‖2 − (1− tn)(1− βn)

(
rn(2α− rn)‖Axn −Az‖2
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+‖xn − rnAxn − Tnxn + rnAz‖2
)
. (3.3)

Substituting (3.3) into (3.2), we get

‖Tnzn − z‖2

≤ ‖xn − z‖2 − (1− tn)(1− βn)

(
rn(2α− rn)‖Axn −Az‖2

+‖xn − rnAxn − Tnxn + rnAz‖2
)

−rn(2α− rn)‖Azn −Az‖2 − ‖zn − rnAzn − Tnzn + rnAz‖2. (3.4)

From Lemma 2.1 (i) and (3.4), we have

‖xn+1 − z‖2

= ‖αn(γh(xn)−Gz) + (I − αnG)(Tnzn − z)‖2

≤ ‖(I − αnG)(Tnzn − z)‖2 + 2αnγ〈h(xn)− h(z), xn+1 − z〉
+2αn〈γh(z)−Gz, xn+1 − z〉

≤ (1− αnγ̄)2‖Tnzn − z‖2 + 2αnγθ‖xn − z‖‖xn+1 − z‖
+2αn〈γh(z)−Gz, xn+1 − z〉

≤ (1− αnγ̄)2‖Tnzn − z‖2 + αnγθ
(
‖xn − z‖2 + ‖xn+1 − z‖2

)
+2αn〈γh(z)−Gz, xn+1 − z〉

≤ (1− αnγ̄)2

[
‖xn − z‖2 − (1− tn)(1− βn)

(
rn(2α− rn)‖Axn −Az‖2

+‖xn − rnAxn − Tnxn + rnAz‖2
)
− rn(2α− rn)‖Azn −Az‖2

−‖zn − rnAzn − Tnzn + rnAz‖2
]

+ αnγθ
(
‖xn − z‖2 + ‖xn+1 − z‖2

)
+2αn〈γh(z)−Gz, xn+1 − z〉

≤
(
(1− αnγ̄)2 + αnγθ

)
‖xn − z‖2 + αnγθ‖xn+1 − z‖2

−(1− αnγ̄)2(1− tn)(1− βn)

(
rn(2α− rn)‖Axn −Az‖2

+‖xn − rnAxn − Tnxn + rnAz‖2
)
− (1− αnγ̄)2

(
rn(2α− rn)‖Azn −Az‖2

+‖zn − rnAzn − Tnzn + rnAz‖2
)

+ 2αn〈γh(z)−Gz, xn+1 − z〉.

This implies that

‖xn+1 − z‖2

≤ (1− αnγ̄)2 + αnγθ

1− αnγθ
‖xn − z‖2

− (1− αnγ̄)2(1− tn)(1− βn)

1− αnγθ

(
rn(2α− rn)‖Axn −Az‖2

+‖xn − rnAxn − Tnxn + rnAz‖2
)
− (1− αnγ̄)2

1− αnγθ

(
rn(2α− rn)‖Azn −Az‖2
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+‖zn − rnAzn − Tnzn + rnAz‖2
)

+
2αn

1− αnγθ
〈γh(z)−Gz, xn+1 − z〉

=

[
1− 2(γ̄ − γθ)αn

1− αnγθ

]
‖xn − z‖2 +

(αnγ̄)2

1− αnγθ
‖xn − z‖2

−Kn

(
rn(2α− rn)‖Axn −Az‖2 + ‖xn − rnAxn − Tnxn + rnAz‖2

)
− (1− αnγ̄)2

1− αnγθ

(
rn(2α− rn)‖Azn −Az‖2 + ‖zn − rnAzn − Tnzn + rnAz‖2

)
+

2αn
1− αnγθ

〈γh(z)−Gz, xn+1 − z〉, (3.5)

where Kn := (1−αnγ̄)2(1−tn)(1−βn)
1−αnγθ

. We note that lim infn→∞Kn > 0 and

lim infn→∞ rn(2α− rn) > 0. For each n ≥ 1, we set

sn := ‖xn − z‖2,

γn :=
2(γ̄ − γθ)αn

1− αnγθ
,

ηn := Kn

(
rn(2α− rn)‖Axn −Az‖2 + ‖xn − rnAxn − Tnxn + rnAz‖2

)
+

(1− αnγ̄)2

1− αnγθ
(rn(2α− rn)‖Azn −Az‖2 + ‖zn − rnAzn − Tnzn + rnAz‖2),

δn :=
2αn

1− αnγθ
〈γh(z)−Gz, xn+1 − z〉+

(αnγ̄)2

1− αnγθ
‖xn − z‖2.

Then (3.5) reduces to the the following formulae:

sn+1 ≤ (1− γn)sn − ηn + δn, ∀n ≥ 1 (3.6)

and

sn+1 ≤ (1− γn)sn + δn, ∀n ≥ 1. (3.7)

We next show that sn → 0 as n→∞ by considering two possible cases:
Case 1. Suppose that there exists n0 ∈ N such that {sn}∞n=n0

is non-increasing.
This implies that {sn}∞n=1 is convergent. From (3.6), we have

0 ≤ ηn ≤ sn − sn+1 + δn − γnsn.

Since limn→∞ γn = limn→∞ δn = 0, which implies that limn→∞ ηn = 0. Then, we
obtain

lim
n→∞

‖Azn −Az‖ = lim
n→∞

‖zn − rnAzn − Tnzn + rnAz‖ = 0

and

lim
n→∞

‖Axn −Az‖ = lim
n→∞

‖xn − rnAxn − Tnxn + rnAz‖ = 0.

Consequently,

lim
n→∞

‖Tnzn − zn‖ = 0 and lim
n→∞

‖Tnxn − xn‖ = 0. (3.8)
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Since lim infn→∞ rn > 0, there exists r > 0 such that rn ≥ r for all n ≥ 1. Then,
by Lemma 2.3 (ii), we have

‖Trxn − xn‖ ≤ 2‖Tnxn − xn‖.

From (3.8), we obtain

lim
n→∞

‖Trxn − xn‖ = 0. (3.9)

Let zt = tγh(zt) + (I − tG)Trzt, ∀t ∈ (0, 1). Then it follows from Lemma 2.5 that
{zt} converges strongly to a fixed point z ∈ F (Tr). So, we obtain

‖zt − xn‖2

= ‖t(γh(zt)−Gxn) + (I − tG)(Trzt − xn)‖2

≤ (1− tγ̄)2‖Trzt − xn‖2 + 2t〈γh(zt)−Gxn, zt − xn〉
= (1− tγ̄)2‖Trzt − Trxn + Trxn − xn‖2 + 2t〈γh(zt)−Gxn, zt − xn〉

≤ (1− tγ̄)2

(
‖Trzt − Trxn‖2 + 2〈Trxn − xn, Trzt − xn〉

)
+2t〈γh(zt)−Gxn, zt − xn〉

≤ (1− tγ̄)2

(
‖zt − xn‖2 + 2‖Trxn − xn‖‖Trzt − xn‖

)
+2t〈γh(zt)−Gxn, zt − xn〉

= (1− 2tγ̄ + (γ̄t)2)‖zt − xn‖2 + 2t〈γh(zt)−Gzt, zt − xn〉
+2t〈Gzt −Gxn, zt − xn〉+ fn(t), (3.10)

where

fn(t) = 2(1− tγ̄)2‖Trzt − xn‖‖Trxn − xn‖ → 0 as n→∞. (3.11)

Since G is strongly positive linear, we have

〈Gzt −Gxn, zt − xn〉 = 〈G(zt − xn), zt − xn〉 ≥ γ̄‖zt − xn‖2. (3.12)

It follows (3.10) and (3.12) that

2t〈γh(zt)−Gzt, xn − zt〉
≤ (γ̄2t2 − 2tγ̄)‖zt − xn‖2 + 2t〈Gzt −Gxn, zt − xn〉+ fn(t)

≤ (γ̄t2 − 2t)〈Gzt −Gxn, zt − xn〉+ 2t〈Gzt −Gxn, zt − xn〉+ fn(t)

= γ̄t2〈Gzt −Gxn, zt − xn〉+ fn(t), (3.13)

which implies that

〈γh(zt)−Gzt, xn − zt〉 ≤
γ̄t

2
〈Gzt −Gxn, zt − xn〉+

1

2t
fn(t). (3.14)

Taking limit n→∞ in (3.14) and noting (3.11), we have

lim sup
n→∞

〈γh(zt)−Gzt, xn − zt〉 ≤
t

2
M, (3.15)
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where M > 0 is large enough. Taking limit t→ 0 in (3.15), we have

lim sup
t→0

lim sup
n→∞

〈γh(zt)−Gzt, xn − zt〉 ≤ 0. (3.16)

Since

〈γh(z)−Gz, xn − z〉
= 〈γh(z)−Gz, xn − z〉 − 〈γh(z)−Gz, xn − zt〉+ 〈γh(z)−Gz, xn − zt〉
−〈γh(z)−Gzt, xn − zt〉+ 〈γh(z)−Gzt, xn − zt〉 − 〈γh(zt)−Gzt, xn − zt〉
+〈γh(zt)−Gzt, xn − zt〉.

It follows that

lim sup
n→∞

〈γh(z)−Gz, xn − z〉

≤ ‖γh(z)−Gz‖‖zt − z‖+ (‖G‖+ γθ)‖zt − z‖ lim
n→∞

‖xn − zt‖

+ lim sup
n→∞

〈γh(zt)−Gzt, xn − zt〉.

Then, from (3.16), we obtain that

lim sup
n→∞

〈γh(z)−Gz, xn − z〉 = lim sup
t→0

lim sup
n→∞

〈γh(z)−Gz, xn − z〉

≤ lim sup
t→0

lim sup
n→∞

〈γh(zt)−Gzt, xn − zt〉

≤ 0. (3.17)

Note that

‖Tnzn − xn‖ ≤ ‖Tnzn − zn‖+ ‖zn − xn‖
≤ ‖Tnzn − zn‖+ (1− tn)(1− βn)‖Tnxn − xn‖
≤ ‖Tnzn − zn‖+ ‖Tnxn − xn‖.

This together with (3.8) implies that

lim
n→∞

‖Tnzn − xn‖ = 0. (3.18)

Further, we have

‖xn+1 − xn‖ ≤ ‖xn+1 − Tnzn‖+ ‖Tnzn − xn‖
≤ αn‖h(xn)− Tnzn‖+ ‖Tnzn − xn‖.

This together with (3.18) implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.19)

Combining (3.17) and (3.19), we get that

lim sup
n→∞

〈γh(z)−Gz, xn+1 − z〉 ≤ 0. (3.20)

Due to (3.7), we see that
∑∞
n=1 γn =∞ and lim supn→∞

δn
γn
≤ 0. Utilizing Lemma

2.6, we can conclude that limn→∞ sn = 0. Therefore xn → z as n→∞.
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Case 2. There exists a subsequence {ni} of {n} such that sni
≤ sni+1 for all

i ∈ N. By Lemma 2.7, there exists a non-decreasing sequence {mk} ⊂ N such that
limk→∞mk =∞ and

smk
≤ smk+1 and sk ≤ smk+1 (3.21)

for all k ∈ N. So, we have

0 ≤ ηmk
≤ smk

− smk+1 + δmk
− γmk

smk
→ 0 and k →∞.

This implies that

lim
k→∞

‖Tmk
zmk
− zmk

‖ = 0 as lim
k→∞

‖Tmk
xmk
− xmk

‖ = 0. (3.22)

Following the proof line in Case 1, we can show that

lim
k→∞

‖Trxmk
− xmk

‖ = 0

and

lim sup
k→∞

〈γh(z)−Gz, xmk
− z〉 ≤ 0.

Since

‖Tmk
zmk
− xmk

‖ ≤ ‖Tmk
zmk
− zmk

‖+ ‖zmk
− xmk

‖
≤ ‖Tmk

zmk
− zmk

‖+ (1− smk
)(1− βmk

)‖Tmk
xmk
− xmk

‖
≤ ‖Tmk

zmk
− zmk

‖+ ‖Tmk
xmk
− xmk

‖.

This implies by (3.18) that

lim
k→∞

‖Tmk
zmk
− xmk

‖ = 0.

Note that

‖xmk+1 − xmk
‖ ≤ ‖xmk+1 − Tmk

zmk
‖+ ‖Tmk

zmk
− xmk

‖
≤ αmk

‖h(xmk
)− Tmk

zmk
‖+ ‖Tmk

zmk
− xmk

‖.

Hence, we have

lim
k→∞

‖xmk+1 − xmk
‖ = 0 (3.23)

and hence

lim sup
k→∞

〈γh(z)−Gz, xmk+1 − z〉 ≤ 0. (3.24)

From (3.6), we have

smk+1 ≤ (1− γmk
)smk

+ δmk
. (3.25)

This implies that

γmk
smk
≤ smk

− smk+1 + δmk
.



2148 P. Cholamjiak, S. Suantai & P. Sunthrayuth

Since smk
≤ smk+1 and αmk

> 0 then limk→∞ smk
= 0. By the fact that a2 − b2 ≤

2a(a− b) for a, b ∈ R, we have

|smk+1 − smk
| = ‖xmk+1 − z‖2 − ‖xmk

− z‖2

≤ 2‖xmk
− z‖(‖xmk+1 − z‖ − ‖xmk

− z‖)
≤ 2‖xmk

− z‖‖xmk+1 − xmk
‖.

This implies by (3.23) that

lim
k→∞

(smk+1 − smk
) = 0.

So, we have

sk ≤ smk+1 = smk
+ (smk+1 − smk

)→ 0 as k →∞,

which implies that limk→∞ sk = 0 and so xk → z as k → ∞. This completes the
proof. �

Next, we also study the following general viscosity explicit rule (3.1) with the
error sequence.

Theorem 3.2. Let H be a real Hilbert space. Let A : H → H be an α-inverse
strongly monotone operator and B : H ( H be a maximal monotone operator such
that (A+B)−10 6= ∅. Let G : H → H be a strongly positive linear bounded operator
with coefficient γ̄ > 0 and h : H → H be a contraction with coefficient θ ∈ (0, 1)
such that 0 < γ < γ̄/θ. Let {xn}∞n=1 be a sequence generated by x1 ∈ H and{
x̄n+1 = βnxn + (1− βn)JBrn(xn − rnAxn),

xn+1 = αnγh(xn) + (I − αnG)JBrn(I − rnA)(tnxn + (1− tn)x̄n+1) + en, ∀n ≥ 1,

(3.26)
where {en} ⊂ H, {rn} ⊂

(
0, 2α

)
, and {αn}, {βn} and {tn} are sequences in (0, 1).

Suppose that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(C2) lim infn→∞(1− tn)(1− βn) > 0;

(C3) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2α;

(C4)
∑∞
n=1 ‖en‖ <∞ or limn→∞

‖en‖
αn

= 0.

Then {xn}∞n=1 converges strongly to an element z = P(A+B)−10γh(z).

Proof. For arbitrary initial guess y1 ∈ H, we define a sequence {yn} as follows:{
ȳn+1 = βnyn + (1− βn)Tnyn,

yn+1 = αnγh(yn) + (I − αnG)Tn(tnyn + (1− tn)ȳn+1), ∀n ≥ 1,

where Tn = JBrn(I − rnA). By Theorem 3.1, we know that {yn} converges strongly
to z = P(A+B)−10γh(z). We next show that xn → z as n → ∞. By the nonexpan-
siveness of Tn, we have

‖x̄n+1 − ȳn+1‖ ≤ βn‖xn − yn‖+ (1− βn)‖Tnxn − Tnyn‖
≤ ‖xn − yn‖.
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It follows that

‖xn+1 − yn+1‖
= ‖αnγ(h(xn)− h(yn)) + (I − αnG)(Tn(tnxn + (1− tn)x̄n+1)

−Tn(tnyn + (1− tn)ȳn+1)) + en‖
≤ αnγ‖h(xn)− h(yn)‖+ (1− αnγ̄)‖Tn(tnxn + (1− tn)x̄n+1)

−Tn(tnyn + (1− tn)ȳn+1)‖+ ‖en‖

≤ αnγ‖h(xn)−h(yn)‖+(1−αnγ̄)

(
tn‖xn − yn‖+(1− tn)‖x̄n+1 − ȳn+1‖

)
+‖en‖

≤ αnγθ‖xn − yn‖+ (1− αnγ̄)‖xn − yn‖+ ‖en‖
= (1− (γ̄ − θγ)αn)‖xn − yn‖+ ‖en‖.

From (C4) and Lemma 2.6, we obtain limn→∞ ‖xn − yn‖ = 0. Then, we conclude
that xn → z. This completes the proof. �

We remark some merits of our work as follows:

(1) The method of proof in Theorem 3.1 is very different from the proof in Theo-
rem 3.1 of Marino et al. [25] because Algorithm (3.1) deals with the problem
of finding an element of (A+B)−10 which involves the resolvent of maximal
monotone operator.

(2) The result presented in Theorem 3.1 is proved under new assumptions on {βn}
and {tn}.

(3) The result presented in Theorem 3.1 is applicable for solving the split feasi-
billity problem and the LASSO problem (see, Section 4).

4. Some Applications

In this section, we utilize our main result to the split feasibility problem and the
LASSO problem.

4.1. The split feasibility problem

Let C and Q be nonempty, closed and convex subsets of Hilbert spaces H1 and H2,
respectively. Let T : H1 → H2 be a linear bounded operator with its adjoint T ∗.
The split feasibility problem (SFP) is to find

x̂ ∈ C such that T x̂ ∈ Q. (4.1)

This problem was first introduced, in a finite dimensional Hilbert space, by Censor-
Elfving [9] in 1994 for modeling inverse problems in radiation therapy treatment
planning which arise from phase retrieval and in medical image reconstruction (see
[7]). The SFP has also been studied by numerous authors in both finite and infinite
dimensional Hilbert spaces (see, e.g., [10, 11,28,41,45,46]).

For solving the SFP (4.7), Byrne [7] introduce the so-called CQ-iterative algo-
rithm for approximating a solution of SFP, which is defined by

xn+1 = PC(xn − λA∗(I − PQ)Axn), ∀n ≥ 1, (4.2)
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where 0 < λ < 2α with α = 1/‖A‖2. Here, ‖A‖2 is the spectral radius of A∗A. It
was shown that the sequence {xn} converges weakly to a solution of the SFP.

It is known that x̂ solves the SFP (4.1) if and only if x̂ is the solution of the
following minimization problem [43]:

min
x∈C

f(x),

where f is the proximity function defined by f(x) := 1
2‖(I − PQ)Tx‖2 with its

gradient ∇f = T ∗(I −PQ)T . Further, if ∇f = T ∗(I −PQ)T is ‖T‖2-Lipschitz con-
tinuous, then ∇f is 1/‖T‖2-inverse strongly monotone, where ‖T‖2 is the spectral
radius of T ∗T (see [6]). In fact, set A = ∇f and B = ∂iC in Theorem 3.1, where
iC is the indicator function (see [37]). So we obtain the following result.

Theorem 4.1. Suppose that the SFP (4.1) is consistent. For an initial guess
x1 ∈ H1, let {xn}∞n=1 be a sequence generated by{
x̄n+1 = βnxn + (1− βn)PC(xn − rnT ∗(I − PQ)Txn),

xn+1 = αnγh(xn) + (I − αnG)PC(I − rnT ∗(I − PQ)T )(tnxn + (1− tn)x̄n+1),

(4.3)
∀n ≥ 1,where {rn} ⊂ (0, 2

‖T‖2 ), {αn}, {βn} and {tn} are sequences in (0, 1) which

satisfy the following conditions:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(C2) lim infn→∞(1− tn)(1− βn) > 0;

(C3) 0 < lim infn→∞ rn ≤ lim supn→∞ rn <
2
‖T‖2 .

Then {xn}∞n=1 converges strongly to a solution of the SFP.

4.2. The LASSO Problem

The LASSO problem is abbreviation for the least absolute shrinkage and selection
operator, which formulated as the minimization problem:

min
x∈Rn

1

2
‖Tx− b‖22 subject to ‖x‖1 ≤ λ, (4.4)

where T ∈ Rm×n is a given matrix, b ∈ Rm is a given vector and λ ≥ 0 is a
tuning parameter. The lasso was introduced by Tibshirani [39] in 1996. It has been
received much attention due to the involvement of the l1 norm which promotes
sparsity, phenomenon of many practical problems arising from image and signal
processing, statistics model, machine learning, and so on. It is known that an
equivalent formulation of (4.4) is the following regularized minimization problem:

min
x∈Rn

f(x) + g(x), (4.5)

where f(x) := 1
2‖Tx − b‖

2
2, g(x) := λ‖x‖1 and λ ≥ 0. We know that ∇f(x) =

T ∗(Tx− b) is ‖T ∗T‖-Lipshitz continuous. This implies that ∇f is 1/‖T ∗T‖-inverse
strongly monotone. The proximal of g(x) = λ‖x‖1 is given by

proxg(x) = argminuλ‖x‖1 +
1

2
‖u− x‖22,
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which is separable in indices. Then, for x ∈ Rn,

proxg(x) = proxλ‖·‖1(x)

=

(
proxλ|·|1(x1),proxλ|·|1(x2), ...,proxλ|·|1(xn)

)
= (α1, α2, ..., αn),

where αk = sgn(xk) max{|xk| − λ, 0} for k = 1, 2, ..., n.
For solving the LASSO problem, Xu [44] (see also [2]) proposed the following

proximal-gradient algorithm (PGA):

xn+1 = proxrng(xn − rnT
∗(Txn − b)). (4.6)

He proved that the PGA (4.6) converges weakly to a solution of the LASSO problem
(4.4).

In what follows, we present a general viscosity explicit rule for approximating
solutions of the LASSO problem in infinite dimensional Hilbert spaces. Set A = ∇f
and B = proxrng in Theorem 3.1, we obtain the following result.

Theorem 4.2. Suppose that the problem (4.4) is consistent. For an initial guess
x1 ∈ H, let {xn}∞n=1 be a sequence generated by

x̄n+1 = βnxn + (1− βn)proxrng(xn − rnT
∗(Txn − b)),

xn+1 = αnγh(xn) + (I − αnG)proxrng((tnxn + (1− tn)x̄n+1)

−rnT ∗(T (tnxn + (1− tn)x̄n+1)− b)), ∀n ≥ 1,

(4.7)

where {rn} ⊂ (0, 2
‖T∗T‖2 ) and {αn}, {βn} and {tn} are sequences in (0, 1). Suppose

that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(C2) lim infn→∞(1− tn)(1− βn) > 0;

(C3) 0 < lim infn→∞ rn ≤ lim supn→∞ rn <
2

‖T∗T‖2 .

Then {xn}∞n=1 converges strongly to a solution of the problem (4.4).

5. Numerical Example

We next give some numerical experiments of a general viscosity explicit rule (3.1).

Example 5.1. Let H = R3 with the norm ‖x‖2 =
√
x2

1 + x2
2 + x2

3 for
x = (x1, x2, x3)t ∈ R3. Consider the mapping G : R3 → R3 be defined by Gx = 4x
for all x ∈ R3. It is easy to see that G is a linear bounded operator on R3 with
γ̄ = 4. Let h : R3 → R3 be defined by h(x) = 0.1x for all x ∈ R3. It is easy to see
that h is a contraction on R3 with θ = 0.1. Then, we can choose γ = 10. For any
x ∈ R3, let A : R3 → R3 be defined by Ax = 3x − (1,−2, 5)t and B : R3 → R3 be
defined by Bx = 2x. We see that A is a 1/3-inverse strongly monotone and B is a
maximal monotone operator. Moreover, we have for r > 0

JBr (x− rAx) = (I + rB)−1(x− rAx)
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=
1− 3r

1 + 2r
x +

r

1 + 2r
(1,−2, 5)t,

for all x ∈ R3. Since α = 1/3, we can choose rn = 0.5 for all n ∈ N. Let
αn = 1

1000n+1 , βn = n
2n+3 and tn = 1

n2 for all n ∈ N.

Starting x1 = (10000,−40000, 50000)t and use ‖xn+1 − xn‖2 < 10−6, for stop-
ping criterion. Then, we obtain the following numerical results.

Table 1. Numerical results of Example 5.1 for iteration process (3.1).

Time taken No. of iterations xn = (xn1 , x
n
2 , x

n
3 )t ‖xn+1 − xn‖2

0.110385 2 (−2479.77097902, 9919.58191808,−12398.85489510)t 8.08E+04
3 (203.36993275,−813.08835944, 1016.84966373)t 1.73E+04
4 (−12.88336871, 51.93363061,−64.41684356)t 1.41E+03
5 (1.02739736,−3.70989923, 5.13698682)t 9.01E+01
6 (0.14598968,−0.18417851, 0.72994841)t 5.71E+00
7 (0.20354553,−0.41436724, 1.01772764)t 3.72E-01
8 (0.19966701,−0.39882655, 0.99833507)t 2.51E-02
10 (0.19993710,−0.39987152, 0.99968548)t 8.69E-05
20 (0.19997096,−0.39994192, 0.99985479)t 8.88E-06
...

...
...

50 (0.19998878,−0.39997755, 0.99994388)t 1.28E-06
...

...
...

55 (0.19998982,−0.39997964, 0.99994909)t 1.05E-06
56 (0.19999000,−0.39998001, 0.99995002)t 1.02E-06
57 (0.19999018,−0.39998037, 0.99995091)t 9.8E-07

Figure 1. The error plotting of ‖xn+1 − xn‖2 in Table 1.

6. Conclusions

In this work, we have introduced new iterative methods for solving the inclusion
problem for the sum of two monotone operators in Hilbert spaces. Strong con-
vergence was discussed under suitable conditions. Some applications to the split
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feasibility problem and the LASSO problem are also given. Preliminary numerical
experiments are provided to support our proposed methods.

Acknowledgements. The authors are grateful to the anonymous referees for their
useful comments and suggestions.
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[23] G. López, V. Mart́ın-Márquez, F. Wang and H.–K. Xu, Forward-backward s-
plitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal.,
2012, Art ID 109236.
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Abstract: In this paper, we introduce a generalized viscosity explicit method (GVEM) for nonexpansive
mappings in the setting of Banach spaces and, under some new techniques and mild assumptions on the
control conditions, prove some strong convergence theorems for the proposed method, which converge
to a fixed point of the given mapping and a solution of the variational inequality. As applications,
we apply our main results to show the existence of fixed points of strict pseudo-contractions and
periodic solutions of nonlinear evolution equations and Fredholm integral equations. Finally, we give
some numerical examples to illustrate the efficiency and implementation of our method.

Keywords: nonexpansive mapping; Banach space; strong convergence; viscosity iterative method;
nonlinear evolution equation; Fredholm integral equation

MSC: 47H09; 47H10; 47J25; 47J05

1. Introduction

In the real world, many engineering and science problems can be reformulated as ordinary
differential equations. Several numerical methods have been developed for solving ordinary
differential equations (ODEs) by numerous authors. The major method in order to solve ODEs
is the implicit midpoint rule, also well known as the second-order Runge–Kutta method or improved
the Euler method. It is a forceful numerical method for numerically solving ODEs (in particular,
stiff equations) (see [1–6]) and differential algebraic equations (see [4]). Consider the following initial
value problem for the following time-dependent ordinary differential equation:
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{
x′(t) = f

(
x(t)

)
,

x(t0) = x0,
(1)

where f : RN → RN is a continuous function. The implicit midpoint method is an implicit method,
which is given by the following finite difference scheme [7]: y0 = x0,

yn+1 = yn + h f
(

yn+yn+1
2

)
, ∀n ≥ 0,

(2)

where h > 0 is a step size. It is known that, if f : RN → RN is Lipschitz continuous and sufficiently
smooth, then {yn} converges to the solution of Equation (1) as h→ 0 uniformly over t ∈ [t0, t∗] for any
fixed t∗ > 0. If we write the function f in the form f = I − T, where T is a nonlinear mapping, then
equilibrium problems involving differential Equation (1) is the fixed point problem x = Tx. Following
the procedure (2), Xu et al. [8] introduced two equivalent algorithms to approximate the fixed point of
a nonexpansive mapping in a Hilbert space H as follows:

xn+1 = xn − tn

[ xn + xn+1

2
− T

( xn + xn+1

2

)]
, ∀n ≥ 0, (3)

xn+1 = (1− tn)xn + tnT
( xn + xn+1

2

)
, ∀n ≥ 0, (4)

for any x0 ∈ H, where {tn}∞
n=1 ⊂ (0, 1) is a sequence.

On the other hand, since, in 2000, Moudafi [9] introduced viscosity approximation methods for
fixed point problems in Hilbert spaces, some authors have obtained some convergence theorems of
viscosity approximation methods to show the existence of fixed points of some kinds of nonlinear
mappings and solutions of nonlinear problems (see, for example, [10–20]). Especially, in 2015,
Xu et al. [8] combined the Moudafi viscosity method [9] with the implicit midpoint method for a
nonexpansive mapping in Hilbert spaces as follows:

xn+1 = αn f (xn) + (1− αn)T
( xn + xn+1

2

)
, ∀n ≥ 1, (5)

where f is a contraction and {αn} ⊂ (0, 1) is a sequence. They also proved that {xn} generated by (5)
converges strongly to a point x∗ ∈ F(T), which is the unique solution of the following variational
inequality problem:

〈( f − I)x∗, z− x∗〉 ≤ 0, ∀z ∈ F(T). (6)

Recently, Ke and Ma [21] improved the VIMRby replacing the midpoint by any point of the
interval [xn, xn+1]. They constructed the so-called method generalized viscosity implicit rules for a
nonexpansive mapping as follows:

xn+1 = αn f (xn) + (1− αn)T(snxn + (1− sn)xn+1), ∀n ≥ 1. (7)

They showed that {xn} defined by (7) converges strongly to x∗ ∈ F(T), which solves the
variational inequality problem (6).

In fact, the computation by the implicit midpoint methods is not an easy work in practice.
Therefore, we consider the explicit midpoint method proposed by the framework of the finite difference
[22,23]: 

y0 = x0,

ȳn+1 = yn + h f (yn),

yn+1 = yn + h f
(

yn+ȳn+1
2

)
, ∀n ≥ 0.

(8)
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It is easy to see that the explicit midpoint method calculates the state of a system at the next time
from the state of the system at the current time (see [22,24]).

In 2017, Marino et al. [25] applied the sequence (7) and the explicit midpoint method (8) to
established the following so-called general viscosity explicit rule for quasi-nonexpansive mappings T
in Hilbert spaces:{

x̄n+1 = βnxn + (1− βn)Txn,

xn+1 = αn f (xn) + (1− αn)T(snxn + (1− sn)x̄n+1), ∀n ≥ 1,
(9)

where f is a contraction and {αn}, {βn}, and {sn} are the sequences in (0, 1). They proved, under
suitable conditions on the sequence parameters, that the generalized viscosity explicit rule (9) strongly
converges to the set of F(T), which is also the solution of the variational inequality problem (6).

The main objective of this paper is to introduce a generalized viscosity explicit rule (9) for
nonexpansive mappings in Banach spaces. Some strong convergence theorems of the proposed
algorithm are proven under new techniques and some mild assumption on the control conditions.
As applications, we apply our main result to the fixed point problem of strict pseudo-contractions,
a periodic solution of a nonlinear evolution equation, and a nonlinear Fredholm integral equation.
Finally, some numerical examples that show the efficiency and implementation of our algorithm are
presented. The results presented in the paper extend and improve the main results of Ke and Ma [21],
Marino et al. [25], and previously known results in the earlier and recent literature to Banach spaces.

2. Preliminaries

Let E and E∗ be a real Banach space and the dual space of E, respectively. The normalized duality
mapping J : E→ 2E∗ is defined by:

J(x) = {x̄ ∈ E∗ : 〈x, x̄〉 = ‖x‖2, ‖x̄‖ = ‖x‖}, ∀x ∈ E,

where 〈·, ·〉 denotes the duality pairing between E and E∗. If E := H is a real Hilbert space, then J = I
is the identity mapping and if E is smooth, then J is single-valued, which is denoted by j.

The modulus of convexity of E is the function δ : (0, 2]→ [0, 1] defined by:

δ(ε) = inf
{

1− ‖x+y‖
2 : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
.

A Banach space E is said to be uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2]. The modulus of
smoothness of E is the function ρE : R+ := [0, ∞)→ R+ defined by:

ρE(τ) = sup
{
‖x+τy‖+‖x−τy‖

2 − 1 : x, y ∈ E, ‖x‖ = ‖y‖ = 1
}

.

The space E is said to be uniformly smooth if ρE(τ)
τ → 0 as τ → 0. Suppose that 1 < q ≤ 2,

then E is said to be q-uniformly smooth if there exists c > 0 such that ρE(τ) ≤ cτq for all τ > 0. It
is well known that, if q is uniformly smooth, then E is uniformly smooth [26]. A typical example of
a uniformly convex and uniformly smooth Banach spaces is lp, where p > 1. More precisely, lp is
min{p, 2}-uniformly smooth for any p > 1.

Recall that a mapping T : C → C is said to be: nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

A mapping f : C → C is said to be a strict contraction if there exists a constant α ∈ (0, 1) satisfying:

‖ f (x)− f (y)‖ ≤ α‖x− y‖, ∀x, y ∈ C.
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We use ΠC to denote the collection of all contractions from C into itself. Note that each f ∈ ΠC
has a unique fixed point in C.

Lemma 1. ([27]) Let E be a real Banach space. Then, for each x, y ∈ E, we have:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉,

where j(x + y) ∈ J(x + y).

Lemma 2. ([28]) Given r > 0 and p > 1 are fixed real numbers in Banach space E, then the following
statements are equivalent:

(1) E is uniformly convex.
(2) There is a strictly-increasing, continuous, and convex function φ : R+ → R+ such that φ(0) = 0 and:

‖tx + (1− t)y‖p ≤ t‖x‖p + (1− t)‖y‖p − t(1− t)φ(‖x− y‖)

for all x, y ∈ Br[0] := {x ∈ E : ‖x‖ ≤ r}.

The following lemma can be found in [29–31].

Lemma 3. Let C be a closed, convex subset and nonempty uniformly smooth in E. Let T be a nonexpansive
mapping with F(T) 6= ∅ and f ∈ ΠC. Then the sequence {zt} defined by zt = t f (zt) + (1− t)Tzt for all
t ∈ (0, 1) converges strongly to a point x∗ ∈ F(T), which solves the variational inequality problem:

〈 f (x∗)− x∗, j(z− x∗)〉 ≤ 0, ∀ f ∈ ΠC, z ∈ F(T).

Lemma 4. ([32]) Let C be a closed, convex subset and nonempty in E, which has the uniformly Gâteaux
differentiable norm and T is a nonexpansive mapping with F(T) 6= ∅. Suppose that {zt} strongly converges to
x∗ ∈ F(T), where {zt} is defined by zt = t f (zt) + (1− t)Tzt for all t ∈ (0, 1). Suppose that {xn} is bounded
in C such that:

lim
n→∞

‖xn − Txn‖ = 0.

Then, we have:

lim sup
n→∞

〈 f (x∗)− x∗, j(xn − x∗)〉 ≤ 0.

Lemma 5. ([33,34]) Assume that {an} is a positive real sequence such that:

an+1 ≤ (1− γn)an + γnδn, ∀n ≥ 0,

where {γn} ∈ (0, 1) and {δn} ∈ R such that:

(i) ∑∞
n=0 γn = ∞;

(ii) lim supn→∞ δn ≤ 0 or ∑∞
n=0 |γnδn| < ∞.

Then, limn→∞ an = 0.

In order to prove our main result with new techniques, we needed the following Maingé
lemma [35]:

Lemma 6. Given {an} are real sequences so that there exists a subsequence {ni} of {n} such that ani < ani+1

for all i ∈ N, then there exists an increasing sequence {mk} ⊂ N that mk → ∞, and the following properties are
satisfied for all numbers k ∈ N:
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ak ≤ amk+1, amk ≤ amk+1.

where mk := max{j ≤ k : aj ≤ aj+1}.

3. The Main Results

First, we prove a lemma for our main results.

Lemma 7. Let C be a nonempty closed and convex subset of a real Banach space E. Let T be a nonexpansive
mapping with F(T) 6= ∅ and f ∈ ΠC with coefficient α ∈ (0, 1). For any x1 ∈ C, let {xn} be a sequence
generated by: {

x̄n+1 = βnxn + (1− βn)Txn,

xn+1 = αn f (xn) + (1− αn)T(snxn + (1− sn)x̄n+1), ∀n ≥ 1,
(10)

where {αn}, {βn}, and {sn} are the sequences in (0, 1). Then, {xn} is bounded.

Proof. For each n ≥ 1, we put zn := snxn + (1− sn)x̄n+1. Let z ∈ F(T); we have:

‖zn − z‖ = ‖sn(xn − z) + (1− sn)(x̄n+1 − z)‖
≤ sn‖xn − z‖+ (1− sn)‖x̄n+1 − z‖
≤ sn‖xn − z‖+ (1− sn)

(
βn‖xn − z‖+ (1− βn)‖Txn − z‖

)
≤ sn‖xn − z‖+ (1− sn)βn‖xn − z‖+ (1− sn)(1− βn)‖xn − z‖
= ‖xn − z‖.

It follows that:

‖xn+1 − z‖ = ‖αn( f (xn)− f (z)) + αn( f (z)− z) + (1− αn)(Tzn − z)‖
≤ αn‖ f (xn)− f (z)‖+ αn‖ f (z)− z‖+ (1− αn)‖Tzn − z‖
≤ αnα‖xn − z‖+ (1− αn)‖zn − z‖+ αn‖ f (z)− z‖

= (1− (1− α)αn)‖xn − z‖+ (1− α)αn
‖ f (z)− z‖

1− α

≤ max
{
‖xn − z‖, ‖ f (z)− z‖

1− α

}
.

By induction, we have:

‖xn − z‖ ≤ max
{
‖x1 − z‖, ‖ f (z)− z‖

1− α

}
, ∀n ≥ 1.

Hence, {xn} is bounded. This completes the proof.

Theorem 1. Let C be closed, convex subset and nonempty uniformly convex and uniformly smooth in E. Let T
be a nonexpansive mapping with F(T) 6= ∅ and f ∈ ΠC with coefficient α ∈ (0, 1). Suppose that {αn}, {βn}
and {sn} are the sequences in (0, 1) satisfying the following conditions:

(C1) limn→∞ αn = 0 and ∑∞
n=1 αn = ∞;

(C2) 0 < lim infn→∞ βn(1− βn)(1− sn).

Then, {xn} generated by (10) converges strongly to a point x∗ ∈ F(T), which solves the variational
inequality problem:

〈 f (x∗)− x∗, j(z− x∗)〉 ≤ 0, ∀z ∈ F(T). (11)
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Proof. Let x∗ ∈ F(T). Since zn := snxn + (1 − sn)x̄n+1, by the convexity of ‖ · ‖2 and Lemma 2,
we have:

‖Tzn − x∗‖2 ≤ ‖zn − x∗‖2

= ‖sn(xn − x∗) + (1− sn)(x̄n+1 − x∗)‖2

≤ sn‖xn − x∗‖2 + (1− sn)‖x̄n+1 − x∗‖2

= sn‖xn − x∗‖2 + (1− sn)‖βn(xn − x∗) + (1− βn)(Txn − x∗)‖2

≤ sn‖xn − x∗‖2 + (1− sn)
[

βn‖xn − x∗‖2 + (1− βn)‖Txn − x∗‖2

−βn(1− βn)φ(‖xn − Txn‖)
]

≤ ‖xn − x∗‖2 − βn(1− βn)(1− sn)φ(‖xn − Txn‖). (12)

It follows from Lemma 1 and (12) that:

‖xn+1 − x∗‖2

= ‖αn( f (xn)− f (x∗)) + αn( f (x∗)− x∗) + (1− αn)(Tzn − x∗)‖2

≤ ‖αn( f (xn)− f (x∗)) + (1− αn)(Tzn − x∗)‖2 + 2αn〈 f (x∗)− x∗, j(xn+1 − x∗)〉
≤ αn‖ f (xn)− f (x∗)‖2 + (1− αn)‖Tzn − x∗‖2 + 2αn〈 f (x∗)− x∗, j(xn+1 − x∗)〉

≤ αn‖ f (xn)− f (x∗)‖2 + (1− αn)
[
‖xn − x∗‖2 − βn(1− βn)(1− sn)φ(‖xn − Txn‖)

]
+2αn〈 f (x∗)− x∗, j(xn+1 − x∗)〉

≤ (1− (1− α2)αn)‖xn − x∗‖2 − (1− αn)βn(1− βn)(1− sn)φ(‖xn − Txn‖)
+2αn〈 f (x∗)− x∗, j(xn+1 − x∗)〉. (13)

Now, we show that {xn} converges strongly to x∗ as n→ ∞ by considering two possible cases:

Case 1. Assume that there exists n0 ∈ N such that {‖xn − x∗‖}∞
n=n0

is non-increasing. This implies that
{‖xn − x∗‖}∞

n=1 is convergent. From (13), it follows that:

(1− αn)βn(1− βn)(1− sn)φ(‖xn − Txn‖) ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + αn M,

where M = supn≥1{2‖ f (x∗) − x∗‖‖xn+1 − x∗‖, (1 − α2)‖xn − x∗‖2} < ∞. From the conditions
(C1)and (C2), we have:

φ(‖xn − Txn‖)→ 0 as n→ ∞,

which implies by the property of φ that:

‖xn − Txn‖ → 0 as n→ ∞. (14)

Let:

zt = f (zt) + (1− t)Tzt, ∀t ∈ (0, 1).

By Lemma 3, {zt} converges strongly to x∗, which solves the variational inequality problem:

〈 f (x∗)− x∗, j(z− x∗)〉 ≤ 0, ∀z ∈ F(T).

By (14) and Lemma 4, it follows that:

lim sup
n→∞

〈 f (x∗)− x∗, j(xn − x∗)〉 ≤ 0. (15)
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Since:

‖Tzn − xn‖ ≤ ‖Tzn − Txn‖+ ‖Txn − xn‖
≤ ‖zn − xn‖+ ‖Txn − xn‖
= (1− sn)(1− βn)‖Txn − xn‖+ ‖Txn − xn‖
≤ 2‖xn − Txn‖,

it follows from (14) that:

lim
n→∞

‖Tzn − xn‖ = 0. (16)

Moreover, we note that:

‖xn+1 − xn‖ ≤ ‖αn( f (xn)− xn) + (1− αn)(Tzn − xn)‖
≤ αn‖ f (xn)− xn‖+ (1− αn)‖Tzn − xn‖.

It follows from (16) that:

lim
n→∞

‖xn+1 − xn‖ = 0. (17)

Furthermore, we have:

lim sup
n→∞

〈 f (x∗)− x∗, j(xn+1 − x∗)〉 ≤ 0. (18)

From (13), we note that:

‖xn+1 − x∗‖2 ≤ (1− (1− α2)αn)‖xn − x∗‖2 + 2αn〈 f (x∗)− x∗, j(xn+1 − x∗)〉. (19)

Applying Lemma 5, (18) and (19), we can conclude that xn → x∗ as n→ ∞.

Case 2. There exists a subsequence {ni} of {n} such that:

‖xni − x∗‖ ≤ ‖xni+1 − x∗‖, ∀i ≥ 1.

By Lemma 6, there exists a non-decreasing sequence {mk} ⊂ N such that mk → ∞ and:

‖xmk − x∗‖ ≤ ‖xmk+1 − x∗‖,

‖xk − x∗‖ ≤ ‖xmk+1 − x∗‖, ∀k ≥ 1. (20)

Again, from (13), we have:

(1− αmk )βmk (1− βmk )(1− smk )φ(‖xmk − Txmk‖)
≤ ‖xmk − x∗‖2 − ‖xmk+1 − x∗‖2 + αmk M

≤ αmk M,

which implies by the property of φ that:

‖xmk − Txmk‖ → 0 as k→ ∞. (21)
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Following the proof lines in Case 1, we can show that:

lim sup
k→∞

〈 f (x∗)− x∗, j(xmk − x∗)〉 ≤ 0. (22)

Consequently, we have:

‖Tzmk − xmk‖ ≤ ‖Tzmk − Txmk‖+ ‖Txmk − xmk‖
≤ ‖zmk − xmk‖+ ‖Txmk − xmk‖
= (1− smk )(1− βmk )‖Txmk − xmk‖+ ‖Txmk − xmk‖
≤ 2‖xmk − Txmk‖ → 0 as k→ ∞.

It follows that:

‖xmk+1 − xmk‖ ≤ ‖αmk ( f (xmk )− xmk ) + (1− αmk )(Tzmk − xmk )‖
≤ αmk‖ f (xmk )− xmk‖+ (1− αmk )‖Tzmk − xmk‖ → 0 as k→ ∞.

Therefore, we have:

lim sup
k→∞

〈 f (x∗)− x∗, j(xmk+1 − x∗)〉 ≤ 0. (23)

This together with (19) implies that:

‖xmk+1 − x∗‖2

≤ (1− (1− α2)αmk )‖xmk − x∗‖2 + 2αmk 〈 f (x∗)− x∗, j(xmk+1 − x∗)〉. (24)

We see that:

(1− α2)αmk‖xmk − x∗‖2

≤ ‖xmk − x∗‖2 − ‖xmk+1 − x∗‖2 + 2αmk 〈 f (x∗)− x∗, j(xmk+1 − x∗)〉
≤ 2αmk 〈 f (x∗)− x∗, j(xmk+1 − x∗)〉. (25)

Since αmk > 0, we have limk→∞ ‖xmk − x∗‖ = 0. Therefore, we have:

‖xk − x∗‖ ≤ ‖xmk+1 − x∗‖
= ‖xmk − x∗‖+ ‖xmk+1 − x∗‖ − ‖xmk − x∗‖
≤ ‖xmk − x∗‖+ ‖xmk+1 − xmk‖ → 0 as k→ ∞,

which implies that xk → x∗ as k→ ∞. This completes the proof.

Corollary 1. Let C be a nonempty closed and convex subset of a Hilbert space H. Let T : C → C be a
nonexpansive self-mapping such that F(T) 6= ∅ and f ∈ ΠC with coefficient α ∈ (0, 1). For any x1 ∈ C, let
{xn} be a sequence generated by:{

x̄n+1 = βnxn + (1− βn)Txn,

xn+1 = αn f (xn) + (1− αn)T(snxn + (1− sn)x̄n+1), ∀n ≥ 1,
(26)

where {αn}, {βn}, and {sn} belonging in (0, 1) satisfy (C1) and (C2) in Theorem 1. Then, the sequence {xn}
converges strongly to x∗ ∈ F(T), which solves the variational inequality problem:

〈 f (x∗)− x∗, z− x∗〉 ≤ 0, ∀z ∈ F(T). (27)
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Now, we give some remarks on our results as follows:

(1) We get the idea that the results of Ke and Ma [21] and Marino et al. [25] in Hilbert spaces extend
to Banach spaces.

(2) The proof methods of our result are very different from the ones of Ke and Ma [21]. Further, we
remove the following conditions:

∞

∑
n=1
|αn+1 − αn| < ∞, 0 < ε ≤ sn ≤ sn+1 < 1

in Theorem 3.1 of [21].
(3) We give new control conditions and techniques to prove our results.
(4) The proof methods of our results are simpler than those of the results given by some authors (see,

for example, [8,21,36,37]).
(5) Our results are applicable for the family of nonexpansive mappings, for example Wn-mapping, a

countable family of nonexpansive mappings, and nonexpansive semigroups.

Open Problem

Is it possible to obtain the convergence results of the sequence (10) in the setting of more general
spaces, such as reflexive, strictly-convex, and smooth Banach spaces, which admit the duality mapping
jϕ without the weak continuity assumption, where ϕ is a gauge function?

4. Convergence Theorems for a Strict Pseudo-Contraction Mapping

Let C be a closed, convex subset, and nonempty in E. A self-mapping T is called λ-strictly
pseudo-contractive if there exists λ > 0 such that:

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − λ‖(I − T)x− (I − T)y‖2, ∀x, y ∈ C (28)

for some j(x− y) ∈ J(x− y). It is easy to check that (28) is equivalent to the following inequality:

〈(I − T)x− (I − T)y, j(x− y)〉 ≥ λ‖(I − T)x− (I − T)y‖2, ∀x, y ∈ C.

Lemma 8. ([38]) Let C be closed, convex subset and nonempty two-uniformly smooth in E. Let T be a λ-strict
pseudo-contractive mapping. For all x ∈ C, we define Tθ x := (1− θ)x + θTx. Then, for any θ ∈

(
0, λ

K2

]
,

where K > 0 is the two-uniformly smooth constant, Tθ is a nonexpansive mapping such that F(Tθ) = F(T).

Using Theorem 1 and Lemma 8, we get the result as follows:

Theorem 2. Let C be a closed, convex subset and nonempty uniformly convex and two-uniformly smooth in
E. Let T be a λ-strict pseudo-contractions with F(T) 6= ∅ and f ∈ ΠC with coefficient α ∈ (0, 1). Define a
mapping Tθ x := (1− θ)x + θTx for all x ∈ C, where θ ∈

(
0, λ

K2

]
. For any x1 ∈ C, let {xn} be a sequence

generated by: {
x̄n+1 = βnxn + (1− βn)Tθ xn,

xn+1 = αn f (xn) + (1− αn)Tθ(snxn + (1− sn)x̄n+1), ∀n ≥ 1,
(29)

where {αn}, {βn}, and {sn} belonging in (0, 1) satisfy (C1) and (C2) of Theorem 1. Then, the sequence {xn}
converges strongly to x∗ ∈ F(T), which solves the variational inequality problem:

〈 f (x∗)− x∗, j(z− x∗)〉 ≤ 0, ∀z ∈ F(T). (30)
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5. Some Applications

In this section, we give some applications of Theorem 1 in the framework of Hilbert spaces.

5.1. Periodic Solution of a Nonlinear Evolution Equation

Let H be a (possibly complex) Hilbert space. Consider the following time-dependent nonlinear
evolution equation in H:

du
dt

+ A(t)u = g(t, u), ∀t > 0, (31)

where A(t) is a family of closed, linear operators and g : R× H → H. Recall that u is a mild solution
of Equation (31) with initial value u(0) = v if, for any t > 0,

u(t) = U(t, 0)v +
∫ t

0
U(t, s)g(s, u(s))ds,

where {U(t, s)}t≥s≥0 is the evolution system in the case of a homogeneous linear system:

du
dt

+ Au(t) = 0.

The following useful result on the existence of periodic solutions of the problem (31) can be found
in [39].

Theorem 3. Assume that A(t) and g(t, u) are periodic in t of period ξ > 0 and satisfy:

(1) Re〈g(t, u)− g(t, v), u− v〉 ≤ 0 ∀t > 0 and u, v ∈ H;
(2) u ∈ D(A(t)) and Re〈D(A(t))u, u〉 ≥ 0 ∀t > 0;
(3) There exists a mild solution u of the Equation (31) on R+ for each initial value v ∈ H;
(4) There exists some R > 0 such that Re〈g(t, u), u〉 < 0 for all u ∈ H with ‖u‖ = R and t ∈ [0, ξ].

Then, there exists v ∈ H with ‖v‖ ≤ R such that solution of Equation (31) with initial u(0) = v is of
period ξ.

If we define a mapping T : H → H by:

Tv = u(ξ), ∀v ∈ H, (32)

where u is the solution of the Equation (31) satisfying initial u(0) = v, then T is a nonexpansive
of closed ball B := {v ∈ H : v ≤ R} into itself with F(T) 6= ∅. Moreover, each fixed point of T
corresponding to solution u of Equation (31) is the periodic solution of Equation (31) with the initial
u(0) = v (see [39]). For the other case, finding a periodic solution of (31) is equivalent to finding a
fixed point set (see [40], Section 10).

Theorem 4. Let H be a Hilbert space. Let A(t) and g(t, u) be periodic in t of period ξ > 0, which satisfy the
conditions (i)–(iv) of Theorem 3. Let T : H → H be a mapping defined by (32) and f ∈ ΠH with coefficient
α ∈ (0, 1). Suppose that {αn}, {βn} and {sn} are the sequences in (0, 1) that satisfy the conditions (C1) and
(C2) of Theorem 1. For any x1 ∈ H, let {xn} be a sequence generated by:{

x̄n+1 = βnxn + (1− βn)Txn,

xn+1 = αn f (xn) + (1− αn)T(snxn + (1− sn)x̄n+1), ∀n ≥ 1.
(33)

Then, the sequence {xn} converges strongly to fixed element v of T, and then, the corresponding solution
of the Equation (31) with initial u(0) = ξ is a periodic solution of Equation (31).



Mathematics 2019, 7, 161 11 of 15

5.2. Nonlinear Fredholm Integral Equation

Consider the following nonlinear Fredholm integral equation:

x(t) = g(t) +
∫ 1

0
F(t, s, x(s))ds, ∀t ∈ [0, 1], (34)

where g is a continuous function on [0, 1].
F : [0, 1]× [0, 1]×R→ R is a continuous function. In this case, if we assume that F satisfies the

Lipschitz continuity condition, i.e.,

|F(t, s, x)− F(t, s, y)| ≤ |x− y|, ∀t, s ∈ [0, 1], x, y ∈ R, (35)

then Equation (34) has at least one solution in L2[0, 1] (see [41], Theorem 3.3). Define a mapping
T : L2[0, 1]→ L2[0, 1] by:

(Tx)(t) = g(t) +
∫ 1

0
F(t, s, x(s))ds, ∀t ∈ [0, 1]. (36)

Then, for any x, y ∈ L2[0, 1], we have:

‖Tx− Ty‖2 =
∫ 1

0
|(Tx)(t)− (Ty)(t)|2dt

=
∫ 1

0

∣∣∣∣ ∫ 1

0

(
F(t, s, x(s))− F(t, s, y(s))

)
ds
∣∣∣∣2dt

≤
∫ 1

0

∣∣∣∣ ∫ 1

0
|x(s)− y(s)|ds

∣∣∣∣2dt

≤
∫ 1

0
|x(s)− y(s)|2ds

≤ ‖x− y‖2,

which implies that T is a nonexpansive mapping on L2[0, 1]. Thus, we see that finding a solution of
Equation (34) is equivalent to finding a fixed point of T in L2[0, 1].

Theorem 5. Let F : [0, 1]× [0, 1]×R→ R be a mapping satisfying the Lipschitz continuity condition and g
be a continuous function on [0, 1]. Let T : L2[0, 1]→ L2[0, 1] be a mapping defined by (36) and f ∈ ΠL2[0,1]
with coefficient α ∈ (0, 1). Suppose that {αn}, {βn} and {sn} are the sequences in (0, 1) that satisfy the
conditions (C1) and (C2) of Theorem 1. For any x1(t) ∈ L2[0, 1], let {xn} be a sequence generated by:{

x̄n+1(t) = βnxn(t) + (1− βn)Txn(t),

xn+1(t) = αn f (xn(t)) + (1− αn)T(snxn(t) + (1− sn)x̄n+1(t)), ∀n ≥ 1,
(37)

where t ∈ [0, 1]. Then, the sequence {xn(t)} converges strongly in L2[0, 1] to the solution of the integral
Equation (34).

Remark 1. Our result can be applied to show the existence of solutions of some nonlinear problems, that
is (general system) variational inequality problems, constrained convex minimization problems, hierarchical
minimization problems, and split feasibility problems (see [21,36,42]).

6. Numerical Examples

In this section, we present a numerical example of the sequence (10) in the `3 space, which is
uniformly convex with uniformly smooth setting of a Banach space, but not a Hilbert space. Further,
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using MATLAB, numerical results of the sequence (7) are obtained. In particular, we perform the
comparison speed of the convergence to show that the sequence (10) is faster than the sequence (7).

Example 1. Let C = E = `3 and x = (x1, x2, x3, · · · ) ∈ `3, where xi ∈ R for i = 1, 2, 3, · · · and
‖ · ‖`3 : `3 → R+ be the norm defined by:

‖x‖`3 =
( ∞

∑
i=1
|xi|3

)1/3
.

Let T : `3 → `3 be a nonexpansive mapping and f : `3 → `3 be a contraction defined by:

Tx =
( x1 + x2

10
,

x2 + x3

2
,

x3 − x1

5
, 0, 0, 0, · · ·

)
, f (x) =

1
4
(x1, x2, x3, · · · ),

respectively. Let αn = 1
10n+1 , βn = 1

20n+1 + 0.9 and sn = 1
30n+1 + 0.8. It is easy to see that the

sequences {αn}, {βn}, and {sn} satisfy the conditions (C1) and (C2) of Theorem 1. Moreover, we have
F(T) = {(0, 0, 0, 0, 0, 0, · · · )}. Therefore, our sequence (10) has the following form: x̄n+1 =

( 1
20n+1 + 0.9

)
xn +

(
0.1− 1

20n+1
)
Txn,

xn+1 = 1
10n+1 f (xn) +

10n
10n+1 T

(( 1
30n+1 + 0.8

)
xn +

(
0.2− 1

30n+1
)
x̄n+1

)
, ∀n ≥ 1

(38)

and the sequence (7) has the following form:

xn+1 =
1

10n + 1
f (xn) +

10n
10n + 1

T
(( 1

30n + 1
+ 0.8

)
xn + (0.2− 1

30n + 1
)xn+1

)
, ∀n ≥ 1. (39)

Let x1 = (1,−2, 3, 0, 0, 0, · · · ) be an initial point. Then, we obtain the following numerical results:

Remark 2. We see that from Tables 1 and 2 and Figure 1, the sequence (38) converges to a fixed point of T faster
than the sequence (39).

Table 1. Numerical results of the sequence (38).

Number of Iterates xn = (xn
1 , xn

2 , xn
3 , xn

4 , xn
5 , xn

6 , ...) ‖xn− F(T)‖3

1 (1.0000000, −2.0000000, 3.0000000, 0, 0, 0, ...) 2.7144176
2 (0.2327849, −0.4480184, 0.7292703, 0, 0, 0, ...) 0.6771823
3 (0.0526107, −0.0931765, 0.1750471, 0, 0, 0, ...) 0.1675113
4 (0.0118323, −0.0180499, 0.0418631, 0, 0, 0, ...) 0.0410437
5 (0.0026730, −0.0031216, 0.0099981, 0, 0, 0, ...) 0.0099602
6 (0.0006105, −0.0004172, 0.0023865, 0, 0, 0, ...) 0.0023955
7 (0.0001418, −9.9203 × 10−6, 0.0005694, 0, 0, 0, ...) 5.7233 × 10−4

8 (3.3678 × 10−5, 2.2004 × 10−5, 0.0001358, 0, 0, 0, ...) 1.3688 × 10−4

9 (8.2042 × 10−6, 1.1855 × 10−5, 3.2365 × 10−5, 0, 0, 0, ...) 3.3056 × 10−5

10 (2.0542 × 10−6, 4.6141 × 10−6, 7.7051 × 10−6, 0, 0, 0, ...) 8.2639 × 10−6

...
...

...
15 (2.8321 × 10−9, 1.3627 × 10−8, 5.6702 × 10−9, 0, 0, 0, ...) 1.3986 × 10−8
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Table 2. Numerical results of the sequence (39).

Number of Iterates xn = (xn
1 , xn

2 , xn
3 , , xn

4 , xn
5 , xn

6 , ...) ‖xn− F(T)‖3

1 (1.0000000, −2.0000000, 3.0000000, 0, 0, 0, ...) 2.7144176
2 (−0.0470355, 0.3985926, 0.3853261, 0, 0, 0, ...) 0.4938371
3 (0.0337876, 0.3481921, 0.0732708, 0, 0, 0, ...) 0.3493757
4 (0.0344241, 0.1863456, 0.0570267, 0, 0, 0, ...) 0.1867381
5 (0.0196135, 0.0844269, −0.0054563, 0, 0, 0, ...) 0.0847707
6 (0.0091690, 0.0345417, −0.0045213, 0, 0, 0, ...) 0.0347302
7 (0.0038295, 0.0130688, −0.0024315, 0, 0, 0, ...) 0.0131499
8 (0.0014729, 0.0046081, −0.0011026, 0, 0, 0, ...) 0.0046371
9 (5.2742 × 10−4, 0.0015100, −4.5084 × 10−4, 0, 0, 0, ...) 0.0015180

10 (1.7573 × 10−4, 4.5282 × 10−4, −1.7034 × 10−4, 0, 0, 0, ...) 4.5360 × 10−4

...
...

...
15 (−1.7307 × 10−7, −1.6353 × 10−6, −3.0799 × 10−7, 0, 0, 0, ...) 8.1981 × 10−7

Figure 1. The convergence behavior of error values for the sequences (38) and (39).
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Abstract In this work, we introduce implicit and explicit iteration processes with perturba-
tions for solving the fixed point problem of nonexpansive mappings and the quasi-variational
inclusion problem. We then prove its strong convergence under some suitable conditions. In
the last section of the paper, some applications are given also. The results obtained in this
paper extend and improve some known others presented in the literature.
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1 Introduction

LetC be a nonempty, closed and convex of a real Banach space X . Let S : C −→ C be amap-
ping. We use F(S) to denote the set of all fixed points of S, i.e., F(S) = {x ∈ C : x = Sx}.
Recall that a mapping S : C −→ C is said to be L-Lipschitzian if there exists L > 0 such
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that

‖Sx − Sy‖ ≤ L‖x − y‖, ∀x, y ∈ C.

A mapping S : C −→ C is said to be nonexpansive, if

‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C.

A popular way to solve the fixed point problem for nonexpansive mappings is to employ
iterativemethodswhich nowhave received vast investigations. This is because of its extensive
applications in a variety of applied areas of inverse problem, partial differential equations,
image recovery, and signal processing.

Let C be a nonempty closed convex subset of a real Banach space X . Let A : C → X be
a single-valued nonlinear mapping and let B : X → 2X be a multi-valued mapping. The so
called quasi-variational inclusion problem is to find a point x ∈ X such that

0 ∈ (A + B)x . (1.1)

We denote the solution set of (1.1) by (A+B)−10. A number of problems arising in structural
analysis,mechanics, and economics can be studied in the framework of this kind of variational
inclusions; see, for instance [1–3]. The problem (1.1) includes many optimization problems
as special cases.

Takahashi et al. [4] proved the following theorem for maximal monotone operators with
nonlinear operator in Hilbert spaces:

Theorem T Let C be a closed and convex subset of a real Hilbert space H . Let A be an α-
inverse strongly-monotone mapping of C into H and let B be a maximal monotone operator
on H such that the domain of B is included inC . Let Jλ = (I+λB)−1 be the resolvent of B for
λ > 0 and let S be a nonexpansivemapping ofC into itself such that F(S)∩(A+B)−10 �= ∅.
Let x1 = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1 − βn)S(αnx + (1 − αn)Jλn (xn − λn Axn)), ∀n ≥ 1, (1.2)

where {λn} ⊂ (0, 2α), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

(i) 0 < a ≤ λn ≤ b < 2α;
(ii) 0 < c ≤ βn ≤ d < 1;
(iii) limn→∞(λn − λn+1) = 0;
(iv) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞.

Then {xn} converges strongly to a point of F(S) ∩ (A + B)−10.
Manaka–Takahashi [5] introduced the following iteration process in Hilbert spaces

H : x1 ∈ C and

xn+1 = αnxn + (1 − αn)SJλn (xn − λn Axn), ∀n ≥ 1, (1.3)

where {αn} ⊂ (0, 1), {λn} is a positive sequence, S is a nonexpansive mapping on C ,
A : C → H is an inverse-strongly monotone mapping, B : D(B) ⊂ C → 2H is a maximal
monotone operator, and S is a nonexpansive mapping on C . They showed that the sequence
{xn} generated by (1.3) converges weakly to a point in F(S) ∩ (A+ B)−10 under some mild
conditions.

Recently, Lopez et al. [6] considered the following iteration process in the framework of
Banach spaces: u, x1 ∈ X and

xn+1 = αnu + (1 − αn)(Jλn (xn − λn(Axn + an)) + bn), ∀n ≥ 1, (1.4)
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where {an} and {bn} are sequences in X . They proved that the sequence {xn} generated by
(1.4) converges strongly to a solution of (A + B)−10.

We note that, in applications, there are perturbations always occurring in the iterative
processes because the manipulations are inaccurate. It is no doubt that researching the con-
vergent problems of iterative methods with perturbation members is a significant job. This
leads us, in this paper, to introduce implicit and explicit iterative schemes with perturbations
for solving the fixed point problem for nonexpansive mappings and the quasi-variational
inclusion problem. We then prove its strong convergence under some suitable conditions.
Finally, we provide some applications to the main result. The obtained results improve and
extend some known results appeared in the literature.

2 Preliminaries

In this section, we collect some definitions and lemmas which will be used in the sequel.
In what follows, we shall use the following notations: xn → x mean that {xn} converges
strongly to x ; xn ⇀ x mean that {xn} converges weakly to x .

A Banach space X is said to be strictly convex, if whenever x and y are not collinear,
then: ‖x + y‖ < ‖x‖ + ‖y‖. Let S(X) = {x ∈ X : ‖x‖ = 1} denote the unit sphere of X .
The modulus of convexity of X is the function δ : (0, 2] −→ [0, 1] defined by

δ(ε) = inf

{

1 − ‖x+y‖
2 : x, y ∈ S(X), ‖x − y‖ ≥ ε

}

.

A Banach space X is said to be uniformly convex if δ(ε) > 0 for all ε ∈ (0, 2].
The modulus of smoothness of X is the function ρ : R+ := [0,∞) −→ R

+ defined by

ρ(τ) = sup

{
‖x+τ y‖+‖x−τ y‖

2 − 1 : x, y ∈ S(X)

}

.

A Banach space X is said to be uniformly smooth if ρ(t)
t −→ 0 as t −→ 0. Suppose that

q > 1, a Banach space X is said to be q-uniformly smooth if there exists a fixed constant
c > 0 such that ρ(t) ≤ ctq for all t > 0. If X is q-uniformly smooth, then q ≤ 2 and X is
uniformly smooth.

Let X∗ be a dual space of a Banach space X . Let q > 1 be a real number. The generalized
duality mapping Jq : X −→ 2X

∗
is defined by

Jq(x) = { jq(x) ∈ X∗ : 〈x, jq(x)〉 = ‖x‖q , ‖ jq(x)‖ = ‖x‖q−1},
where 〈·, ·〉 denotes the duality pairing between X and X∗. In particular, Jq = J2 is called
the normalized duality mapping and Jq(x) = ‖x‖q−2 J2(x) for x �= 0. If X is a real Hilbert
space, then Jq = I , where I is the identity mapping. It is well known that if X is smooth,
then Jq is single-valued, which is denoted by jq . The generalized duality mapping jq is said
to be weakly sequentially continuous generalized duality mapping if for each {xn} in X with
xn ⇀ x , we have jq(xn) ⇀∗ jq(x).

The following facts are well known (see [7,8]):

(1) Each uniformly convex Banach space (uniformly smooth Banach space) is reflexive and
strictly convex.

(2) If a Banach space X admits a weakly sequentially continuous generalized duality map-
ping, then X satisfies Opials condition, and X is smooth smooth.
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(3) All Hilbert spaces, L p (or l p) spaces and the Sobolev spaces W p
m with p ≥ 2 are 2-

uniformly smooth, while L p (or l p) spaces and the Sobolev spaces W
p
m with 1 < p ≤ 2

are p-uniformly smooth.
(4) Typical examples of both uniformly convex and uniformly smooth Banach spaces are

L p , where p > 1. More precisely, L p is min{p, 2} -uniformly smooth for each p > 1.

Let A : X −→ 2X be a set-valued mapping. We denote the domain and range of an
operator A : X −→ 2X by D(A) = {x ∈ X : Ax �= ∅} and R(A) = ⋃{Az : z ∈ D(A)},
respectively. Let q > 1. A set-valued mapping A : D(A) ⊂ X −→ 2X is said to be accretive
of order q if for each x, y ∈ D(A), there exists jq(x − y) ∈ Jq(x − y) such that

〈u − v, jq(x − y)〉 ≥ 0, u ∈ Ax and v ∈ Ay.

An accretive operator A is said to be m-accretive if R(I + λA) = X for all λ > 0. In a real
Hilbert space, an operator A is m-accretive if and only if A is maximal monotone (see [8]).

Let A be an m-accretive operator on X , we use A−10 to denote the set of all zeros of A,
i.e., A−10 = {x ∈ D(A) : 0 ∈ Ax}. For an accretive operator A, we can define a single
valued operator J A

λ : R(I + λA) −→ D(A) by J A
λ = (I + λA)−1 for each λ > 0, which

is called the resolvent of A for λ. It is well known that J A
λ is a nonexpansive mapping with

F(J A
λ ) = A−10.
Let α > 0 and q > 1. A mapping A : C −→ X is said to be α-inverse strongly accretive

(α-isa) of order q if for each x, y ∈ X , there exists jq(x − y) ∈ Jq(x − y) such that

〈Ax − Ay, jq(x − y)〉 ≥ α‖Ax − Ay‖q .
It is obvious that A is also 1/α-Lipschitz continuous. If X := H is a real Hilbert space, then
A : C −→ H is called α-inverse strongly monotone (α-ism).

Lemma 2.1 [6] Let C be a subset of a real q-uniformly smooth Banach space X and
A : C −→ X be an α-isa of order q. Then the following inequality holds:

‖(I − λA)x − (I − λA)y‖q ≤ ‖x − y‖q − λ(αq − κqλ
q−1)‖Ax − Ay‖q .

for all x, y ∈ X. In particular, if 0 < λ ≤ (
αa
κq

) 1
q−1 , then I − λA is nonexpansive.

Using the concept of sub-differentials, we have the following inequality:

Lemma 2.2 [9] Let q > 1 and X be a real normed space with the generalized duality
mapping Jq . Then, for any x, y ∈ X, we have

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x + y)〉, (2.1)

where jq(x + y) ∈ Jq(x + y).

Lemma 2.3 [10]Let 1 < q ≤ 2 and X be aBanach space. Then the following are equivalent.

(i) X is q-uniformly smooth.
(ii) There is a constant κq > 0 which is called the q-uniform smoothness coefficient of X

such that for all x, y ∈ X

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉 + κq‖y‖q .
In particular, if X is a real 2-uniformly smooth Banach space, then there exists a constant

K > 0 such that
‖x + y‖2 ≤ ‖x‖2 + 2〈y, j (x)〉 + 2‖Ky‖2.
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Lemma 2.4 [10] Let p > 1 and r > 0 be two fixed real numbers and X be a Banach space.
Then the following are equivalent.

(i) X is uniformly convex.
(ii) There is a strictly increasing, continuous and convex function g : R+ −→ R

+ such that
g(0) = 0 and

g(‖x − y‖) ≤ ‖x‖p − p〈x, jp(y)〉 + (p − 1)‖y‖p, ∀x, y ∈ Br .

Lemma 2.5 [11] Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space X and S : C −→ C be a nonexpansive mapping. Then I − S is demiclosed at
zero, i.e., xn ⇀ x and xn − Sxn −→ 0 implies x = Sx .

Following the proof line as in Lemma 2.7 of [12], we obtain the following result.

Lemma 2.6 Let C be a nonempty, closed and convex subset of a real smooth Banach space
X and let jq : X −→ X∗ be a generalized duality mapping. Assume that the mapping
F : C −→ X is accretive and weakly continuous along segments, that is, F(x+ t y) ⇀ F(x)
as t −→ 0. Then the variational inequality

x∗ ∈ C, 〈Fx∗, jq(x − x∗)〉 ≥ 0, x ∈ C

is equivalent to the dual variational inequality

x∗ ∈ C, 〈Fx, jq(x − x∗)〉 ≥ 0, x ∈ C.

Proposition 2.7 [13] Let q > 1. Then the following inequality holds:

aq − bq ≤ qaq−1(a − b),

for arbitrary positive real numbers a, b.

Lemma 2.8 [14] Let {xn} and {ln} be bounded sequences in a Banach space X and let {βn}
be a sequence in [0, 1] with 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1. Suppose xn+1 =
(1−βn)ln +βnxn for all integers n ≥ 0 and lim supn−→∞(‖ln+1 − ln‖−‖xn+1 − xn‖) ≤ 0.
Then, limn−→∞ ‖ln − xn‖ = 0.

Lemma 2.9 [15] Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − γn)an + γnδn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0 γn = ∞;
(ii) lim supn−→∞ δn ≤ 0 or

∑∞
n=0 |γnδn | < ∞.

Then, limn−→∞ an = 0.

Lemma 2.10 (The Resolvent Identity [16]) Let X be a real Banach space. Let A be an
m-accretive operator. For λ,μ > 0 and x ∈ X, then

J A
λ x = J A

μ

(
μ

λ
x +

(

1 − μ

λ

)

J A
λ x

)

,

where J A
λ = (I + λA)−1 and J A

μ = (I + μA)−1.

From the Resolvent Identity, we also have the following result.
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Lemma 2.11 For each r, s > 0 then

‖J A
r x − J A

s x‖ ≤ ∣
∣1 − s

r

∣
∣‖J A

r x − x‖ for all x ∈ X.

Proposition 2.12 Let X be a real q-uniformly smooth Banach space. Let A be anm-accretive
operator on X and let J A

λ be the resolvent operator associated with A and λ. Then J A
λ is

firmly nonexpansive, i.e.,

‖J A
λ x − J A

λ y‖q ≤ 〈x − y, jq(J
A
λ x − J A

λ y)〉, ∀x, y ∈ X.

Proof For each x, y ∈ X and λ > 0, we set u = J A
λ x and v = J A

λ y. By definition of the
accretive operator, we have x − u ∈ λAu and y − v ∈ λAv. Since A is m-accretive, we also
have

0 ≤ 〈x − u − (y − v), jq(u − v)〉
= 〈x − y, jq(u − v)〉 − 〈u − v, jq(u − v)〉
= 〈x − y, jq(u − v)〉 − ‖u − v‖q ,

which implies that

‖u − v‖q ≤ 〈x − y, jq(u − v)〉,
i.e.,

‖J A
λ x − J A

λ y‖q ≤ 〈x − y, jq(J
A
λ x − J A

λ y)〉, ∀x, y ∈ X.

This completes the proof. ��

3 Main results

In this section, we prove a strong convergence theorem which is generated by an implicit
iteration process.

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real uniformly convex and
q-uniformly smooth Banach space X which admits a weakly sequentially continuous general-
ized duality mapping jq . Let A : C −→ X be an α-isa of order q and let B : D(B) −→ 2X

be an m-accretive operator such that D(B) ⊂ C. Let S : C −→ C be a nonexpansive
mapping such that � := F(S) ∩ (A + B)−10 �= ∅. Let λ be a real positive constant such

that 0 < λ <
(αq

κq

) 1
q−1 and let {ut } ⊂ X be a perturbation with limt−→0+ ut = u′ ∈ X.

For each 0 < t < 1 − λ
( κq

αq

) 1
q−1 , let {xt } be a net defined by

xt = SJ B
λ (tut + (1 − t)xt − λAxt ), (3.1)

where J B
λ = (I+λB)−1. Then the net {xt } converges strongly as t −→ 0+ to a point x∗ ∈ �,

which solves uniquely the following variational inequality:

〈u′ − x∗, jq(z − x∗)〉 ≤ 0, ∀z ∈ �. (3.2)

Proof We first show that the net {xt } is well defined. For each t ∈ (0, 1 − λ
( κq

αq

) 1
q−1 ), we

define a mapping St : C −→ C by

St x := SJ B
λ (tut + (1 − t)x − λAx), ∀x ∈ C.
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Since S, J B
λ and I − λ

1−t A (see Lemma 2.1) are nonexpansive. For each x, y ∈ C , we have

‖St x − St y‖ = ‖SJ B
λ (tut + (1 − t)x − λAx) − SJ B

λ (tut + (1 − t)y − λAy)‖
≤ ‖(tut + (1 − t)x − λAx) − (tut + (1 − t)y − λAy)‖
= (1 − t)

∥
∥
∥
∥

(

I − λ

1 − t
A

)

x −
(

I − λ

1 − t
A

)

y

∥
∥
∥
∥

≤ (1 − t)‖x − y‖,

which implies that St is a contraction. Hence, St has a unique fixed point, denoted by xt ,
which uniquely solves the fixed point Eq. (3.1). Therefore, {xt } is well defined.

Take any p ∈ �. It is observed that

p = Sp = SJ B
λ (p − λAp)

= SJ B
λ

(

tp + (1 − t)

(

p − λ

1 − t
Ap

))

, ∀t ∈
(

0, 1 − λ
( κq

αq

) 1
q−1

)

.

Set xt = Syt , where yt = J B
λ (tut + (1 − t)xt − λAxt ). Since S, J B

λ and I − λ
1−t A (see

Lemma 2.1) are nonexpansive, we have

‖yt − p‖ =
∥
∥
∥
∥J

B
λ

(

tut+(1 − t)

(

I − λ

1 − t
A

)

xt

)

− J B
λ

(

tp+(1 − t)

(

I − λ

1 − t
A

)

p

)∥
∥
∥
∥

≤
∥
∥
∥
∥t (ut − p) + (1 − t)

[(

I − λ

1 − t
A

)

xt −
(

I − λ

1 − t
A

)

p

]∥
∥
∥
∥

≤ t‖ut − p‖ + (1 − t)

∥
∥
∥
∥

(

I − λ

1 − t
A

)

xt −
(

I − λ

1 − t
A

)

p

∥
∥
∥
∥

≤ t‖ut − p‖ + (1 − t)‖xt − p‖. (3.3)

It follows that

‖xt − p‖ = ‖Syt − Sp‖
≤ ‖yt − p‖
≤ t‖ut − p‖ + (1 − t)‖xt − p‖,

which implies that

‖xt − p‖ ≤ ‖ut − p‖.

Since limt−→0+ ut = u′, then there exists a constant K1 > 0 such that K1 = supt>0{‖ut‖}.
Hence, {xt } is bounded, so are {yt }, {Sxt } and {Axt }.
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Next, we show that limt−→0+ ‖xt − Sxt‖ = 0. Since ‖xt − p‖ ≤ ‖yt − p‖. By using the
convexity of ‖ · ‖q for all q > 1 and Lemma 2.3, we derive

‖xt − p‖q ≤ ‖yt − p‖q

≤
∥
∥
∥
∥(1 − t)

[(

xt − λ

1 − t
Axt

)

−
(

p − λ

1 − t
Ap

)]

+ t (ut − p)

∥
∥
∥
∥

q

≤ (1 − t)

∥
∥
∥
∥

(

xt − λ

1 − t
Axt

)

−
(

p − λ

1 − t
Ap

)∥
∥
∥
∥

q

+ t‖ut − p‖q

= (1 − t)

∥
∥
∥
∥(xt − p) − λ

1 − t
(Axt − Ap)

∥
∥
∥
∥

q

+ t‖ut − p‖q

≤ (1 − t)

[

‖xt − p‖q − qλ

1 − t
〈Axt − Ap, jq(xt − p)〉

+ κqλ
q

(1 − t)q
‖Axt − Ap‖q

]

+ t‖ut − p‖q

≤ (1 − t)

[

‖xt − p‖q − αqλ

1 − t
‖Axt − Ap‖q

+ κqλ
q

(1 − t)q
‖Axt − Ap‖q

]

+ t‖ut − p‖q

= (1 − t)

[

‖xt − p‖q − λ

1 − t

(

αq − κqλ
q−1

(1 − t)q−1

)

‖Axt − Ap‖q + t‖ut − p‖q

≤ ‖xt − p‖q − λ

(

αq − κqλ
q−1

(1 − t)q−1

)

‖Axt − Ap‖q + t‖ut − p‖q ,

which implies that

λ

(

αq − κqλ
q−1

(1 − t)q−1

)

‖Axt − Ap‖q ≤ t‖ut − p‖q . (3.4)

Since t ∈ (
0, 1 − λ

( κq
αq

) 1
q−1

)
, we have αq − κqλq−1

(1−t)q−1 > 0. Also, it follows from (3.4) that

lim
t−→0+ ‖Axt − Ap‖ = 0.

By Proposition 2.12 and Lemma 2.4, we have

‖yt − p‖q = ‖J B
λ (tut + (1 − t)xt − λAxt ) − J B

λ (p − λAp)‖q
≤ 〈tut + (1 − t)xt − λAxt − (p − λAp), jq(yt − p)〉
≤ 1

q
[‖tut + (1 − t)xt − λAxt − (p − λAp)‖q

+ (q − 1)‖yt − p‖q − g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖)],
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which implies that

‖yt − p‖q ≤ ‖tut + (1 − t)xt − λAxt − (p − λAp)‖q − g(‖tut
+ (1 − t)xt − λ(Axt − Ap) − yt‖)

=
∥
∥
∥
∥(1 − t)

[(

I − λ

1 − t
A

)

xt −
(

I − λ

1 − t
A

)

p

]

+ t (ut − p)

∥
∥
∥
∥

q

− g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖)

≤ (1 − t)

∥
∥
∥
∥

(

I − λ

1 − t
A

)

xt −
(

I − λ

1 − t
A

)

p

∥
∥
∥
∥

q

+ t‖ut − p‖q − g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖)
≤ (1 − t)‖xt − p‖q + t‖ut − p‖q − g(‖tut+(1 − t)xt − λ(Axt − Ap) − yt‖)
≤ ‖xt − p‖q + t‖ut − p‖q − g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖)
≤ ‖yt − p‖q + t‖ut − p‖q − g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖).

Hence, we have

g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖) ≤ t‖ut − p‖q ,
and so

lim
t−→0+ g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖) = 0.

By the property of g, we have

lim
t−→0+ ‖xt − yt‖ = 0. (3.5)

Also, we obtain

lim
t−→0+ ‖yt − Syt‖ = lim

t−→0+ ‖yt − xt‖ = 0.

Moreover, we observe that

‖xt − Sxt‖ ≤ ‖xt − yt‖ + ‖yt − Syt‖ + ‖Syt − Sxt‖
≤ 2‖xt − yt‖ + ‖yt − Syt‖ −→ 0 as t −→ 0+. (3.6)

For any z ∈ �, we note that

‖xt − z‖q ≤
∥
∥
∥
∥(1 − t)

[(

xt − λ

1 − t
Axt

)

−
(

z − λ

1 − t
Az

)]

+ t (ut − z)

∥
∥
∥
∥

q

≤ (1 − t)q
∥
∥
∥
∥

(

xt − λ

1 − t
Axt

)

−
(

z − λ

1 − t
Az

)∥
∥
∥
∥

q

+ qt〈ut − z, jq(xt − z)〉
≤ (1 − t)‖xt − z‖q + qt〈u′ − z, jq(xt − z)〉 + qt〈ut − u′, jq(xt − z)〉,

which implies that

‖xt − z‖q ≤ q〈u′ − z, jq(xt − z)〉 + q〈ut − u′, jq(xt − z)〉. (3.7)

Next, we show that the net {xt } is relatively norm-compact. Assume that {tn} ⊂ (0, 1)
is a sequence such that tn −→ 0+ as n −→ ∞. Put xn := xtn , yn := ytn , λn := λtn and
un := utn . From (3.7), we have

‖xn − z‖q ≤ q〈u′ − z, jq(xn − z)〉 + q〈un − u′, jq(xn − z)〉. (3.8)
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By the reflexivity of X and the boundedness of {xn}, there exists a subsequence {xni } of {xn}
such that xni ⇀ x∗ ∈ C . In addition, by (3.6), we also have limn−→∞ ‖xn − Sxn‖ = 0. It
follows from Lemma 2.5 that x∗ ∈ F(S). Furthermore, we show that x∗ ∈ (A + B)−10. Let
v ∈ Bu. Since

yn = J B
λn

(tnun + (1 − tn)xn − λn Axn).

It is observed that

tnun + (1 − tn)xn − λn Axn ∈ (I + λn B)yn

⇐⇒ 1

λn

(
tnun + (1 − tn)xn − λn Axn − yn

) ∈ Byn .

Since B is accretive, we have for all (u, v) ∈ B,
〈
1

λn

(
tnun + (1 − tn)xn − λn Axn − yn

) − v, jq(yn − u)

〉

≥ 0

⇐⇒ 〈tnun + (1 − tn)xn − λn Axn − yn − λnv, jq(yn − u)〉 ≥ 0,

which implies that

〈Axn + v, jq(yn − u)〉 ≤ 1

λn
〈xn − yn, jq(yn − u)〉 + tn

λn
〈un − xn, jq(yn − u)〉

≤ 1

λn
‖xn − yn‖‖yn − u‖q−1 + tn

λn
‖un − xn‖‖yn − u‖q−1

≤ (‖xn − yn‖ + tn)K2, (3.9)

where K2 > 0 is a constant such that K2 = supn≥1
{ 1

λn

(‖yn − u‖q−1, ‖un − xn‖‖yn −
u‖q−1

)}
.

Since aBanach space X has aweakly sequentially continuous generalized dualitymapping
and from (3.5), we get 〈Ax∗ + v, jq(x∗ − u)〉 ≤ 0, or 〈−Ax∗ − v, jq(x∗ − u)〉 ≥ 0.
Since B is m-accretive, we have −Ax∗ ∈ Bx∗. This shows that x∗ ∈ (A + B)−10. Thus
x∗ ∈ � := F(S) ∩ (A + B)−10.

Now, replacing z in (3.8) with x∗, we have

‖xn − x∗‖q ≤ 〈u′ − x∗, jq(xn − x∗)〉 + 〈un − u′, jq(xn − x∗)〉. (3.10)

Since xn ⇀ x∗, we get xn −→ x∗. This proves the relatively norm compactness of the net
{xt } as t −→ 0+.

Now, returning to (3.8) and taking the limit as n −→ ∞, we have

‖x∗ − z‖q ≤ 〈u′ − z, jq(x
∗ − z)〉.

In particular, x∗ solves the variational inequality

〈u′ − z, jq(z − x∗)〉 ≤ 0, ∀z ∈ �, (3.11)

which is equivalent to the dual variational inequality (see Lemma 2.6):

〈u′ − x∗, jq(z − x∗)〉 ≤ 0, ∀z ∈ �. (3.12)

Hence, x∗ ∈ � is a solution of variational inequality (3.2). Furthermore, we show that the
solution of (3.2) is singleton. Assume that x̂, x∗ ∈ � are solutions of (3.2). Then, we have

〈u′ − x̂, jq(x
∗ − x̂)〉 ≤ 0
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and

〈u′ − x∗, jq(x̂ − x∗)〉 ≤ 0.

Adding up above two inequalities, we have

‖x∗ − x̂‖q ≤ 0,

which implies that x̂ = x∗ and the uniqueness is proved.
In summary, we have shown that each cluster point of {xt } equal to x∗ as t −→ 0+.

Therefore, we can conclude that the net {xt } converges strongly to x∗. This completes the
proof. ��

Next, we prove a strong convergence theorem which is generated by an explicit iteration
process.

Theorem 3.2 Let C be a nonempty, closed and convex subset of a real uniformly convex
and q-uniformly smooth Banach space X which admits a weakly sequentially continu-
ous generalized duality mapping jq . Let A : C −→ X be an α-isa of order q and let
B : D(B) −→ 2X be an m-accretive operator such that D(B) ⊂ C. Let S : C −→ C be a
nonexpansive mapping such that � := F(S) ∩ (A + B)−10 �= ∅. Let {λn} be a real positive
sequence and let {αn} and {βn} are sequences in (0, 1). For an initial guess x1 ∈ C, define
the sequence {xn} by

{
yn = J B

λn
(αnun + (1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(3.13)

where J B
λn

= (I + λn B)−1 and {un} ⊂ X is a perturbation for the n-step iteration with
limn−→∞ un = u′ ∈ X. Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;

(C3) 0 < c′ ≤ λn < λn
1−αn

≤ d ′ <
(αq

κq

) 1
q−1 and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (3.13) converges strongly to a point x∗ ∈ �, which solves
uniquely the variational inequality (3.2).

Proof We first show that {xn} is bounded. Since limn−→∞ un = u′ ∈ X , which implies
that {un} is bounded. Take any p ∈ �, then there exists a constant M1 > 0 such that
M1 = supn≥1{‖un − p‖}. It is observed that

p = Sp = J B
λn

(p − λn Ap) = J B
λn

(

αn p + (1 − αn)

(

p − λn

1 − αn
Ap

))

.
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Since S, J B
λn

and I − λn
1−αn

A are nonexpansive (see Lemma 2.1), we have

‖yn − p‖ =
∥
∥
∥
∥J

B
λn

(

αnun + (1 − αn)

(

I − λn

1 − αn
A

)

xn

)

− J B
λn

(

αn p + (1 − αn)

(

I − λn

1 − αn
A

)

p

)∥
∥
∥
∥

≤
∥
∥
∥
∥αn(un − p) + (1 − αn)

[(

I − λn

1 − αn
A

)

xn −
(

I − λn

1 − αn
A

)

p

]∥
∥
∥
∥

≤ αn‖un − p‖ + (1 − αn)

∥
∥
∥
∥

(

I − λn

1 − αn
A

)

xn −
(

I − λn

1 − αn
A

)

p

∥
∥
∥
∥

≤ αn‖un − p‖ + (1 − αn)‖xn − p‖. (3.14)

It follows that

‖xn+1 − p‖ = ‖βn(xn − p) + (1 − βn)(Syn − p)‖
≤ βn‖xn − p‖ + (1 − βn)‖Syn − p‖
≤ βn‖xn − p‖ + (1 − βn)‖yn − p‖
≤ βn‖xn − p‖ + (1 − βn)

[

αn‖un − p‖ + (1 − αn)‖xn − p‖
]

= (
1 − (1 − βn)αn

)‖xn − p‖ + (1 − βn)αn‖un − p‖
≤ max{‖xn − p‖, M1}.

By the mathematical induction, we have

‖xn − p‖ ≤ max{‖x1 − p‖, M1}, ∀n ≥ 1.

Thus, {xn} is bounded, so are {yn}, {Axn} and {Sxn}.
Next, we show that limn−→∞ ‖xn+1 − xn‖ = 0. Set yn = J B

λn
zn , where zn = αnun

+ (1 − αn)xn − λn Axn . Then, we have

‖yn+1 − yn‖ = ‖J B
λn+1

zn+1 − J B
λn
zn‖ ≤ ‖J B

λn+1
zn+1 − J B

λn+1
zn‖ + ‖J B

λn+1
zn − J B

λn
zn‖

≤ ‖zn+1 − zn‖ + ‖J B
λn+1

zn − J B
λn
zn‖

= ‖αn+1un+1 + (1 − αn+1)xn+1

− λn+1Axn+1 − (αnun + (1 − αn)xn − λn Axn)‖ + ‖J B
λn+1

zn − J B
λn
zn‖

=
∥
∥
∥
∥αn+1(un+1 − un) + (αn+1 − αn)(un − xn)

+ (1 − αn+1)

[(

I − λn+1

1 − αn+1
A

)

xn+1 −
(

I − λn

1 − αn
A

)

xn

]

+ (λn − λn+1)Axn

∥
∥
∥
∥ + ‖J B

λn+1
zn − J B

λn
zn‖ ≤ αn+1

(‖un+1‖ + ‖un‖
)

+ |αn+1 − αn |
(‖un‖ + ‖xn‖

) + (1 − αn+1)

∥
∥
∥
∥

(

I − λn+1

1 − αn+1
A

)

xn+1

−
(

I − λn

1 − αn
A

)

xn

∥
∥
∥
∥ + |λn+1 − λn |‖Axn‖ + ‖J B

λn+1
zn − J B

λn
zn‖

≤ (1 − αn+1)‖xn+1 − xn‖ + αn+1
(‖un+1‖ + ‖un‖

) + |αn+1

−αn |
(‖un‖ + ‖xn‖

) + |λn+1 − λn |‖Axn‖ + ‖J B
λn+1

zn − J B
λn
zn‖.
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By Lemma 2.11, we have

‖J B
λn+1

zn − J B
λn
zn‖ ≤ |λn+1 − λn |

λn+1
‖J B

λn+1
zn − zn‖.

It follows that

‖yn+1 − yn‖ ≤ (1 − αn+1)‖xn+1 − xn‖ + αn+1
(‖un+1‖ + ‖un‖

) + |αn+1

−αn |
(‖un‖ + ‖xn‖

) + |λn+1 − λn |‖Axn‖ + |λn+1 − λn |
λn+1

‖J B
λn+1

zn − zn‖

≤ (1 − αn+1)‖xn+1 − xn‖ +
(

αn+1 + |αn+1 − αn | + |λn+1 − λn |

+ |λn+1 − λn |
λn+1

)

M2,

where M2 = supn≥1
{‖un+1‖+‖un‖, ‖un‖+‖xn‖, ‖Axn‖, ‖J B

λn+1
zn−zn‖

}
. Then, we have

‖Syn+1 − Syn‖ ≤ ‖yn+1 − yn‖ ≤ (1 − αn+1)‖xn+1 − xn‖
+

(

αn+1 + |αn+1 − αn | + |λn+1 − λn | + |λn+1 − λn |
a′

)

M2.

From (C1) and (C3), we have

lim sup
n−→∞

(‖Syn+1 − Syn‖ − ‖xn+1 − xn‖
) ≤ 0.

By Lemma 2.8, we get

lim
n−→∞ ‖Syn − xn‖ = 0. (3.15)

Consequently,

lim
n−→∞ ‖xn+1 − xn‖ = lim

n−→∞(1 − βn)‖Syn − xn‖ = 0. (3.16)

Next, we show that limn−→∞ ‖xn − Sxn‖ = 0. By the convexity of ‖ · ‖q for all q > 1 and
Lemma 2.3, we have

‖yn − p‖q =
∥
∥
∥
∥(1 − αn)

[(

xn − λn

1 − αn
Axn

)

−
(

p − λn

1 − αn
Ap

)]

+ αn(un − p)

∥
∥
∥
∥

q

≤ (1 − αn)

∥
∥
∥
∥

(

xn − λn

1 − αn
Axn

)

−
(

p − λn

1 − αn
Ap

)∥
∥
∥
∥

q

+ αn‖un − p‖q

= (1 − αn)

∥
∥
∥
∥(xn − p) − λn

1 − αn
(Axn − Ap)

∥
∥
∥
∥

q

+ αn‖un − p‖q

≤ (1 − αn)

[

‖xn − p‖q − qλn

1 − αn
〈Axn − Ap, jq(xn − p)〉

+ κqλ
q
n

(1 − αn)q
‖Axn − Ap‖q

]

+ αn‖un − p‖q ≤ (1 − αn)

[

‖xn − p‖q

− αqλn

1 − αn
‖Axn − Ap‖q + κqλ

q
n

(1 − αn)q
‖Axn − Ap‖q

]

+αn‖un − p‖q = (1 − αn)

[

‖xn − p‖q
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− λn

1 − αn

(

αq − κqλ
q−1
n

(1 − αn)q−1

)

‖Axn − Ap‖q
]

+ αn‖un − p‖q

≤ ‖xn − p‖q − λn

(

αq − κqλ
q−1
n

(1 − αn)q−1

)

‖Axn − Ap‖q + αn‖un − p‖q .
(3.17)

It follows that

‖xn+1 − p‖q ≤ βn‖xn − p‖q + (1 − βn)‖Syn − p‖q
≤ βn‖xn − p‖q + (1 − βn)‖yn − p‖q ≤ βn‖xn − p‖q + (1 − βn)

×
[

‖xn − p‖q − λn

(

αq − κqλ
q−1
n

(1 − αn)q−1

)

‖Axn − Ap‖q + αn‖un − p‖q
]

= ‖xn − p‖q − λn(1 − βn)

(

αq − κqλ
q−1
n

(1 − αn)q−1

)

‖Axn − Ap‖q

+αn(1 − βn)‖un − p‖q ,
which implies from (C2), (C3) and Proposition 2.7 that

c′(1 − b′)
(
αq − κq(d

′)q−1)‖Axn − Ap‖q
≤ ‖xn − p‖q − ‖xn+1 − p‖q + αn(1 − βn)‖un − p‖q
≤ q‖xn − p‖q−1(‖xn − p‖ − ‖xn+1 − p‖) + αn(1 − βn)‖un − p‖q
≤ q‖xn − p‖q−1‖xn+1 − xn‖ + αn(1 − βn)‖un − p‖q .

Moreover, from (C1), (C3) and (3.16), we have

lim
n−→∞ ‖Axn − Ap‖ = 0. (3.18)

By Proposition 2.12 and Lemma 2.4, we have

‖yn − p‖q = ‖J B
λn

(αnun + (1 − αn)xn − λn Axn) − J B
λn

(p − λn Ap)‖q
≤ 〈αnun + (1 − αn)xn − λn Axn − (p − λn Ap), jq(yn − p)〉
≤ 1

q

[

‖αnun + (1 − αn)xn − λn Axn − (p − λn Ap)‖q + (q − 1)‖yn − p‖q

−g(‖αnun + (1 − αn)xn − λn(Axn − Ap) − yn‖)
]

,

which implies that

‖yn − p‖q ≤ ‖αnun + (1 − αn)xn − λn Axn − (p − λn Ap)‖q − g(‖αnun

+ (1 − αn)xn − λn(Axn − Ap) − yn‖)
≤ αn‖un − p‖q + ‖xn − p‖q
− g(‖αnun + (1 − αn)xn − λn(Axn − Ap) − yn‖).

It follows that

‖xn+1 − p‖q ≤ βn‖xn − p‖q + (1 − βn)‖yn − p‖q ≤ βn‖xn − p‖q

+ (1 − βn)

[

αn‖un − p‖q + ‖xn − p‖q − g(‖αnun
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+ (1 − αn)xn − λn(Axn − Ap) − yn‖)
]

= ‖xn − p‖q + αn(1 − βn)‖un − p‖q − (1 − βn)g(‖αnun

+ (1 − αn)xn − λn(Axn − Ap) − yn‖),
which implies by (C2) and Proposition 2.7 that

(1 − b′)g(‖αnun + (1 − αn)xn − λn(Axn − Ap) − yn‖)
≤ ‖xn − p‖q − ‖xn+1 − p‖q + αn(1 − βn)‖un − p‖q
≤ q‖xn − p‖q−1(‖xn − p‖ − ‖xn+1 − p‖) + αn(1 − βn)‖un − p‖q
≤ q‖xn − p‖q−1‖xn+1 − xn‖ + αn(1 − βn)‖un − p‖q .

Then, from (C1), (C2) and (3.16), we have

lim
n−→∞ ‖xn − yn‖ = 0. (3.19)

Consequently,

‖xn − Sxn‖ ≤ ‖xn − Syn‖ + ‖Syn − Sxn‖
≤ ‖xn − Syn‖ + ‖yn − xn‖ −→ 0 as n −→ ∞. (3.20)

Next, we show that

lim sup
n−→∞

〈u′ − x∗, jq(yn − x∗)〉 ≤ 0,

where x∗ is the same as in Theorem 3.1. Since {xn} is bounded, there exists a subsequence
{xni } of {xn} such that

lim sup
n−→∞

〈u′ − x∗, jq(xn − x∗)〉 = lim
i−→∞〈u′ − x∗, jq(xni − x∗)〉.

By the reflexivity of X and the boundedness of {xn}, there exists a subsequence {xni } of {xn}
such that xni ⇀ z ∈ C . From (3.19) and (3.20), we also have yn − Syn −→ 0. Then from
Lemma 2.5, we have z ∈ F(S). Furthermore, by the similar method in the proof of Theorem
3.1, we can show that z ∈ �. Since a Banach space X has a weakly sequentially continuous
generalized duality mapping. Then, we have

lim sup
n−→∞

〈u′ − x∗, jq(yn − x∗)〉 = lim sup
n−→∞

〈u′ − x∗, jq(xn − x∗)〉
= 〈u′ − x∗, jq(z − x∗)〉 ≤ 0. (3.21)

Finally, we show that xn −→ x∗. From (3.14) and Lemma 2.2, we have

‖yn − x∗‖q =
∥
∥
∥
∥(1 − αn)

[(

I − λn

1 − αn
A

)

xn −
(

I − λn

1 − αn
A

)

x∗
]

+ αn(un − x∗)
∥
∥
∥
∥

q

≤ (1 − αn)
q
∥
∥
∥
∥

(

I − λn

1 − αn
A

)

xn −
(

I − λn

1 − αn
A

)

x∗
∥
∥
∥
∥

q

+ qαn〈un − x∗, jq(yn − x∗)〉 ≤ (1 − αn)
q‖xn − x∗‖q

+ qαn〈un − x∗, jq(yn − x∗)〉.
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Then, it follows that

‖xn+1 − x∗‖q ≤ βn‖xn − x∗‖q + (1 − βn)‖Syn − x∗‖q
≤ βn‖xn − x∗‖q + (1 − βn)‖yn − x∗‖q
≤ βn‖xn − x∗‖q + (1 − βn)

[
(1 − αn)

q‖xn − x∗‖q
+ qαn〈un − x∗, jq(yn − x∗)〉]

≤ (
1 − αn(1 − βn)

)‖xn − x∗‖q + qαn(1 − βn)〈un − u′, jq(yn − x∗)〉
+ qαn(1 − βn)〈un − x∗, jq(yn − x∗)〉

≤ (
1 − αn(1 − βn)

)‖xn − x∗‖q
+ qαn(1 − βn)‖un − u′‖‖yn − x∗‖q−1

+ qαn(1 − βn)〈un − x∗, jq(yn − x∗)〉. (3.22)

Then (3.22) reduces to

‖xn+1 − x∗‖q ≤ (1 − γn)‖xn − x∗‖q + γnδn,

where γn := αn(1 − βn) and δn := q‖un − u′‖‖yn − x∗‖q−1 + q〈u′ − x∗, jq(yn − x∗)〉. It
is easily seen that

∑∞
n=1 γn = ∞ and lim supn−→∞ δn ≤ 0. We can therefore apply Lemma

2.9 to conclude that xn −→ x∗. This completes the proof. ��
Corollary 3.3 Let C be a nonempty, closed and convex subset of a real uniformly convex
and 2-uniformly smooth Banach space X which admits a weakly sequentially continuous
duality mapping j . Let A : C −→ X be an α-isa of order 2 and let B : D(B) −→ 2X be an
m-accretive operator such that D(B) ⊂ C. Let S : C −→ C be a nonexpansive mapping
such that � := F(S) ∩ (A + B)−10 �= ∅. Let {λn} be a real positive sequence and let {αn}
and {βn} are sequences in (0, 1). For an initial guess x1 ∈ C, define the sequence {xn} by

{
yn = J B

λn
(αnun + (1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(3.23)

where J B
λn

= (I + λn B)−1 and {un} ⊂ X is a perturbation for the n-step iteration with
limn−→∞ un = u′ ∈ X. Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < α

K 2 and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (3.23) converges strongly to a point x∗ ∈ �, which solves
uniquely the following variational inequality:

〈u′ − x∗, j (z − x∗)〉 ≤ 0, ∀z ∈ �.

Corollary 3.4 Let C be a nonempty, closed and convex subset of a real Hilbert H. Let
A : C −→ H be an α-ism and let B : D(B) −→ 2H be a maximal monotone oper-
ator such that D(B) ⊂ C. Let S : C −→ C be a nonexpansive mapping such that
� := F(S) ∩ (A + B)−10 �= ∅. Let {λn} be a real positive sequence and let {αn} and
{βn} are sequences in (0, 1). For an initial guess x1 ∈ C, define the sequence {xn} by

{
yn = J B

λn
(αnun + (1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(3.24)
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where J B
λn

= (I + λn B)−1 and {un} ⊂ H is a perturbation for the n-step iteration with
limn−→∞ un = u′ ∈ H. Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < 2α and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (3.24) converges strongly to a point x∗ ∈ �, which solves
uniquely the following variational inequality:

〈u′ − x∗, z − x∗〉 ≤ 0, ∀z ∈ �.

4 Applications

In this section, we give some applications of Theorem 3.2 in the framework of Hilbert spaces.
Throughout this section, letC be a nonempty, closed and convex subset of a real Hilbert space
H .

4.1 Application to variational inequality problems

Let A : C −→ H be a nonlinear monotone operator. The variational inequality problem is
to find z ∈ C such that

〈Az, y − z〉 ≥ 0, ∀y ∈ C. (4.1)

The set of solutions of problem (4.1) is denoted by V I (C, A). In the context of the variational
inequality problem, it well known that

z ∈ V I (C, A) ⇐⇒ z = PC (z − λAz), ∀λ > 0,

where PC is the metric projection from H onto C .
Let g : H −→ (−∞,∞] be a proper convex lower semi-continuous function. Then the

subdifferential ∂g of g is defined as follows:

∂g(x) = {y ∈ H : g(z) ≥ g(x) + 〈z − x, y〉, ∀z ∈ H}, ∀x ∈ H.

It is known that ∂g is maximal monotone (see [17]). Let iC be the indicator function of C
defined by

iC (x) =
{

0, x ∈ C;
∞, x /∈ C.

(4.2)

Since iC is a proper lower semi-continuous convex function on H , then subdifferential ∂iC
of iC is a maximal monotone operator. So, we can define the resolvent J ∂iC

λ of ∂iC for λ > 0
by

J ∂iC
λ x = (I + λ∂iC )−1x

for all x ∈ H .

Lemma 4.1 [18] Let ∂iC be the subdifferential of iC , where iC defined as in (4.2) and let
J ∂iC
λ be the resolvent of ∂iC for λ > 0. Then, we have

y = J ∂iC
λ x ⇐⇒ y = PCx, ∀x ∈ H, y ∈ C.

Further, we have (A + ∂iC )−10 = V I (C, A).
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Theorem 4.2 Let A : C −→ H be an α-ism. Let S : C −→ C be a nonexpansive mapping
such that F(S) ∩ V I (C, A) �= ∅. Let {λn} be a real positive sequence and let {αn} and {βn}
be sequences in (0, 1). For an initial guess x1 ∈ C, define the sequence {xn} by

{
yn = PC (αnun + (1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(4.3)

where {un} ⊂ H is a perturbation for the n-step iteration with limn−→∞ un = u′ ∈ H.
Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < 2α and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (4.3) converges strongly to a point x∗ ∈ F(S)∩V I (C, A).

4.2 Application to equilibrium problems

LetG : C×C −→ R be a bifunction, whereR is the set of all real numbers. The equilibrium
problem is to find z ∈ C such that

G(z, y) ≥ 0, (4.4)

for all y ∈ C . The set of solutions of problem (4.6) is denoted by EP(G). For solving the
equilibrium problem, let us assume that a bifunctionG : C×C −→ R satisfies the following
conditions:

(A1) G(x, x) = 0 for all x ∈ C ;
(A2) G is monotone, i.e., G(x, y) + G(y, x) ≤ 0 for all x ∈ C ;
(A3) for all x, y, z ∈ C , lim supt↓0 G(t z + (1 − t)y, y) ≤ G(x, y);
(A4) for all x ∈ C , G(x, ·) is convex and lower semi-continuous.

Lemma 4.3 [19] Let G : C × C −→ R satisfying the conditions (A1)−(A4). Let λ > 0
and x ∈ H. Then there exists z ∈ C such that

G(z, y) + 1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Lemma 4.4 [20] Assume that G : C × C −→ R satisfies the conditions (A1)−(A4). For
λ > 0 and x ∈ H, define a mapping Tλ : H −→ C as follows:

Tλ(x) = {
z ∈ C : G(z, y) + 1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
, ∀x ∈ H.

Then, the following hold:

(1) Tλ is single-valued;
(2) Tλ is firmly nonexpansive, i.e., for each x, y ∈ H,

‖Tλx − Tλy‖2 ≤ 〈Tλx − Tλy, x − y〉;
(3) F(Tλ) = EP(G);
(4) EP(G) is closed and convex.

We call such Tλ the resolvent of G for λ > 0.
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Lemma 4.5 [18] Let G : C × C −→ R satisfies the conditions (A1)−(A4). Let AG be a
multivalued mapping of H into itself defined by

AGx =
{ {z ∈ H : G(x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, x ∈ C;

∅, x /∈ C.

Then, E P(G) = A−1
G 0 and AG is a maximal monotone operator with D(AG) ⊂ C. Further,

for any x ∈ H and λ > 0, the resolvent Tλ of G coincides with the resolvent of AG, that is,

Tλx = (I + λAG)−1x .

Theorem 4.6 Let A : C −→ H be an α-ism. Let G : C × C −→ R be a bifunction which
satisfies the conditions (A1) − −(A4). Let S : C −→ C be a nonexpansive mapping such
that F(S) ∩ EP(G) �= ∅. Let {λn} be a real positive sequence and let {αn} and {βn} are
sequences in (0, 1). For an initial guess x1 ∈ C, define the sequence {xn} by

{
yn = Tλn (αnun + (1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(4.5)

where {un} ⊂ H is a perturbation for the n-step iteration with limn−→∞ un = u′ ∈ H.
Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < 2α and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (4.5) converges strongly to a point x∗ ∈ F(S) ∩ EP(G).

4.3 Application to convex minimization problems

Let f : H −→ R be a convex smooth function and g : H −→ R be a convex, lower-
semicontinuous and nonsmooth function. The convex minimization problem is to find z ∈ C
such that

f (z) + g(z) ≤ f (x) + g(x), (4.6)

for all x ∈ C . The set of solutions of problem (4.6) is denoted by CMP( f, g). By Fermat’s
rule, it is known that the problem (4.6) is equivalent to the problem of finding z ∈ C such
that

0 ∈ ∇ f (z) + ∂g(z),

where ∇ f is a gradient of f and ∂g is a subdifferential of g. In fact, we can set A = ∇ f and
B = ∂g in Theorem 3.2. It is also known ∇ f is (1/L)-Lipschitz continuous, then it is also
L-ism (see [21]). Further, ∂g is maximal monotone (see [17]). So we obtain the following
result.

Theorem 4.7 Let f : H −→ R be a convex and differentiable function with (1/L)-Lipschitz
continuous gradient ∇ f and G : H −→ R be a convex and lower semi-continuous func-
tion such that D(∂G) ⊂ C. Let S : C −→ C be a nonexpansive mapping such that
F(S) ∩ CMP( f, g) �= ∅. Let {λn} be a real positive sequence and let {αn} and {βn} be
sequences in (0, 1). For an initial guess x1 ∈ C, define the sequence {xn} by

{
yn = Jλn (αnun + (1 − αn)xn − λn∇ f (xn)),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(4.7)
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where {un} ⊂ H is a perturbation for the n-step iteration with limn−→∞ un = u′ ∈ H.
Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < 2L and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (4.7) converges strongly to a point x∗ ∈ F(S)

∩ CMP( f, g).

4.4 Application to linear inverse problems

Let T be a bounded linear operator on H and b ∈ H . The unconstrained linear problem is to
find x ∈ H such that

T x = b. (4.8)

The set of solutions of problem (4.8) is denoted by � = {x ∈ H : x = T−1b}. For each
x ∈ H , we define f : H −→ R by

f (x) = 1

2
‖T x − b‖2.

It is well known that ∇ f = T t (T x − b) and ∇ f is K -Lipschitz continuous with K the
largest eigenvalue of T t T [22]. So we obtain immediately the following result.

Theorem 4.8 Let T : H −→ H be a bonded linear operator and b ∈ H with K the largest
eigenvalue of T t T . Let S : H −→ H be a nonexpansive mapping such that F(S) ∩ � �= ∅.
Let {λn} be a real positive sequence and let {αn} and {βn} be sequences in (0, 1). For an
initial guess x1 ∈ H, define the sequence {xn} by

{
yn = αnun + (1 − αn)xn − λnT t (T xn − b),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(4.9)

where {un} ⊂ H is a perturbation for the n-step iteration with limn−→∞ un = u′ ∈ H.
Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < 2

K and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (4.9) converges strongly to a point x∗ ∈ F(S) ∩ �.
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uniformly smooth. Let C and Q be nonempty, closed and convex subsets of E1 and
E2, respectively. Let A : E1 → E2 be a bounded linear operator and A∗ : E

∗

2 → E
∗

1

be its adjoint of A. The split feasibility problem (SFP) is to find an element

x̂ ∈ C such that Ax̂ ∈ Q. (1.1)

The set of solutions of problem (1.1) is denoted by Γ, i.e., Γ := {x ∈ C : Ax ∈ Q}.
It is well known that if Γ is nonempty then Γ is a closed and convex subset of E1.
The SFP was first introduced, in a finite dimensional Hilbert space, by Censor-
Elfving [1] in 1994 for modeling inverse problems in radiation therapy treatment
planning which arise from phase retrieval and in medical image reconstruction
(see [2]). The SFP has also been studied by numerous authors in both finite and
infinite dimensional Hilbert spaces (see, e.g., [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]).

For solving the SFP in Banach spaces, Schöpfer et al. [14] first introduced the
following algorithm for solving the SFP: x1 ∈ E1 and

xn+1 = ΠCJ
∗
E1

[
JE1

(xn)− λnA
∗JE2

(Axn − PQ(Axn))
]
, n ≥ 1, (1.2)

where {λn} is a positive sequence, ΠC denotes the generalized projection on E,
PQ is the metric projection on E2, JE1

is the duality mapping on E1 and J∗
E1

is the duality mapping on E∗
1 . It was proved that the sequence {xn} converges

weakly to a solution of SFP, under some mild conditions, in p-uniformly convex
and uniformly smooth Banach spaces.

Recently, Shehu et al. [15] introduced an iterative scheme for solving the SFP
and the fixed point problem of Bregman strongly nonexpansive mapping T in
the framework of p-uniformly convex real Banach spaces which are also uniformly
smooth as follows: Let u ∈ C, u1 ∈ E1 and{

xn = ΠCJ
E∗

1
q

(
JE1
p (un)− λnA

∗JE2
p (I − PQ)Aun

)
un+1 = ΠCJ

E∗
1

q

[
αnJ

E1
p (u) + (1− αn)

(
βnJ

E1
p (xn) + (1− βn)Txn

)]
, ∀n ≥ 1,

(1.3)
where {αn} and {βn} are sequences in (0, 1) and the step-size λn is chosen by

0 < t ≤ λn ≤ k <
(

q
κq∥A∥q

) 1
q−1 .

They proved that the sequence {xn} and {un} defined by (1.3) converge
strongly to a point in F (T ) ∩ Γ under some mild conditions. However, it is ob-
served that iterative method (1.3) involves step-size that depend on the operator
norm ∥A∥ (matrix in the finite-dimensional space), which may not be calculated
easily in general. It makes the implementation of the iteration process inefficient
when the computation of the operator norm ∥A∥ is not explicit (see [16, 17]).

Motivated by the previous works, we introduce an iterative method for solving
the split feasibility problem and the fixed point problem of countable family of
Bregman relatively nonexpansive mappings in the framework of p-uniformly con-
vex and uniformly smooth Banach spaces. Then, we prove strong convergence
theorem of the sequence generated by our iterative scheme with a new way of
selecting the step-size which does not require the computation on the norm of
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the bounded linear operator. Our result complements the results of Byrne [2],
Schöpfer et al. [14], Wang [18], Shehu et al. [15], Shehu et al. [19] and many other
recent results in the literature.

2 Preliminaries

Let E and E∗ be real Banach spaces and the dual space of E, respectively.
Let E1 and E2 be real Banach spaces and let A : E1 → E2 be a bounded linear
operator with its adjoint operator A∗ : E∗

2 → E∗
1 which is defined by

⟨A∗ȳ, x⟩ := ⟨ȳ, Ax⟩, ∀x ∈ E1, ȳ ∈ E∗
2 .

Let S(E) := {x ∈ E : ∥x∥ = 1} denote the unit sphere of E. The modulus of
convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ϵ) = inf

{
1− ∥x+y∥

2 : x, y ∈ S(E), ∥x− y∥ ≥ ϵ

}
.

The space E is said to be uniformly convex if δE(ϵ) > 0 for all ϵ ∈ (0, 2]. Let p > 1.
Then E is said to be p-uniformly convex (or to have a modulus of convexity of
power type p) if there is a cp > 0 such that δE(ϵ) ≥ cpϵ

p for all ϵ ∈ (0, 2].
Observe that every p-uniformly convex space is uniformly convex. The modulus of
smoothness of E is the function ρE : R+ := [0,∞) → R+ defined by

ρE(τ) = sup

{
∥x+τy∥+∥x−τy∥

2 − 1 : x, y ∈ S(E)

}
.

The space E is said to be uniformly smooth if ρE(τ)
τ → 0 as τ → 0. Suppose that

q > 1, a Banach space E is said to be q-uniformly smooth if there exists a κq > 0
such that ρE(τ) ≤ κqτ

q for all τ > 0. If E is q-uniformly smooth, then q ≤ 2 and
E is uniformly smooth. It is known that E is p-uniformly convex if and only if E∗

is q-uniformly smooth. Moreover, we note that a Banach space E is p-uniformly
convex if and only if E is q-uniformly smooth, where p and q satisfy 1

p + 1
q = 1

(see [20]).
Let p > 1 be a real number. The generalized duality mapping JE

p : E → 2E
∗

is defined by

JE
p (x) = {x̄ ∈ E∗ : ⟨x, x̄⟩ = ∥x∥p, ∥x̄∥ = ∥x∥p−1},

where ⟨·, ·⟩ denotes the duality pairing between E and E∗. In particular, JE
p = JE

2

is called the normalized duality mapping.
In this case, we assume that E is a p-uniformly convex and uniformly smooth,

which implies that its dual space, E∗ is q-uniformly smooth and uniformly convex.
It is known that the generalized duality mapping JE

p is one-to-one, single-valued

and satisfies JE
p = (JE∗

q )−1, where JE∗

q is the generalized duality mapping of E∗.
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Moreover, if E is uniformly smooth then the duality mapping JE
p is norm-to-norm

uniformly continuous on bounded subsets of E. (see [21, 22] for more details).

Definition 2.1. ([23]) Let f : E → R be a convex and Gâteaux differentiable
function. The function Df : E × E → [0,+∞) defined by

Df (x, y) := f(y)− f(x)− ⟨f ′(x), y − x⟩,

is called the Bregman distance with respect to f .

We remark that the Bregman distance Df is not satisfy the well-known prop-
erties of a metric because Df is not symmetric and does not satisfy the triangle
inequality.

It is well known that the duality mapping JE
p is the sub-differential of the

functional fp(·) = 1
p∥ ·∥

p for p > 1 (see [24]). Then, we have the Bregman distance
with respect to fp that

Dp(x, y) =
1

q
∥x∥p − ⟨JE

p x, y⟩+ 1

p
∥y∥p. (2.1)

If p = 2, we get

D2(x, y) := ϕ(x, y) = ∥x∥2 − 2⟨Jx, y⟩+ ∥y∥2,

where ϕ is called the Lyapunov function which was introduced by Alber [25, 26].
Moreover, the Bregman distance has the following properties:

Dp(x, y) = Dp(x, z) +Dp(z, y) + ⟨JE
p x− JE

p z, z − y⟩, (2.2)

Dp(x, y) +Dp(y, x) = ⟨JE
p x− JE

p y, x− y⟩, (2.3)

for all x, y, z ∈ E. For the p-uniformly convex space, the metric and Bregman
distance has the following relation (see [14]):

τ∥x− y∥p ≤ Dp(x, y) ≤ ⟨JE
p x− JE

p y, x− y⟩, (2.4)

where τ > 0 is some fixed number. In what follows, we shall use the following
notations:

• xn → x mean that {xn} converges strongly to x;
• xn ⇀ x mean that {xn} converges weakly to x.
Let C be a closed and convex subset of E and let T be a mapping from C

into itself. We denote F (T ) by the set of all fixed points of T , i.e., F (T ) =
{x ∈ C : x = Tx}. A point z ∈ C called an asymptotic fixed point of T , if there
exists a sequence {xn} in C which xn ⇀ z such that limn→∞ ∥xn−Txn∥ = 0. We

denote by F̂ (T ) by the set of asymptotic fixed points of T .

Definition 2.2. ([27, 28]) A mapping T : C → C is called Bregman relatively
nonexpansive, if the following conditions are satisfied:
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(R1) F (T ) = F̂ (T ) ̸= ∅;

(R2) Dp(Tx, z) ≤ Dp(x, z), ∀z ∈ F (T ), ∀x ∈ C.

Clearly, in a Hilbert space H, Bregman relatively nonexpansive mappings and
quasi-nonexpansive mappings are equivalent, for ϕ(x, y) = ∥x − y∥2, ∀x, y ∈ H,
i.e.,

ϕ(Tx, z) ≤ ϕ(x, z) ⇐⇒ ∥Tx− z∥ ≤ ∥x− z∥, ∀x ∈ C and z ∈ F (T ).

Definition 2.3. ([29]) Let C be a subset of a real p-uniformly convex Banach space
E. Let {Tn}∞n=1 be a sequence of mappings of C into E such that

∩∞
n=1 F (Tn) ̸= ∅.

Then {Tn}∞n=1 is said to satisfy the AKTT-condition if, for any bounded subset B
of C,

∞∑
n=1

sup
z∈B

{∥JE
p (Tn+1z)− JE

p (Tnz)∥} < ∞.

As in [30], we can prove the following fact.

Proposition 2.1. Let C be a nonempty, closed and convex subset of a real p-
uniformly convex Banach space E. Let {Tn}∞n=1 be a sequence of mappings of C
into E such that

∩∞
n=1 F (Tn) ̸= ∅. Suppose that {Tn}∞n=1 satisfies the AKTT-

condition. Suppose that for any bounded subset B of C. Then there exists the
mapping T : B → E such that

Tx = lim
n→∞

Tnx, ∀x ∈ B, (2.5)

and

lim
n→∞

sup
z∈B

∥JE
p (Tz)− JE

p (Tnz)∥ = 0.

In the sequel, we say that ({Tn}, T ) satisfies the AKTT-condition if {Tn}∞n=1

satisfies the AKTT-condition and T is defined by (2.5) with
∩∞

n=1 F (Tn) = F (T ).
Recall that the metric projection from E onto C, denote by PCx, satisfying

the property

∥x− PCx∥ ≤ inf
y∈C

∥x− y∥, ∀x ∈ E.

It is well known that PCx is the unique minimizer of the norm distance. Moreover,
PCx is characterized by the following properties: PCx ∈ C and

⟨JE
p (x− PCx), y − PCx⟩ ≤ 0, ∀y ∈ C. (2.6)

Similarly, one can define the Bregman projection from E onto C, denote by ΠC ,
satisfying the property

Dp

(
x,ΠC(x)

)
= inf

y∈C
Dp(x, y), ∀x ∈ E. (2.7)
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Lemma 2.2. ([19]) Let C be a nonempty, closed and convex subset of a p-
uniformly convex and uniformly smooth Banach space E and let x ∈ E. Then
the following assertions hold:

(i) z = ΠCx if and only if ⟨JE
p (x)− JE

p (z), y − z⟩ ≤ 0, ∀y ∈ C.

(ii) Dp(ΠCx, y) +Dp(x,ΠCx) ≤ Dp(x, y), ∀y ∈ C.

Lemma 2.3. [31] Let 1 < q ≤ 2 and E be a Banach space. Then the following
are equivalent.

(i) E is q-uniformly smooth;

(ii) There is a constant κq > 0 such that for all x, y ∈ E

∥x− y∥q ≤ ∥x∥q − q⟨jq(x), y⟩+ κq∥y∥q. (2.8)

Remark 2.4. The constant κq satisfying (2.8) is called the q-uniform smoothness
coefficient of E.

The following Lemma can be obtained from Theorem 2.8.17 of [21] (see also
Lemma 5 of [32]).

Lemma 2.5. Let p > 1, r > 0 and E be a Banach space. Then the following
statements are equivalent:

(i) E is uniformly convex;

(ii) There exists a strictly increasing convex function g∗r : R+ → R+ with g∗r (0) =
0 such that∥∥ N∑

k=1

αkxk

∥∥p ≤
N∑

k=1

αk∥xk∥p − αiαjg
∗
r (∥xi − xj∥),

for all i, j ∈ {1, 2, ..., N}, xk ∈ Br := {x ∈ E : ∥x∥ ≤ r}, αk ∈ (0, 1) with∑N
k=1 αk = 1, where k ∈ {1, 2, ..., N}.

Lemma 2.6. ([19]) Let E be a real p-uniformly convex and uniformly smooth
Banach space. Thus, for all z ∈ E, we have

Dp

(
JE∗

q

( N∑
i=1

tiJ
E
p (xi)

)
, z

)
≤

N∑
i=1

tiDp(xi, z),

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
∑N

i=1 ti = 1.

The following lemmas can be found in [15, 19].

Lemma 2.7. Let E be a real p-uniformly convex and uniformly smooth Banach
space. Let Vp : E∗ × E → [0,+∞) be defined by

Vp(x
∗, x) =

1

q
∥x∗∥q − ⟨x∗, x⟩+ 1

p
∥x∥p, ∀x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:
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(i) Vp is nonnegative and convex in the first variable;

(ii) Dp(J
E∗

q (x∗), x) = Vp(x
∗, x), ∀x ∈ E, x∗ ∈ E∗.

(iii) Vp(x
∗, x) + ⟨y∗, JE∗

q (x∗)− x⟩ ≤ Vp(x
∗ + y∗, x), ∀x ∈ E, x∗, y∗ ∈ E∗.

Following the proof line as in Proposition 2.5 of [33], we obtain the following
result:

Lemma 2.8. Let E be a real p-uniformly convex and uniformly smooth Banach
space. Suppose that x ∈ E and {xn} is a sequence in E. If {Dp(xn, x)} is bounded,
then the sequence {xn} is bounded.

Lemma 2.9. Let E be a real p-uniformly convex and uniformly smooth Banach
space. Suppose that {xn} and {yn} are bounded sequences in E. Then the following
assertions are equivalent:

(a) limn→∞ Dp(xn, yn) = 0;

(b) limn→∞ ∥xn − yn∥ = 0.

Proof. Let {xn} and {yn} be bounded sequences in E. For the implication
(a) =⇒ (b). Suppose that limn→∞ Dp(xn, yn) = 0. From (2.4), we have

0 ≤ τ∥xn − yn∥p ≤ Dp(xn, yn),

where τ > 0 is a fixed number. It follows that limn→∞ ∥xn − yn∥ = 0.
For the converse implication (b) =⇒ (a), we assume that limn→∞ ∥xn− yn∥ =

0. From (2.4), we observe that

0 ≤ Dp(xn, yn) ≤ ⟨JE
p xn − JE

p yn, xn − yn⟩
≤ ∥JE

p xn − JE
p yn∥∥xn − yn∥

≤ ∥xn − yn∥M,

where M = supn≥1{∥xn∥p−1, ∥yn∥p−1}. It follows that limn→∞ Dp(xn, yn) = 0.
This completes the proof. 2

Lemma 2.10. ([34]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn, ∀n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that limn→∞ γn =
0,

∑∞
n=1 γn = ∞ and lim supn→∞ δn ≤ 0. Then, limn→∞ an = 0.

Lemma 2.11. ([35]) Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni

} of {Γn} which satisfies
Γni

< Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0
of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:
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(i) τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n) → ∞;

(ii) Γτn ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

Lemma 2.12. Let E be a real p-uniformly convex and uniformly smooth Banach
space. Let z, xk ∈ E (k = 1, 2, ..., N) and αk ∈ (0, 1) with

∑N
k=1 αk = 1. Then, we

have

Dp

(
JE∗

q

( N∑
k=1

αkJ
E
p (xk)

)
, z

)
≤

N∑
k=1

αkDp(xk, z)− αiαjg
∗
r

(
∥JE

p (xi)− JE
p (xj)∥

)
,

for all i, j ∈ {1, 2, ..., N}.

Proof. Let z, xk ∈ E (k = 1, 2, ..., N) and αk ∈ (0, 1) with
∑N

k=1 αk = 1. Since
p-uniformly convex, hence it is uniformly convex. From Lemmas 2.5 and 2.6, we
have

Dp

(
JE∗

q

( N∑
k=1

αkJ
E
p (xk)

)
, z

)

= Vp

( N∑
k=1

αkJ
E
p (xk), z

)

=
1

q

∥∥ N∑
k=1

αkJ
E
p (xk)

∥∥q − ⟨ N∑
k=1

αkJ
E
p (xk), z

⟩
+

1

p
∥z∥p

≤ 1

q

N∑
k=1

αk∥JE
p (xk)∥q − αiαjg

∗
r (∥JE

p (xi)− JE
p (xj)∥)

−
⟨ N∑
k=1

αkJ
E
p (xk), z

⟩
+

1

p
∥z∥p

=
1

q

N∑
k=1

αk∥JE
p (xk)∥q −

N∑
k=1

αk⟨JE
p (xk), z⟩+

1

p
∥z∥p

−αiαjg
∗
r (∥JE

p (xi)− JE
p (xj)∥)

=

N∑
k=1

αkDp(xk, z)− αiαjg
∗
r (∥JE

p (xi)− JE
p (xj)∥),

for all i, j ∈ {1, 2, ..., N}. This completes the proof. 2

3 Main Results

Theorem 3.1. Let E1 and E2 be two real p-uniformly convex and uniformly
smooth Banach spaces and let C and Q be nonempty, closed and convex subsets
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of E1 and E2, respectively. Let A : E1 → E2 be a bounded linear operator and
A∗ : E∗

2 → E∗
1 be its adjoint of A. Let {Tn}∞n=1 be a countable family of Bregman

relatively nonexpansive mappings of C into E1 such that F (Tn) = F̂ (Tn) for all
n ≥ 1. Suppose that Ω :=

∩∞
n=1 F (Tn) ∩ Γ ̸= ∅. For given u ∈ E1, let {un} be a

sequence generated by u1 ∈ C and

{
xn = ΠCJ

E∗
1

q

(
JE1
p (un)− λnA

∗JE2
p (I − PQ)Aun

)
un+1 = ΠCJ

E∗
1

q

[
αnJ

E1
p (u) + (1− αn)

(
βnJ

E1
p (xn) + (1− βn)J

E1
p (Tnxn)

)]
,

(3.1)
where {αn} and {βn} are sequences in (0, 1). Suppose that the step-size {λn} is a
bounded sequence chosen in such a way that for small enough ϵ > 0,

0 < ϵ < λn <

(
q∥(I − PQ)Aun∥p

κq∥A∗JE2
p (I − PQ)Aun∥q

− ϵ

) 1
q−1

, n ∈ N, (3.2)

where the index set N := {n ∈ N : (I − PQ)Aun ̸= 0} and λn = λ (λ being any
nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 0 < a ≤ βn ≤ b < 1.

Suppose in addition that ({Tn}, T ) satisfies the AKTT-condition. Then, {xn}∞n=1

and {un}∞n=1 converge strongly to an element x∗ = ΠΩu, where ΠΩ is the Bregman
projection from C onto Ω.

Proof. By the choice of λn, we observe that

λq−1
n <

q∥(I − PQ)Aun∥p

κq∥A∗JE2
p (I − PQ)Aun∥q

− ϵ

⇐⇒ κqλ
q−1
n ∥A∗JE2

p (I − PQ)Aun∥q

< q∥(I − PQ)Aun∥p − ϵκq∥A∗JE2
p (I − PQ)Aun∥q

⇐⇒ ϵκq

q
∥A∗JE2

p (I − PQ)Aun∥q

< ∥(I − PQ)Aun∥p −
κqλ

q−1
n

q
∥A∗JE2

p (I − PQ)Aun∥q. (3.3)

For each n ≥ 1, we put xn = ΠCvn, where

vn := J
E∗

1
q

(
JE1
p (un)− λnA

∗JE2
p (Aun − PQ(Aun))

)
.
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Let z ∈ Ω :=
∩∞

n=1 F (Tn) ∩ Γ. From (2.6), we observe that

⟨JE2
p (Aun − PQ(Aun)), Aun −Az⟩

= ⟨JE2
p (Aun − PQ(Aun)), Aun − PQ(Aun)⟩

+⟨JE2
p (Aun − PQ(Aun)), PQ(Aun)−Az⟩

= ∥Aun − PQ(Aun)∥p

+⟨JE2
p (Aun − PQ(Aun)), PQ(Aun)−Az⟩

≥ ∥Aun − PQ(Aun)∥p. (3.4)

Then from Lemma 2.3 and (3.4), we have

Dp(xn, z)

≤ Dp

(
J
E∗

1
q (JE1

p (un)− λnA
∗JE2

p (I − PQ)Aun), z
)

=
1

q
∥JE∗

1
q (JE1

p (un)− λnA
∗JE2

p (I − PQ)Aun)∥p

−⟨JE1
p (un)− λnA

∗JE2
p (I − PQ)Aun, z⟩+

1

p
∥z∥p

=
1

q
∥JE1

p (un)− λnA
∗JE2

p (I − PQ)Aun∥q

−⟨JE1
p (un)− λnA

∗JE2
p (I − PQ)Aun, z⟩+

1

p
∥z∥p

≤ 1

q
∥JE1

p (un)∥q − λn⟨JE2
p (I − PQ)Aun, Aun⟩

+
κqλ

q
n

q
∥A∗JE2

p (I − PQ)Aun∥q − ⟨JE1
p (un), z⟩

+λn⟨JE2
p (I − PQ)Aun, Az⟩+ 1

p
∥z∥p

=
1

q
∥un∥p − ⟨JE1

p (un), z⟩+
1

p
∥z∥p + λn⟨JE2

p (I − PQ)Aun, Az −Aun⟩

+
κqλ

q
n

q
∥A∗JE2

p (I − PQ)Aun∥q

= Dp(un, z) + λn⟨JE2
p (I − PQ)Aun, Az −Aun⟩

+
κqλ

q
n

q
∥A∗JE2

p (I − PQ)Aun∥q

≤ Dp(un, z)− λn

(
∥(I − PQ)Aun∥p −

κqλ
q−1
n

q
∥A∗JE2

p (I − PQ)Aun∥q
)
, (3.5)

which implies that

Dp(xn, z) ≤ Dp(un, z).

Now, we put

yn := J
E∗

1
q (βnJ

E1
p (xn) + (1− βn)J

E1
p (Tnxn))
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for all n ≥ 1. From Lemma 2.12, we have

Dp(yn, z)

= Dp(J
E∗

1
q (βnJ

E1
p (xn) + (1− βn)J

E1
p (Tnxn)), z)

≤ βnDp(xn, v) + (1− βn)Dp(Tnxn, z)− βn(1− βn)g
∗
r (∥JE1

p (xn)− JE1
p (Tnxn)∥)

≤ Dp(xn, z)− βn(1− βn)g
∗
r (∥JE1

p (xn)− JE1
p (Tnxn)∥) (3.6)

≤ Dp(xn, z) (3.7)

It follows from (3.7) that

Dp(xn+1, z) ≤ Dp(un+1, z)

≤ Dp

(
J
E∗

1
q (αnJ

E1
p (u) + (1− αn)J

E1
p (yn)), z

)
≤ αnDp(u, z) + (1− αn)Dp(yn, z)

≤ αnDp(u, z) + (1− αn)Dp(xn, z)

≤ max{Dp(u, z), Dp(xn, z)}
...

≤ max{Dp(u, z), Dp(x1, z)}. (3.8)

Hence, {Dp(xn, z)} is bounded, which implies by Lemma 2.8 that {xn} is bounded.
Put un+1 = ΠCzn, where zn := J

E∗
1

q

[
αnJ

E1
p (u) + (1 − αn)J

E1
p (yn)

]
for all

n ≥ 1. From Lemma 2.7 and (3.6), we have

Dp(xn+1, z)

≤ Dp(un+1, z)

≤ Dp(zn, z)

= Vp

(
αnJ

E1
p (u) + (1− αn)J

E1
p (yn), z

)
≤ Vp(αnJ

E1
p (u) + (1− αn)J

E1
p (yn)− αn(J

E1
p (u)− JE1

p (z), z))

+αn⟨JE1
p (u)− JE1

p (z), zn − z⟩
= Vp(αnJ

E1
p (z) + (1− αn)J

E1
p (yn), z) + αn⟨JE1

p (u)− JE1
p (z), zn − z⟩

≤ αnVp(J
E1
p (z), z) + (1− αn)Vp(J

E1
p (yn), z) + αn⟨JE1

p (u)− JE1
p (z), zn − v⟩

= αnDp(z, z) + (1− αn)Dp(yn, z) + αn⟨JE1
p (u)− JE1

p (z), zn − z⟩
≤ (1− αn)[Dp(xn, z)− βn(1− βn)g

∗
r (∥JE1

p (xn)− JE1
p (Tnxn)∥)]

+αn⟨JE1
p (u)− JE1

p (v), zn − z⟩
≤ (1− αn)Dp(xn, z)− βn(1− βn)g

∗
r (∥JE1

p (xn)− JE1
p (Tnxn)∥)]

+αn⟨JE1
p (u)− JE1

p (z), zn − z⟩ (3.9)

≤ (1− αn)Dp(xn, z) + αn⟨JE1
p (u)− JE1

p (z), zn − z⟩. (3.10)

Next, we will divide the proof into two cases:
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Case 1. Suppose that there exists n0 ∈ N such that {Dp(xn, z)}∞n=n0
is non-

increasing. By the boundedness of {Dp(xn, z)}∞n=1, we have {Dp(xn, z)}∞n=1 is
convergent. Furthermore, we have

Dp(xn, z)−Dp(xn+1, z) → 0 as n → ∞.

Then, from (3.9), we have

0 ≤ a(1− b)g∗r (∥JE1
p (xn)− JE1

p (Tnxn)∥)
≤ βn(1− βn)g

∗
r (∥JE1

p (xn)− JE1
p (Tnxn)∥)

≤ Dp(xn, z)−Dp(xn+1, z) + αn⟨JE1
p (u)− JE1

p (z), zn − z⟩ → 0 as n → ∞,

which implies by the property of g∗r that

lim
n→∞

∥JE1
p (xn)− JE1

p (Tnxn)∥ = 0. (3.11)

Since J
E∗

1
q is uniformly norm-to-norm continuous on bounded subsets of E∗

1 , then

lim
n→∞

∥xn − Tnxn∥ = 0. (3.12)

From Lemma 2.9, we also have

lim
n→∞

Dp(Tnxn, xn) = 0. (3.13)

Since JE1
p is uniformly continuous on bounded subsets of E1, we have

lim
n→∞

∥JE1
p (xn)− JE1

p (Tnxn)∥ = 0.

By Proposition 2.1, we observe that

∥JE1
p (xn)− JE1

p (Txn)∥
≤ ∥JE1

p (xn)− JE1
p (Tnxn)∥+ ∥JE1

p (Tnxn)− JE1
p (Txn)∥

≤ ∥JE1
p (xn)− JE1

p (Tnxn)∥+ sup
x∈{xn}

∥JE1
p (Tnx)− JE1

p (Tx)∥ → 0 as n → ∞,

which implies that

lim
n→∞

∥xn − Txn∥ = 0.

By the reflexivity of a Banach space E and the boundedness of {xn}, without
loss of generality, we may assume that xni

⇀ v ∈ C as i → ∞. Then, we get

v ∈ F̂ (Tn) = F (Tn) for all n ≥ 1, i.e., v ∈
∩∞

n=1 F (Tn). Further, we show that
v ∈ Γ. From (3.3) and (3.5), we have

ϵ2κq

q
∥A∗JE2

p (I − PQ)Aun∥q

< λn

(
∥(I − PQ)Aun∥p −

κqλ
q−1
n

q
∥A∗JE2

p (I − PQ)Aun∥q
)

≤ Dp(un, v)−Dp(xn, v)

≤ αn−1Dp(u, v) +Dp(xn−1, v)−Dp(xn, v),
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which implies that

lim
n→∞

∥Aun − PQ(Aun)∥ = 0. (3.14)

Since vn := J
E∗

1
q

(
JE1
p (un) − λnA

∗JE2
p (Aun − PQ(Aun))

)
for all n ≥ 1, it follows

that

0 ≤ ∥JE1
p (vn)− JE1

p (un)∥ ≤ λn∥A∗∥∥JE2
p (Aun − PQ(Aun))∥

≤
(

q

κq∥A∥q

) 1
q−1

∥A∗∥∥Aun − PQ(Aun)∥p−1,

which implies that

lim
n→∞

∥JE1
p (vn)− JE1

p (un)∥ = 0, (3.15)

and hence

lim
n→∞

∥vn − un∥ = 0. (3.16)

By Lemma 2.2 (ii) and (3.6), we have

Dp(vn, xn) = Dp(vn,ΠCvn) ≤ Dp(vn, v)−Dp(xn, xv)

≤ Dp(un, v)−Dp(xn, v)

≤ αn−1Dp(u, v) +Dp(xn−1, v)−Dp(xn, v) → 0 as n → ∞.

By Lemma 2.9, we get

lim
n→∞

∥vn − xn∥ = 0. (3.17)

Then from (3.16) and (3.17), we have

∥xn − un∥ ≤ ∥vn − un∥+ ∥vn − xn∥ → 0 as n → ∞. (3.18)

Since xni ⇀ v ∈ C and from (3.18), we also get uni ⇀ v ∈ C. From (2.6), we have

∥(I − PQ)Av∥p

= ⟨JE2
p (Av − PQ(Av)), Av − PQ(Av)⟩

= ⟨JE2
p (Av − PQ(Av)), Av −Auni⟩+ ⟨JE2

p (Av − PQ(Av)), Auni − PQ(Auni)⟩
+⟨JE2

p (Av − PQ(Av)), PQ(Auni)− PQ(Av)⟩
≤ ⟨JE2

p (Av − PQ(Av)), Av −Auni⟩+ ⟨JE2
p (Av − PQ(Av)), Auni − PQ(Auni)⟩.

Since A is continuous, we have Auni
⇀ Av as i → ∞. From (3.14), we obtain

∥(I − PQ)Av∥ = 0,
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i.e., Av = PQ(Av), this shows that Av ∈ Q. Thus v ∈ Ω := F (T ) ∩ Γ. From
Lemma 2.6 and (3.13), we have

Dp(yn, xn) = Dp(J
E∗

1
q (βnJ

E1
p (xn) + (1− βn)J

E1
p (Tnxn)), xn)

≤ βnDp(xn, xn) + (1− βn)Dp(Tnxn, xn) → 0 as n → ∞.

It follows that

Dp(zn, xn) = Dp(J
E∗

1
q (αnJ

E1
p (u) + (1− αn)J

E1
p (yn)), xn)

≤ αnDp(u, xn) + (1− αn)Dp(yn, xn) → 0 as n → ∞,

and hence

lim
n→∞

∥xn − zn∥ = 0. (3.19)

Next, we show that

lim sup
n→∞

⟨JE1
p (u)− JE1

p (x∗), zn − x∗⟩ ≤ 0,

where x∗ = ΠΩu. From (3.19), we have

lim sup
n→∞

⟨JE1
p (u)− JE1

p (x∗), zn − x∗⟩ = lim sup
n→∞

⟨JE1
p (u)− JE1

p (x∗), xn − x∗⟩

= lim
i→∞

⟨JE1
p (u)− JE1

p (x∗), xni
− x∗⟩.

Since E is reflexive and {xn} is bounded, there exists a subsequence {xni} of {xn}
such that xni ⇀ v ∈ C. It follows from Lemma 2.2 that

lim sup
n→∞

⟨JE1
p (u)− JE1

p (x∗), xn − x∗⟩ = lim
i→∞

⟨JE1
p (u)− JE1

p (x∗), xni
− x∗⟩

= ⟨JE1
p (u)− JE1

p (x∗), v − x∗⟩ ≤ 0.(3.20)

Applying Lemma 2.10 to (3.10) and (3.20), we can conclude that Dp(xn, x
∗) → 0

as n → ∞. Therefore, xn → x∗ as n → ∞.
Case 2. Suppose that there exists a subsequence {Γni

} of {Γn} such that Γni
<

Γni+1 for all i ∈ N. Let us define a mapping τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then, by Lemma 2.11, we obtain

Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1.

Put Γn := Dp(xn, x
∗) for all n ∈ N. Then, we have from (3.8) that

0 ≤ lim
n→∞

(Dp(xτ(n)+1, x
∗)−Dp(xτ(n), x

∗))

≤ lim
n→∞

(Dp(u, x
∗) + (1− ατ(n))Dp(xτ(n), x

∗)−Dp(xτ(n), x
∗))

= lim
n→∞

ατ(n)

(
Dp(u, x

∗)−Dp(xτ(n), x
∗)) = 0,
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which implies that

lim
n→∞

(Dp(xτ(n)+1, x
∗)−Dp(xτ(n), x

∗)) = 0. (3.21)

Following the proof line in Case 1, we can show that

lim
n→∞

∥xτ(n) − Txτ(n)∥ = 0,

lim
n→∞

∥Auτ(n) − PQ(Auτ(n))∥ = 0.

Further, we can show that

lim sup
n→∞

⟨JE1
p (u)− JE1

p (x∗), zτ(n) − x∗⟩ ≤ 0.

From (3.10), we have

Dp(xτ(n)+1, x
∗) ≤ (1− ατ(n))Dp(xτ(n), x

∗)

+ατ(n)⟨JE1
p (u)− JE1

p (x∗), zτ(n) − x∗⟩,

which implies that

ατ(n)Dp(xτ(n), x
∗) ≤ Dp(xτ(n), x

∗)−Dp(xτ(n)+1, x
∗)

+ ατ(n)⟨JE1
p (u)− JE1

p (x∗), zτ(n) − x∗⟩.

Since Γτ(n) ≤ Γτ(n)+1 and ατ(n) > 0, we get

Dp(xτ(n), x
∗) ≤ ⟨JE1

p (u)− JE1
p (x∗), zτ(n) − x∗⟩.

Hence, limn→∞ Dp(xτ(n), x
∗) = 0. From (3.21), we have

Dp(xn, x
∗) ≤ Dp(xτ(n)+1, x

∗) = Dp(xτ(n), x
∗) + (Dp(xτ(n)+1, x

∗)−Dp(xτ(n), x
∗))

→ 0 as n → ∞,

which implies that Dp(xn, x
∗) → 0. Therefore xn → x∗ as n → ∞. Thus from

above two cases, we conclude that {xn} and {un} converge strongly to x∗ = ΠΩu.
This completes the proof. 2

We consequently obtain the following result in Hilbert spaces.

Corollary 3.2. Let H1 and H2 be two real Hilbert spaces and let C and Q be
nonempty, closed and convex subsets of H1 and H2, respectively. Let A : E1 →
E2 be a bounded linear operator and A∗ : E∗

2 → E∗
1 be its adjoint of A. Let

{Tn}∞n=1 be a countable family of quasi-nonexpansive mappings of C into E1 such

that F (Tn) = F̂ (Tn) for all n ≥ 1. Suppose that Ω :=
∩∞

n=1 F (Tn) ∩ Γ ̸= ∅. For
given u ∈ E1, let {un} be a sequence generated by u1 ∈ C and{

xn = PC(un − λnA
∗(I − PQ)Aun)

un+1 = PC(αnu+ (1− αn)(βnxn + (1− βn)Tnxn)), ∀n ≥ 1,
(3.22)
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where {αn} and {βn} are sequences in (0, 1). Suppose that the step-size {λn} is a
bounded sequence chosen in such a way that for small enough ϵ > 0,

0 < ϵ < λn <
2∥(I − PQ)Aun∥2

∥A∗(I − PQ)Aun∥2
− ϵ, n ∈ N, (3.23)

where the index set N := {n ∈ N : (I − PQ)Aun ̸= 0} and λn = λ (λ being any
nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 0 < a ≤ βn ≤ b < 1.

Suppose in addition that ({Tn}, T ) satisfies the AKTT-condition. Then, {xn}∞n=1

and {un}∞n=1 converge strongly to an element x∗ = PΩu, where PΩ is the metric
projection from C onto Ω.
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Abstract
In this paper, we introduce an iterative algorithm for finding the set of common fixed points of nonexpansive semigroups

by the generalized viscosity implicit rule in certain Banach spaces which has a uniformly Gâteaux differentiable norm and
admits the duality mapping jϕ, where ϕ is a gauge function. We prove strong convergence theorems of proposed algorithm
under appropriate conditions. As applications, we apply main result to solving the fixed point problems of countable family of
nonexpansive mappings and the problems of zeros of accretive operators. Furthermore, we give some numerical examples for
supporting our main results.
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1. Introduction

In this paper, we assume that E is a real Banach space with dual space E∗ and C is a nonempty subset
of E. Let T : C→ C be a mapping. We denote the set of all fixed points of T by F(T) = {x ∈ C : x = Tx}. A
mapping T : C→ C is called nonexpansive if for each x,y ∈ C such that

‖Tx− Ty‖ 6 ‖x− y‖.
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A mapping f : C→ C is called a contraction, if there exists a constant ρ ∈ (0, 1) and for each x,y ∈ C

‖f(x) − f(y)‖ 6 ρ‖x− y‖.

The viscosity approximation method has been successfully applied to various problems from calculus
of variations as minimal surface problems and plasticity theory and phase transition. Various applications
can be obtained in optimal control theory, singular perturbations, game theory, and partial differential
equations (see [4] and references therein). In recent years, viscosity approximation method for approx-
imating the set of (common) fixed points of nonlinear mappings have been investigated extensively by
many authors in Hilbert and Banach spaces (see [10, 11, 13, 19, 20, 23–25, 30] and the references therein).

Very recently, the implicit midpoint rule (IMR) has become a powerful numerical method for numer-
ically solving ordinary differential equations (in particular, the stiff equations) (see [5, 6, 14, 21, 22, 28])
and differential algebraic equations (see [32]).

Xu et al. [31] combined the Moudafi’s viscosity method [19] (see also [30]) with IMR for nonexpansive
mappings T and proposed the following viscosity implicit midpoint rule (VIMR) in Hilbert spaces H as
follows:

xn+1 = αnf(xn) + (1 −αn)T

(
xn + xn+1

2

)
, ∀n > 1, (1.1)

where {αn} is a real control condition in (0, 1). They also proved that VIMR converges strongly to a point
x∗ ∈ F(T) which also solves the variational inequality

〈(f− I)x∗, z− x∗〉 6 0, ∀z ∈ F(T), (1.2)

where I is the identity on H.
Later, Ke and Ma [17] improved the VIMR (1.1) by replacing the midpoint by any point of interval

[xn, xn+1]. They introduced the so-call generalized viscosity implicit midpoint rules to approximating the
fixed point of nonexpansive mapping T in Hilbert spaces H. They obtained the following result.

Theorem 1.1 (Theorem KM). Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
T : C → C be a nonexpansive mapping with F(T) 6= ∅ and let f be a contraction on C with coefficient ρ ∈ (0, 1).
Let x1 ∈ C, and {xn} be a sequence generated by

xn+1 = αnf(xn) +βnxn + γnT(snxn + (1 − sn)xn+1), ∀n > 1, (1.3)

where {αn}, {βn}, {γn}, and {sn} are sequences in (0, 1) with αn + βn + γn = 1. Suppose that the following
conditions hold:

(C1) limn→∞ γn = 1;
(C2)

∑∞
n=1 αn =∞ and

∑∞
n=1 |αn+1 −αn| <∞;

(C3)
∑∞
n=1 |βn+1 −βn| <∞;

(C4) 0 < κ 6 sn 6 sn+1 < 1 for all n > 1.

Then {xn} converges strongly to a point x∗ ∈ F(T), which also solves (1.2).

The above results naturally bring us to the following questions.
Question 1: Can we obtain strong convergence result of Theorem 1.1 to higher spaces other than Hilbert
spaces? Such as a real reflexive strictly convex Banach space which has a uniformly Gâteaux differentiable
norm and admits the duality mapping jϕ, where ϕ is a gauge function.
Question 2: Can we remove the control condition (C1) in Theorem 1.1?
Question 3: Can we weaken the control conditions (C2) and (C3) in Theorem 1.1?
Question 4: Can we extend the generalized viscosity implicit midpoint rules (1.3) to finding the set of
common fixed points of a family of mappings? Such as one-parameter semigroups of nonexpansive
mappings.
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The main objective in this paper is to give an affirmative answer to above questions, we introduce
an iterative algorithm for finding the set of common fixed points of nonexpansive semigroups by the
generalized viscosity implicit rule in a real reflexive strictly convex Banach space which has a uniformly
Gâteaux differentiable norm and admits the duality mapping jϕ, where ϕ is a gauge function. Then, we
prove strong convergence theorems of proposed algorithm with different approach on control conditions.
As applications, we apply main results to solving the fixed point problems of family of nonexpansive
mappings and the problems of zeros of accretive operators. Furthermore, we also give some numerical
examples for support our main results.

2. Preliminaries

The continuous and strictly increasing function ϕ : [0,∞) → [0,∞) is said to be gauge function if
ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. The duality mapping Jϕ : E → 2E

∗
associated with a gauge function

ϕ is defined by

Jϕ(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖ϕ(‖x‖), ‖f∗‖ = ϕ(‖x‖), ∀x ∈ E},

where 〈·, ·〉 denotes the generalized duality paring. In particular, the duality mapping with the gauge
function ϕ(t) = t, denoted by J is referred to as the normalized duality mapping. In this case ϕ(t) = tq−1,
q > 1, the duality mapping Jϕ = Jq is called generalized duality mapping. It follows from the definition that
Jϕ(x) =

ϕ(‖x‖)
‖x‖ J(x) for each x 6= 0, and Jq(x) = ‖x‖q−2J(x), q > 1 (see [9]).

Remark 2.1. For the gauge function ϕ, the function Φ : [0,∞) → [0,∞) defined by Φ(t) =
∫t

0 ϕ(τ)dτ is
continuous, convex, and strictly increasing function on [0,∞). Therefore, Φ has a continuous inverse
function Φ−1.

Remark 2.2. It is observe that if k ∈ [0, 1] then ϕ(ky) 6 ϕ(y). Then, we have

Φ(kt) =

∫kt
0
ϕ(τ)dτ = k

∫t
0
ϕ(ky)dy 6 k

∫t
0
ϕ(y)dy = kΦ(t).

Remark 2.3. If a Banach space E has a uniformly Gâteaux differentiable, then Jϕ is single-valued and also
denoted by jϕ.

Lemma 2.4 ([18]). Let E be a Banach space. Then for each x,y ∈ E, the following inequality holds:

Φ(‖x+ y‖) 6 Φ(‖x‖) + 〈y, jϕ(x+ y)〉, jϕ(x+ y) ∈ Jϕ(x+ y).

Definition 2.5. A one-parameter family S = {Tt}t>0 : C → C is said to be a nonexpansive semigroup if it
satisfies the following conditions:

(S1) T0x = x for x ∈ C;

(S2) Ts+t = TsTt for s, t > 0;

(S3) limt→0+ T(t)x = x for x ∈ C;

(S4) for each t > 0, Tt is nonexpansive, i.e.,

‖Ttx− Tty‖ 6 ‖x− y‖, ∀x,y ∈ C.

Remark 2.6. We denote by F(S) the set of all common fixed points of S, i.e., F(S) =
⋂
t>0 F(Tt).

Now, we give some examples of semigroup operator. The following classical examples were the main
sources for the development of semigroup theory (see [15]).
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Example 2.7. Let E be a real Banach space and let L(E) be the space of all bounded linear operators on E.
For A ∈ L(E), consider the initial value problem for a linear autonomous differential equation on [0,∞):

u ′(t) = Au(t), u(0) = x. (2.1)

Notice that the solution of problem (2.1) is given by

u(t) := Ttx for all t > 0.

Then, we can show that the operator Ttx is a semigroup on E.

Example 2.8. Let E := Lp(Rn), 1 6 p <∞. Consider the initial value problem for the heat equation:

∂u

∂t
= ∆u, for x ∈ Rn and t > 0,

u(x, 0) = f(x), for x ∈ Rn,
(2.2)

where ∆ =
∑n
i=1

∂2

∂x2
i

is the Laplacian operator on E. By using Fourier transform, we can write the solution
u(x, t) in the form of convolution integral as:

u(x, t) =
1√

(4πt)n

∫
Rn
e

−‖x−ξ‖2
4t f(ξ)dξ = (Kt ∗ f)(x),

where t > 0, f ∈ E, and Kt is the heat kernel given by Kt(x) = 1√
(4πt)n

e
−‖x‖2

4t . Then the solution of

problem (2.2) can be written as:

Ttf(x) := u(x, t) = (Kt ∗ f)(x).

We can show that the operator Ttf(x) is a semigroup on E.

Definition 2.9 ([1, 2, 8]). A continuous operator semigroup S = {Tt}t>0 : C → C is said to be uniformly
asymptotically regular (in short, u.a.r.) if for all s > 0 and any bounded subset B of C,

lim
t→∞ sup

x∈B
‖Ttx− TsTtx‖ = 0.

Example 2.10. Let C be a closed convex subset of a uniformly convex Banach space E. Let S = {Tt}t>0 :

C → C be a nonexpansive semigroup. Let {σt}t>0 defined by σtx = 1
t

∫t
0 Tsxds. Then, for each h > 0 and

any bounded subset B of C, we have

‖σtx− σhσtx‖ =
∥∥σtx− 1

h

∫h
0
Tsσtxds‖ = ‖

1
h

∫h
0
(σtx− Tsσtx)ds‖ 6

1
h

∫h
0
‖σtx− Tsσtx‖ds.

From Lemma 2.7 of [12], we have

lim
t→∞ sup

x∈B
‖σtx− σhσtx‖ 6

1
h

∫h
0

lim
t→∞ sup

x∈B
‖σtx− Tsσtx‖ds = 0,

i.e., {σt}t>0 is u.a.r..

Theorem 2.11 ([13]). Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space
E, which has a uniformly Gâteaux differentiable norm and admits the duality mapping jϕ. Let S = {Tt}t>0 : C→ C

be a u.a.r. nonexpansive semigroup such that F(S) :=
⋂
t>0 F(Tt) 6= ∅ and f be a contraction on C with coefficient

ρ ∈ (0, 1). Suppose that {tn} is a real divergent sequence and {αn} is a real sequence in (0, 1) with limn→∞ αn = 0.
Then, the sequence {xn} defined by

xn = αnf(xn) + (1 −αn)Ttnxn, ∀n > 1,

converges strongly to a point p ∈ F(S), which also solves the variational inequality

〈f(p) − p, jϕ(z− p)〉 6 0, ∀z ∈ F(S).
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Lemma 2.12 ([26]). Let {xn} and {ln} be bounded sequences in a Banach space E and let {βn} be a sequence in [0, 1]
with 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)ln + βnxn for all integers n > 0
and lim supn→∞(‖ln+1 − ln‖− ‖xn+1 − xn‖) 6 0. Then, limn→∞ ‖ln − xn‖ = 0.

Lemma 2.13 ([29]). Assume that {an} is a nonnegative real sequence such that

an+1 6 (1 − θn)an + θnσn,

where {θn} is a sequence in (0, 1) and {σn} is a real sequence such that

(i)
∑∞
n=1 θn =∞;

(ii) lim supn→∞ σn 6 0 or
∑∞
n=1 |θnσn| <∞.

Then, limn→∞ an = 0.

3. Main results

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space E,
which has a uniformly Gâteaux differentiable norm and admits the duality mapping jϕ. Let S = {Tt}t>0 : C → C

be a u.a.r. nonexpansive semigroup such that F(S) :=
⋂
t>0 F(Tt) 6= ∅ and f be a contraction on C with coefficient

ρ ∈ (0, 1). For given x1 ∈ C, let {xn} be a sequence generated by

xn+1 = αnf(xn) +βnxn + γnTtn
(
snxn + (1 − sn)xn+1

)
, ∀n > 1, (3.1)

where {αn}, {βn}, {γn}, {sn} ⊂ (0, 1) with αn + βn + γn = 1, and {tn} ⊂ (0,∞) satisfying the following condi-
tions:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(C2) limn→∞ |βn+1 −βn| = 0 and 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;
(C3) tn+1 = h+ tn for all h > 0 and limn→∞ tn =∞;
(C4) 0 < κ 6 sn 6 sn+1 < 1 for all n > 1.

Then, {xn} defined by (3.1) converges strongly to a point p ∈ F(S), which also solves the variational inequality

〈f(p) − p, jϕ(z− p)〉 6 0, ∀z ∈ F(S). (3.2)

Proof. First, we will show that {xn} generated by (3.1) is well defined. For each x,u ∈ C, define the
mapping Sn : C→ C by

Snx := αnf(x) +βnx+ γnTtn
(
snu+ (1 − sn)x

)
, ∀n > 1.

For each x,y ∈ C, we have

‖Snx− Sny‖ = ‖αn(f(x) − f(y)) +βn(x− y) + γn
[
Ttn
(
snu+ (1 − sn)x

)
− Ttn

(
snu+ (1 − sn)y

)]
‖

6 αn‖f(x) − f(y)‖+βn‖x− y‖+ γn‖Ttn
(
snu+ (1 − sn)x

)
− Ttn

(
snu+ (1 − sn)y

)
‖

6 αnρ‖x− y‖+βn‖x− y‖+ γn(1 − sn)‖x− y‖
= (1 − (1 − ρ)αn − γnκ)‖x− y‖ 6 (1 − (1 − ρ)αn)‖x− y‖,

this mean that Sn is a contraction. So Sn has a unique fixed point. Therefore, the sequence {xn} defined
by (3.1) is well-defined.

Next, we show that {xn} is bounded. For each p ∈ F(S), we have

‖xn+1 − p‖ = ‖αn(f(xn) − p) +βn(xn − p) + γn(Ttn
(
snxn + (1 − sn)xn+1

)
− p)‖

6 αn‖f(xn) − p‖+βn‖xn − p‖+ γn‖Ttn
(
snxn + (1 − sn)xn+1

)
− p‖
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6 αn‖f(xn) − p‖+βn‖xn − p‖+ γn‖sn(xn − p) + (1 − sn)(xn+1 − p)‖
6 αn‖f(xn) − f(p)‖+αn‖f(p) − p‖+βn‖xn − p‖+ rn(sn‖xn − p‖+ (1 − sn)‖xn+1 − p‖)
6 (αnρ+βn + γnsn)‖xn − p‖+αn‖f(p) − p‖+ γn(1 − sn)‖xn+1 − p‖,

which implies that

‖xn+1 − p‖ 6
αnρ+βn + γnsn

1 − γn(1 − sn)
‖xn − p‖+ αn

1 − γn(1 − sn)
‖f(p) − p‖

=

(
1 −

(1 − ρ)αn
1 − γn(1 − sn)

)
‖xn − p‖+ (1 − ρ)αn

1 − γn(1 − sn)

‖f(p) − p‖
1 − ρ

6 max
{
‖xn − p‖, ‖f(p) − p‖

1 − ρ

}
.

By induction, we have

‖xn − p‖ 6 max
{
‖x1 − p‖,

‖f(p) − p‖
1 − ρ

}
, ∀n > 1.

Hence, {xn} is bounded. Consequently, we deduce immediately that {f(xn)} and {Ttn(snxn+(1− sn)xn+1)}
are bounded.

Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Let zn = snxn + (1 − sn)xn+1 for all n > 1. Then, we
have

‖zn+1 − zn‖ = ‖sn+1xn+1 + (1 − sn+1)xn+2 − (snxn + (1 − sn)xn+1)‖
6 (1 − sn+1)‖xn+2 − xn+1‖+ sn‖xn+1 − xn‖.

Let yn = xn+1−βnxn
1−βn

for all n > 1. Then, we drive that

yn+1 − yn =
xn+2 −βn+1xn+1

1 −βn+1
−
xn+1 −βnxn

1 −βn

=
αn+1f(xn+1) + γn+1Ttn+1zn+1

1 −βn+1
−
αnf(xn) + γnTtnzn

1 −βn

=
αn+1

1 −βn+1
f(xn+1) −

αn

1 −βn
f(xn) + Ttn+1zn+1 − Ttnzn +

αn

1 −βn
Ttnzn −

αn+1

1 −βn+1
Ttn+1zn+1.

It follows that

‖yn+1 − yn‖ 6
αn+1

1 −βn+1
‖f(xn+1) − Ttn+1zn+1‖+

αn

1 −βn
‖Ttnzn − f(xn)‖+ ‖Ttn+1zn+1 − Ttn+1zn‖

+ ‖Ttn+1zn − Ttnzn‖

6
αn+1

1 −βn+1
‖f(xn+1) − Ttn+1zn+1‖+

αn

1 −βn
‖Ttnzn − f(xn)‖

+ (1 − sn+1)‖xn+2 − xn+1‖+ sn‖xn+1 − xn‖+ ‖Ttn+1zn − Ttnzn‖.

(3.3)

Now, we estimate ‖xn+2 − xn+1‖. Observe that

‖xn+2 − xn+1‖ = ‖αn+1f(xn+1) +βn+1xn+1 + γn+1Ttn+1zn+1 − (αnf(xn) +βnxn + γnTtnzn)‖
= ‖αn+1(f(xn+1) − f(xn)) + (αn+1 −αn)(f(xn) − Ttnzn) +βn+1(xn+1 − xn)

+ (βn+1 −βn)(xn − Ttnzn) + γn+1(Ttn+1zn+1 − Ttnzn)‖
6 αn+‖f(xn+1) − f(xn)‖+ |αn+1 −αn|‖f(xn) − Ttnzn‖+βn+1‖xn+1 − xn‖
+ |βn+1 −βn|‖xn − Ttnzn‖+ γn+1‖Ttn+1zn+1 − Ttn+1zn‖+ γn+1‖Ttn+1zn − Ttnzn‖
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6 (αn+1ρ+βn+1)‖xn+1 − xn‖+ |αn+1 −αn|‖f(xn) − Ttnzn‖
+ |βn+1 −βn|‖xn − Ttnzn‖
+ γn+1((1 − sn+1)‖xn+2 − xn+1‖+ sn‖xn+1 − xn‖) + γn+1‖Ttn+1zn − Ttnzn‖

6 (αn+1ρ+βn+1 + γn+1sn)‖xn+1 − xn‖+
(
|αn+1 −αn|+ |βn+1 −βn|

)
M1

+ γn+1(1 − sn+1)‖xn+2 − xn+1‖+ γn+1‖Ttn+1zn − Ttnzn‖,

where M1 = supn>1{‖f(xn)‖+ ‖Ttnzn‖, ‖xn‖+ ‖Ttnzn‖}. It follows that

‖xn+2 − xn+1‖

6
αn+1ρ+βn+1 + γn+1sn

1 − γn+1(1 − sn+1)
‖xn+1 − xn‖+

(
|αn+1 −αn|

1 − γn+1(1 − sn+1)
+

|βn+1 −βn|

1 − γn+1(1 − sn+1)

)
M1

+
γn+1

1 − γn+1(1 − sn+1)
‖Ttn+1zn − Ttnzn‖

=

(
1 −

(1 − ρ)αn+1

1 − γn+1(1 − sn+1)

)
‖xn+1 − xn‖+

(
|αn+1 −αn|

1 − γn+1(1 − sn+1)
+

|βn+1 −βn|

1 − γn+1(1 − sn+1)

)
M1

+
γn+1

1 − γn+1(1 − sn+1)
‖Ttn+1zn − Ttnzn‖.

(3.4)

Substituting (3.4) into (3.3), we get that

‖yn+1 − yn‖ 6
αn+1

1 −βn+1
‖f(xn+1) − Ttn+1zn+1‖+

αn

1 −βn
‖Ttnzn − f(xn)‖

+ (1 − sn+1)

{(
1 −

(1 − ρ)αn+1

1 − γn+1(1 − sn+1)

)
‖xn+1 − xn‖

+

(
|αn+1 −αn|

1 − γn+1(1 − sn+1)
+

|βn+1 −βn|

1 − γn+1(1 − sn+1)

)
M1

+
γn+1

1 − γn+1(1 − sn+1)
‖Ttn+1zn − Ttnzn‖

}
+ sn‖xn+1 − xn‖+ ‖Ttn+1zn − Ttnzn‖

6

(
1 −

(1 − ρ)αn+1(1 − sn+1)

1 − γn+1(1 − sn+1)

)
‖xn+1 − xn‖+

αn+1

1 −βn+1
‖f(xn+1) − Ttn+1zn+1‖

+
αn

1 −βn
‖Ttnzn − f(xn)‖+

(
|αn+1 −αn|

1 − γn+1(1 − sn+1)
+

|βn+1 −βn|

1 − γn+1(1 − sn+1)

)
M1

+
1

1 − γn+1(1 − sn+1)
‖Ttn+1zn − Ttnzn‖.

(3.5)

Since tn+1 = h+ tn for all h > 0, we have

lim
n→∞ ‖Ttn+1zn − Ttnzn‖ = lim

n→∞ ‖ThTtnzn − Ttnzn‖ 6 lim
n→∞ sup

x∈{zn}
‖ThTtnx− Ttnx‖ = 0.

Then from (3.5), we have

lim sup
n→∞ (‖yn+1 − yn‖− ‖xn+1 − xn‖) 6 0.

By Lemma 2.12, we have

lim
n→∞ ‖yn − xn‖ = 0.

Consequently, we have

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1 −βn)‖yn − xn‖ = 0
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and

lim
n→∞ ‖zn − xn‖ = lim

n→∞(1 − sn)‖xn+1 − xn‖ = 0. (3.6)

Next, we show that limn→∞ ‖xn − Thxn‖ = 0 for all h > 0. Since

‖xn+1 − Ttnxn‖ 6 αn‖f(xn) − Ttnzn‖+βn‖xn − Ttnzn‖+ γn‖Ttnzn − Ttnxn‖
6 αn‖f(xn) − Ttnxn‖+βn‖xn − xn+1‖+βn‖xn+1 − Ttnxn‖+ γn‖zn − xn‖,

and hence

‖xn+1 − Ttnxn‖ 6
αn

1 −βn
‖f(xn) − Ttnxn‖+

βn

1 −βn
‖xn+1 − xn‖+

γn

1 −βn
‖zn − xn‖ → 0 as n→∞.

Consequently,

‖zn − Ttnzn‖ 6 ‖zn − xn+1‖+ ‖xn+1 − Ttnzn‖
6 sn‖xn − xn+1‖+ ‖xn+1 − Ttnxn‖+ ‖Ttnxn − Ttnzn‖
6 sn‖xn − xn+1‖+ ‖xn+1 − Ttnxn‖+ ‖xn − zn‖ → 0 as n→∞.

Then, for all h > 0, we obtain that

‖zn − Thzn‖ 6 ‖zn − Ttnzn‖+ ‖Ttnzn − ThTtnzn‖+ ‖ThTtnzn − Thzn‖
6 2‖zn − Ttnzn‖+ sup

x∈{zn}
‖Ttnx− ThTtnx‖ → 0 as n→∞.

From (3.6), we also have

lim
n→∞ ‖xn − Thxn‖ = 0, ∀h > 0.

Let um = αmf(um) + (1 − αm)Ttmum, where {αm} and {tm} satisfy the condition of Theorem 2.11. From
these, we know that {um} converges strongly to p, where p ∈ F(S) is a unique solution of (3.2). Since

‖um − xn‖ϕ(‖um − xn‖) = αn〈f(um) − xn, jϕ(um − xn)〉+ (1 −αm)〈Ttmum − xn, jϕ(um − xn)〉
= αm〈f(um) − f(p) − um + p, jϕ(um − xn)〉+αm〈f(p) − p, jϕ(um − xn)〉
+αm〈um − xn, jϕ(um − xn)〉+ (1 −αm)〈Ttmum − Ttmxn, jϕ(um − xn)〉
+ (1 −αm)〈Ttmxn − xn, jϕ(um − xn)〉

6 ‖um − xn‖ϕ(‖um − xn‖) + ‖Ttmxn − xn‖ϕ(‖um − xn‖)
+αm(1 + ρ)ϕ(‖um − xn‖)‖um − p‖+αm〈f(p) − p, jϕ(um − xn)〉,

which implies that

〈f(p) − p, jϕ(xn − um)〉 6
(
‖Ttmxn − xn‖

αm
+ (1 + ρ)‖um − p‖

)
M2, (3.7)

where M2 = supn>1{ϕ(‖um − xn‖)}. Now, taking the upper limit as n→∞ and as m→∞, respectively
in (3.7), we obtain

lim sup
m→∞ lim sup

n→∞ 〈f(p) − p, jϕ(xn − um)〉 6 0. (3.8)

Since jϕ is norm-weak∗ uniformly continuous on bounded sets, as m→∞, then

〈f(p) − p, jϕ(xn − um)〉 → 〈f(p) − p, jϕ(xn − p)〉.
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Hence, for each ε > 0, there exists N > 1 such that if m > N, for all n > 1 we have

〈f(p) − p, jϕ(xn − p)〉 < 〈f(p) − p, jϕ(xn − um)〉+ ε. (3.9)

Thus taking upper limit as n→∞ and as m→∞ in both sides of (3.9), we get from (3.8) that

lim sup
n→∞ 〈f(p) − p, jϕ(xn − p)〉 6 ε.

Since ε > 0 is arbitrary, then we obtain

lim sup
n→∞ 〈f(p) − p, jϕ(xn − p)〉 6 0. (3.10)

Finally, we show that xn converges strongly to p. We have from Lemma 2.4 that

Φ(‖xn+1 − p‖) = Φ(‖αn(f(xn) − p) +βn(xn − p) + γn(Ttn(snxn + (1 − sn)xn+1) − p‖))
6 Φ(‖αn(f(xn) − f(p)) +βn(xn − p) + γn(Ttn(snxn + (1 − sn)xn+1) − p)‖)
+αn〈f(p) − p, jϕ(xn+1 − p)〉

6 αnΦ(‖f(xn) − f(p)‖) +βnΦ(‖xn − p‖) + γnΦ(‖Ttn(snxn + (1 − sn)xn+1) − p‖)
+αn〈f(p) − p, jϕ(xn+1 − p)〉

6 αnρΦ(‖xn − p‖) +βnΦ(‖xn − p‖) + γnΦ(‖sn(xn − p) + (1 − sn)(xn+1 − p)‖)
+αn〈f(p) − p, jϕ(xn+1 − p)〉

6 αnρΦ(‖xn − p‖) +βnΦ(‖xn − p‖) + γn
(
snΦ(‖xn − p‖) + (1 − sn)Φ(‖xn+1 − p‖)

)
+αn〈f(p) − p, jϕ(xn+1 − p)〉

= (αnρ+βn + γnsn)Φ(‖xn − p‖) + γn(1 − sn)Φ(‖xn+1 − p‖)
+αn〈f(p) − p, jϕ(xn+1 − p)〉,

which implies that

Φ(‖xn+1 − p‖) 6
αnρ+βn + γnsn

1 − γn(1 − sn)
Φ(‖xn − p‖) + αn

γn(1 − sn)
〈f(p) − p, jϕ(xn+1 − p)〉

=

(
1 −

(1 − ρ)αn
1 − γn(1 − sn)

)
Φ(‖xn − p‖) + αn

γn(1 − sn)
〈f(p) − p, jϕ(xn+1 − p)〉

= (1 − θn)Φ(‖xn − p‖) + θnσn,

where θn =
(1−ρ)αn

1−γn(1−sn)
and σn = 1

1−ρ〈f(p) − p, jϕ(xn+1 − p)〉. From (C1) and (3.10), we see that∑∞
n=1 θn =∞ and lim supn→∞ σn 6 0. We conclude by Lemma 2.13 that Φ(‖xn−p‖)→ 0 as n→∞. By

the property of Φ, we obtain that {xn} converges strongly to p as n→∞. This completes the proof.

Corollary 3.2. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let S = {Tt}t>0 : C→ C

be a u.a.r. nonexpansive semigroup such that F(S) :=
⋂
t>0 F(Tt) 6= ∅ and f be a contraction on C with coefficient

ρ ∈ (0, 1). For given x1 ∈ C, let {xn} be a sequence generated by

xn+1 = αnf(xn) +βnxn + γnTtn
(
snxn + (1 − sn)xn+1

)
, ∀n > 1. (3.11)

Suppose that {αn}, {βn}, {γn}, {sn}, and {tn} be the same as in Theorem 3.1. Then, {xn} defined by (3.11) converges
strongly to a point p ∈ F(S), which also solves the variational inequality

〈f(p) − x∗, z− p〉 6 0, ∀z ∈ F(S).

4. Some applications

4.1. Convergence theorem for a family of mappings
Definition 4.1. Let C be a subset of a Banach space E. Let {Tn}∞n=1 : C→ C be a family of mappings such
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that
⋂∞
n=1 F(Tn) 6= ∅. We say that {Tn}∞n=1 satisfies the AKTT -condition ([3]) if

∞∑
n=1

sup
x∈C
‖Tn+1x− Tnx‖ <∞. (4.1)

Lemma 4.2 ([3]). Suppose that {Tn}∞n=1 satisfy the AKTT -condition. Then, for any x ∈ C, {Tnx}∞n=1 converges
strongly to some point of C. Further, let T : C → C defined by Tx = limn→∞ Tnx for all x ∈ C. Then,
limn→∞ supx∈C ‖Tx− Tnx‖ = 0.

In the sequel, we say that ({Tn}
∞
n=1, T) satisfies the AKTT -condition if {Tn}

∞
n=1 satisfies the AKTT -

condition and T is defined by (4.1) with
⋂∞
n=1 F(Tn) = F(T).

Theorem 4.3. Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space E,
which has a uniformly Gâteaux differentiable norm and admits the duality mapping jϕ. Let {Tn}

∞
n=1 : C → C

be a sequence of nonexpansive mappings such that
⋂∞
n=1 F(Tn) 6= ∅ and f be a contraction on C with coefficient

ρ ∈ (0, 1). For given x1 ∈ C, let {xn} be a sequence generated by

xn+1 = αnf(xn) +βnxn + γnTn
(
snxn + (1 − sn)xn+1

)
, ∀n > 1. (4.2)

Suppose that {αn}, {βn}, {γn}, and {sn} be the same as in Theorem 3.1. Suppose in addition, ({Tn}∞n=1, T) satisfies
the AKTT -condition. Then, {xn} defined by (4.2) converges strongly to a point p ∈

⋂∞
n=1 F(Tn), which also solves

the variational inequality

〈f(p) − p, jϕ(z− p)〉 6 0, ∀z ∈
∞⋂
n=1

F(Tn).

Proof. Following the proof line as in Theorem 3.1, we can show that {xn} is bounded and limn→∞ ‖xn −
Tnxn‖ = 0. Since ({Tn}

∞
n=1, T) satisfies the AKTT -condition, we obtain from Lemma 4.2 that

‖Tn+1zn − Tnzn‖ = ‖Tn+1zn − Tzn‖+ ‖Tzn − Tnzn‖
6 sup
x∈{zn}

‖Tn+1x− Tx‖+ sup
x∈{zn}

‖Tx− Tnx‖ → 0 as n→∞.

On the other hand, we need to show that limn→∞ ‖xn − Txn‖ = 0. Again, since ({Tn}
∞
n=1, T) satisfies the

AKTT -condition, then we obtain that

‖xn − Txn‖ 6 ‖xn − Tnxn‖+ ‖Tnxn − Txn‖ 6 ‖xn − Tnxn‖+ sup
x∈{xn}

‖Tnx− Tx‖ → 0 as n→∞.

Some parts of the proof are also the same as the Theorem 3.1. Then, we can obtain the desired conclusion
easily. This completes the proof.

Example 4.4. Let C = E = R with the usual norm. For each n > 1, define Tn by

Tnx =

{
0, x = 0,
sin x+ 1

n2 , x 6= 0

for all x ∈ C. It is not hard to show that {Tn}∞n=1 is nonexpansive and satisfies the AKTT -condition with⋂∞
n=1 F(Tn) = F(T) = {0}, where Tx = limn→∞ Tnx for all x ∈ C.

4.2. The problem of finding zeros of accretive operators
Let A ⊂ E× E be an operator. We denote by D(A) and D(A) the domain of A and closure of D(A),

respectively. We say that A is said to be accretive if there exists jϕ(x1 − x2) ∈ Jϕ(x1 − x2) such that
〈y1 − y2, jϕ〉 > 0, where (xi,yi) ∈ A for i = 1, 2. We say that A is said to satisfy the range condition
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if D(A) = R(I+ λA) for all λ > 0, where R(I+ λA) is the range of I+ λA. It is well known that if A is
an accretive operator which satisfies the range condition, then we can defined a single-valued mapping
JAλ : R(I+ λA) → D(A) by Jλ = (I+ λA)−1, which is called the resolvent of A. We denote by A−10 the set
of zeros of A, i.e., A−10 = {x ∈ D(A) : 0 ∈ Ax}. It is well known that Jλ is nonexpansive and F(Jλ) = A−10
(see [27]). We also know the following [16]: For each λ,µ > 0 and x ∈ R(I+ λA)∩ R(I+ µA), it holds that

‖Jλx− Jµx‖ 6
|λ− µ|

λ
‖x− Jλx‖.

Lemma 4.5 ([3]). Let C be a nonempty, closed, and convex subset of a Banach space E. Let A ⊂ E× E be an
accretive operator such that A−10 6= ∅ which satisfies the condition D(A) ⊂ C ⊂

⋂
λ>0 R(I+ λA). Suppose that

{λn} ⊂ (0,∞) such that inf{λn : n ∈ N} > 0 and limn→∞ |λn+1 − λn| = 0. Then {Jλn} satisfies the AKTT-
condition. Consequently, for each x ∈ C, {Jλnx} converges strongly to some point of C. Moreover, let Jλ : C → C

defined by Jλx = limn→∞ Jλnx for all x ∈ C and F(Jλ) =
⋂∞
n=1 F(Jλn), where λn → λ as n → ∞. Then,

limn→∞ supx∈C ‖Jλx− Jλnx‖ = 0.

Theorem 4.6. Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space E,
which has a uniformly Gâteaux differentiable norm and admits the duality mapping jϕ. Let A ⊂ E× E be an
accretive operator such that A−10 6= ∅ which satisfies the condition D(A) ⊂ C ⊂

⋂
λ>0 R(I + λA) and f be a

contraction on C with coefficient ρ ∈ (0, 1). For given x1 ∈ C, let {xn} be a sequence generated by

xn+1 = αnf(xn) +βnxn + γnJλn
(
snxn + (1 − sn)xn+1

)
, ∀n > 1, (4.3)

where {λn} is a real sequence in (0,∞) with inf{λn : n ∈ N} > 0 and limn→∞ |λn+1 − λn| = 0. Suppose that
{αn}, {βn}, {γn}, {sn} be the same as in Theorem 3.1. Then {xn} defined by (4.3) converges strongly to a point
p ∈ A−10, which also solves the variational inequality

〈f(p) − p, jϕ(z− p)〉 6 0, ∀z ∈ A−1(0).

Proof. Since ({Jλn}, Jλ) satisfies the AKTT -condition, by following the proof line in Theorem 4.3, we can
conclude the desired conclusion immediately.

5. Numerical examples

In this section, we present two numerical experiments to support the main result.

Example 5.1. Let E = C = R2, x =

(
x1
x2

)
∈ R2, and y =

(
y1
y2

)
∈ R2, where xi,yi ∈ R for i = 1, 2. Let

〈·, ·〉 : R2 ×R2 → R be the inner product defined by x · y = x1y1 + x2y2 and let ‖ · ‖ : R2 → R be the usual

norm defined by ‖x‖ =
√
x2

1 + x
2
2. Let f : R2 → R2 defined by f(x) = 1

4 x. For each t > 0, let Tt : R2 → R2

be a u.a.r. nonexpansive semigroup defined by

Ttx =

(
e−2t 0

0 1

)
x.

It is not hard to see that
⋂
t>0 F(Tt) = p =

(
0
x2

)
. Let tn = n

2 , sn = n
n+1 , αn = 1

50n+1 , βn = n
50n+1 , we have

γn = 49n
50n+1 . So our algorithm (3.1) has the following form:(

xn+1
1
xn+1

2

)
=

5n+ 1
200n+ 4

(
xn1
xn2

)
+

49n
50n+ 1

(
e−n 0

0 1

)[
n

n+ 1

(
xn1
xn2

)
+

1
n+ 1

(
xn+1

1
xn+1

2

)]
, ∀n > 1.

Choose x1 =

(
2
3

)
be the initial point. Then, we obtain the numerical results shown in Table 1 and

Figure 1.
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Table 1: Numerical results of Example 5.1.
n xn = (xn1 , xn2 )

T ‖xn − p‖
1 (2.00000000, 3.00000000)T 2.00000000
2 (0.49707287, 3.00000000)T 0.49707287
3 (0.05745620, 3.00000000)T 0.05745620
4 (0.00337702, 3.00000000)T 0.00337702
5 (0.00012027, 3.00000000)T 0.00012027
6 (3.18033e-06, 3.00000000)T 3.18033e-06
7 (7.26788e-08, 3.00000000)T 7.26788e-08
8 (1.55817e-09, 3.00000000)T 1.55817e-09
9 (3.25133e-11, 3.00000000)T 3.25133e-11
10 (6.70392e-13, 3.00000000)T 6.70392e-13

Figure 1: Behavior of convergence error values.

Example 5.2. Let E = C = R3, x =

x1
x2
x3

 ∈ R3, and y =

y1
y2
y3

 ∈ R3, where xi,yi ∈ R for i = 1, 2, 3. Let

〈·, ·〉 : R3 ×R3 → R be the inner product defined by x · y = x1y1 + x2y2 + x3y3 and let ‖ · ‖ : R3 → R be

the usual norm defined by ‖x‖ =
√
x2

1 + x
2
2 + x

2
3. Let f : R3 → R3 defined by f(x) = 1

2 x. For each t > 0, let

Tt : R3 → R3 be a u.a.r. nonexpansive semigroup defined by

Ttx = e−t

 cos
√

2t sin
√

2t 0
− sin

√
2t cos

√
2t 0

0 0 1

 x.

It is not hard to see that
⋂
t>0 F(Tt) = p =

0
0
0

. Let tn = 2n, sn = 1
2 , αn = 1

2n+1 , βn = n
2n+1 , we have

γn = n
2n+1 . So our algorithm (3.1) has the following form:xn+1

1
xn+1

2
xn+1

3

 =

0.5xn1
0.5xn2
0.5xn3

+
ne−2n

2n+ 1

 cos 2
√

2n sin 2
√

2n 0
− sin 2

√
2n cos 2

√
2n 0

0 0 1

[0.5xn1
0.5xn2
0.5xn3

+

0.5xn+1
1

0.5xn+1
2

0.5xn+1
3

], ∀n > 1.
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Choose x1 =

 1
−1
2

 be the initial point. Then, we obtain the numerical results shown in Table 2 and

Figures 2 and 3, respectively.

Table 2: Numerical results of Example 5.2.
n xn = (xn1 , xn2 , xn3 )

T ‖xn − p‖
1 (1.00000000, -1.00000000, 2.00000000)T 2.44948974
2 (0.45843057, -0.47840944, 1.06922917)T 1.25788918
3 (0.23280903, -0.23985213, 0.54051127)T 0.63551673
4 (0.11614084, -0.11996289, 0.27068651)T 0.31804241
5 (0.05808722, -0.05997330, 0.13537353)T 0.15905004
6 (0.02904268, -0.02998755, 0.06768886)T 0.07952680
7 (0.01452138, -0.01499369, 0.03384457)T 0.03976351
8 (0.00726069, -0.00749685, 0.01692230)T 0.01988176
9 (0.00363035, -0.00374843, 0.00846115)T 0.00994088
10 (0.00181517, -0.00187421, 0.00423057)T 0.00497044
...

...
...

...
...

20 (1.77263e-06, -1.83029e-06, 4.13142e-06)T 4.85395e-06

Figure 2: Behavior of convergence error values. Figure 3: Behavior of convergence values of {xn}.
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AMethod for Solving the Variational Inequality Problem and
Fixed Point Problems in Banach Spaces

Wongvisarut Khuangsatung and Atid Kangtunyakarn

Abstract. The purpose of this research is to modify Halpern iteration’s process for finding
a common element of the set of solutions of a variational inequality problem and the set of
fixed points of a strictly pseudo contractive mapping in q-uniformly smooth Banach space.
We also introduce a new technique to prove a strong convergence theorem for a finite family
of strictly pseudo contractive mappings in q-uniformly smooth Banach space. Moreover, we
give a numerical result to illustrate the main theorem.

1 Introduction

For the last decades, fixed point theory is a very importance tool for solving the problems in
economic, computer science, physics, etc. Throughout this paper, let E be a Banach space with
dual space of E∗ and let C be a nonempty closed convex subset of E. We use the norm of E and
E∗ by the same symbol ∥ · ∥. We denote weak and strong convergence by notations ‘‘ ⇀ ” and
‘‘ → ”, respectively. Let q be a given real number with q > 1. The generalized duality mapping
Jq : E → 2E

∗ is defined by

Jq(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥q, ∥x∗∥ = ∥x∥q−1},

for all x ∈ E. If q = 2, then J2 = J is called normalized duality mapping.

Remark 1. If Jq is generalized duality mapping of E into 2E
∗ . Then the following properties are

holds:

1. Jq(tx) = tq−1Jq(x), for all x ∈ E and t ∈ [0,∞);

2. Jq(−x) = −Jq(x), for all x ∈ E.
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2 W. Khuangsatung and A. Kangtunyakarn

Definition 1. LetC be a nonempty subset of a Banach spaceE andT : C → C be a self-mapping.
Then

1. T is called a nonexpansive mapping if

∥Tx− Ty∥ ≤ ∥x− y∥,

for all x, y ∈ C.

2. T is called an η−strictly pseudo-contractive mapping if there exists a constant η ∈ (0, 1)

such that

⟨Tx− Ty, jq(x− y)⟩ ≤ ∥x− y∥2 − η∥(I − T )x− (I − T )y∥2, (1.1)

for every x, y ∈ C and for some jq(x − y) ∈ Jq(x − y). It is clear that (1.1) is equivalent
to the following

⟨(I − T )x− (I − T )y, jq(x− y)⟩ ≥ η∥(I − T )x− (I − T )y∥2, (1.2)

for every x, y ∈ C and for some jq(x− y) ∈ Jq(x− y).

Definition 2. LetC ⊆ E be closed convex andQC be a mapping ofE ontoC . The mappingQC

is said to be sunny if QC(QCx+ t(x−QCx)) = QCx, for all x ∈ E and t ≥ 0. A mapping QC

is called retraction if Q2
C = QC . A subset C of E is called a sunny nonexpansive retraction of E

if there exists a sunny nonexpansive retraction from E onto C .

For more information about (sunny) nonexpansive retraction can be found in [13].

The modulas of smootheness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(τ) = {1
2
(∥x+ y∥+ ∥x− y∥)− 1 : ∥x∥ ≤ 1, ∥y∥ ≤ τ}. (1.3)

ABanach spaceE is uniformly smooth if limτ→0
ρE(τ)

τ = 0. It is well known thatE is q-uniformly
smooth if there exists a constant c > 0 such that ρE(τ) ≤ cτ q . In aHilbert space,Lp(lp)with 1 <

p < ∞ are q-uniformly smooth. Clearly every q-uniformly smooth Banach space is uniformly
smooth. If E is smooth, then Jq is a single valued which is denoted by jq .

An operator A of C into E is said to be accretive if there exists jq(x− y) ∈ Jq(x− y) such
that

⟨Ax−Ay, jq(x− y)⟩ ≥ 0, ∀x, y ∈ C.

AmappingA : C → E is said to beα-inverse strongly accretive if there exists jq(x−y) ∈ Jq(x−y)

and α > 0 such that

⟨Ax−Ay, jq(x− y)⟩ ≥ α∥Ax−Ay∥2, ∀x, y ∈ C. (1.4)
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Remark 2. From (1.2) and (1.4), if T is an η-strictly pseudo-contractive mapping, then I − T is
η-inverse strongly accretive.

Let C be a nonemty subset of q-uniformly smooth Banach space E and A : C → E be a
nonlinear operator. The variational inequality problem is to find a point x∗ ∈ C such that

⟨Ax∗, Jq(y − x∗)⟩ ≥ 0, ∀y ∈ C, (1.5)

where Jq is generalized duality mapping from E into 2E
∗ . The set of solutions of the variational

inequality in Banach space is denoted bySq(C,A). If q = 2, thenSq(C,A) is reduced toS(C,A),
where S(C,A) is the set of solutions of the generalized variational inequality in Banach spaces
proposed by Aoyama et. al,. [1] in 2005. Many research papers have increasingly investigated
variational inequality problems in Banach spaces, see, for instance, [2], [3], and the references
therein.

In 1967, Halpern [4] introduced the Halpern’s iterative method as follows:

xn+1 = αnu+ (1− αn)Txn, ∀n ≥ 1,

where αn ∈ (0, 1) satisfying suitable conditions, for all n ≥ 1. He proved that the sequence {xn}
converges strongly to a fixed point ofmappingT in a real Hilbert space, whereT is a nonexpansive
mapping. In the last decade, many authors have studied and modified Halpern’s iterative method
for various nonlinear mappings, see, for instance, [5], [6], [7], [8] and the references therein.

In a uniformly convex and 2-smooth Banach space, Aoyama et al. [1] introduced the iterative
method for finding a solution of generalized variational inequality problem for an inverse strongly
accretive operator in a uniformly convex and 2-uniformly smooth Banach space as follows:

xn+1 = αnxn + (1− αn)QC(xn − λnAxn), ∀n ≥ 1,

where {λn} is a sequence of positive real numbers and {αn} is a sequence in [0, 1],QC is a sunny
nonexpansive retraction fromE ontoC ,A is anα-inverse strongly accretive operator. Under suit-
able conditions, They also proved that the sequence generated by the proposed algorithm weakly
converges to a solution of S(C,A).

In 2013, Kangtunyakarn [9] introduced an iterative scheme for finding a common element
of the set of fixed points of a finite family of nonexpansive mappings and the set of fixed points
of a finite family of strictly pseudo-contractive mappings and two sets of solutions of variational
inequality problems in a uniformly convex and 2-smooth Banach space as follows:

xn+1 = αnu+ βnxn + γnQC(I − aA)xn + δnQC(I − bB)xn + ηnS
Axn, ∀n ≥ 1,
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where A,B are α and β-inverse strongly accretive mappings, respectively, QC is a sunny non-
expansive retraction, SA is the SA-mapping generated by a finite family of nonexpansive map-
pings and a finite family of strictly pseudo-contractive mappings and finite real numbers. He also
proved a strong convergence theorem of sequence {xn} under suitable conditions of the param-
eters {αn}, {βn}, {γn}, {δn}, and {ηn}.

Motivated by the results of Aoyama et al. [1], Kangtunyakarn [9] and by the ongoing research
in this direction, we have the following question.
Question Can we prove a strong convergence theorem of two nonlinear mapping in q-uniformly
smooth Banach space ?

The purpose of this manuscript is to modify Halpern iteration’s process in order to answer
the question above and prove a strong convergence theorem for finding a common element of
the set of solutions of (1.5) and the set of fixed points of a strictly pseudo contractive mapping in
q-uniformly smooth Banach space. We also introduce a new technique to prove a strong conver-
gence theorem for a finite family of strictly pseudo contractive mappings in q-uniformly smooth
Banach space. Moreover, we give a numerical result to illustrate the main theorem.

2 Preliminaries

The following lemmas are important tool to prove our main results in the next section.

Lemma 2.1. Let E be a Banach space and let Jq : E → 2E
∗ , 1 < q < ∞ be the generalized

duality mapping. Then for any x, y ∈ E, there exists jq(x+ y) ∈ Jq(x+ y) such that ∥x+ y∥q ≤
∥x∥q + q⟨y, jq(x+ y)⟩.

Lemma 2.2. [10] Let C be a closed and convex subset of a real uniformly smooth Banach space
E and T : C → C a nonexpansive mapping with a nonempty fixed point F (T ). If {xn} ⊂ C

is a bounded sequence such that limn→∞ ∥xn − Txn∥ = 0. Then there exists a unique sunny
nonexpansie retractionQF (T ) : C → F (T ) such that

lim sup
n→∞

⟨u−QF (T )u, Jq(xn −QF (T )u)⟩ ≤ 0,

for any given u ∈ C.

Lemma 2.3. [11] Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 = (1− αn)sn + δn,∀n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∞∑
n=1

αn = ∞;
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(2) lim sup
n→∞

δn
αn

≤ 0 or
∞∑
n=1

|δn| < ∞.

Then, lim
n→∞

sn = 0.

Lemma2.4. [12] Let q > 1 be a given real number andE be a real Banach space. Then the following
statements are equivalent.

(i) E is q-uniformly smooth.

(ii) There is a constant Cq > 0 such that for all x, y ∈ E,

∥x+ y∥q ≤ ∥x∥q + q⟨y, jq(x)⟩+ Cq∥y∥q.

(iii) There exists a constant dq such that for all x, y ∈ E and t ∈ [0, 1],

∥(1− t)x+ ty∥q ≥ (1− t)∥x∥q + t∥y∥q − ωq(t)dq∥x− y∥q,

where ωq(t) = tq(1− t) + t(1− t)q.

Lemma 2.5. Let C be a nonempty closed convex subset of q-uniformly smooth Banach space E.
Let T : C → C be a nonexpansive mapping and S : C → C be a λ-strictly pseudo contractive
mapping with F (T )

∩
F (S) ̸= ∅. For every a ∈ (0, 1), defined the mapping H : C → C by

Hx = T ((1− a)I + aS)x, for all x ∈ C and a ∈ (0, µ) where µ = min{1, ( qλCq
)

1
q−1 }, Cq is the

best q-uniformly smooth constant of E. Then F (H) = F (T )
∩
F (S).

Proof. It is obvious that F (T )
∩
F (S) ⊆ F (H). Let x0 ∈ F (H) and x∗ ∈ F (T )

∩
F (S), we

have

∥x0 − x∗∥q =∥T ((1− a)I + aS)x0 − x∗∥q

≤∥x0 − x∗ + a(Sx0 − x0)∥q

≤∥x0 − x∗∥q + aq⟨Sx0 − x0, jq(x0 − x∗)⟩+ Cqa
q∥Sx0 − x0∥q

=∥x0 − x∗∥q + aq⟨Sx0 − x∗, jq(x0 − x∗)⟩+ aq⟨x∗ − x0, jq(x0 − x∗)⟩
+ Cqa

q∥Sx0 − x0∥q

≤∥x0 − x∗∥q + aq(∥x0 − x∗∥q − λ∥x0 − Sx0∥q)− aq∥x∗ − x0∥q

+ Cqa
q∥Sx0 − x0∥q

=∥x0 − x∗∥q − a(qλ− Cqa
q−1)∥x0 − Sx0∥q. (2.1)

From above it implies that x0 ∈ F (S). From the definition of H , we have

x0 = Hx0 = T ((1− a)I + aS)x0 = Tx0.

Then x0 ∈ F (T ). We can conclude that x0 ∈ F (S)
∩
F (T ). Hence F (H) ⊆ F (S)

∩
F (T ).

Applying (2.1), we have H is a nonexpansive mapping.
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Example 1. Let S : R+ → R+ defined by Sx = x2

x+1 , for all x ∈ R+ and let T : R+ → R+

defined by Tx = 3x
4 , for all x ∈ [0, 5]. Define the mapping H : R+ → R+ by Hx = T ( 9

10I +
1
10S)x for all x ∈ R+. From Lemma 2.5, we have F (H) = F (S)

∩
F (T ) = {0}

Lemma 2.6. LetC be a nonempty closed convex subset of q-uniformly smooth Banach spaceE. Let
j, jq : E → E∗ be a normalized duality mapping and generalized duality mapping, respectively.
LetQC be a retraction from E onto C . Then the following are equivalent.

(i) QC is both sunny and nonexpansive,

(ii) ⟨x−QCx, J(y −QCx)⟩ ≤ 0, for all x ∈ E and y ∈ C ,

(iii) ⟨x−QCx, Jq(y −QCx)⟩ ≤ 0, for all x ∈ E and y ∈ C .

Proof. From [13], we have (i) ⇔ (ii). Then we only show that (ii) equivalent to (iii). Since
Jq(x) = ∥x∥q−1J(x), for all x ∈ E. For every x ∈ E and y ∈ C.

If y −QCx ̸= 0, we have

⟨x−QCx, Jq(y −QCx)⟩ ≤ 0 ⇔ ⟨x−QCx, J(y −QCx)⟩ ≤ 0.

If y −QCx = 0, we have

⟨x−QCx, Jq(y −QCx)⟩ = ⟨x−QCx, J(y −QCx)⟩ = 0.

From above we can conclude the desire result.

Remark 3. Let C be a nonempty closed convex subset of q-uniformly smooth Banach space E
and let x ∈ E, x0 ∈ C. From Lemma 2.6, we have

x0 = QCx ⇔ ⟨x− x0, Jq(y − x0)⟩ ≤ 0,∀y ∈ C.

Lemma 2.7. LetC be a nonempty closed convex subset of q-uniformly smooth Banach spaceE. Let
QC be a sunny nonexpansive retraction from E onto C and let A : C → E be a mapping. Then
Sq(C,A) = F (QC(I − λA)), for all λ > 0, where Sq(C,A) = {u ∈ C : ⟨Au, Jq(y − u)⟩ ≥
0,∀y ∈ C}.

Proof. Let x∗ ∈ F (QC(I − λA)), for all λ > 0. Then x∗ = QC(I − λA)x∗. From 2.6, we have

⟨(I − λA)x∗ − x∗, Jq(y − x∗)⟩ ≤ 0, ∀y ∈ C.

It follows that
⟨Ax∗, Jq(y − x∗)⟩ ≥ 0, ∀y ∈ C.

Then x∗ ∈ Sq(C,A). Hence F (QC(I − λA)) ⊆ Sq(C,A). Similarly, we can conclude that
Sq(C,A) ⊆ F (QC(I − λA)).
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3 Main results

Theorem 3.1. Let C be a nonempty closed convex subset of q-uniformly smooth Banach space E
and let QC be a sunny nonexpansive retraction from E onto C . Let S : C → C be λ-strictly
pseudo contractive mapping and A : C → E be a α-inverse strongly accretive operator with F =

F (S)
∩
Sq(C,A) ̸= ∅. Let {xn} be the sequence generated by x1, u ∈ C and

xn+1 = αnu+ (1− αn)QC(I − ρA)(aI + (1− a)S)xn, ∀n ∈ N, (3.1)

where αn ∈ [0, 1], a ∈ (0, 1) and ρ > 0 satisfy the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(ii) a ∈ (0, µ), where µ = min{1, ( qλCq
)

1
q−1 }, where Cq is the q-uniformly smooth constant of E;

(iii) 0 < ρ < ( qαCq
)

1
q−1 ;

(iv)
∑∞

n=1 |αn+1 − αn| < ∞.

Then the sequence {xn} converges strongly to z0 = QFu, whereQF is a unique sunny nonexpansive
retraction of C onto F .

Proof. First, we show that QC(I − ρA) is a nonexpansive mapping. Let x, y ∈ C , we have

∥QC(I − ρA)x−QC(I − ρA)y∥q ≤∥x− y − ρ(Ax−Ay)∥q

≤∥x− y∥q − ρq⟨Ax−Ay, jq(x− y)⟩+ Cqρ
q∥Ax−Ay∥q

≤∥x− y∥q − ρqα∥Ax−Ay∥q + Cqρ
q∥Ax−Ay∥q

≤∥x− y∥q − ρ(qα− Cqρ
q−1)∥Ax−Ay∥q

≤∥x− y∥q.

ThenQC(I−ρA) is a nonexpansive mapping. Next we show that the sequence {xn} is bounded.
Put Wx = QC(I − ρA)(aI + (1− a)S)x, for all x ∈ C . From Lemma 2.5 and 2.7, we have

F (W ) = F (QC(I − ρA))
∩

F (S) = Sq(C,A)
∩

F (S)

and W is a nonexpansive mapping. From (3.1), we can rewrite that

xn+1 = αnu+ (1− αn)Wxn, ∀n ∈ N. (3.2)

Let x∗ ∈ F and the definition of xn, we have

∥xn+1 − x∗∥ ≤αn∥u− x∗∥+ (1− αn)∥Wxn − x∗∥
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≤αn∥u− x∗∥+ (1− αn)∥xn − x∗∥

≤max{∥u− x∗∥, ∥x1 − x∗∥}.

Applying induction, we have {xn} is bounded. From the definition of {xn}, we have

∥xn+1 − xn∥ ≤|αn − αn−1|∥u∥+ (1− αn)∥Wxn −Wxn−1∥+ |αn − αn−1|∥Wxn−1∥

≤|αn − αn−1|∥u∥+ (1− αn)∥xn − xn−1∥+ |αn − αn−1|∥Wxn−1∥.

Since {xn} is bounded sequnce, the condition (iv) and Lemma 2.3, we have

lim
n→∞

∥xn+1 − xn∥ = 0. (3.3)

From (3.2), we have

xn+1 − xn = αn(u− xn) + (1− αn)(Wxn − xn). (3.4)

From (3.3) and (3.4), we have
lim
n→∞

∥Wxn − xn∥ = 0. (3.5)

From Lemma 2.2 and (3.5), we have

lim sup
n→∞

⟨u− z0, jq(xn − z0)⟩ ≤ 0, (3.6)

where z0 = QFu. Finally, we show that the sequence {xn} converges strongly to z0 = QFu.
From the definition of xn, we have

∥xn+1 − z0∥q ≤∥αn(u− x∗) + (1− αn)(Wxn − z0)∥q

≤(1− αn)∥xn − z0∥q + qαn⟨u− z0, jq(xn+1 − z0)⟩.

From Lemma 2.3 and (3.6), we have the sequence {xn} converges strongly to z0 = QFu.

By using the method of proof in Theorem 3.1, we have the following theorems.

Theorem3.2. LetC be a nonempty closed convex subset of q-uniformly smooth Banach spaceE and
letQC be a sunny nonexpansive retraction from E onto C . Let S : C → C be be λ-strictly pseudo
contractive mapping and T : C → E be a nonexpansive mapping with F = F (S)

∩
F (T ) ̸= ∅.

Let {xn} be the sequence generated by x1, u ∈ C and

xn+1 = αnu+ (1− αn)T (aI + (1− a)S)xn, ∀n ∈ N, (3.7)

where αn ∈ [0, 1], a ∈ (0, 1) and ρ > 0 satisfy the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
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(ii) a ∈ (0, µ), where µ = min{1, ( qλCq
)

1
q−1 }, where Cq is the q-uniformly smooth constant of E;

(iii)
∑∞

n=1 |αn+1 − αn| < ∞.

Then the sequence {xn} converges strongly to z0 = QFu, whereQF is a unique sunny nonexpansive
retraction of C onto F .

Proof. Applying the method of Theorem 3.1 and Lemma 2.5, we can conclude the desired result.

4 Application

In this section, we use themain results to obtain fixed points theorems for a finite family of strictly
pseuso contractive mappings in q-uniformly smooth Banach space. Before prove this theorems,
we need the following results.

Lemma 4.1. [14] LetE be a smooth Banach space andC be a nonempty convex subset ofE. Given
an integer N ≥ 1, assume that for each i ∈ Λ, Ti : C → C is a λi-strict pseudocontraction
for some 0 ≤ λi < 1. Assume that {ηi}Ni=1 is a positive sequence such that

∑N
i=1 ηi = 1, then∑N

i=1 ηiTi : C → C is a λi-strict pseudocontraction with λ = min{λi : 1 ≤ i ≤ N}.

Lemma 4.2. [14] LetE be a smooth Banach space andC be a nonempty convex subset ofE. Given
an integer N ≥ 1, assume that for each i ∈ Λ, {Ti}Ni=1 : C → C is a finite family of λi-strict
pseudocontraction for some 0 ≤ λi < 1 such that F =

∩N
i=1 F (Ti) ̸= ∅. Assume that {ηi}Ni=1 is a

positive sequence such that
∑N

i=1 ηi = 1. Then F (
∑N

i=1 ηiTi) = F

Theorem 4.1. Let C be a nonempty closed convex subset of q-uniformly smooth Banach space E
and let QC be a sunny nonexpansive retraction from E onto C . Let Ti : C → C is a λi-strict
pseudocontraction for some 0 ≤ λi < 1 and A : C → E be a α-inverse strongly accretive operator
with F =

∩N
i=1 F (Ti)

∩
Sq(C,A) ̸= ∅. Let {xn} be the sequence generated by x1, u ∈ C and

xn+1 = αnu+ (1− αn)QC(I − ρA)(aI + (1− a)
N∑
i=1

ηiTi)xn, ∀n ∈ N, (4.1)

where {ηi}Ni=1 is a positive sequence such that
∑N

i=1 ηi = 1, αn ∈ [0, 1], a ∈ (0, 1) and ρ > 0

satisfy the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(ii) a ∈ (0, µ), where µ = min{1, ( qλCq
)

1
q−1 }, where Cq is the q-uniformly smooth constant of E;
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(iii) 0 < ρ < ( qαCq
)

1
q−1 ;

(iv)
∑∞

n=1 |αn+1 − αn| < ∞.

Then the sequence {xn} converges strongly to z0 = QFu, whereQF is the unique sunny nonexpan-
sive retraction of C onto F .

Proof. From Theorem 3.1, Lemma 4.1 and 4.2, we can conclude the desired result.

Lemma 4.3. Let C be a nonempty closed convex subset of q-uniformly smooth Banach space E
and let S : C → C be κ-strictly pseudo contractive mapping with F (S) ̸= ∅. Then F (S) =

Sq(C, I − S).

Proof. Obvious that F (S) ⊆ Sq(C, I − S). Let x0 ∈ Sq(C, I − S) and x∗ ∈ F (S). Then

⟨(I − S)x0, jq(y − x0)⟩ ≥ 0, ∀y ∈ C.

Put A = I − S. Since S : C → C is κ-strictly pseudo contractive mapping, then there exists
jq(x0 − x∗) such that

⟨Sx0 − Sx∗, jq(x0 − x∗)⟩ =⟨(I −A)x0 − (I −A)x∗, jq(x0 − x∗)⟩

=⟨x0 − x∗, jq(x0 − x∗)⟩ − ⟨Ax0 −Ax∗, jq(x0 − x∗)⟩

=∥x0 − x∗∥q − ⟨(I − S)x0, jq(x0 − x∗)⟩

≤∥x0 − x∗∥q − κ∥(I − S)x0∥q.

It implies that
κ∥(I − S)x0∥q ≤ ⟨(I − S)x0, jq(x0 − x∗)⟩ ≤ 0.

Then x0 ∈ F (S). Hence Sq(C, I − S) ⊆ F (S).

Corollary 4.2. Let C be a nonempty closed convex subset of q-uniformly smooth Banach space E
and let QC be a sunny nonexpansive retraction from E onto C . Let Ti : C → C is a λi-strictly
pseudo contractive mapping for some 0 ≤ λi < 1 and S : C → E be aα-strictly pseudo contractive
mapping with F =

∩N
i=1 F (Ti)

∩
F (S) ̸= ∅. Let {xn} be the sequence generated by x1, u ∈ C

and

xn+1 = αnu+ (1− αn)QC(I − ρ(I − S))(aI + (1− a)
N∑
i=1

ηiTi)xn,∀n ∈ N, (4.2)

where {ηi}Ni=1 is a positive sequence such that
∑N

i=1 ηi = 1, αn ∈ [0, 1], a ∈ (0, 1) and ρ > 0

satisfy the following conditions:
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(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(ii) a ∈ (0, µ), where µ = min{1, ( qλCq
)

1
q−1 }, where Cq is the q-uniformly smooth constant of E;

(iii) 0 < ρ < ( qαCq
)

1
q−1 ;

(iv)
∑∞

n=1 |αn+1 − αn| < ∞.

Then {xn} converses strongly to z0 = QFu, where QF is a unique sunny nonexpansive retraction
of C onto F .

Proof. From Theorem 4.1 and Lemma 4.3, we can conclude the desired result.

5 Example and Numerical results

In this section, we give numerical results to illustrate the main theorem.

Example 2. Let R be a set of real number. Let S : [0, 10] → [0, 1] be a mapping defined by
Sx = 2x2

x+2x , for all x ∈ [0, 1] and let A : [0, 10] → R defined by Ax = 3x2 for all x ∈ [0, 10].
Suppose the sequence {xn} generated by (3.1), where αn = 1

60n , ρ = 1
100 , and a = 1

80 . Then the
sequence {xn} converses strongly to 0.
Solution. It is obvious that S is 1

50 -strictly pseudo contractive mapping and A is 1
60 -inverse

strongly accretive operator with F (S)
∩
S2(C,A) = {0}. Since {xn} generated by (3.1), we

have

xn+1 =
1

60n
u+

(
1− 1

60n

)
Q[0,10]

(
I − 1

100
A

)(
1

80
I + (1− 1

80
)S

)
xn, (5.1)

where u, x1 ∈ [0, 10]. It is easy to see thatαn, for all n ≥ 1, a, ρ satisfied all condition inTheorem
3.1. From Theorem 3.1, we have the sequence {xn} coonvergence strongly to 0.
Putting u = 0.55 and x1 = 0.99 in (5.1), we have the numerical results as shown in the following
Figure 1 and Table 1.
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n xn

1 0.990000
2 0.649212
3 0.430824
4 0.287969
5 0.193551
...

...
46 0.000650
47 0.000635
48 0.000621
49 0.000607
50 0.000594

Table 1: The values of the sequences {xn} with initial values u = 0.55, x1 = 0.99 and n = N =
50.
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Figure 1: The behavior of the sequences {xn} with initial values u = 0.55, x1 = 0.99 and n =
N = 50.
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1. Introduction

Throughout this article, we assume that H is a real Hilbert space and let C be a
nonempty closed convex subset of H. Let T : C → C be a nonlinear mapping. A point
x ∈ C is called a fixed point of T if Tx = x. The set of fixed points of T is the set
Fix(T ) := {x ∈ C : Tx = x}.

Definition 1.1. Let T : C → C be a nonlinear mapping, then

(1) T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ,∀x, y ∈ C,

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2021 by TJM. All rights reserved.
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(2) T is said to be quasi-nonexpansive if

‖Tx− p‖ ≤ ‖x− p‖ ,∀x ∈ C and ∀p ∈ Fix(T ),

(3) T is said to be κ-strictly pseudo-contractive if there exists a constant κ ∈ [0, 1)
such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ ‖(I − T )x− (I − T )y‖2 ,∀x, y ∈ C.

Note that the class of strictly pseudo-contractive mappings includes the class of non-
expansive mappings. The mapping T is nonexpansive if and only if T is 0-strictly pseudo
contractive.

A mapping A : C → H is called α-inverse strongly monotone if there exists a positive
real number α such that

〈Ax−Ay, x− y〉 ≥ α ‖Ax−Ay‖2 ,

for all x, y ∈ C.
A mapping A is said to be ρ-strongly monotone if there exists a positive real number

ρ such that

〈Ax−Ay, x− y〉 ≥ ρ ‖x− y‖2 ,

for all x, y ∈ C.
The variational inequality problem is to find a point u ∈ C such that

〈Au, v − u〉 ≥ 0, (1.1)

for all v ∈ C. The set of solutions of (1.1) is denoted by V I(C,A). The application of the
variational inequality problem has been expanded to problems from economics, finance,
optimization and game theory. Many authors have studied the variational inequality
problem, see for instance [1] and [2].

Let F : C×C → R be a bifunction, A : C → H be a nonlinear mapping and ϕ : C → R
be a real-valued function. The generalized mixed equilibrium problem (see [3]), is to find
x ∈ C such that

F (x, y) + ϕ(y)− ϕ(x) + 〈Ax, y − x〉 ≥ 0, (1.2)

for all y ∈ C. The set of solution of (1.2) is denoted by

GMEP (F,ϕ,A) = {x ∈ C : F (x, y) + ϕ(y)− ϕ(x) + 〈Ax, y − x〉 ≥ 0,∀y ∈ C} .

Generalized mixed equilibrium problem has been studied by many authors, see for exam-
ple [4], [5], [6] and [7]. If ϕ = 0, then (1.2) reduces to the generalized equilibrium problem,
that is,

EP (F,A) = {x ∈ C : F (x, y) + 〈Ax, y − x〉 ≥ 0,∀y ∈ C} . (1.3)

If A = 0, then problem (1.3) reduces to the equilibrium problem, that is,

EP (F ) = {x ∈ C : F (x, y) ≥ 0,∀y ∈ C}. (1.4)

Optimization problem, saddle point problem, variational inequality problem and Nash
equilibrium problem can be applied with the equilibrium problem. Many authors have
introduced iterative algorithms in order to solve the equilibrium problem, see for instance
[8], [9] and [10].
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In 2005, Combettes and Hirstoaga [10] introduced an iterative scheme for finding the
best approximation to the initial data when EP (F ) is nonempty and proved a strong con-
vergence theorem. By using the viscosity approximation method, Takahashi and Taka-
hashi [8] introduced an iteration for finding a common element of the set EP (A) and
Fix(T ) and proved a strong convergence theorem in a Hilbert space. In 2008, Takahashi
and Takahashi [11] introduced another iterative scheme for finding the common element
of the set EP (F,A) and Fix(T ).

Recently, Kangtunyakarn [12] modified the set of solutions of generalized equilibrium
problem as follows:

EP (F, aA+ (1− a)B)

= {x ∈ C : F (x, y) + 〈(aA+ (1− a)B)x, y − x〉 ≥ 0,∀y ∈ C, a ∈ (0, 1)} .
(1.5)

He introduced an iterative scheme for finding a common element of the set of fixed points
of κ-strictly pseudo-contractive mapping and the set of solution of (1.5) as follows:

F (un, y) + 〈(aA+ (1− a)B)xn, y − xn〉+
1

rn
〈y − un, un − xn〉 ≥ 0,∀y ∈ C,

xn+1 = αnu+ βnxn + γnPC (I − γ(I − T ))un,∀n ≥ 1, (1.6)

and proved a strong convergence theorem of the sequence {xn} under suitable conditions.
Let D1, D2 : C → H be two nonlinear mappings. Motivated by (1.2) and (1.5), we

modify the set of solution of generalized mixed equilibrium problem as follows:

GMEP (F,ϕ, aD1 + (1− a)D2) = {x ∈ C : F (x, y) + ϕ(y)− ϕ(x)

+〈(aD1 + (1− a)D2)x, y − x〉 ≥ 0}, (1.7)

for all y ∈ C and a ∈ (0, 1). If D1 = D2, then GMEP (F,ϕ, aD1 + (1− a)D2) is reduced
to (1.2).

In this research, we modify generalized mixed equilibrium problems and prove the
strong convergence theorem for approximating a common element of the set of such a
problem and variational inequality problem and the set of fixed points of infinite family
of a strictly pseudo contractive mappings. Based on main result, we prove a strong con-
vergence theorem involving generalized equilibrium problems and variational inequality
problems.

2. Preliminaries

In this paper, we denote weak and strong convergence by the notations “ ⇀ ” and
“ → ”, respectively. In a real Hilbert space H, recall that the (nearest point) projection
PC from H onto C assigns to each x ∈ H the unique point PCx satisfying the property

‖x− PCx‖ = min
y∈C
‖x− y‖.

For a proof of the main theorem, we will use the following lemmas.

Lemma 2.1. [13] Given x ∈ H and y ∈ C, then PCx = y if and only if we have the
inequality

〈x− y, y − z〉 ≥ 0,∀z ∈ C.
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Lemma 2.2. [14] Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− αn)sn + δn,∀n ≥ 0

where αn is a sequence in (0, 1) and {δn} is a sequence such that

(1):

∞∑
n=1

αn =∞;

(2): lim sup
n→∞

δn
αn
≤ 0 or

∞∑
n=1

|δn| <∞..

Then lim
n→∞

sn = 0.

Lemma 2.3. Let H be a real Hilbert space. Then

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉,

for all x, y ∈ H.

Lemma 2.4. [13] Let H be a Hilbert space, let C be a nonempty closed convex subset of
H and let A be a mapping of C into H. Let u ∈ C. Then, for λ > 0,

u = PC(I − λA)u⇔ u ∈ V I(C,A),

where PC is the metric projection of H onto C.

Definition 2.5. [15] Let C be a nonempty convex subset of a real Hilbert space. Let

Ti, i = 1, 2, ... be mappings of C into itself. For each j = 1, 2, ..., let αj = (αj1, α
j
2, α

j
3) ∈

I × I × I where I = [0, 1] and αj1 + αj2 + αj3 = 1. For every n ∈ N. Define the mapping
Sn : C → C as follows:

Un,n+1 = I

Un,n = αn1TnUn,n+1 + αn2Un,n+1 + αn3 I

Un,n−1 = αn−11 Tn−1Un,n + αn−12 Un,n + αn−13 I

...

Un,k+1 = αk+1
1 Tk+1Un,k+2 + αk+1

2 Un,k+2 + αk+1
3 I

Un,k = αk1TkUn,k+1 + αk2Un,k+1 + αk3I

...

Un,2 = α2
1T2Un,3 + α2

2Un,3 + α2
3I

Sn = Un,1 = α1
1T1Un,2 + α1

2Un,2 + α1
3I.

Such mapping is called S-mapping generated by Tn, Tn−1, ..., T1 and αn, αn−1, ..., α1.

Lemma 2.6. [16] Let C be a nonempty closed convex subset of a real Hilbert space H
and T : C → C be a self-mapping of C. If S is a κ-strict pseudo-contractive mapping,
then T satisfies the Lipschitz condition;

‖Tx− Ty‖ ≤ 1 + κ

1− κ
‖x− y‖,∀x, y ∈ C.
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For finding solutions of the equilibrium problem, let us assume that the bifunction
F : C × C → R and let ϕ : C → R

⋃
{+∞} be a lower semicontinuous and convex

function satisfies the following conditions:
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous;
(B1) for each x ∈ H and r > 0 there exist a bounded subset Dx ⊆ C and yx ∈ C such
that for any z ∈ C \Dx,

F (z, yx) + ϕ(yx)− ϕ(z) +
1

r
〈yx − z, z − x〉 < 0;

(B2) C is a bounded set.

Lemma 2.7. [17] Let C be a nonempty closed convex subset of H. Let F be a bifunction
from C×C to R satisfies (A1)−(A4), A : C → H be a continuous monotone mapping, and
let ϕ : C → R

⋃
{+∞} be a proper lower semicontinuous and convex function. Assume

that either (B1) or (B2) holds. For r > 0 and x ∈ H then there exists z ∈ C such that

F (z, y) + 〈Ay, y − z〉+ ϕ(y)− ϕ(z) +
1

r
〈y − z, z − x〉.

Define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F (z, y) + 〈Ay, y − z〉+ ϕ(y)− ϕ(z) +

1

r
〈y − z, z − x〉 ≥ 0,∀y ∈ C

}
(2.1)

for all x ∈ H. Then the following conclusions hold:

(1) For each x ∈ H,Tr 6= ∅;
(2) Tr is single-valued;
(3) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Tr(x)− Tr(y)‖2 ≤ 〈Tr(x)− Tr(y), x− y〉;
(4) Fix(Tr) = GMEP (F,ϕ,A)
(5) GMEP (F,ϕ,A)is closed and convex.

Lemma 2.8. [15] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Ti}∞i=1 be κi-strictly pseudo-contractive mappings of C into itself with

⋂∞
i=1 Fix(Ti) 6= ∅

and κ = supi∈Nκi and let αj = (αj1, α
j
2, α

j
3) ∈ I×I×I, where I = [0, 1], αj1 +αj2 +αj3 = 1,

αj1 + αj2 ≤ b < 1 and αj1, α
j
2, α

j
3 ∈ (κ, 1) for all j = 1, 2, . . .. For every n ∈ N, let Sn be

S-mapping generated by Tn, Tn−1, . . . , T1 and αn, αn−1, . . . , α1. Then, for every x ∈ C
and k ∈ N, limn→∞ Un,kx exists.

For every k ∈ N and x ∈ C. [15] defined mapping U∞,k and S : C → C as follows:

lim
n→∞

Un,kx = U∞,kx (2.2)

and

lim
n→∞

Snx = lim
n→∞

Un,1x = Sx. (2.3)

Such a mapping S is called S-mapping generated by Tn, Tn−1, ... and αn, αn−1, ... .



276 Thai J. Math. Vol. 19 (2021) /W. Khuangsatung et al.

Remark 2.9. [15] For every n ∈ N, Sn is nonexpansive and limn→∞ supx∈D‖Snx−Sx‖ =
0, for every bounded subset D of C.

Lemma 2.10. [15] Let C be a nonempty closed convex subset of a real Hilbert space H.
Let {Ti}∞i=1 be κi-strictly pseudo-contractive mappings of C into itself with

⋂∞
i=1 Fix(Ti) 6=

∅ and κ = supi∈Nκi and let αj = (αj1, α
j
2, α

j
3) ∈ I×I×I where I = [0, 1], αj1+αj2+αj3 = 1,

αj1 + αj2 ≤ b < 1 and αj1, α
j
2, α

j
3 ∈ (κ, 1) for all j = 1, 2, . . .. For every n ∈ N, let Sn and

S be S-mapping generated by Tn, Tn−1, . . . , T1 and αn, αn−1, . . . , α1 and Tn, Tn−1, ... and
αn, αn−1, ..., respectively. Then Fix(S) =

⋂∞
i=1 Fix(Ti).

Lemma 2.11. [18] Let C be a nonempty closed convex subset of a real Hilbert space H.Let
A,B be α, β-inverse strongly monotone, respectively, with α, β > 0 and V I(C,A)

⋂
V I(C,B)

6= ∅. Then

V I(C, aA+ (1− a)B) = V I(C,A)
⋂
V I(C,B),∀a ∈ (0, 1). (2.4)

Furthermore if 0 ≤ γ ≤ min{2α, 2β}, we have I − γ(aA + (1 − a)B) is nonexpansive
mapping.

Remark 2.12. From Lemma (2.4) and Lemma (2.11), we have

V I(C, aA+(1−a)B) = V I(C,A)
⋂
V I(C,B) = Fix(PC(I−γ(aA+(1−a)B))),

for all a ∈ (0, 1) and γ > 0.

From (1.7), we have the following result.

Lemma 2.13. Let C be a nonempty closed convex subset of a real Hilbert space H and
F be a bifunction from C ×C to R satisfy A1)−A4) and F (x, z) ≤ F (x, y) + F (y, z) for
all x, y, z ∈ C. Let A,B be α, β-inverse strongly monotone, respectively, with α, β > 0
and GMEP (F,ϕ,A)

⋂
GMEP (F,ϕ,B) 6= ∅. Then

GMEP (F,ϕ, aA+ (1− a)B) = GMEP (F,ϕ,A)
⋂
GMEP (F,ϕ,B),∀a ∈ (0, 1).

Proof. It is obvious that GMEP (F,ϕ,A)
⋂
GMEP (F,ϕ,B) ⊆ GMEP (F,ϕ, aA + (1 −

a)B). Next, we will show that GMEP (F,ϕ, aA+ (1− a)B) ⊆ GMEP (F,ϕ,A)⋂
GMEP (F,ϕ,B). Let x0 ∈ GMEP (F,ϕ, aA+ (1− a)B) and x∗ ∈ GMEP (F,ϕ,A)⋂
GMEP (F,ϕ,B), we have

F (x0, y) + ϕ(y)− ϕ(x0) + 〈aAx0 + (1− a)Bx0, y − x0〉 ≥ 0,∀y ∈ C, (2.5)

F (x∗, y) + ϕ(y)− ϕ(x∗) + 〈Ax∗, y − x∗〉 ≥ 0,∀y ∈ C (2.6)

and

F (x∗, y) + ϕ(y)− ϕ(x∗) + 〈Bx∗, y − x∗〉 ≥ 0,∀y ∈ C. (2.7)

For every a ∈ (0, 1) , we have

aF (x∗, y) + aϕ(y)− aϕ(x∗)〈aAx∗, y − x∗〉 ≥ 0,∀y ∈ C

and

(1− a)F (x∗, y)+(1− a)ϕ(y)−(1− a)ϕ(x∗)+〈(1− a)Bx∗, y − x∗〉≥0,∀y ∈ C.
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By the monotonicity of B and x∗, x0 ∈ C, we have

aF (x0, x
∗) + aϕ(x∗)− aϕ(x0) + 〈aAx0, x∗ − x0〉
= aF (x0, x

∗) + aϕ(x∗)− aϕ(x0) + (1− a)ϕ(x∗)− (1− a)ϕ(x∗)

+ (1− a)ϕ(x0)− (1− a)ϕ(x0) + (1− a)F (x0, x
∗)− (1− a)F (x0, x

∗)

+ 〈aAx0 + (1− a)Bx0 − (1− a)Bx0, x
∗ − x0〉

= F (x0, x
∗) + ϕ(x∗)− ϕ(x0) + 〈aAx0 + (1− a)Bx0, x

∗ − x0〉
−(1− a)F (x0, x

∗)−(1− a)ϕ(x∗)+(1− a)ϕ(x0)−〈(1−a)Bx0, x
∗−x0〉

≥ (1− a)F (x∗, x0)+(1− a)ϕ(x0)−(1− a)ϕ(x∗)+(1− a)〈Bx0, x0 − x∗〉
= (1− a)(F (x∗, x0)+ϕ(x0)−ϕ(x∗)+〈Bx∗, x0−x∗〉+〈Bx0−Bx∗, x0−x∗〉)
≥ 0. (2.8)

Since GMEP (F,ϕ,A)
⋂
GMEP (F,ϕ,B) ⊆ GMEP (F,ϕ, aA+ (1− a)B) and

x∗ ∈ GMEP (F,ϕ,A)
⋂
GMEP (F,ϕ,B), we have

F (x∗, y) + ϕ(y)− ϕ(x∗) + 〈aAx∗ + (1− a)Bx∗, y − x∗〉 ≥ 0.∀y ∈ C. (2.9)

Since x∗ ∈ C and (2.5), we have

F (x0, x
∗) + ϕ(x∗)− ϕ(x0) + 〈aAx0 + (1− a)Bx0, x

∗ − x0〉 ≥ 0. (2.10)

From (2.9) and x0 ∈ C, we have

F (x∗, x0) + ϕ(x0)− ϕ(x∗) + 〈aAx∗ + (1− a)Bx∗, x0 − x∗〉 ≥ 0. (2.11)

Summing up (2.10), (2.11) and (A2), we have

〈a(Ax∗ −Ax0) + (1− a)(Bx∗ − x0), x0 − x∗〉 ≥ 0. (2.12)

Since A,B are α, β-inverse strongly monotone, respectively, and (2.12), we have

0 ≤ 〈a(Ax∗ −Ax0) + (1− a)(Bx∗ −Bx0), x0 − x∗〉
= 〈a(Ax∗ −Ax0), x0 − x∗〉+ 〈(1− a)(Bx∗ −Bx0), x0 − x∗〉
= a〈Ax∗ −Ax0, x0 − x∗〉+ (1− a)〈Bx∗ −Bx0, x0 − x∗〉
≤ − aα‖Ax∗ −Ax0‖2 − (1− a)β‖Bx∗ −Bx0‖2.

This implies that

0 ≤ −aα‖Ax∗ −Ax0‖2.

It follows that

Ax∗ = Ax0. (2.13)

By using the same method as (2.13), we obtain

Bx∗ = Bx0. (2.14)
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For every y ∈ C. From (2.6), (2.8), (2.13) and x∗ ∈ GMEP (F,ϕ,A), we have

F (x0, y) + ϕ(y)− ϕ(x0) + 〈Ax0, y − x0〉
= F (x0, y) + ϕ(y)− ϕ(x0) + 〈Ax0, y − x∗ + x∗ − x0〉
= F (x0, y) + ϕ(y)− ϕ(x0) + ϕ(x∗)− ϕ(x∗) + F (x∗, y)− F (x∗, y)

+ 〈Ax0, y − x∗〉+ 〈Ax0, x∗ − x0〉
= F (x0, y)− F (x∗, y) + ϕ(x∗)− ϕ(x0) + F (x∗, y) + ϕ(y)− ϕ(x∗)

+ 〈Ax∗, y − x∗〉+ 〈Ax0, x∗ − x0〉
≥ F (x0, y)− F (x∗, y) + ϕ(x∗)− ϕ(x0) + 〈Ax0, x∗ − x0〉
≥ F (x0, y) + F (y, x∗) + ϕ(x∗)− ϕ(x0) + 〈Ax0, x∗ − x0〉
≥ F (x0, x

∗) + ϕ(x∗)− ϕ(x0) + 〈Ax0, x∗ − x0〉
≥ 0.

Then

x0 ∈ GMEP (F,ϕ,A). (2.15)

Since x∗, x0 ∈ C and (2.5), (2.13), we have

(1− a)F (x0, x
∗) + (1− a)ϕ(x∗)− (1− a)ϕ(x0) + 〈(1− a)Bx0, x

∗ − x0〉
= (1−a)F (x0, x

∗)+(1−a)ϕ(x∗)−(1−a)ϕ(x0)+aF (x0, x
∗)

−aF (x0, x
∗) + 〈(1− a)Bx0 + aAx0 − aAx0, x∗ − x0〉

= F (x0, x
∗) + ϕ(x∗)− ϕ(x0) + 〈aAx0 + (1− a)Bx0, x

∗ − x0〉
− aF (x0, x

∗) + aϕ(x0)− aϕ(x∗)− 〈aAx0, x∗ − x0〉
≥ aF (x∗, x0) + aϕ(x0)− aϕ(x∗) + 〈aAx0, x0 − x∗〉
= aF (x∗, x0) + aϕ(x0)− aϕ(x∗) + a〈Ax∗, x0 − x∗〉
≥ 0. (2.16)

For every y ∈ C, from (2.7), (2.14), (2.16) and x∗ ∈ GMEP (F,ϕ,B), we have

F (x0, y) + ϕ(y)−ϕ(x0) + 〈Bx0, y − x0〉
= F (x0, y) + ϕ(y)− ϕ(x0) + 〈Bx0, y − x∗〉+ 〈Bx0, x∗ − x0〉
= F (x0, y) + ϕ(y)− ϕ(x0) + ϕ(x∗)− ϕ(x∗) + F (x∗, y)− F (x∗, y)

+ 〈Bx0, y − x∗〉+ 〈Bx0, x∗ − x0〉
= F (x0, y)− F (x∗, y) + ϕ(x∗)− ϕ(x0) + F (x∗, y) + ϕ(y)− ϕ(x∗)

+ 〈Bx∗, y − x∗〉+ 〈Bx0, x∗ − x0〉
≥ F (x0, y)− F (x∗, y) + ϕ(x∗)− ϕ(x0) + 〈Bx0, x∗ − x0〉
≥ F (x0, y) + F (y, x∗) + ϕ(x∗)− ϕ(x0) + 〈Bx0, x∗ − x0〉
≥ F (x0, x

∗) + ϕ(x∗)− ϕ(x0) + 〈Bx0, x∗ − x0〉
≥ 0.

Hence

x0 ∈ GMEP (F,ϕ,B). (2.17)
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By (2.15) and (2.17), we have x0 ∈ GMEP (F,ϕ,A)
⋂
GMEP (F,ϕ,B). Then

GMEP (F,ϕ, aA+ (1− a)B) ⊆ GMEP (F,ϕ,A)
⋂
GMEP (F,ϕ,B)

3. Main Result

In this section, we prove a strong convergence theorem and for the set of fixed point
of strictly pseudo contractive mappings and the sets of solution of generalized mixed
equilibrium problems and variational inequality problems by using Lemma 2.13.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F1,F2 be bifunctions from C × C to R satisfy A1)-A4) and Fi(x, z) ≤ Fi(x, y) + Fi(y, z)
for all x, y, z ∈ C and i = 1, 2. Let ϕ1, ϕ2 : C → R

⋃
{+∞} be proper lower semicon-

tinuous and convex function. Let A,B be α, β-inverse strongly monotone, respectively,
and let D,E be LD, LE-Lipschitz continuous and µ, ρ-strongly monotone mapping, re-
spectively. Let {Ti}∞i=1 be κi-strictly pseudo-contractive mapping of C into itself with
F :=

⋂∞
i=1 Fix(Ti)

⋂
GMEP (F1, ϕ1, A)

⋂
GMEP (F1, ϕ1, B)

⋂
GMEP (F2, ϕ2, A)⋂

GMEP (F2, ϕ2, B)
⋂
V I(C,D)

⋂
V I(C,E) 6= ∅ and κ=supi∈Nκi and let αj=(αj1,α

j
2,α

j
3)

∈ I×I×I where I = [0, 1] , αj1 +αj2 +αj3 = 1 , αj1 +αj2 ≤ b < 1 and αj1, α
j
2, α

j
3 ∈ (κ, 1) for

all j = 1, 2, . . . . For every n ∈ N, let Sn be S-mapping generated by Tn, Tn−1, . . . , T1 and
αn, αn−1, . . . , α1. Assume the either B1) or B2) holds. Let the sequence {xn} generated
by x1, u ∈ C and



F1(un, y) + ϕ1(y)− ϕ1(un) + 〈anAxn + (1− an)Bxn, y − un〉

+
1

r1n
〈y − un, un − xn〉 ≥ 0,

F2(vn, y) + ϕ2(y)− ϕ2(vn) + 〈anAxn + (1− an)Bxn, y − vn〉

+
1

r2n
〈y − vn, vn − xn〉 ≥ 0,∀y ∈ C,

yn = δnun + (1− δn)vn,

xn+1 = αnu+ βnxn + λnSnxn + ηnPC(I − γn(anD + (1− an)E))yn,

(3.1)

for all n ≥ 1, where the sequences {αn}, {βn}, {λn}, {ηn}, {δn} ⊆ [0, 1] with αn + βn +
λn + ηn = 1 for all n ∈ N , {an} ⊂ (0, 1) and {rjn} ⊆ [b, c] ⊂ (0, 2min{α, β}) for all
j = 1, 2. Suppose the following conditions hold:

(i):

∞∑
n=1

αn =∞, lim
n→∞

αn = 0, {βn} ⊆ [d, e] ⊂ (0, 1);

(ii): 0 < γn ≤ min{ 2µ
L2

D
, 2ρ
L2

E
};

(iii): lim
n→∞

δn = δ ∈ (0, 1),

∞∑
n=1

αn1 <∞;
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(iv):

∞∑
n=1

∣∣∣rjn+1 − rjn
∣∣∣ <∞ ∞∑

n=1

|αn+1 − αn| <∞,
∞∑
n=1

|γn+1 − γn| <∞,

∞∑
n=1

|δn+1 − δn| <∞,
∞∑
n=1

|an+1 − an| <∞,
∞∑
n=1

|βn+1 − βn| <∞,

∞∑
n=1

|λn+1 − λn| <∞,

∞∑
n=1

|ηn+1 − ηn| <∞ for all j = 1, 2.

Then the sequence {xn} converges strongly to z0 = PFu.

Proof. First, we show that D is µ
L2

D
-inverse strongly monotone mapping. Let x, y ∈ C,

we have

〈x− y,Dx−Dy〉 ≥ µ ‖x− y‖2

≥ µ

L2
D

‖Dx−Dy‖2 .

Similarly, we get E is ρ
L2

E
-inverse-strongly monotone mapping.

Next, we show that I − γnD and I − γnE are nonexpansive mappings. For every
x, y ∈ C, we have

‖(I − γnD)x−(I − γnD)y‖2 =‖x−y‖2+γ2n ‖Dx−Dy‖
2−2γn〈x−y,Dx−Dy〉

≤ ‖x− y‖2 + γ2n ‖Dx−Dy‖
2 − 2γnµ

L2
D

‖Dx−Dy‖2

= ‖x− y‖2 + γn

(
γn −

2µ

L2
D

)
‖Dx−Dy‖2

≤ ‖x− y‖2 .

Then we obtain I−γnD is a nonexpansive mapping. Similarly, we can show that I−γnE
is also a nonexpansive mapping.

The proof of Theorem 3.1 will be divided into five steps:

Step 1. We show that the sequence {xn} is bounded.
From (3.1) and Lemma 2.7, we have un = Tr1n(I − r1n(anA + (1 − an)B))xn and vn =

Tr2n(I − r2n(anA+ (1− an)B))xn.
From Lemma 2.7 and Lemma 2.13, we have

F
(
Tr1n

(
I − r1n (anA+ (1− an)B)

))
= GMEP (F1, ϕ1, anA+ (1− an)B)

= GMEP (F1, ϕ1, A)
⋂
GMEP (F1, ϕ1, B)

and

F
(
Tr2n

(
I − r2n (anA+ (1− an)B)

))
= GMEP (F2, ϕ2, anA+ (1− an)B)

= GMEP (F2, ϕ2, A)
⋂
GMEP (F2, ϕ2, B).

Let z ∈ F . From Lemma 2.4 and Lemma 2.11, we have

z ∈ V I(C, anD + (1− an)E) = Fix(PC(I − γn (anD + (1− an)E))).
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From the nonexpansiveness of Tr1n , Tr2n and Lemma 2.11, we have

‖xn+1 − z‖ ≤ αn ‖u− z‖+ βn‖xn − z‖+ λn‖Snxn − z‖
+ ηn‖PC(I − γn(anDx+ (1− an)E))yn − z‖
≤ αn ‖u− z‖+ βn‖xn − z‖+ λn‖xn − z‖+ ηn‖yn − z‖
= αn ‖u− z‖+ βn‖xn − z‖+ λn‖xn − z‖

+ ηn‖δn(un − z) + (1− δn)(vn − z)‖
= αn ‖u− z‖+ βn‖xn − z‖+ λn‖xn − z‖

+ ηn‖δn(Tr1n(I − r1n(anA+ (1− an)B))xn − z)
+ (1− δn)(Tr2n(I − r2n(anA+ (1− an)B))xn − z)‖
≤ αn ‖u− z‖+ βn‖xn − z‖+ λn‖xn − z‖

+ ηn(δn ‖xn − z‖+ (1− δn) ‖xn − z‖)
= αn ‖u− z‖+ βn‖xn − z‖+ λn‖xn − z‖+ ηn ‖xn − z‖
= αn ‖u− z‖+ (1− αn) ‖xn − z‖ . (3.2)

Put M = max{‖u− z‖ , ‖x1 − z‖}. From induction, we can show that ‖xn − z‖ ≤M, for
all n ∈ N. Therefore {xn} is bounded and so is {yn}.

Step 2. We show that lim
n→∞

‖xn+1−xn‖ = 0. For every n ∈ N, put Jn = anD+(1−an)E

and Gn = anA + (1 − an)B. From the definition of xn and the nonexpansivenss of
Pc(I − γnJn), we have

‖xn+1 − xn‖ ≤ |αn − αn−1|‖u‖+ βn‖xn − xn−1‖+ |βn − βn−1|‖xn−1‖
+ λn‖Snxn − Sn−1xn−1‖+ |λn − λn−1|‖Sn−1xn−1‖
+ ‖ηnPC(I − γnJn)yn − ηn−1PC(I − γn−1Jn−1)yn−1‖
≤ |αn − αn−1|‖u‖+ βn‖xn − xn−1‖+ |βn − βn−1|‖xn−1‖

+ λn‖Snxn − Snxn−1‖+ λn‖Snxn−1 − Sn−1xn−1‖
+|λn−λn−1|‖Sn−1xn−1‖+ηn‖PC(I−γnJn)yn−PC(I−γnJn)yn−1‖
+ ηn‖PC(I − γnJn)yn−1 − PC(I − γn−1Jn−1)yn−1‖
+ |ηn − ηn−1|‖PC(I − γn−1Jn−1)yn−1‖
≤ |αn−αn−1|‖u‖+βn‖xn−xn−1‖+|βn−βn−1|‖xn−1‖+λn‖xn−xn−1‖

+ λn‖Snxn−1 − Sn−1xn−1‖+ |λn − λn−1|‖Sn−1xn−1‖
+ ηn‖yn−yn−1‖+ηn‖PC(I−γnJn)yn−1−PC(I−γn−1Jn−1)yn−1‖
+ |ηn − ηn−1|‖PC(I − γn−1Jn−1)yn−1‖. (3.3)

Since yn = δnun + (1− δn)vn, we have

‖yn − yn−1‖ = ‖δnun + (1− δn)vn − δn−1un−1 − (1− δn−1)vn−1‖
= ‖δn(un − un−1) + (δn − δn−1)un−1 + (1− δn)(vn − vn−1)

+ (δn−1 − δn)vn−1‖
≤ δn‖un − un−1‖+ |δn − δn−1|‖un−1‖+ (1− δn)‖vn − vn−1‖

+ |δn − δn−1|‖vn−1‖. (3.4)
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From the nonexpansiveness of PC , we have

‖PC(I − γnJn)yn−1−PC(I − γn−1Jn−1)yn−1‖
≤ ‖(I − γnJn)yn−1 − (I − γn−1Jn−1)yn−1‖
= ‖γnJnyn−1 − γn−1Jn−1yn−1‖
≤ γn|an − an−1|‖Dyn−1‖+ an−1|γn − γn−1|‖Dyn−1‖

+ γn|an − an−1|‖Eyn−1‖+ (1− an−1)|γn − γn−1|‖Eyn−1‖.
(3.5)

Substitute (3.4) and (3.5) into (3.3), we have

‖xn+1 − xn‖ ≤ |αn − αn−1|‖u‖+ βn‖xn − xn−1‖+ |βn − βn−1|‖xn−1‖
+ λn‖xn − xn−1‖
+ λn‖Snxn−1 − Sn−1xn−1‖+ |λn − λn−1|‖Sn−1xn−1‖
+ ηnδn‖un−un−1‖+ηn|δn−δn−1|‖un−1‖+(1− δn)ηn‖vn − vn−1‖
+ ηn|δn − δn−1|‖vn−1‖+ ηnγn|an − an−1|‖Dyn−1‖
+ ηnan−1|γn − γn−1|‖Dyn−1‖+ ηnγn|an − an−1|‖Eyn−1‖
+ ηn(1− an−1)|γn − γn−1|‖Eyn−1‖
+ |ηn − ηn−1|‖PC(I − γn−1Jn−1)yn−1‖. (3.6)

By the same method as Theorem 3.1 in [18], we have

‖Snxn−1 − Sn−1xn−1‖ ≤αn1
2

1− κ
‖xn−1 − z‖. (3.7)

Since un = Tr1n(I − r1nGn)xn where Gn = anA + (1 − an)B. From the definition of Trn ,
we have

F1(un, y) + ϕ1(y)− ϕ1(un) + 〈Gnxn, y − un〉+
1

r1n
〈y − un, un − xn〉 ≥ 0 (3.8)

and

F1(un+1, y) + ϕ1(y)− ϕ1(un+1) + 〈Gn+1xn+1, y − un+1〉

+
1

r1n+1

〈y − un+1, un+1 − xn+1〉 ≥ 0, (3.9)

for all y ∈ C.
From (3.8) and (3.9), we have

F1(un, un+1) + ϕ1(un+1)− ϕ1(un) + 〈Gnxn, un+1 − un〉

+
1

r1n
〈un+1 − un, un − xn〉 ≥ 0. (3.10)

and

F1(un+1, un) + ϕ1(un)− ϕ1(un+1) + 〈Gn+1xn+1, un − un+1〉

+
1

r1n+1

〈un − un+1, un+1 − xn+1〉 ≥ 0. (3.11)
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From (3.10) and (3.11), we obtain

F1(un, un+1) + ϕ1(un+1)− ϕ1(un) +
1

r1n
〈un+1 − un, un − xn + r1nGnxn〉 ≥ 0

(3.12)

and

F1(un+1, un) + ϕ1(un)− ϕ1(un+1)

+
1

r1n+1

〈un − un+1, un+1 − xn+1 + r1n+1Gn+1xn+1〉 ≥ 0. (3.13)

Summing up (3.12) and (3.13), we have

1

r1n
〈un+1 − unun − xn + r1nGnxn〉

+
1

r1n+1

〈un − un+1, un+1 − xn+1 + r1n+1Gn+1xn+1〉 ≥ 0.

It follows that

〈un+1 − un,
un − (I − r1nGn)xn

r1n
−
un+1 − (I − r1n+1Gn+1)xn+1

r1n+1

〉 ≥ 0.

This implies that

0 ≤ 〈un+1 − un, un − (I − r1nGn)xn −
r1n
r1n+1

(un+1 − (I − r1n+1Gn+1)xn+1)〉

= 〈un+1 − un, un − un+1〉

+ 〈un+1 − un, un+1 − (I − r1nGn)xn −
r1n
r1n+1

(un+1 − (I − r1n+1Gn+1)xn+1)〉.

It follows that

‖un+1 − un‖2 ≤ 〈un+1−un, un+1−(I − r1nGn)xn−
r1n
r1n+1

(un+1−(I−r1n+1Gn+1)xn+1)〉

= 〈un+1 − un, (I − r1n+1Gn+1)xn+1 − (I − r1nGn)xn

+

(
1− r1n

r1n+1

)
(un+1 − (I − r1n+1Gn+1)xn+1)〉

≤ ‖un+1 − un‖
(
‖(I − r1n+1Gn+1)xn+1 − (I − r1nGn)xn‖

+

∣∣∣∣1− r1n
r1n+1

∣∣∣∣ ‖un+1 − (I − r1n+1Gn+1)xn+1‖
)
.
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Then

‖un+1 − un‖ ≤ ‖(I − r1n+1Gn+1)xn+1 − (I − r1nGn)xn‖

+
1

r1n+1

∣∣r1n+1 − r1n
∣∣ ‖un+1 − (I − r1n+1Gn+1)xn+1‖

≤ ‖(I − r1n+1Gn+1)xn+1 − (I − r1n+1Gn+1)xn‖
+ ‖(I − r1n+1Gn+1)xn − (I − r1nGn)xn‖

+
1

r1n+1

∣∣r1n+1 − r1n
∣∣ ‖un+1 − (I − r1n+1Gn+1)xn+1‖

≤ ‖xn+1 − xn‖+ ‖r1n+1Gn+1xn − r1nGnxn‖

+
1

r1n+1

∣∣r1n+1 − r1n
∣∣ ‖un+1 − (I − r1n+1Gn+1)xn+1‖

≤ ‖xn+1 − xn‖
+ ‖r1n+1(an+1A+(1− an+1)B)xn−r1n+1(anA+(1− an)B)xn‖

+|r1n+1−r1n|‖Gnxn‖+
1

r1n+1

∣∣r1n+1−r1n
∣∣ ‖un+1−(I − r1n+1Gn+1)xn+1‖

= ‖xn+1 − xn‖
+ ‖r1n+1(an+1 − an)Axn + r1n+1((1− an+1)− (1− an))Bxn‖

+|r1n+1−r1n|‖Gnxn‖+
1

r1n+1

∣∣r1n+1−r1n
∣∣ ‖un+1−(I − r1n+1Gn+1)xn+1‖

≤ ‖xn+1 − xn‖+ r1n+1|an+1 − an|‖Axn‖+ r1n+1|an+1 − an|‖Bxn

+ |r1n+1−r1n|‖Gnxn‖+
1

b

∣∣r1n+1−r1n
∣∣ ‖un+1−(I−r1n+1Gn+1)xn+1‖.

(3.14)

From (3.14), we have

‖un − un−1‖ ≤ ‖xn − xn−1‖+ r1n|an − an−1|‖Axn−1‖+ r1n|an − an−1|‖Bxn−1‖

+ |r1n − r1n−1|‖Gn−1xn−1‖+
1

b

∣∣r1n − r1n−1∣∣ ‖un − (I − r1nGn)xn‖.
(3.15)

By using the same method as (3.15), we have

‖vn − vn−1‖ ≤ ‖xn − xn−1‖+ r2n|an − an−1|‖Axn−1‖+ r2n|an − an−1|‖Bxn−1‖

+ |r2n − r2n−1|‖Gn−1xn−1‖+
1

b

∣∣r2n − r2n−1∣∣ ‖vn − (I − r2nGn)xn‖.
(3.16)
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Substitute (3.7), (3.15) and (3.16) into (3.6), we have

‖xn+1 − xn‖ ≤ |αn − αn−1|‖u‖+ βn‖xn − xn−1‖+ |βn − βn−1|‖xn−1‖
+λn‖xn−xn−1‖+λn‖Snxn−1−Sn−1xn−1‖+|λn−λn−1|‖Sn−1xn−1‖
+ηnδn‖un−un−1‖+ηn|δn−δn−1|‖un−1‖+(1− δn)ηn‖vn−vn−1‖
+ ηn|δn − δn−1|‖vn−1‖+ ηnγn|an − an−1|‖Dyn−1‖
+ ηnan−1|γn − γn−1|‖Dyn−1‖+ ηnγn|an − an−1|‖Eyn−1‖
+ ηn(1− an−1)|γn − γn−1|‖Eyn−1‖
+ |ηn − ηn−1|‖PC(I − γn−1Jn−1)yn−1‖

≤ |αn−αn−1|‖u‖+βn‖xn−xn−1‖+|βn−βn−1|‖xn−1‖+λn‖xn−xn−1‖

+ λn

(
αn1

2

1− κ
‖xn−1 − z‖

)
+ |λn − λn−1|‖Sn−1xn−1‖

+ηnδn(‖xn−xn−1‖+r1n|an−an−1|‖Axn−1‖+r1n|an−an−1|‖Bxn−1‖

+ |r1n − r1n−1|‖Gn−1xn−1‖+
1

b

∣∣r1n − r1n−1∣∣ ‖un − (I − r1nGn)xn‖)

+ ηn|δn − δn−1|‖un−1‖+ (1− δn)ηn(‖xn − xn−1‖
+ r2n|an − an−1|‖Axn−1‖+ r2n|an − an−1|‖Bxn−1‖

+ |r2n − r2n−1|‖Gn−1xn−1‖+
1

b

∣∣r2n − r2n−1∣∣ ‖vn − (I − r2nGn)xn‖)

+ ηn|δn − δn−1|‖vn−1‖+ ηnγn|an − an−1|‖Dyn−1‖
+ ηnan−1|γn − γn−1|‖Dyn−1‖+ ηnγn|an − an−1|‖Eyn−1‖
+ ηn(1− an−1)|γn − γn−1|‖Eyn−1‖
+ |ηn − ηn−1|‖PC(I − γn−1Jn−1)yn−1‖

≤ (1− αn)‖xn − xn−1‖+ |αn − αn−1|M1 + |βn − βn−1|M1

+ αn1
2

1− κ
M1 + |λn − λn−1|M1

+c|an−an−1|M1+c|an−an−1|M1+|r1n−r1n−1|M1+
1

b

∣∣r1n−r1n−1∣∣M1

+|δn−δn−1|M1+c|an−an−1|M1+c|an−an−1|‖M1+|r2n−r2n−1|M1

+
1

b

∣∣r2n−r2n−1∣∣M1+|δn−δn−1|M1+|an−an−1|M1+|γn−γn−1|M1

+ |an − an−1|M1 + |γn − γn−1|M1 + |ηn − ηn−1|M1,

where M1 := maxn∈N{‖u‖, ‖xn‖, ‖xn − z‖, ‖Snxn‖, ‖Axn‖, ‖Bxn‖, ‖Gnxn‖,
|‖un − (I − r1nGn)xn‖, ‖un‖, ‖vn − (I − r2nGn)xn‖, ‖vn‖, ‖Dyn‖, ‖Eyn‖,
‖PC(I − γnJn)yn‖}. From the conditions (ii), (iv) and Lemma 2.2, we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.17)

Step 3. We show that limn→∞ ‖un − xn‖ = limn→∞ ‖vn − xn‖ = limn→∞ ‖yn − xn‖ =
limn→∞ ‖PC(I − γnJn)yn − xn‖ = 0. Let z ∈ F . Since un = Tr1n(I − r1nGn)xn, vn =
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Tr2n(I − r2nGn)xn and Trn is a firmly nonexpensive mapping, we have

‖Tr1n(I − r1nGn)xn))− z‖2 = ‖Tr1n(I − r1nGn)xn − Tr1n(I − r1nGn)z‖2

≤ 〈(I − r1nGn)xn − (I − r1nGn)z, un − z〉

=
1

2
(‖(I − r1nGn)xn − (I − r1nGn)z‖2 + ‖un − z‖2

− ‖(I − r1nGn)xn − (I − r1nGn)z − un + z‖2)

≤ 1

2
(‖xn − z‖2 + ‖un − z‖2 − ‖(xn − un)− r1n(Gnxn −Gnz)‖2)

=
1

2
(‖xn − z‖2 + ‖un − z‖2 − ‖(xn − un)‖2 − (r1n)2‖Gnxn −Gnz‖2

+ 2r1n〈xn − Tr1n(I − r1nGn)xn, Gnxn −Gnz〉)

≤ 1

2
(‖xn − z‖2 + ‖un − z‖2 − ‖xn − un‖2 − (r1n)2‖Gnxn −Gnz‖2

+ 2r1n‖xn − Tr1n(I − r1nGn)xn‖‖Gnxn −Gnz‖).

This implies that

‖un − z‖2 ≤ ‖xn − z‖2 − ‖xn − un‖2 − (r1n)2‖Gnxn −Gnz‖2

+ 2r1n‖xn − Tr1n(I − r1nGn)xn‖‖Gnxn −Gnz‖. (3.18)

Applying (3.18) and vn = Tr2n(I − r2nGn)xn, we have

‖vn − z‖2 ≤ ‖xn − z‖2 − ‖xn − vn‖2 − (r2n)2‖Gnxn −Gnz‖2

+ 2r2n‖xn − Tr1n(I − r2nGn)xn‖‖Gnxn −Gnz‖. (3.19)

For every x, y ∈ C, we have

〈Gnxn −Gnz, xn − z〉 = 〈(anA+ (1− an)B)xn − (anA+ (1− an)B) z, xn − z〉
= 〈an (Axn −Az) + (1− an) (Bxn −Bz) , xn − z〉
= an 〈Axn −Az, xn − z〉+ (1− an) 〈Bxn −Bz, xn − z〉

≥ anα ‖Axn −Az‖2 + (1− an)β ‖Bxn −Bz‖2 . (3.20)

From the definition of un and (3.20), we have

‖un − z‖2 = ‖Tr1n(I − r1nGn)xn − Tr1n(I − r1nGn)z‖2

≤ ‖(I − r1nGn)xn − (I − r1nGn)z‖2

= ‖xn − z‖2 − 2r1n〈xn − z,Gnxn −Gnz〉+ (r1n)2‖(Gnxn −Gnz)‖2

≤ ‖xn − z‖2 − 2r1nanα ‖Axn −Az‖
2 − 2r1n(1− an)β ‖Bxn −Bz‖2

+ (r1n)2‖an(Axn −Az) + (1− an)(Bxn −Bz)‖2

≤ ‖xn − z‖2 − 2r1nanα ‖Axn −Az‖
2 − 2r1n(1− an)β ‖Bxn −Bz‖2

+ (r1n)2an‖Axn −Az‖2 + (1− an)(r1n)2‖Bxn −B)‖2

≤ ‖xn − z‖2 − r1nan(2α− r1n) ‖Axn −Az‖2

− r1n(1− an)(2β − r1n) ‖Bxn −Bz‖2 . (3.21)
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Applying (3.21) and vn = Tr2n(I − r2nGn)xn, we have

‖vn − z‖2 ≤ ‖xn − z‖2 − r2nan(2α− r2n) ‖Axn −Az‖2

− r2n(1− an)(2β − r2n) ‖Bxn −Bz‖2 . (3.22)

From the definition of xn, (3.21) and (3.22), we have

‖xn+1 − z‖2 ≤ αn‖u− z‖2 + βn‖xn − z‖2 + λn‖Snxn − z‖2

+ ηn‖PC(I − γn(anD + (1− an)E))yn − z)‖2

≤ αn‖u− z‖2 + βn‖xn − z‖2 + λn‖xn − z‖2 + ηn‖yn − z‖2

= αn‖u− z‖2 + βn‖xn − z‖2 + λn‖xn − z‖2

+ ηn‖δn(un − z) + (1− δn)(vn − z)‖2

≤ αn‖u− z‖2 + βn‖xn − z‖2 + λn‖xn − z‖2

+ ηn(δn‖un − z‖2 + (1− δn)‖vn − z‖2) (3.23)

≤αn‖u− z‖2 + βn‖xn − z‖2 + λn‖xn − z‖2

+ ηn(δn(‖xn − z‖2 − r1nan(2α− r1n) ‖Axn −Az‖2

− r1n(1− an)(2β − r1n) ‖Bxn −Bz‖2) + (1− δn)(‖xn − z‖2

− r2nan(2α− r2n) ‖Axn −Az‖2 − r2n(1− an)(2β − r2n) ‖Bxn −Bz‖2))

≤αn‖u−z‖2 + ‖xn−z‖2−ηnan(r1nδn(2α−r1n)+r2n(1−δn)(2α−r2n)) ‖Axn−Az‖2

− (1− an)ηn(r1nδn(2β − r1n) + r2n(1− δn)(2β − r2n)) ‖Bxn −Bz‖2 . (3.24)

From (3.24), we have

ηnan(r1nδn(2α− r1n) + r2n(1− δn)(2α− r2n)) ‖Axn −Az‖2

≤ αn‖u− z‖2 + ‖xn − z‖2 − ‖xn+1 − z‖2

≤ αn‖u− z‖2 + (‖xn − z‖2 + ‖xn+1 − z‖)(‖xn+1 − xn‖).

From the condition (i) and (3.17), we have

lim
n→∞

‖Axn −Az‖ = 0. (3.25)

By using the same method as (3.25), we have

lim
n→∞

‖Bxn −Bz‖ = 0. (3.26)

Since Gn = anA+ (1− an)B, we obtain

‖Gnxn −Gnz‖ ≤ anα ‖Axn −Az‖2 + (1− an)β ‖Bxn −Bz‖2 .

From (3.25) and (3.26), we have

lim
n→∞

‖Gnxn −Gnz‖ = 0. (3.27)
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From (3.21), (3.22), (3.23) and the definition of xn, we have

‖xn+1 − z‖2 ≤ αn‖u− z‖2 + βn‖xn − z‖2 + λn‖xn − z‖2

+ ηn(δn‖un − z‖2 + (1− δn)‖vn − z‖2)

≤ αn‖u− z‖2 + βn‖xn − z‖2 + λn‖xn − z‖2

+ ηn(δn(‖xn − z‖2 − ‖xn − un‖2 − (r1n)2‖Gnxn −Gnz‖2

+ 2r1n‖xn − Tr1n(I − r1nGn)xn‖‖Gnxn −Gnz‖)
+ (1− δn)(‖xn − z‖2 − ‖xn − vn‖2 − (r2n)2‖Gnxn −Gnz‖2

+ 2r2n‖xn − Tr1n(I − r2nGn)xn‖‖Gnxn −Gnz‖))
≤ αn‖u− z‖2 + ‖xn − z‖2 − ηnδn‖xn − un‖2 −(1− δn)ηn‖xn−vn‖2

− ηn(δn(r1n)2 + (1− δn)(r2n)2‖Gnxn −Gnz‖2

+ 2ηnδnr
1
n‖xn − Tr1n(I − r1nGn)xn‖‖Gnxn −Gnz‖

+ 2(1− δn)ηnr
2
n‖xn − Tr1n(I − r2nGn)xn‖‖Gnxn −Gnz‖.

This implies that

ηnδn‖un − xn‖2 ≤ αn‖u− z‖2 + ‖xn − z‖2 − ‖xn+1 − z‖2

+ 2ηnδnr
1
n‖xn − Tr1n(I − r1nGn)xn‖‖Gnxn −Gnz‖

+ 2(1− δn)ηnr
2
n‖xn − Tr1n(I − r2nGn)xn‖‖Gnxn −Gnz‖

≤ αn‖u− z‖2 + (‖xn − z‖+ ‖xn+1 − z‖)(‖xn+1 − xn‖)
+ 2ηnδnr

1
n‖xn − Tr1n(I − r1nGn)xn‖‖Gnxn −Gnz‖

+ 2(1− δn)ηnr
2
n‖xn − Tr1n(I − r2nGn)xn‖‖Gnxn −Gnz‖.

From the condition (i), (3.17) and (3.27), we have

lim
n→∞

‖un − xn‖ = 0. (3.28)

By using the same method as (3.28), we have

lim
n→∞

‖vn − xn‖ = 0. (3.29)

From the definition of yn, we have

‖yn − xn‖ = ‖δnun + (1− δn)vn − xn‖
≤ δn‖un − xn‖+ (1− δn)‖vn − xn‖.

From (3.28) and (3.29), we have

lim
n→∞

‖yn − xn‖ = 0. (3.30)
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From the nonexpansiveness of PC and z ∈ F , we have

‖PC (I − γnJn) yn − z‖2 = ‖PC (I − γnJn) yn − PC (I − γnJn) z‖2

≤ ‖(I − γnJn) yn − (I − γnJn) z‖2

= ‖yn − z − γn (Jnyn − Jnz)‖2

=‖yn−z‖2−2γn 〈yn−z, Jnyn−Jnz〉+γ2n ‖Jnyn−Jnz‖
2

≤‖xn−z‖2−2γn 〈yn−z, Jnyn−Jnz〉+γ2n ‖Jnyn−Jnz‖
2
.

(3.31)

For every x, y ∈ C, we have

〈Jnx− Jny, x− y〉 = an 〈Dx−Dy, x− y〉+ (1− an) 〈Ex− Ey, x− y〉

≥ an
µ

L2
D

‖Dx−Dy‖2 + (1− an)
ρ

L2
E

‖Ex− Ey‖2 . (3.32)

From (3.31) and (3.32), we obtain

‖PC (I − γnJn) yn − z‖2 ≤‖xn−z‖2−2γn 〈yn−z, Jnyn−Jnz〉+γ2n ‖Jnyn−Jnz‖
2

≤‖xn − z‖2 − 2γnan
µ

L2
D

‖Dyn −Dz‖2

− 2γn (1− an)
ρ

L2
E

‖Eyn − Ez‖2

+ γ2n ‖an(Dyn −Dz) + (1− an)(Eyn − Ez)‖2

≤‖xn − z‖2 − 2γnan
µ

L2
D

‖Dyn −Dz‖2

− 2γn (1− an)
ρ

L2
E

‖Eyn − Ez‖2

+ γ2nan ‖Dyn −Dz‖
2

+ γ2n(1− an) ‖Eyn − Ez‖2

= ‖xn − z‖2 − γnan
(

2µ

L2
D

− γn
)
‖Dyn −Dz‖2

− γn (1− an)

(
2ρ

L2
E

− γn
)
‖Eyn − Ez‖2 . (3.33)

From the definition of xn, we have

‖xn+1 − z‖2 ≤ αn ‖u− z‖2 + βn ‖xn − z‖2 + λn ‖xn − z‖2

+ ηn ‖PC(I − γnJn+1)yn − z‖2

≤ αn ‖u− z‖2 + βn ‖xn − z‖2 + λn ‖xn − z‖2

+ ηn(‖xn − z‖2 − γnan
(

2µ

L2
D

− γn
)
‖Dyn −Dz‖2

− γn (1− an)

(
2ρ

L2
E

− γn
)
‖Eyn − Ez‖2)
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≤ αn ‖u− z‖2 + ‖xn − z‖2 − ηnγnan
(

2µ

L2
D

− γn
)
‖Dyn −Dz‖2

− ηnγn (1− an)

(
2ρ

L2
E

− γn
)
‖Eyn − Ez‖2 .

It implies that

ηnγnan

(
2µ

L2
D

− γn
)
‖Dyn −Dz‖2 ≤ αn ‖u− z‖2 + ‖xn − z‖2 − ‖xn+1 − z‖2

− ηnγn (1− an)

(
2ρ

L2
E

− γn
)
‖Eyn − Ez‖2

≤ αn ‖u− z‖2 + ‖xn − z‖2 − ‖xn+1 − z‖2

≤ αn ‖u−z‖2+(‖xn−z‖+‖xn+1−z‖) ‖xn+1−xn‖ .

From the condition (i) and (3.17), we have

lim
n→∞

‖Dyn −Dz‖ = 0. (3.34)

By using the same method as (3.35), we have

lim
n→∞

‖Eyn − Ez‖ = 0. (3.35)

From the definition of Jn, we have

‖Jnyn − Jnz‖ ≤ an ‖Dyn −Dz‖+ (1− an) ‖Eyn − Ez‖ . (3.36)

From (3.34), (3.35) and (3.36), we have

lim
n→∞

‖Jnyn − Jnz‖ = 0. (3.37)

From the definition of PC (I − γnJ) and Lemma 2.11, it implies that

‖PC (I − γnJn) yn − z‖2 = ‖PC (I − γnJn) yn − PC (I − γnJn) z‖2

≤ 〈(I − γnJn) yn − (I − γnJn) z, PC (I − γnJn) yn − z〉

=
1

2

[
‖(I−γnJn) yn−(I−γnJn) z‖2+‖PC (I−γnJn) yn−z‖2

−‖(I−γnJn) yn−(I−γnJn) z−(PC(I−γnJn) yn−z)‖2
]

≤ 1

2
(‖yn − z‖2 + ‖PC (I − γJn) yn − z‖2

− ‖yn − PC (I − γnJn) yn − γn (Jnyn − Jnz)‖2)

≤ 1

2
(‖xn − z‖2 + ‖PC (I − γnJ) yn − z‖2

− ‖yn − PC (I − γnJn) yn‖2 − γ2n ‖Jnyn − Jnz‖
2

+ 2γn 〈yn − PC (I − γnJn) yn, Jnyn − Jnz〉)

≤ 1

2
(‖xn − z‖2 + ‖PC (I − γnJn) yn − z‖2

− ‖yn − PC (I − γnJn) yn‖2 − γ2n ‖Jnyn − Jnz‖
2

+ 2γn ‖yn − PC (I − γnJn) yn‖ ‖Jnyn − Jnz‖).
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It follows that

‖PC (I − γnJn) yn − z‖2 ≤‖xn − z‖2 − ‖yn − PC (I − γnJn) yn‖2

+ 2γ ‖yn − PC (I − γnJn) yn‖ ‖Jnyn − Jnz‖ . (3.38)

From the definition of xn and (3.38), we have

‖xn+1 − z‖2 ≤ αn ‖u−z‖2+βn ‖xn−z‖2+λn ‖xn−z‖2+ηn ‖PC(I−γnJn)yn−z‖2

≤ αn ‖u− z‖2 + βn ‖xn − z‖2 + λn ‖xn − z‖2 + ηn(‖xn − z‖2

−‖yn−PC(I−γnJn) yn‖2+2γn ‖yn−PC(I−γnJn)yn‖ ‖Jnyn−Jnz‖)

≤ αn ‖u− z‖2 + ‖xn − z‖2 − ηn ‖yn − PC (I − γnJn) yn‖2

+ 2ηnγn ‖yn − PC (I − γnJn) yn‖ ‖Jnyn − Jnz‖ .
It implies that

ηn ‖yn − PC (I − γnJn) yn‖2 ≤ αn ‖u− z‖2 + ‖xn − z‖2 − ‖xn+1 − z‖2

+ 2ηnγn ‖yn − PC (I − γnJn) yn‖ ‖Jnyn − Jnz‖

≤ αn ‖u−z‖2 + (‖xn−z‖−‖xn+1−z‖) ‖xn+1−xn‖
+ 2ηnγn ‖yn − PC (I − γnJn) yn‖ ‖Jnyn − Jnz‖ .

(3.39)

From the condition (i), (3.17), (3.37) and (3.39), we obtain

lim
n→∞

‖yn − PC (I − γnJn) yn‖ = 0. (3.40)

Since

‖xn − PC (I − γnJn) yn‖ ≤ ‖xn − yn‖+ ‖yn − PC (I − γnJn) yn‖ ,
from (3.30) and (3.40), we have

lim
n→∞

‖xn − PC (I − γnJn) yn‖ = 0. (3.41)

Step 4. We show that lim
n→∞

sup 〈u− z0, xn − z0〉 ≤ 0 where z0 = PFu. To show this,

choose a subsequence {xnk
} of {xn} such that

lim
n→∞

sup 〈u− z0, xn − z0〉 = lim
k→∞

〈u− z0, xnk
− z0〉 . (3.42)

Without loss of generality, we may assume that xnk
⇀ ω as k →∞ where ω ∈ C. From

(3.30), we obtain ynk
⇀ ω as k →∞. From (3.28), we have unk

⇀ ω as k →∞. Assume
ω /∈ V I(C,D)

⋂
V I(C,E). From Lemma 2.11 and Lemma 2.4, we have

V I(C,D)
⋂
V I(C,E) = V I(C, Jnk

) = Fix(PC(I − γnk
Jnk

)).

From the nonexpansiveness of PC (I − γnk
Jnk

), (3.41) and Opial’s condition , we obtain

lim
k→∞

inf ‖ynk
− ω‖ < lim

k→∞
inf ‖ynk

− PC(I − γnk
Jnk

)ω‖

≤ lim
k→∞

inf ‖ynk
− PC(I − γnk

Jnk
)ynk
‖

+ lim
k→∞

inf ‖PC(I − γnJnk
)ynk

− PC(I − γnk
Jnk

)ω‖

≤ lim
k→∞

inf ‖ynk
− ω‖ .
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This is a contradiction. Hence

ω ∈ V I(C,D)
⋂
V I(C,E). (3.43)

From the definition of xn, we have

xn+1 − xn = αn(u− xn) + λn(Snxn − xn) + ηn(PC(I − γnJn)yn − xn).

From the condition (i), (3.15) and (3.41), we have

lim
n→∞

‖Snxn − xn‖ = 0. (3.44)

Assume ω /∈
⋂∞
i=1 Fix(Ti). From Lemma 2.10 , we have Fix(S) =

⋂∞
i=1 Fix(Ti) . Then

ω /∈ Fix(S). From Remark 2.9, we have

lim
k→∞

inf ‖xnk
− ω‖ < lim

k→∞
inf ‖xnk

− Sω‖

≤ lim
k→∞

inf(‖xnk
− Snk

xnk
‖+ ‖Snk

xnk
− Snk

ω‖+ ‖Snk
ω − Sω‖)

≤ lim
k→∞

inf ‖xnk
− ω‖ .

This is a contradiction. Then

ω ∈ Fix(S) =

∞⋂
i=1

Fix(Ti). (3.45)

Since

F1(un, y) + ϕ1(y)− ϕ1(un) + 〈Gnxn, y − un〉+
1

r1n
〈y − un, un − xn〉 ≥ 0,∀y ∈ C,

from (A2), we have

ϕ1(y)− ϕ1(un) + 〈Gnxn, y − un〉+
1

r1n
〈y − un, un − xn〉 ≥ F1(y, un),∀y ∈ C.

In particular

ϕ1(y)−ϕ1(uni
)+〈Gni

xni
, y−uni

〉+ 1

r1ni

〈y−uni
, uni
−xni

〉 ≥ F1(y, uni
),∀y ∈ C.

It follows that

ϕ1(y)− ϕ1(uni
) + 〈Gni

xni
, y − uni

〉+ 〈y − uni
,
uni − xni

r1ni

〉 ≥ F1(y, uni
). (3.46)

For 0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)ω. From (3.46), we have

ϕ1(yt)− ϕ1(uni) + 〈yt − uni , Gniyt〉
≥ 〈yt − uni

, Gni
yt〉 − 〈yt − uni

, Gni
xni
〉

− 〈yt − uni ,
uni − xni

r1ni

〉+ F1(yt, uni)

= 〈yt − uni , Gniyt −Gniuni +Gniuni〉 − 〈yt − uni , Gnixni〉

− 〈yt − uni
,
uni
− xni

r1ni

〉+ F1(yt, uni
)

= 〈yt − uni
, Gni

yt −Gni
uni
〉+ 〈yt − uni

, Gni
uni
−Gni

xni
〉

− 〈yt − uni
,
uni
− xni

r1ni

〉+ F1(yt, uni
).
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Since ‖uni
− xni

‖ → 0, we have ‖Gni
uni
− Gni

xni
‖ → 0. Since

uni
−xni

r1ni

→ 0 and

〈yt − uni
, Gni

yt −Gni
uni
〉 ≥ 0 and (A4), we have

ϕ1(yt)− ϕ1(ω) + 〈yt − ω,Gni
yt〉 ≥ F1(yt, ω). (3.47)

Form (A1), (A4) and (3.47), we have

0 = F1(yt, yt) + ϕ1(yt)− ϕ1(yt)

≤ tF1(yt, y) + (1− t)F1(yt, ω) + tϕ1(y) + (1− t)ϕ1(ω)− ϕ1(yt)

≤ tF1(yt, y) + (1− t)ϕ1(yt)− (1− t)ϕ1(ω) + (1− t)〈yt − ω,Gni
yt〉

+ tϕ1(y) + (1− t)ϕ1(ω)− ϕ1(yt)

= tF1(yt, y) + tϕ1(y)− tϕ1(yt) + (1− t)〈ty + (1− t)ω − ω,Gni
yt〉

= tF1(yt, y) + tϕ1(y)− tϕ1(yt) + (1− t)t〈y − ω,Gni
yt〉.

Dividing by t, we have

0 ≤ F1(yt, y) + ϕ1(y)− ϕ1(yt) + (1− t)〈y − ω,Gniyt〉.

Letting t→ 0, it follows from (A3), we have

0 ≤ F1(ω, y) + ϕ1(y)− ϕ1(ω) + 〈y − ω,Gniω〉,∀y ∈ C. (3.48)

From Lemma 2.13, we have

ω ∈ GMEP (F1, ϕ1, ani
A+ (1− ani

)B) = GMEP (F1, ϕ1, A)
⋂
GMEP (F1, ϕ1, B).

By using the same method as (3.48), we have

ω ∈ GMEP (F2, ϕ2, A)
⋂
GMEP (F2, ϕ2, B).

Hence ω ∈ F . Since xnk
⇀ ω and ω ∈ F , we have

lim
n→∞

sup 〈u− z0, xn − z0〉 = lim
k→∞

〈u− z0, xnk
− z0〉 = 〈u− z0, ω − z0〉 ≤ 0.

(3.49)

Step 5. Finally, we show that lim
n→∞

xn = z0, where z0 = PFu. From the nonexpansiveness

of PC (I − γJn), we have

‖xn+1 − z0‖2 = ‖αn(u−z0)+βn(xn−z0)+λn(Snxn−z0)+ηn(PC(I−γnJn)yn−z0)‖2

≤ ‖βn(xn − z0) + λn(Snxn − z0) + ηn(PC(I − γnJn)yn − z0)‖2

+ 2αn〈u− z0, xn+1 − z0〉
= (1− αn)2‖xn − z0‖2 + 2αn〈u− z0, xn+1 − z0〉
≤ (1− αn)‖xn − z0‖2 + 2αn〈u− z0, xn+1 − z0〉.

Applying Lemma 2.2 and (3.49), we have the sequence {xn} converse strongly to z0 =
PFu. This complete the proof.

Using our main theorem (Theorem 3.1), we obtain the following results.
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Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let Fi : C × C → R be a bifunction satisfy A1) − A4) and Fi(x, z) ≤ Fi(x, y) + Fi(y, z)
for all x, y, z ∈ C and i = 1, 2. Let A,B be α, β-inverse strongly monotone, respectively
and D,E be LD, LE-Lipschitz continuous and µ, ρ-strongly monotone mapping, respec-
tively. Let {Ti}∞i=1 be κi-strictly pseudo-contractive mapping of C into itself with F :=⋂∞
i=1 Fix(Ti)

⋂
EP (F1, A)

⋂
EP (F1, B)

⋂
EP (F2, A)

⋂
EP (F2, B)

⋂
V I(C,D)

⋂
V I(C,E) 6=

∅ and κ = supi∈Nκi and let αj = (αj1, α
j
2, α

j
3) ∈ I×I×I where I = [0, 1] , αj1+αj2+αj3 = 1,

αj1 + αj2 ≤ b < 1 and αj1, α
j
2, α

j
3 ∈ (κ, 1) for all j = 1, 2, . . . . For every n ∈ N, let Sn be

S-mapping generated by Tn, Tn−1, . . . , T1 and αn, αn−1, . . . , α1. Assume the either B1) or
B2) holds and let the sequence {xn} generated by x1, u ∈ C and

F1(un, y) + 〈anAxn + (1− an)Bxn, y − un〉+
1

r1n
〈y − un, un − xn〉 ≥ 0,

F2(vn, y) + 〈anAxn + (1− an)Bxn, y − vn〉+
1

r2n
〈y − vn, vn − xn〉 ≥ 0,

yn = δnun + (1− δn)vn,

xn+1 = αnu+ βnxn + λnSnxn + ηnPC(I − γn(anD + (1− an)E))yn,∀n ≥ 1.

where the sequence {αn}, {βn}, {λn}, {ηn}, {δn} ⊆ [0, 1] with αn + βn + λn + ηn = 1 for
all n ∈ N , {an} ⊂ (0, 1) and {rjn} ⊆ [b, c] ⊂ (0, 2min{α, β})for all j = 1, 2. Suppose the
following conditions hold:

(i):

∞∑
n=1

αn =∞, lim
n→∞

αn = 0, {βn} ⊆ [d, e] ⊂ (0, 1),

(ii): 0 < γn ≤ min{ 2µ
L2

D
, 2ρ
L2

E
},

(iii): lim
n→∞

δn = δ ∈ (0, 1),

∞∑
n=1

αn1 <∞,

(iv):

∞∑
n=1

∣∣∣rjn+1 − rjn
∣∣∣ <∞ ∞∑

n=1

|αn+1 − αn| <∞,
∞∑
n=1

|γn+1 − γn| <∞,

∞∑
n=1

|δn+1 − δn| <∞,
∞∑
n=1

|an+1 − an| <∞,
∞∑
n=1

|βn+1 − βn| <∞,

∞∑
n=1

|λn+1 − λn| <∞,

∞∑
n=1

|ηn+1 − ηn| <∞ for all j = 1, 2.

Then, the sequence {xn} converges strongly to z0 = PFu.

Proof. Put ϕ1 ≡ ϕ2 ≡ 0 in Theorem 3.1. So, from Theorem 3.1, we obtain the desired
result.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A,B be α, β-inverse strongly monotone, respectively and D,E be LD, LE-Lipschitz contin-
uous and µ, ρ-strongly monotone mapping, respectively. Let {Ti}∞i=1 be κi-strictly pseudo-
contractive mapping of C into itself with F :=

⋂∞
i=1Fix(Ti)

⋂
VI(C,A)

⋂
VI(C,B)

⋂
VI(C,D)⋂

V I(C,E) 6= ∅ and κ = supi∈Nκi and let αj = (αj1, α
j
2, α

j
3) ∈ I × I × I where I = [0, 1] ,

αj1 +αj2 +αj3 = 1 , αj1 +αj2 ≤ b < 1 and αj1, α
j
2, α

j
3 ∈ (κ, 1) for all j = 1, 2, . . . . For every

n ∈ N, let Sn be S-mapping generated by Tn, Tn−1, . . . , T1 and αn, αn−1, . . . , α1. Let the
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sequence {xn} generated by x1, u ∈ C and

xn+1 =αnu+ βnxn + γnSnxn

+ηnPC(I−γn(anD + (1−an)E))PC(I−r1n(anA+(1−an)B))xn,∀n ≥ 1.

where the sequence {αn}, {βn}, {γn}, {ηn}, {δn} ⊆ [0, 1] with αn + βn + γn + ηn = 1 for
all n ∈ N , {an} ⊂ (0, 1) and {r1n} ⊆ [b, c] ⊂ (0, 2min{α, β}) for all j = 1, 2. Suppose the
following conditions hold:

(i):

∞∑
n=1

αn =∞, lim
n→∞

αn = 0, {βn} ⊆ [d, e] ⊂ (0, 1),

(ii): 0 < γn ≤ min{ 2µ
L2

D
, 2ρ
L2

E
},

(iii):

∞∑
n=1

αn1 <∞,

(iv):

∞∑
n=1

∣∣r1n+1 − r1n
∣∣ <∞ ∞∑

n=1

|αn+1 − αn| <∞,
∞∑
n=1

|γn+1 − γn| <∞,

∞∑
n=1

|λn+1 − λn| <∞,
∞∑
n=1

|an+1 − an| <∞,
∞∑
n=1

|βn+1 − βn| <∞,

∞∑
n=1

|ηn+1 − ηn| <∞.

Then, the sequence {xn} converges strongly to z0 = PFu.

Proof. Putting F1 ≡ F2 ≡ ϕ1 ≡ ϕ2 ≡ 0, r1n = r2n and vn = un in Theorem 3.1, we have.

〈y − un, xn − r1n(anAxn + (1− an)Bxu)− un〉,∀y ∈ C.
It implies that

un = PC(I − r1n(anA+ (1− an)B))xn.

So, from Theorem 3.1 and Remark 2.12, we obtain the desired result.
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1 Introduction and Preliminaries

In 1922, Banach [1] proved a fixed point theorem for metric spaces, which later
on came to be known as the famous “Banach contraction principle”.

Stefan Banach

Let (X, d) be a metric space. Then a map T : X → X is called a contraction
mapping on X, if there exists q ∈ [0, 1) such that

d(T (x), T (y)) ≤ qd(x, y)

for all x, y in X. If (X, d) is a complete metric space with a contraction mapping
T : X → X, then T admits a unique fixed-point x∗ in X. Furthermore, We can to
find x∗ as follows: We start x0 in X and define a sequence xn by xn = T (xn−1),
then xn → x∗. After that, we well-known to Banach Fixed Point Theorem.

Now, we recall definition of metric spaces was introduced by Frechet [2] as
follows :

Definition 1.1. Let X be a non-empty set. Suppose that the mapping
d : X ×X → [0,∞) satisfies :

(MS1) d(x, y) = 0 if and only if x = y,
(MS2) d(x, y) = d(y, x) for all x, y ∈ X,
(MS3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

If d satisfying (MS1)-(MS3), then d is called a metric on X and (X, d) is called a
metric space.

Example 1.2. Let X = R and defined d : X ×X −→ R by

d(x, y) = |x− y|

for all x, y ∈ R. Then (X, d) is metric spaces.

In 1931, Wilson [3] introduced quasi-metric spaces as follows :

Definition 1.3. Let X be a nonempty set. Suppose that the mapping
d : X ×X −→ [0,∞) satisfies the following conditions:

(QS1) d(x, y) = 0 if and only if x = y;
(QS2) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. If d satisfies condi-

tions (QS1) and (QS2), then d is called a quasi-metric on X and (X, d) is called a
quasi-metric space.
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Example 1.4. Let X = A ∪ B, where A = { 12 ,
1
3} and B = [1, 5]. Define the

generalized metric d on X as follows :
d( 1

2 ,
1
3 ) = 0.3, d( 1

3 ,
1
2 ) = 0.2, d( 1

2 ,
1
2 ) = d( 1

3 ,
1
3 ) = 0, and d(x, y) = |x− y|.

If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A,
then (X, d) is a quasi-metric space, but it is not metric space.

In 2000, Branciari [4] introduced rectangular metric spaces as follows :

Definition 1.5. Let X be a none-mpty set and Suppose that the mapping d :
X ×X → [0,∞) satisfies:

(RMS1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(RMS2) d(x, y) = d(y, x) for all x, y ∈ X;
(RMS3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y, z ∈ X

and all distinct point u, v ∈ X\{x, y}.
Then d is called a rectangular metric on X and (X, d) is called a rectangular

metric space.

Example 1.6 ([5]). Let X = A∪B, where A = { 12 ,
1
3 ,

1
4 ,

1
5} and B = [1, 2]. Define

the generalized metric d on X as follows :

d(
1

2
,

1

3
) = d(

1

4
,

1

5
) = 0.3, d(

1

2
,

1

5
) = d(

1

3
,

1

4
) = 0.2,

d(
1

2
,

1

4
) = d(

1

5
,

1

3
) = 0.6, d(

1

2
,

1

2
) = d(

1

3
,

1

3
) = d(

1

4
,

1

4
) = d(

1

5
,

1

5
) = 0

and d(x, y) = |x− y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A.
It is clear that d does not satisfy the triangle inequality in metric space,

0.6 = d(
1

2
,

1

4
) ≥ d(

1

2
,

1

3
) + d(

1

3
,

1

4
) = 0.5.

Then d is a rectangular metric, but it is not a metric.

In this work, we extend and improve rectangular metric spaces to rectangular
quasi-metric spaces by using the concept of quasi-metric spaces. Next, we obtain
fixed point theorems in rectangular quasi-metric spaces. Moreover, we present
some examples to illustrate and support our results.i.e,
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2 Main Results

In this section, we introduce rectangular quasi-metric spaces and prove fixed
point theorems. Likewise, we present some examples to illustrate and support our
results.

Definition 2.1. Let X be a non-empty set and Suppose that the mappings d :
X ×X −→ [0,∞) satisfies :

(RQMS1) d(x, y) = 0 if and only if x = y;
(RQMS2) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X

and all distinct points u, v ∈ X\{x, y}.
Then d is called a rectangular quasi-metric on X and (X, d) is called a rectangular
quasi-metric space.

Example 2.2. Let X = A∪B, where A = { 12 ,
1
3 ,

1
4 ,

1
5} and B = [1, 2]. Define the

generalized metric d on X as follows :

d(
1

2
,

1

3
) = d(

1

4
,

1

5
) = 0.3, d(

1

3
,

1

2
) = d(

1

5
,

1

4
) = 0.1,

d(
1

2
,

1

4
) = d(

1

5
,

1

3
) = 0.6, d(

1

4
,

1

2
) = d(

1

3
,

1

5
) = 0.4,

d(
1

2
,

1

5
) = d(

1

3
,

1

4
) = 0.2, d(

1

5
,

1

2
) = d(

1

4
,

1

3
) = 0.5,

d(
1

2
,

1

2
) = d(

1

3
,

1

3
) = d(

1

4
,

1

4
) = d(

1

5
,

1

5
) = 0,

and

d(x, y) = |x− y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A .

It is clear that d does not satisfy the triangle inequality A

0.6 = d(
1

2
,

1

4
) ≥ d(

1

2
,

1

3
) + d(

1

3
,

1

4
) = 0.5.

We see that d is not a rectangular metrics, because d( 1
2 ,

1
4 ) 6= d( 1

4 ,
1
2 ). So d is a

rectangular quasi-metric. Indeed,
(RMQ1)
(⇒) Suppose that d(x, y) = 0.
Case(I) If x, y ∈ A, then x = y.
Case(II) If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A then d(x, y) = |x − y| = 0,
so x = y.
(⇐) Suppose that x = y.
To show that d(x, y) = 0. we prove by two case.
Case(I) If x, y ∈ A then d( 1

2 ,
1
2 ) = d( 1

3 ,
1
3 ) = d( 1

4 ,
1
4 ) = d( 1

5 ,
1
5 ) = 0.

Case(II) If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A then x− y = 0.
Thus d(x, y) = |x− y| = 0.
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This is a proof of (RQM1)
(RQM2)
Case (I) If x, y ∈ A then
d(x, y) = d( 1

2 ,
1
3 ) = 0.3 ≤ d( 1

2 , u) + d(u, v)+ d(v, 13 ) when u, v ∈ { 14 ,
1
5}

d(x, y) = d( 1
3 ,

1
2 ) = 0.1 ≤ d( 1

3 , u) + d(u, v) + d(v, 12 ) when u, v ∈ { 14 ,
1
5}

d(x, y) = d( 1
3 ,

1
4 ) = 0.2 ≤ d( 1

3 , u) + d(u, v) + d(v, 14 ) when u, v ∈ { 12 ,
1
5}

d(x, y) = d( 1
4 ,

1
3 ) = 0.2 ≤ d( 1

4 , u) + d(u, v) + d(v, 13 ) when u, v ∈ { 12 ,
1
5}

d(x, y) = d( 1
4 ,

1
5 ) = 0.3 ≤ d( 1

4 , u) + d(u, v) + d(v, 15 ) when u, v ∈ { 12 ,
1
3}

d(x, y) = d( 1
5 ,

1
4 ) = 0.1 ≤ d( 1

5 , u) + d(u, v) + d(v, 14 ) when u, v ∈ { 12 ,
1
3}.

Case (II) If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A, then

d(x, y) = |x− y|
≤ |x− u|+ |u− y|
≤ |x− u|+ |u− v|+ |v − y|,

for all distinct points u, v ∈ X\{x, y}.
Now, we introduce a definition of a convergent, cauchy, complete rectangular

quasi-metric space as follows : For any x ∈ X, we define the open ball with centre
x and radius r > 0 by

Br(x); = {y ∈ X|max{d(x, y), d(y, x)} < r}.

Definition 2.3. Let (X, d) be a rectangular quasi-metric space and let {xn} be
a sequence in X and x ∈ X. Then

(a) The sequence {xn} in X is called convergence to x ∈ X if
limn→∞ d(xn, x) = 0 = limn→∞ d(x, xn) and this fact is represented by limn→∞ xn =
x or xn −→ x as n −→∞.

(b)The sequence {xn} in X is called cauchy sequence in (X, d) if
limn→∞ d(xn, xn+p) = 0 = limn→∞ d(xn+p, xn), for all p > 0.

(c) (X, d) is called complete rectangular quasi metric space if every Cauchy
sequence in X convergence to some x ∈ X.

Next, we present main theorems as follows :

Theorem 2.4. Let (X, d) be a complete rectangular quasi-metric space. A map-
ping g : X → X satisfies:

d(g(x), g(y)) ≤ ψ(d(x, y)), (2.1)

for all x, y ∈ X, where
(i) ψ : [0,∞)→ [0,∞) is non-decreasing and continuous functions,

(ii)
∞∑
i=n

ψi(t) + ψm(t∗) <∞ for t, t∗ > 0 and for m,n ∈ N,

(iii) ψ(0) = 0 and ψ(t) < t for 0 < t.
Then g has a unique fixed point.
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Proof. Let x0 ∈ X be arbitraty. We define a sequence {xn} by xn+1 = gxn for all
n = 0, 1, 2, ... ,. We will show that {xn} is Cauchy sequence, i.e., limn→∞ d(xn, xn+p) =
0 = limn→∞ d(xn+p, xn) for all p > 0. If xn = xn+1 then xn is fixed point of g,
i.e., xn = gxn. So, suppose that xn 6= xn+1 for all n = 0, 1, 2, ... .
We consider

en := d(xn, xn+1) = d(gxn−1, gxn)

≤ ψ(d(xn−1, xn))

= ψ(d(gxn−2, gxn−1))

≤ ψ2(d(xn−2, xn−1))

= ψ2(d(gxn−3, gxn−2))

...

≤ ψn(d(x0, x1))

= ψn(e0), (2.2)

and,

ln := d(xn+1, xn) = d(gxn, gxn−1)

≤ ψ(d(xn, xn−1))

= ψ(d(gxn−1, gxn−2))

≤ ψ2(d(xn−1, xn−2))

= ψ2(d(gxn−2, gxn−3))

...

≤ ψn(d(x1, x0))

= ψn(l0). (2.3)

Since (2.2) and (2.3), we have d(xn, xn+1) ≤ ψn(d(x0, x1)) and d(xn+1, xn) ≤
ψn(d(x1, x0)).
We consider

e∗n := d(x, xn+2) = d(gxn−1, gxn+1)

≤ ψ(d(xn−1, xn+1))

= ψ(d(gxn−2, gxn))

≤ ψ2(d(xn−2, xn))

...

≤ ψn(d(x0, x2))

= ψn(e∗0), (2.4)
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and,

l∗n := d(xn+2, xn) = d(gxn+1, gxn−1)

≤ ψ(d(xn+1, xn−1))

= ψ(d(gxn, gxn−2))

≤ ψ2(d(xn, xn−2))

...

≤ ψn(d(x2, x0))

= ψn(l∗0). (2.5)

Now, if p is odd say 2m+ 1 then we obtain that

d(xn, xn+2m+1) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m+1)

≤ en + en+1 + [d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m+1)]

≤ en + en+1 + en+2 + ...+ en+2m

≤ ψn(e0) + ψn+1(e0) + ψn+2(e0) + ...+ ψn+2m(e0)

=

n+2m∑
i=n

ψi(e0) ≤
∞∑
i=n

ψi(e0) <∞. (2.6)

If p is even say 2m then we obtain that

d(xn, xn+2m) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)

≤ en + en+1 + [d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m)]

≤ en + en+1 + en+2 + ...+ d(xn+2m−2, xn+2m)

= en + en+1 + ...+ e∗n+2m−2

≤ ψn(e0) + ψn+1(e0) + ...+ ψn+2m−2(e∗0)

=

n+2m−2∑
i=n

ψi(e0) + ψn+2m−n(e∗0)

≤
∞∑
i=n

ψi(e0) + ψn+2m−n(e∗0) <∞. (2.7)
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Similarly, if p is odd say 2m+ 1 then we get that

d(xn+2m+1, xn) ≤d(xn+2m+1, xn+2m) + d(xn+2m, xn+2m−1) + d(xn+2m−1, xn)

≤ln+2m+1 + ln+2m + [d(xn+2m−1, xn+2m−2)

+ d(xn+2m−2, xn+2m−3) + d(xn+2m−3, xn)]

≤ψn+2m+1(l0) + ψn+2m(l0) + ...+ ψn−1(l0)

=

n+2m+1∑
i=n−1

ψi(l0) ≤
∞∑

i=n−1
ψi(l0) <∞. (2.8)

Similarly, if p is even say 2m then we get that

d(xn+2m, xn) ≤d(xn+2m, xn+2m−1) + d(xn+2m−1, xn+2m−2) + d(xn+2m−2, xn)

≤ln+2m + ln+2m−1 + [d(xn+2m−2, xn+2m−3)

+ d(xn+2m−3, xn+2m−4) + d(xn+2m−4, d(xn)]

≤ψn+2m(l0) + ψn+2m−2(l0) + ...+ ψn−2(l∗0)

=

n+2m∑
i=n−2

ψi(l0) + ψn−2(l∗0)

≤
∞∑

i=n−2
ψi(l0) + ψn−2(l∗0) <∞ (2.9)

It follows from (2.6), (2.7), (2.8) and (2.9) that limn→∞ d(xn, xn+p) = 0 =
limn→∞ d(xn+p, xn) for all p > 0. Thus {xn} is a Cauchy sequence in (X, d).
By completeness of (X, d) there exists a u ∈ X such that limn→∞ xn = u. We will
show that u is a fixed point of g. Again, for any n ∈ N we have

d(u, gu) ≤ d(u, xn) + d(xn, xn+1) + d(xn+1, gu)

= d(u, xn) + en + d(gxn, gu)

≤ d(u, xn) + en + ψ(d(xn, u)). (2.10)

And, we get that

d(gu, u) ≤ d(gu, xn+1) + d(xn+1, xn) + d(xn, u)

= d(gu, gxn) + ln + d(xn, u)

≤ ψ(d(u, xn)) + ln + d(xn, u). (2.11)

Using (2.10) and (2.11) it follows that d(u, gu) = 0 = d(gu, u). So gu = u.
Thus u is a fixed point of g. For uniqueness, let v be another a fixed point of
g. Then it follows that d(u, v) = d(gu, gv) ≤ ψ(d(u, v)) < d(u, v) and d(v, u) =
d(gv, gu) ≤ ψ(d(v, u)) < d(v, u), which is a contradiction. Therefore, we must
have d(u, v) = 0 = d(v, u). So u = v . Thus u is a fixed point of g.

Next, we obtain corollary by set ψ(t) = ∃r(t),∀t ∈ [0,∞), r ∈ [0, 1).
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Corollary 2.1. Let (X, d) be a complete rectangular quasi-metric space.Suppose
that T : X −→ X x, y ∈ X

d(gx, gy) ≤ rd(x, y)

for all x, y ∈ X where r ∈ [0, 1). Then g has a unique fixed point in X.

Example 2.5. Let X = A∪B, where A = { 12 ,
1
3 ,

1
4 ,

1
5} and B = [1, 2]. Define the

generalized metric d on X as follows :
d( 1

2 ,
1
3 ) = d( 1

4 ,
1
5 ) = 0.3, d( 1

3 ,
1
2 ) = d( 1

5 ,
1
4 ) = 0.1,

d( 1
2 ,

1
4 ) = d( 1

5 ,
1
3 ) = 0.6, d( 1

4 ,
1
2 ) = d( 1

3 ,
1
5 ) = 0.4,

d( 1
2 ,

1
5 ) = d( 1

3 ,
1
4 ) = 0.2, d( 1

5 ,
1
2 ) = d( 1

4 ,
1
3 ) = 0.5,

d( 1
2 ,

1
2 ) = d( 1

3 ,
1
3 ) = d( 1

4 ,
1
4 ) = d( 1

5 ,
1
5 ) = 0,

and

d(x, y) = |x− y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A .

Then (X, d) is a complete rectangular quasi-metric space.

Next, let g : X −→ X by

gx =

{
1
5 x ∈ A,
x
6 x ∈ B,

where ψ(t) = t
2 ; ∀t ∈ [0,∞). Then g satisfy Theorem 2.4, and we see that 1

5
is a fixed point of g. Indeed,

Case(I) If x, y ∈ A , then d(gx, gy) = d( 1
5 ,

1
5 ) = 0 ≤ d(x,y)

2 = ψ(d(x, y)).
Case (II) If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A , then

d(gx, gy) = |gx− gy|

= |x
6
− y|; (set x ∈ B)

≤ 1

2
|x− y|

=
d(x, y)

2
= ψ(d(x, y)). (2.12)

In 1982, Sessa [6] introduced a common fixed point theorem for a selfmapping
of a complete metric space as follows :

Definition 2.6. Two self-mappings S and T of metric space (X, d) are said to be
weakly commuting if

d(STx, TSx) ≤ d(Sx, Tx), ∀x ∈ X.

It is clear that two commuting mappings are weakly commuting
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In 1986, Jungck [7] introduced a compatible mappings and common fixed
points as follows :

Definition 2.7. Let T and S be two self-mappings of a metric space (X, d). S
and T are said to be compatible if

limn→∞ d(STxn, TSxn) = 0

whenever {xn} is a sequence in X such that

limn→∞ Sxn = limn→∞ Txn = t

for some t ∈ X.
It is easy to see that two compatible maps are weakly compatible.

In 2002, Aamri and El Moutawakil [8] defined a new property called the (E.A)
property which generalizes the concept of non-compatible mappings and proved
some common fixed point theorems.

Definition 2.8. Let S and T be two self-mappings of a rectangular quasi-metric
space (X, d). We say that T and S satisfy the property (E.A) if there exists a
sequence {xn} such that

limn→∞ Txn = limn→∞ Sxn = t
for some t ∈ X.

Example 2.9. (1) Let X = [0,+∞].Define T, S : X −→ X by

Tx = x2

4 and Sx = 3x2

4 , ∀x ∈ X.
Consider the sequence xn = 1/n. Clearly limn→∞ Txn = limn→∞ Sxn = 0.
Then T and S satisfy (E.A).

(2) Let X = [2,+∞]. Define T, S : X −→ X by
Tx = x+ 1 and Sx = 2x+ 1 , ∀x ∈ X.

Suppose that property (E.A) hold,Then there exists a {xn} in X sequence
satisfying

limn→∞ Tx = limn→∞ Sx = t, for some t ∈ X.
Therefore

limn→∞ xn = t− 1 and limn→∞ xn = t−1
2 .

then t = 1, which is a contradiction 1 6∈ X. Hence T and S do not satisfy (E.A).

Theorem 2.2. Let S and T be two weakly compatible self-mappings of a rectan-
gular quasi-metric spaces (X, d) such that

(i) T and S satisfy the property (E.A),

(ii) d(Tx, Ty) < max{d(Sx, Sy) [d(Tx,Sx)+d(Ty,Sy)]
2 , [d(Ty,Sx)+d(Tx,Sy)]

2 },
∀x 6= y ∈ X,

(iii) TX ⊂ SX,
(iv) SX or TX is complete subspace of X.

Then T and S have a unique common fixed point.
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Proof. Since T and S satisfy the property (E.A), there exists a sequence {xn} in
X satifying

limn→∞ Txn = limn→∞ Sxn = t, for some t ∈ X.
Suppose that SX is complete. Then limn→∞ Sxn = Sa for some a ∈ X. Also
limn→∞ Txn = Sa. We show that Ta = Sa. Suppose that Ta 6= Sa. Condition
(ii) implies

d(Ta, Txn) < max{d(Sa, Sxn), [d(Ta, Sa) + d(Txn, Sxn)]/2.

[d(Txn, Sa) + d(Ta, Sxn)]/2}. (2.13)

Letting n→ +∞ yields

d(Ta, Sa) ≤ max{d(Sa, Sa), [d(Ta, Sa) + d(Sa, Sa)]/2,

[d(Sa, Sa) + d(Ta, Sa)]/2}
≤ d(Ta, Sa)/2; (2.14)

a contradiction. Hence Ta = Sa.

Since T and S are a weakly compatible, STa = TSa and TTa = TSa =
STa = SSa.

Finally, we show that Ta is a common fixed point of T and S. Suppose that
Ta 6= TTa. Then

d(Ta, TTa) < max{d(Sa, STa), [d(Ta, Sa) + d(TTa, STa)]/2,

[d(TTa, Sa) + d(Ta, STa)]/2}
< max{d(Ta, TTa), [d(TTa, Ta) + d(Ta, TTa)]/2} (2.15)

and

d(TTa, Ta) < max{d(STa, Sa), [d(TTa, STa) + d(Ta, Sa)]/2,

[d(Ta, STa) + d(TTa, Sa)]/2}
< max{d(TTa, Ta), [d(Ta, TTa) + d(TTa, Ta)]/2}. (2.16)

Since (2.15) and (2.16) we have
d(Ta, TTa) + d(TTa, Ta) < max{d(Ta, TTa), [d(TTa, Ta) + d(Ta, TTa)]/2} +
max{d(TTa, Ta), [d(Ta, TTa)+d(TTa, Ta)]/2} = d(Ta, TTa)+d(TTa, Ta), where
max{d(Ta, TTa), [d(TTa, Ta)+d(Ta, TTa)]/2} 6= d(Ta, TTa) and< max{d(TTa, Ta),
[d(Ta, TTa) + d(TTa, Ta)]/2} 6= d(TTa, Ta);
which is a contradiction. Hence TTa = Ta and STa = TTa = Ta. The proof
is similar when TX is assumed to be a complete subspace of X since TX ⊂ SX.
Uniquness of the common fixed point, suppose that a, b are distinct common fixed
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point of S and T .

d(a, b) = d(Ta, Tb) < max{d(Sa, Sb),
[d(Ta, Sa) + d(Tb, Sb)]

2
,

[d(Tb, Sa) + d(Ta, Sb)]

2
},

=
d(Tb, Sa) + d(Ta, Sb)

2
=
d(b, a) + d(a, b)

2
(2.17)

and

d(b, a) = d(Tb, Ta) < max{d(Sb, Sa),
[d(Tb, Sb) + d(Ta, Sa)]

2
,

[d(Ta, Sb) + d(Tb, Sa)]

2
},

=
d(Ta, Sb) + d(Tb, Sa)

2
=
d(a, b) + d(b, a)

2
. (2.18)

Since (2.17) and (2.18) we get that d(a, b)+d(b, a) < d(b,a)+d(a,b)
2 + d(a,b)+d(b,a)

2

Example 2.3. Let X = A∪B, where A = { 12 ,
1
3 ,

1
4 ,

1
5} and B = [1, 2]. Define the

generalized metric d on X as follows :
d( 1

2 ,
1
3 ) = d( 1

4 ,
1
5 ) = 0.3, d( 1

2 ,
1
5 ) = d( 1

3 ,
1
4 ) = 0.2,

d( 1
2 ,

1
4 ) = d( 1

5 ,
1
3 ) = 0.6, d( 1

2 ,
1
2 ) = d( 1

3 ,
1
3 ) = d( 1

4 ,
1
4 ) = d( 1

5 ,
1
5 ) = 0,

such that d(x, y) = d(y, x) and
d(x, y) = |x−y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A. Define T, S : X −→ X
by

Tx = 3x
4 and Sx = x2

2 , ∀x ∈ X.
Then

(1) T and S satisfy the property (E.A) for the sequence xn = 1 + 1/n, n =
1, 2, ...,

(2) S and T are weakly compatible,
(3) T and S satisfy for all x 6= y ,
(4) T1 = S1 = 1.
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1. Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H. Let F : C ×C → R be
bifunction. The equilibrium problem for F is to determine its equilibrium point, i.e., the set

EP(F)= {x ∈ C : F(x, y)≥ 0,∀ y ∈ C}. (1.1)

Equilibrium problems were introduced by [1] in 1994 where such problems have had a
significant impact and influence in the development of several branches of pure and applied
sciences. Various problems in physics, optimization, and economics are related to seeking some
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elements of EP(F) (see [1,3]). Many authors have been investigated iterative algorithms for the
equilibrium problems (see, for example, [3,5,6,15]).

In 2013, Suwannaut and Kangtunyakarn [15] introduced the combination of equilibrium
problem which is to find u ∈ C such that

N∑
i=1

aiFi (x, y)≥ 0, ∀ y ∈ C, (1.2)

where Fi : C×C → R be bifunctions and ai ∈ (0,1) with
N∑

i=1
ai = 1, for every i = 1,2, . . . , N . The

set of solution (1.2) is denoted by

EP

(
N∑

i=1
aiFi

)
=

N⋂
i=1

EP (Fi) .

Remark 1.1. Very recently, in the work of Suwannaut and Kangtunyakarn [14], Khuangsatung
and Kangtunyakarn [7] and Bnouhachem [2], they give the numerical examples for main
theorems and show that their iteration for the combination of equilibrium problem converges
faster than their iteration for the classical equilibrium problem.

The fixed point problem for the mapping T : C → C is to find x ∈ C such that

x = Tx. (1.3)

We denote the set of solutions of (1.3) by Fix(T). It is well known that Fix(T) is closed and
convex and PFix(T) is well-defined.

Definition 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H.

(i) A mapping T : C → C is called nonexpansive if

‖Tx−T y‖ ≤ ‖x− y‖ , ∀ x, y ∈ C.

(ii) A mapping T : C → C is called quasi-nonexpansive if Fix(T) 6= ; and

‖Tx− y‖ ≤ ‖x− y‖ , ∀ x ∈ C and y ∈ Fix(T).

(iii) A mapping T : C → C is said to be κ-strictly pseudo-contractive if there exists a constant
κ ∈ [0,1) such that

‖Tx−T y‖2 ≤ ‖x− y‖2 +κ‖(I −T)x− (I −T)y‖2 , ∀ x, y ∈ C. (1.4)

In a real Hilbert space, the inequality (1.4) is equivalent to

〈Tx−T y, x− y〉 ≤ ‖x− y‖2 − 1−κ
2

‖(I −T)x− (I −T)y‖2 , ∀ x, y ∈ C. (1.5)

Definition 1.2. A mapping T is said to be demicontractive if Fix(T) 6= ; and there exists a
constant κ ∈ [0,1) such that

‖Tx− y‖2 ≤ ‖x− y‖2 +κ‖(I −T)x‖2 , ∀ x ∈ C and y ∈ Fix(T). (1.6)

Observe that the class of demicontractive mapping includes various types of nonlinear
mappings such as nonexpansive mapping, quasi-nonexpansive mapping and strictly pseudo-
contractive mapping.
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Using the same method of proof of (1.5), we obtain that if T : C → C is demicontractive
mapping, then (1.6) is equivalent to the following inequality

〈Tx− y, x− y〉 ≤ ‖x− y‖2 − 1−κ
2

‖(I −T)x‖2 , ∀ x ∈ C and y ∈ Fix(T). (1.7)

In 1977, Maruster [10] introduced the condition (A) of a mapping T .

Definition 1.3 ([10]). The mapping T is said to satisfy the condition (A) if Fix(T) is nonempty
and if there exists a real positive number λ such that

〈x−Tx, x− y〉 ≥λ‖x−Tx‖2, ∀ x ∈ C, y ∈ Fix(T).

In 2015, Maruster [9] studied a strong convergence theorem of a κ-demicontractive mapping
as follows:

Theorem 1.2 ([9]). Suppose that T is κ-demicontractive on C and satisfies the condition (A).
Then the sequence {xn} generated by the Mann iteration with control sequence tk satisfying the
condition 0< a ≤ tn ≤ b < 1−κ, and for suitable starting point x0, converges strongly to p.

In 2013, Mongkolkeeha, Cho and Kumam [11] defined the new iterative scheme for two
κ-demicontractive mapings as follows:{

x1 ∈ C arbitrary chosen,
xn+1 =αnxn + (1−αn)(βnSxn + (1−βn)Txn), ∀ n ∈N,

where S,T : C → C be two κ-demicontractive mappings such that I −S is demiclosed at zero
with Fix(S)∩Fix(T) 6= ;, {αn}⊂ [κ,1] and {βn}⊂ [0,1] are the sequences satisfying some control
conditions. Then the sequence {xn} converges strongly to a point v ∈ Fix(S)∩Fix(T).

Question. Is it possible to prove a strong convergence theorem for a demicontractive mapping
and equilibrium problems without using the condition (A) and the control sequences that are
not depended on the constant κ?

Motivated by the related research described above, we introduce the Halpern’s iterative
method modified for demicontractive mapping and a finite family of equilibrium problems. Then,
under some appropriate conditions, we prove a strong convergence theorem for the combination
of equilibrium problem and a fixed point set of demicontractive mapping. Finally, we give a
numerical example for our main result in space of real numbers.

2. Preliminaries
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. We denote weak
convergence and strong convergence by notations “*” and “→”, respectively. For every x ∈ H,
there is a unique nearest point PCx in C such that

‖x−PCx‖ ≤ ‖x− y‖,′′ y ∈ C.

Such an operator PC is called the metric projection of H onto C.
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Lemma 2.1 ([16]). For a given z ∈ H and u ∈ C,

u = PC z ⇔〈u− z,v−u〉 ≥ 0,′′ v ∈ C.

Furthermore, PC is a firmly nonexpansive mapping of H onto C and satisfies

‖PCx−PC y‖2 ≤ 〈PCx−PC y, x− y〉 ,′′ x, y ∈ H.

Lemma 2.2 ([12]). Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence {xn}⊂ H
with xn * x, the inequality

liminf
n→∞ ‖xn − x‖ < liminf

n→∞ ‖xn − y‖
holds for every y ∈ H with y 6= x.

Lemma 2.3 ([17]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1−αn)sn +δn, ∀ n ≥ 0,

where αn is a sequence in (0,1) and {δn} is a sequence such that

(1)
∞∑

n=1
αn =∞;

(2) limsup
n→∞

δn
αn

≤ 0 or
∞∑

n=1
|δn| <∞.

Then, lim
n→∞ sn = 0.

Lemma 2.4 ([13]). Let H be a real Hilbert space. Then the following results hold:
(i) For all x, y ∈ H and α ∈ [0,1],

‖αx+ (1−α)y‖2 =α‖x‖2 + (1−α)‖y‖2 −α(1−α)‖x− y‖2 .

(ii) ‖x+ y‖2 ≤ ‖x‖2 +2〈y, x+ y〉, for each x, y ∈ H.

Lemma 2.5. Let T : C → C be a κ-demicontractive mapping with κ≤ δ and Fix(T) 6= ;. Define
S : C → C by Sx :=λTx+ (1−λ)x, where λ ∈ (0,σ) and δ+σ< 1. Then, there hold the following
statement:

(i) Fix(T)= Fix(S);

(ii) S is a quasi-nonexpansive mapping, that is,

‖Sx− y‖ ≤ ‖x− y‖, for every x ∈ C and y ∈ Fix(T).

Proof. It is obvious that Fix(T)= Fix(S) due to the fact that Sx− x =λ(Tx− x), ∀ x ∈ C.
To prove (ii), let x ∈ C and y ∈ Fix(T). Then, by (1.6) and (1.7), we obtain

‖Sx− y‖2 = ‖λ(Tx− y)+ (1−λ)(x− y)‖2

≤λ2 ‖Tx− y‖2 + (1−λ)2 ‖x− y‖2 +2λ(1−λ)〈Tx− y, x− y〉
≤λ2 (‖x− y‖2 +κ‖x−Tx‖2)+ (1−λ)2‖x− y‖2 +2λ(1−λ)

(
‖x− y‖2 − 1−κ

2
‖x−Tx‖2

)
= (

λ2 + (1−λ)2 +2λ(1−λ)
)‖x− y‖2 + (

λ2κ−λ(1−λ)(1−κ)
)‖x−Tx‖2

= ‖x− y‖2 +λ(κ+λ−1)‖x−Tx‖2

≤ ‖x− y‖2 +λ(δ+σ−1)‖x−Tx‖2

≤ ‖x− y‖2.

Therefore, S is a quasi-nonexpansive mapping.
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For solving the equilibrium problem for a bifunction F : C×C →R, let us assume that F and
C satisfy the following conditions:
(A1) F(x, x)= 0 for all x ∈ C;

(A2) F is monotone, i.e., F(x, y)+F(y, x)≤ 0 for all x, y ∈ C;

(A3) For each x, y, z ∈ C, lim
t→0+ F (tz+ (1− t)x, y)≤ F(x, y);

(A4) For each x ∈ C, y 7→ F(x, y) is convex and lower semicontinuous.

Remark 2.6. Let C be a nonempty closed convex subset of a real Hilbert space H. For

i = 1,2, . . . , N , let Fi : C ×C → R be bifunctions satisfying (A1)-(A4). Then,
N∑

i=1
aiFi satisfies

(A1)-(A4), where ai ∈ (0,1) for every i = 1,2, . . . , N and
N∑

i=1
ai = 1.

Proof. For every i = 1,2, . . . , N , let Fi : C ×C → R be bifunctions satisfying (A1)-(A4) and let

x, y, z ∈ C and ai ∈ (0,1) for all i = 1,2, . . . , N and
N∑

i=1
ai = 1.

To prove (A1), we get
N∑

i=1
aiFi(x, x)= a1F1(x, x)+a2F2(x, x)+ . . .+aNFN(x, x)= 0.

Since
N∑

i=1
aiFi(x, y)+

N∑
i=1

aiFi(y, x)=
N∑

i=1
ai (Fi(x, y)+Fi(y, x))≤ 0,

we have
N∑

i=1
aiFi satisfies (A2).

Let t ∈ [0,1], then we have

lim
t→0+

N∑
i=1

aiFi(tz+ (1− t)x, y)=
N∑

i=1
ai lim

t→0+ Fi(tz+ (1− t)x, y)=
N∑

i=1
aiFi(x, y).

Thus (A3) holds.
To prove (A4), we first let α ∈ (0,1). Therefore, we get

N∑
i=1

aiFi(x,αz+ (1−α)y)≤
N∑

i=1
ai (αFi(x, z)+ (1−α)Fi(x, y))

=α
N∑

i=1
aiFi(x, z)+ (1−α)

N∑
i=1

aiFi(x, y).

It follows that
N∑

i=1
aiFi is convex. Next, let {yn}⊂ C with yn → y as n →∞. Thus we obtain

liminf
n→∞

N∑
i=1

aiFi (x, yn)≥
N∑

i=1
ai liminf

n→∞ Fi (x, yn)≥
N∑

i=1
aiFi (x, y) .

Then
N∑

i=1
aiFi is lower semicontinuous. This implies that (A4) holds.

We can conclude that
N∑

i=1
aiFi satisfies (A1)-(A4).
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Lemma 2.7 ([15]). Let C be a nonempty closed convex subset of a real Hilbert space H. For

i = 1,2, . . . , N , let Fi : C×C →R be bifunctions satisfying (A1)-(A4) with
N⋂

i=1
EP (Fi) 6= ;. Then,

EP

(
N∑

i=1
aiFi

)
=

N⋂
i=1

EP (Fi) ,

where ai ∈ (0,1) for every i = 1,2, . . . , N and
N∑

i=1
ai = 1.

Lemma 2.8. Let C be a nonempty closed convex subset of a real Hilbert space H. For
i = 1,2, . . . , N , let Fi : C×C →R be bifunctions satisfying (A1)-(A4). Let the sequences {xn}⊆ H,
{un}⊆ C and {rn}⊆ (0,1) satisfying the following condition:

N∑
i=1

aiFi (un, y)+ 1
rn

〈y−un,un − xn〉 ≥ 0, ∀ y ∈ C .

Therefore, if unk *ω as k →∞ and ‖un − xn‖→ 0 as n →∞, then ω ∈⋂N
i=1 EP (Fi).

Proof. Due to the fact that Fi is bifunctions satisfying (A1)-(A4), for all i = 1,2, . . . , N , then, by

Remark 2.6, we have
N∑

i=1
aiFi satisfies the conditions (A1)-(A4). Since

N∑
i=1

aiFi (un, y)+ 1
rn

〈y−un,un − xn〉 ≥ 0,∀y ∈ C,

and
N∑

i=1
aiFi satisfies the conditions (A1)-(A4), we obtain

1
rn

〈y−un,un − xn〉 ≥
N∑

i=1
aiFi (y,un) , ∀ y ∈ C.

In particular, it follows that〈
y−unk ,

unk − xnk

rnk

〉
≥

N∑
i=1

aiFi
(
y,unk

)
, ∀ y ∈ C. (2.1)

From ‖un − xn‖→ 0 as n →∞, (2.1) and (A4), we have
N∑

i=1
aiFi (y,ω)≤ 0, ∀ y ∈ C. (2.2)

Put yt := ty+ (1− t)ω, t ∈ (0,1], we have yt ∈ C. By using (A1), (A4) and (2.2), we have

0=
N∑

i=1
aiFi (yt, yt)

=
N∑

i=1
aiFi (yt, ty+ (1− t)ω)

≤ t
N∑

i=1
aiFi (yt, y)+ (1− t)

N∑
i=1

aiFi (yt,ω)

≤ t
N∑

i=1
aiFi (yt, y) .

Communications in Mathematics and Applications, Vol. 11, No. 2, pp. 181–198, 2020



Fixed Point Theorems for a Demicontractive Mapping. . . : W. Khuangsatung and S. Suwannaut 187

It implies that
N∑

i=1
aiFi (ty+ (1− t)ω, y)≥ 0, ∀ t ∈ (0,1] and ∀y ∈ C. (2.3)

From (2.3), taking t → 0+ and using (A3), we can conclude that

0≤
N∑

i=1
aiFi (ω, y) , ∀ y ∈ C.

Therefore, ω ∈ EP
(

N∑
i=1

aiFi

)
. By Lemma 2.7, we obtain EP

(
N∑

i=1
aiFi

)
=

N⋂
i=1

EP (Fi). It follows

that

ω ∈
N⋂

i=1
EP (Fi) . (2.4)

Lemma 2.9 ([1]). Let C be a nonempty closed convex subset of H and let F be a bifunction of
C×C into R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

F(z, y)+ 1
r
〈y− z, z− x〉 ≥ 0, ∀ y ∈ C.

Lemma 2.10 ([3]). Assume that F : C×C → R satisfies (A1)-(A4). For r > 0, define a mapping
Tr : H → C as follows:

Tr(x)= {
z ∈ C : F(z, y)+ 1

r
〈y− z, z− x〉 ≥ 0, ∀ y ∈ C

}
for all x ∈ H. Then, the following hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Tr(x)−Tr(y)‖2 ≤ 〈Tr(x)−Tr(y), x− y〉 ;

(iii) Fix (Tr)= EP(F);

(iv) EP(F) is closed and convex.

Remark 2.11 ([15]). By Remark 2.6, we have
N∑

i=1
aiFi satisfies (A1)-(A4). By using Lemma 2.7

and Lemma 2.10, we obtain

Fix(Tr)= EP

(
N∑

i=1
aiFi

)
=

N⋂
i=1

EP (Fi) ,

where ai ∈ (0,1), for each i = 1,2, . . . , N , and
N∑

i=1
ai = 1.

3. Strong Convergence Theorem
Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. For
i = 1,2, . . . , N , let Fi : C × C → R be a bifunction satisfying (A1)-(A4). Let T : C → C be a
demicontractive mapping with coefficient κ ≤ θ1 and let a mapping Sn : C → C be defined by
Snx := (1−λn)x+λnTx with λn < θ2 and θ1 +θ2 < 1. Assume that Θ=⋂N

i=1 EP (Fi)∩Fix(T) 6= ;.
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Let the sequences {xn} and {un} be generated by x1,u ∈ C and
N∑

i=1
aiFi (un, y)+ 1

rn
〈y−un,un − xn〉 ≥ 0, ∀ y ∈ C,

xn+1 =βn (αnu+ (1−αn)un)+ (
1−βn

)
Snxn, ∀ n ≥ 1,

(3.1)

where {αn}, {βn}, {λn} ⊆ (0,1) and 0 ≤ ai ≤ 1 for every i = 1,2, . . . , N, satisfying the following
conditions:

(i) lim
n→∞αn = 0 and

∞∑
n=1

αn =∞;

(ii) 0< τ≤βn ≤ υ< 1, for some τ,υ> 0;

(iii)
∞∑

n=1
λn <∞;

(iv) 0< ε≤ rn ≤ η<∞, for some ε,η> 0;

(v)
N∑

i=1
ai = 1;

(vi)
∞∑

n=1
|αn+1 −αn| <∞,

∞∑
n=1

∣∣βn+1 −βn
∣∣<∞,

∞∑
n=1

|λn+1 −λn| <∞,
∞∑

n=1
|rn+1 − rn| <∞.

Then {xn} and {un} converge strongly to q = PΘu.

Proof. The proof of this theorem will be divided into five steps.

Step 1. We show that {xn} is bounded.

Since
N∑

i=1
aiFi satisfies (A1)-(A4) and

N∑
i=1

aiFi (un, y)+ 1
rn

〈y−un,un − xn〉 ≥ 0, ∀ y ∈ C,

by Lemma 2.10 and Remark 2.11, we have un = Trn xn and Fix(Trn)=⋂N
i=1 EP (Fi).

Let z ∈Θ. From Lemma 2.5 and Lemma 2.10 , we obtain

‖xn+1 − z‖ = ∥∥βn (αnu+ (1−αn)un)+ (
1−βn

)
Snxn − z

∥∥
= ∥∥βn (αn(u− z)+ (1−αn) (un − z))+ (

1−βn
)
(Snxn − z)

∥∥
≤βn ‖αn(u− z)+ (1−αn) (un − z)‖+ (

1−βn
)‖Snxn − z‖

≤βn (αn ‖u− z‖+ (1−αn)‖un − z‖)+ (
1−βn

)‖xn − z‖
≤βn (αn ‖u− z‖+ (1−αn)‖xn − z‖)+ (

1−βn
)‖xn − z‖

≤max {‖u− z‖ ,‖x1 − z‖} .

By induction, we get ‖xn − z‖ ≤max {‖u− z‖ ,‖x1 − z‖} ,∀n ∈N. This implies that {xn} is bounded
and so is {un}.

Step 2. We will show that lim
n→∞‖xn+1 − xn‖ = 0.

Since un = Trn xn, by utilizing the definition of Trn , we obtain
N∑

i=1
aiFi

(
Trn xn, y

)+ 1
rn

〈
y−Trn xn,Trn xn − xn

〉≥ 0, ∀ y ∈ C, (3.2)
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and
N∑

i=1
aiFi

(
Trn+1 xn+1, y

)+ 1
rn+1

〈
y−Trn+1 xn+1,Trn+1 xn+1 − xn+1

〉≥ 0, ∀ y ∈ C. (3.3)

From (3.2) and (3.3), it follows that
N∑

i=1
aiFi

(
Trn xn,Trn+1 xn+1

)+ 1
rn

〈
Trn+1 xn+1 −Trn xn,Trn xn − xn

〉≥ 0, (3.4)

and
N∑

i=1
aiFi

(
Trn+1 xn+1,Trn xn

)+ 1
rn+1

〈
Trn xn −Trn+1 xn+1,Trn+1 xn+1 − xn+1

〉≥ 0. (3.5)

From (3.4) and (3.5) and the fact that
N∑

i=1
aiFi satisfies (A2), we have

1
rn

〈
Trn+1 xn+1 −Trn xn,Trn xn − xn

〉+ 1
rn+1

〈
Trn xn −Trn+1 xn+1,Trn+1 xn+1 − xn+1

〉≥ 0,

which implies that〈
Trn xn −Trn+1 xn+1,

Trn+1 xn+1 − xn+1

rn+1
− Trn xn − xn

rn

〉
≥ 0.

It follows that〈
Trn+1 xn+1 −Trn xn,Trn xn −Trn+1 xn+1 +Trn+1 xn+1 − xn − rn

rn+1

(
Trn+1 xn+1 − xn+1

)〉≥ 0. (3.6)

From (3.6), we obtain∥∥Trn+1 xn+1 −Trn xn
∥∥2 ≤

〈
Trn+1 xn+1 −Trn xn,Trn+1 xn+1 − xn − rn

rn+1

(
Trn+1 xn+1 − xn+1

)〉
=

〈
Trn+1 xn+1 −Trn xn, xn+1 − xn +

(
1− rn

rn+1

)(
Trn+1 xn+1 − xn+1

)〉
≤ ∥∥Trn+1 xn+1 −Trn xn

∥∥∥∥∥∥xn+1 − xn +
(
1− rn

rn+1

)(
Trn+1 xn+1 − xn+1

)∥∥∥∥
≤ ∥∥Trn+1 xn+1 −Trn xn

∥∥[
‖xn+1 − xn‖+

∣∣∣∣1− rn

rn+1

∣∣∣∣∥∥Trn+1 xn+1 − xn+1
∥∥]

= ∥∥Trn+1 xn+1 −Trn xn
∥∥[

‖xn+1 − xn‖+ 1
rn+1

|rn+1 − rn|
∥∥Trn+1 xn+1 − xn+1

∥∥]
≤ ∥∥Trn+1 xn+1 −Trn xn

∥∥[
‖xn+1 − xn‖+ 1

d
|rn+1 − rn|

∥∥Trn+1 xn+1 − xn+1
∥∥]

,

which follows that

‖un+1 −un‖ ≤ ‖xn+1 − xn‖+ 1
ε
|rn+1 − rn|‖un+1 − xn+1‖ . (3.7)

From (3.7), we have

‖un −un−1‖ ≤ ‖xn − xn−1‖+ 1
ε
|rn − rn−1|‖un − xn‖ . (3.8)

First, we let yn =αnu+ (1−αn)un. From (3.8), we derive that

‖xn+1 − xn‖ ≤βn ‖yn − yn−1‖+
∣∣βn −βn−1

∣∣‖yn−1‖+
(
1−βn

)‖Snxn −Sn−1xn−1‖
+ ∣∣βn −βn−1

∣∣‖Sn−1xn−1‖
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≤βn

[
|αn −αn−1|‖u‖+ (1−αn)‖un −un−1‖+|αn −αn−1|‖un−1‖

]
+ ∣∣βn −βn−1

∣∣‖yn−1‖+
(
1−βn

)[
(1−λn)‖xn − xn−1‖+|λn −λn−1|‖xn−1‖

+λn ‖Txn −Txn−1‖+|λn −λn−1|‖Txn−1‖
]
+ ∣∣βn −βn−1

∣∣‖Sn−1xn−1‖

≤βn (1−αn)
[
‖xn − xn−1‖+ 1

ε
|rn − rn−1|‖un − xn‖

]
+ (

1−βn
)‖xn − xn−1‖

+|αn −αn−1| (‖u‖+‖un−1‖)+
∣∣βn −βn−1

∣∣ (‖yn−1‖+‖Sn−1xn−1‖)

+|λn −λn−1| (‖xn−1‖+‖Txn−1‖)+λn ‖Txn −Txn−1‖

≤ (
1−αnβn

)‖xn − xn−1‖+ 1
ε
|rn − rn−1|‖un − xn‖+|αn −αn−1| (‖u‖+‖un−1‖)

+ ∣∣βn −βn−1
∣∣ (‖yn−1‖+‖Sn−1xn−1‖)+|λn −λn−1| (‖xn−1‖+‖Txn−1‖)

+λn ‖Txn −Txn−1‖ .

By Lemma 2.3 and the conditions (i), (ii), (vi), we obtain

lim
n→∞‖xn+1 − xn‖ = 0. (3.9)

Step 3. Prove that lim
n→∞‖un − xn‖ = 0 and lim

n→∞‖Snxn − xn‖ = 0.

To show this, let z ∈Θ. Since un = Trn xn and Trn is firmly nonexpansive mapping, then we
obtain∥∥z−Trn xn

∥∥2 = ∥∥Trn z−Trn xn
∥∥2

≤ 〈
Trn z−Trn xn, z− xn

〉
= 1

2

(∥∥Trn xn − z
∥∥2 +‖xn − z‖2 −∥∥Trn xn − xn

∥∥2
)
,

which follows that∥∥Trn xn − z
∥∥2 ≤ ‖xn − z‖2 −∥∥Trn xn − xn

∥∥2 .

That is,

‖un − z‖2 ≤ ‖xn − z‖2 −‖un − xn‖2 . (3.10)

By the definition of xn, we have

‖xn+1 − z‖2 = ∥∥βn (αn(u− z)+ (1−αn) (un − z))+ (
1−βn

)
(Snxn − z)

∥∥2

≤βn ‖αn(u− z)+ (1−αn) (un − z)‖2 + (
1−βn

)‖Snxn − z‖2

≤βn
[
αn ‖u− z‖2 + (1−αn)‖un − z‖2]+ (

1−βn
)‖xn − z‖2

≤βn
[
αn ‖u− z‖2 + (1−αn)

(‖xn − z‖2 −‖un − xn‖2)]+ (
1−βn

)‖xn − z‖2

≤αn ‖u− z‖2 +‖xn − z‖2 −βn (1−αn)‖un − xn‖2 ,

which implies that

βn (1−αn)‖un − xn‖2 ≤αn ‖u− z‖2 +‖xn − z‖2 −‖xn+1 − z‖2

≤αn ‖u− z‖2 + (‖xn − z‖+‖xn+1 − z‖)‖xn+1 − xn‖ .
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From (i), (ii) and 3.9, we have

lim
n→∞‖un − xn‖ = 0. (3.11)

Since

xn+1 − xn =βn (αn (u− xn)+ (1−αn) (un − xn))+ (
1−βn

)
(Snxn − xn) ,

then we get(
1−βn

)‖Snxn − xn‖ ≤βnαn ‖u− xn‖+βn (1−αn)‖un − xn‖+‖xn+1 − xn‖ .

This follows by (i), (ii) and 3.11 that

lim
n→∞‖Snxn − xn‖ = 0. (3.12)

Step 4. We will show that limsup
n→∞

〈u− q, xn − q〉 ≤ 0, where q = PΘu.

To show this, choose a subsequence
{
xnk

}
of {xn} such that

limsup
n→∞

〈u− z, xn − z〉 = lim
k→∞

〈
u− z, xnk − z

〉
. (3.13)

Without loss of generality, we can assume that xnk *ω as k →∞ where ω ∈ C. From (3.11), we
obtain unk *ω as k →∞.
From

N∑
i=1

aiFi (un, y)+ 1
rn

〈y−un,un − xn〉 ≥ 0, ∀ y ∈ C,

and unk *ω as k →∞, by Lemma 2.8, we can conclude that

ω ∈ EP

(
N∑

i=1
aiFi

)
=

N⋂
i=1

EP (Fi) . (3.14)

Next, we will show that ω ∈ Fix (T).

By Lemma 2.5, we have Fix(Sn)= Fix(T). Assume that ω 6= Snω. Using Opial’s condition, (3.12)
and the condition (iii), then we obtain

liminf
k→∞

∥∥xnk −ω
∥∥< liminf

k→∞
∥∥xnk −Snkω

∥∥
≤ liminf

k→∞

(∥∥xnk −Snk xnk

∥∥+∥∥Snkω−Sω
∥∥)

≤ liminf
k→∞

(∥∥xnk −Snk xnk

∥∥+∥∥xnk −ω
∥∥+λnk

∥∥(I −T)xnk − (I −T)ω
∥∥)

≤ liminf
k→∞

∥∥xnk −ω
∥∥ .

This is a contradiction. Then we have

ω ∈ Fix(Sn)= Fix(T). (3.15)

From (3.14) and (3.15), we can deduce that ω ∈Θ.

Since xnk *ω as k →∞, q = PΘu and ω ∈Θ, then, by Lemma 2.1, we can conclude that

limsup
n→∞

〈u− q, xn − q〉 = lim
k→∞

〈
u− q, xnk − z

〉
= 〈u− q,ω− q〉
≤ 0. (3.16)
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Step 5. Finally, we will show that the sequence {xn} converges strongly to q = PΘu.
By the definition of xn and Lemma 2.4, we have

‖xn+1 − q‖2 = ∥∥βn (αn(u− q)+ (1−αn) (un − q))+ (
1−βn

)
(Snxn − q)

∥∥2

≤ ∥∥βn (1−αn) (un − q)+ (
1−βn

)
(Snxn − q)

∥∥2 +2αnβn 〈u− q, xn+1 − q〉
≤ (

βn (1−αn)‖un − q‖+ (
1−βn

)‖Snxn − q‖)2 +2αnβn 〈u− q, xn+1 − q〉
≤ (

βn (1−αn)‖xn − q‖+ (
1−βn

)‖xn − q‖)2 +2αnβn 〈u− q, xn+1 − q〉
= (

1−αnβn
)2 ‖xn − q‖2 +2αnβn 〈u− q, xn+1 − q〉

≤ (
1−αnβn

)‖xn − q‖2 +2αnβn 〈u− q, xn+1 − q〉 .

From (3.16), the conditions (i), (ii) and Lemma 2.3, we can conclude that {xn} converges strongly
to q = PΘu. By (3.11), we have {un} converges strongly to q = PΘu. This completes the proof.

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : C×C →R be a bifunction satisfying (A1)-(A4). Let T : C → C be a demicontractive mapping
with coefficient κ≤ θ1 and let a mapping Sn : C → C be defined by Snx := (1−λn)x+λnTx with
λn < θ2 and θ1+θ2 < 1. Assume that Θ= EP (F)∩Fix(T) 6= ;. Let the sequences {xn} and {un} be
generated by x1,u ∈ C and{

F (un, y)+ 1
rn

〈y−un,un − xn〉 ≥ 0, ∀ y ∈ C,
xn+1 =βn (αnu+ (1−αn)un)+ (

1−βn
)
Snxn, ∀ n ≥ 1,

(3.17)

where {αn}, {βn}, {λn} ⊆ (0,1) and 0 ≤ ai ≤ 1 for every i = 1,2, . . . , N, satisfying the following
conditions:

(i) lim
n→∞αn = 0 and

∞∑
n=1

αn =∞;

(ii) 0< τ≤βn ≤ υ< 1, for some τ,υ> 0;

(iii) 0< ρ ≤λn < θ2 < 1, for some ρ,θ2 > 0 and
∞∑

n=1
λn <∞;

(iv) 0< ε≤ rn ≤ η<∞, for some ε,η> 0;

(v)
∞∑

n=1
|αn+1 −αn| <∞,

∞∑
n=1

∣∣βn+1 −βn
∣∣<∞,

∞∑
n=1

|λn+1 −λn| <∞,
∞∑

n=1
|rn+1 − rn| <∞.

Then {xn} and {un} converge strongly to q = PΘu.

Proof. Take F = Fi , ∀ i = 1,2, . . . , N in Theorem 3.1. Then we obtain the desired result.

4. Applications
In this section, we obtain our additional results for fixed point problem of a nonspreading
mapping and a quasi-nonexpansive mapping.

In 2008, Kohsaka and Takahashi [8] introduced the nonspreading mapping T in Hilbert
space H as follows:

2‖Tu−Tv‖2 ≤ ‖Tu−v‖2 +‖u−Tv‖2, ∀ u,v ∈ C. (4.1)
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In 2009, it is shown by Iemoto and Takahashi [4] that (4.1) is equivalent to the following
equation.

‖Tu−Tv‖2 ≤ ‖u−v‖2 +2〈u−Tu,v−Tv〉, ∀ u,v ∈ C.

In 2014, Suwannaut and Kangtunyakarn [14] obtain the following main results for a
nonspraeding mapping on C.

Lemma 4.1 ([14]). Let C be a nonempty closed convex subset of a real Hilbert space H and let
T : C → C be a nonspreading mapping with Fix(T) 6= ;. Then there hold the following statement:

(i) Fix(T)=V I(C, I −T);

(ii) For every u ∈ C and v ∈ Fix(T),

‖PC(I −λ(I −T))u−v‖ ≤ ‖u−v‖, where λ ∈ (0,1),

that is, a mapping PC(I −λ(I −T)) is quasi-nonexpansive.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. For
i = 1,2, . . . , N , let Fi : C × C → R be a bifunction satisfying (A1)-(A4). Let T : C → C be a
nonspreading mapping and let a mapping Wn : C → C be defined by Wnx := (1−ρn)x+ρnTx.
Assume that Θ = ⋂N

i=1 EP (Fi)∩Fix(T) 6= ;. Let the sequences {xn} and {un} be generated by
x1,u ∈ C and

N∑
i=1

aiFi (un, y)+ 1
rn

〈y−un,un − xn〉 ≥ 0, ∀ y ∈ C,

xn+1 =βn (αnu+ (1−αn)un)+ (
1−βn

)
Wnxn, ∀ n ≥ 1,

(4.2)

where {αn}, {βn},
{
ρn

} ⊆ (0,1) and 0 ≤ ai ≤ 1 for every i = 1,2, . . . , N, satisfying the following
conditions:

(i) lim
n→∞αn = 0 and

∞∑
n=1

αn =∞;

(ii) 0< τ≤βn ≤ υ< 1, for some τ,υ> 0;

(iii)
∞∑

n=1
ρn <∞;

(iv) 0< ε≤ rn ≤ η<∞, for some ε,η> 0;

(v)
N∑

i=1
ai = 1;

(vi)
∞∑

n=1
|αn+1 −αn| <∞,

∞∑
n=1

∣∣βn+1 −βn
∣∣<∞,

∞∑
n=1

∣∣ρn+1 −ρn
∣∣<∞,

∞∑
n=1

|rn+1 − rn| <∞.

Then {xn} and {un} converge strongly to q = PΘu.

Proof. Applying Lemma 4.1 and the same proof of Theorem 3.1, we obtain the desired
results.

Observe that every a nonspreading mapping T with Fix(T) 6= ; is quasi-nonexpansive. Then
we also have the following result.
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Lemma 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H and let T : C → C
be a quasi-nonexpansive mapping with Fix(T) 6= ;. Then the following results are true:

(i) Fix(T)=V I(C, I −T);

(ii) For every u ∈ C and v ∈ Fix(T),

‖PC(I −λ(I −T))u−v‖ ≤ ‖u−v‖, where λ ∈ (0,1).

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H. For
i = 1,2, . . . , N , let Fi : C×C → R be a bifunction satisfying (A1)-(A4). Let T : C → C be a quasi-
nonexpansive mapping and let a mapping Wn : C → C be defined by Wnx := (1−ρn)x+ρnTx.
Assume that Θ = ⋂N

i=1 EP (Fi)∩Fix(T) 6= ;. Let the sequences {xn} and {un} be generated by
x1,u ∈ C and

N∑
i=1

aiFi (un, y)+ 1
rn

〈y−un,un − xn〉 ≥ 0, ∀ y ∈ C,

xn+1 =βn (αnu+ (1−αn)un)+ (
1−βn

)
Wnxn, ∀ n ≥ 1,

(4.3)

where {αn}, {βn},
{
ρn

} ⊆ (0,1) and 0 ≤ ai ≤ 1 for every i = 1,2, . . . , N, satisfying the following
conditions:

(i) lim
n→∞αn = 0 and

∞∑
n=1

αn =∞;

(ii) 0< τ≤βn ≤ υ< 1, for some τ,υ> 0;

(iii)
∞∑

n=1
ρn <∞;

(iv) 0< ε≤ rn ≤ η<∞, for some ε,η> 0;

(v)
N∑

i=1
ai = 1;

(vi)
∞∑

n=1
|αn+1 −αn| <∞,

∞∑
n=1

∣∣βn+1 −βn
∣∣<∞,

∞∑
n=1

∣∣ρn+1 −ρn
∣∣<∞,

∞∑
n=1

|rn+1 − rn| <∞.

Then {xn} and {un} converge strongly to q = PΘu.

Proof. Using Lemma 4.3 and Theorem 3.1, we get the result of Theorem 4.4.

5. A Numerical Example
In this section, we give numerical examples to support our main theorem.

Example 5.1. Let R be the set of real numbers. For every i = 1,2, . . . , N , let Fi :R×R→R and
T :R→R be defined by

Tx = −7x
5

,

Fi(x, y)= i(−5x2 + xy+4y2), for all x, y ∈R.

Put ai = 2
7i + 1

N7N , for every i = 1,2, . . . , N . Let αn = 1
100n , βn = 3n

5n+3 , rn = 5n+6
8n+9 and λn = 1

n2+2 for
every n ∈N. Then, the sequences {xn} and {un} converge strongly to 0.
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Solution. Obviously, T is κ-demicontractive mapping with κ= 1
6 and Fix(T)= {0}. If we choose

θ1 = 1
5 and θ2 = 1

2 , then we obtain θ1+θ2 = 7
10 < 1. This implies by Lemma 2.5 that a mapping

Sn is quasi-nonexpansive mapping.

Since ai = 2
7i + 1

N7N , we obtain
N∑

i=1
aiFi(x, y)=

N∑
i=1

(
2
7i +

1
N7N

)
i(−5x2 + xy+4y2)

= ξ(−5x2 + xy+4y2),

where ξ=
N∑

i=1

(
2
7i + 1

N7N

)
i. It is clear to check that

N∑
i=1

aiFi satisfies all conditions (A1)-(A4) and

0 ∈ EP
(

N∑
i=1

aiΦi

)
=⋂N

i=1 EP (Φi). Then we have

Fix(T)∩
N⋂

i=1
EP (Fi)= {0}.

Observe that

0≤
N∑

i=1
aiFi (un, y)+ 1

rn
〈y−un,un − xn〉

= ξ(−5u2
n +un y+4y2)+ 1

rn
(y−un) (un − xn)

⇔
0≤ rnξ(−5u2

n +un y+4y2)+ (y−un) (un − xn)

= 4ξrn y2 + (un + rnunξ− xn) y−u2
n −5ξrn(un)2 +unxn. (5.1)

Let G(y)= 4ξrn y2+(un + rnunξ− xn) y−u2
n−5ξrn(un)2+unxn. Then G(y) is a quadratic function

of y with coefficients a = 4ξrn, b = un + rnunξ− xn, and c =−u2
n −5ξrn(un)2 +unxn. Determine

the discriminant ∆ of G as follows:

∆= b2 −4ac

= (un + rnunξ− xn)2 −4(4ξrn)
(−u2

n −5ξrn(un)2 +unxn
)

= (un)2 +18ξrn(un)2 +81ξ2(rn)2(un)2 −18ξrnunxn + x2
n

= (un +9ξrnun − xn)2 .

From (5.1), we have G(y)≥ 0, for every y ∈R. If G(y) has most one solution in R, thus we have
∆≤ 0. This implies that

un = xn

1+9ξrn
, (5.2)

where ξ=
N∑

i=1

(
2
7i + 1

N7N

)
i.

It is clear to see that the sequences {αn}, {βn}, {rn} and {λn} satisfy all the conditions of
Theorem 3.1. From Theorem 3.1, we can conclude that the sequences {xn} and {un} converge
strongly to 0.

Table 1 and Figures 1-2 show the values of sequences {xn} and {un} where u = x1 = −5 and
u = x1 = 8 and n = N = 20.
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Remark 5.2. From the previous example, we can conclude that
(i) Table 1, Figure 1 and Figure 2 show that the sequences {un} and {xn} converge to 0, where

{0}= Fix(T)∩
N⋂

i=1
EP (Fi).

(ii) The convergence of {un} and {xn} can be guaranteed by Theorem 3.1.

Table 1. The values of {un} and {xn} with n = N = 20

u = x1 =−5 u = x1 = 8

n un xn un xn

1 −1.531532 −5.000000 2.450450 8.000000

2 −0.374176 −1.212331 0.598682 1.939730

3 −0.178184 −0.575048 0.285094 0.920077

4 −0.099990 −0.321920 0.159984 0.515072

5 −0.059731 −0.191994 0.095570 0.307190
...

...
...

...
...

10 −0.007125 −0.022817 0.011401 0.036508
...

...
...

...
...

16 −0.001899 −0.006073 0.003039 0.009716

17 −0.001702 −0.005442 0.002724 0.008707

18 −0.001552 −0.004960 0.002483 0.007936

19 −0.001433 −0.004578 0.002292 0.007325

20 −0.001335 −0.004266 0.002136 0.006826

Figure 1. The convergence comparison of {un} and {xn} with different u = x1 =−5
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Figure 2. The convergence comparison of {un} and {xn} with different u = x1 = 8
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The main aim of this paper is to study a strong convergence theorem of viscosity approximation

method for G-nonexpansive mapping defined on a Hilbert space endowed with a directed graph.

By using our main result, we give a numerical expample to approximate the value of π.
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1. INTRODUCTION

The fixed point theory plays an important role in nonlinear functional analysis and is a very useful tool

in various fields. In particular, fixed point theorem has been applied in many branches of sciences.

For a recent trend of fixed point problem, one of the most interesting problems is the combination of

fixed point theory and graph theory. In the past few years, many researchers have studied fixed point

theorems in a metric space endowed with a graphs; see [1-4] and references cited therein.

Let (X, d) be a metric space. A mapping T : X → X is said to be contraction if there is

0 < k < 1 such that

d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.
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The set of all fixed points of a mapping T is denoted by F (T ), i.e., x ∈ F (T ) if and only if

x = Tx.

Let G = (V (G), E(G)) be a directed graph where V (G) is a set of vertices of graph and E(G) be

a set of its edges, assume that G has no parallel edges, we denote G−1 as the directed graph obtained

from G by reversing the direction of edges. That is,

E(G−1) = {(x, y) : (y, x) ∈ E(G)}.

If x and y are vertices in G, then a path in G from x to y of length n ∈ N ∪ {0} is a sequence

{xi}n
i=1 of n + 1 vertices such that x0 = x, xn = y, (xi−1, xi) ∈ E(G) for i = 1, 2, . . . , n. A graph

G is connected if there is a (directed) path between any two vertices of G.

For studying contractive-type mappings, the Banach contraction mapping principle, which was

firstly introduced by Banach [5] in 1922, has been an important source for solving existence problems

in fixed point theory. Some of the contractive-type mapping were studied in many directions, see [6,

7]. In 2008, Jachymski [8] combined the concept of fixed point theory and graph theory in a metric

space to generalized Banach contraction mapping principle in a metric space endowed with a directed

graph. He also introduced a contractive-type mapping with a directed graph as follows.

Definition 1.1 — [8]. Let (X, d) be a metric space and let G = (V (G), E(G)) be a directed graph

such that V (G) = X and E(G) contains all loops, i.e., 4 = {(x, x) : x ∈ X} ⊆ E(G).

We say that a mapping f : X → X is a G-contraction if f preserves edges of G, i.e.,

x, y ∈ X, (x, y) ∈ E(G) ⇒ (f(x), f(y)) ∈ E(G)

and there exists α ∈ (0, 1) such that for any x, y ∈ X ,

(x, y) ∈ E(G) ⇒ d(f(x), f(y)) ≤ αd(x, y).

In the past few years, many authors have studied a concept of G-contraction in order to im-

prove and extend the above definition, see for instance [9-12] and references cited therein. Let C

be a nonempty convex subset of a Banach space, G = (V (G), E(G)) be a directed graph such that

V (G) = C and T : C → C, then T is said to be G-nonexpansive if the following conditions hold:

(1) T is edge-preserving, i.e., for any x, y ∈ C such that (x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G);

(2) ‖Tx− Ty‖ ≤ ‖x− y‖ , whenever (x, y) ∈ E(G) for any x, y ∈ C.

This mapping was introduced by Tiammee et al. [13] in 2015.
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We know that Halpern iteration process is an important tool in fixed point problem and it can

generate a strongly convergent sequence provided that the underlying space is smooth enough. So, in

order to prove a strong convergence of the Halpern iteration process in a Hilbert space endowed with

a directed graph , Tiammee et al. [13] introduced Property G and proved strong convergence of the

Halpern iteration process for finding the set of fixed point of G-nonexpansive mappings in a Hilbert

space endowed with a directed graph as the following theorem.

Theorem 1.2 — Let C be a nonempty closed convex subset of a Hilbert space H and let G =

(V (G), E(G)) be a directed graph such that V (G) = C, E(G) is convex and G is transitive. Suppose

C has Property G. Let T : C → C be a G-nonexpansive mapping. Assume that there exists x0 ∈ C

such that (x0, Tx0) ∈ E(G). Suppose that F (T ) 6= ∅ and F (T ) × F (T ) ⊆ E(G). Let {xn} be a

sequence satisfying

x0 ∈ C, xn+1 = αnu + (1− αn)Txn, n ≥ 0. (1)

Let {xn} be a sequence defined by Halpern iteration, where u = x0. If {xn} is dominated by Px0

and {xn} dominates x0, then {xn} converges strongly to Px0, where P is the metric projection on

F (T ).

One of the most interesting iteration processes is the viscosity approximation method introduced

by Moudafi [15]. In 2004, Xu [14] studied the such method for a nonexpansive mapping in a Hilbert

space and introduced an iterative scheme for finding the set of fixed points of a nonexpansive mapping

in a Hilbert space as follows:

x0 ∈ C, xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0, (2)

where T : C → C is a nonexpansive mapping with F (T ) 6= ∅, f : C → C is a contraction, and

{αn} ⊆ (0, 1). Then, they proved a strong convergence theorem under suitable conditions of the

parameters {αn}.

In this paper, motivated by [13] and [14], we prove a strong convergence theorem for finding the

set of fixed point of G-nonexpansive mapping in a Hilbert space endowed with a directed graph. By

using our main result, we give a numerical expample to approximate the value of π.

2. PRELIMINARIES

In this paper, we denote 88 weak and strong convergence ′′ by notations 88 ⇀′′ and 88 →′′, respectively.

Recall that the (nearest point) projection PC from H onto C assigns to each x ∈ H , there exists the
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unique point PCx ∈ C satisfying the property

‖x− PCx‖ = min
y∈C

‖x− y‖.

In a real Hilbert space H , it is well known that H satisfies Opial’s condition [19], i.e., for any

sequence {xn} with xn ⇀ x, the inequality

lim
n→∞ inf ‖xn − x‖ < lim

n→∞ inf ‖xn − y‖ ,

holds for every y ∈ H with y 6= x.

The following lemmas are needed to prove the main theorem.

Definition 2.1 — A sequence {xn} in a Hilbert space H is said to converge weakly to x ∈ H if

〈xn, y〉 → 〈x, y〉 for all y ∈ H . In this case, we write xn ⇀ x.

Theorem 2.2 — [16]. Let X be a Banach space. Then X is reflexive if and only if every closed

convex bounded subset C of X is weakly compact, i.e., every bounded sequence in C has a weakly

convergent subsequence.

Lemma 2.3 — [17]. Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− αn)sn + δn, ∀n ≥ 0,

where αn is a sequence in (0, 1) and {δn} is a sequence such that

(1) :
∞∑

n=1

αn = ∞,

(2) : lim sup
n→∞

δn

αn
≤ 0 or

∞∑

n=0

|δn| < ∞.

Then, lim
n→∞ sn = 0.

Lemma 2.4 — [18]. Given x ∈ H and y ∈ C. Then, PCx = y if and only if there holds the

inequality

〈x− y, y − z〉 ≥ 0,∀z ∈ C.

Lemma 2.5 — Let H be a real Hilbert space. Then

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉,

for all x, y ∈ H .



THE METHOD FOR SOLVING FIXED POINT PROBLEM 159

Property G : [13]. Let C be a nonempty subset of a normed space X and let G = (V (G), E(G)),

where V (G) = C, be a directed graph. Then C is said to have Property G if every sequence {xn} in

C converging weakly to x ∈ C, there is a subsequence {xnk
} of {xn} such that (xnk

, x) ∈ E(G) for

all k ∈ N.

The following basic definitions of domination in graphs [20, 21] are needed to prove the main

theorem.

Let G = (V (G), E(G)) be a directed graph. A set X ⊆ V (G) is called a dominating set if every

z ∈ V (G) \ X there exists x ∈ X such that (x, z) ∈ E(G) and we say that x dominates z or z is

dominated by x. Let z ∈ V , a set X ⊆ V is dominated by z if (z, x) ∈ E(G) for any x ∈ X and we

say that X dominates z if (x, z) ∈ E(G) for all x ∈ X . In this paper, we always assume that E(G)

contains all loops.

Theorem 2.6 — [13]. Let X be a normed space and G = (V (G), E(G)) a directed graph with

V (G) = X . Suppose T : X → X is a G-nonexpansive mapping. If X has a Property G, then T is

continuous.

Theorem 2.7 — [13]. Let X be a Hilbert space and C be a subset of X having Property G.

Let G = (V (G), E(G)) be a directed graph such that V (G) = C and E(G) is convex. Suppose

T : C → C is a G-nonexpansive mapping and F (T ) × F (T ) ⊆ E(G). Then F (T ) is closed and

convex.

Definition 2.8 — [13]. Let G = (V (G), E(G)) be a directed graph. A graph G is called transitive

if for any x, y, z ∈ V (G) such that (x, y) and (y, z) are in E(G), then (x, z) ∈ E(G).

3. MAIN RESULT

In this section, we prove a strong convergence theorem of viscosity approximation methods for

G-nonexpansive mapping in Hilbert spaces endowed with a directed graph.

The following Proposition is needed to prove the main theorem.

Proposition 3.1 — Let C be a convex subset of a vector space X and G = (V (G), E(G)) a

directed graph such that V (G) = C and E(G) is convex. Let G be transitive, T : C → C be

edge-preserving, and f : C → C be a G-contraction mapping. Let {xn} be a sequence defined by





x0 ∈ C,

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0,
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where (f(x0), Tx0) and (x0, f(x0)) are in E(G). If {xn} dominates x0, then (xn, xn+1), (x0, xn),

(x0, Txn), and (xn, Txn) are in E(G) for all n ∈ N.

PROOF : We prove by induction. By transitivity of G and since (x0, f(x0)) and (f(x0), Tx0) are

in E(G), we have (x0, Tx0) ∈ E(G). Since E(G) is convex, (x0, f(x0)) and (x0, Tx0) are in E(G),

we obtain

(α0x0 + (1− α0)x0, α0f(x0) + (1− α0)Tx0) = (x0, x1) ∈ E(G).

Since T is edge-preserving, f is G-contraction mapping and (x0, x1) ∈ E(G), then (Tx0, Tx1) ∈
E(G) and ((f(x0), f(x1))) ∈ E(G), respectively. By transitivity of G and since (x0, Tx0) and

(Tx0, Tx1) are in E(G), we obtain (x0, Tx1) ∈ E(G). By assumption, (x1, x0) ∈ E(G). Then, by

transitivity of G and (x0, Tx1) ∈ E(G), we get (x1, Tx1) ∈ E(G). By transitivity of G and since

(f(x0), Tx0) and (Tx0, Tx1) are in E(G), we obtain (f(x0), Tx1) ∈ E(G). Since E(G) is convex,

(f(x0), Tx1) and (f(x0), f(x1)) are in E(G), we obtain

(α1f(x0) + (1− α1)f(x0), α1f(x1) + (1− α1)Tx1) = (f(x0), x2) ∈ E(G).

By transitivity of G and since (x1, x0) and (x0, f(x0)) are in E(G), we obtain (x1, f(x0)) ∈
E(G). Again, by transitivity of G and since (x1, f(x0)) and (f(x0), x2) are in E(G), we obtain

(x1, x2) ∈ E(G).

Next, assume that (xk, xk+1), (x0, xk), (x0, Txk), and (xk, Txk) are in E(G). Since T is

edge-preserving and (xk, xk+1) ∈ E(G), then (Txk, Txk+1) ∈ E(G). By transitivity of G, and

(x0, Txk), (Txk, Txk+1) are in E(G), we have (x0, Txk+1) ∈ E(G). Since {xn} dominates x0,

we have (xk+1, x0) ∈ E(G). By transitivity of G, and (xk+1, x0), (x0, Txk+1) are in E(G), we

have (xk+1, Txk+1) ∈ E(G). By transitivity of G, and (x0, xk), (xk, xk+1) are in E(G), we get

(x0, xk+1) ∈ E(G). Since T is edge-preserving, f is G-contraction mapping, and (x0, xk+1) ∈
E(G), we have (Tx0, Txk+1), (f(x0), f(xk+1)) are in E(G) , respectively. By transitivity of G and

since (f(x0), Tx0) and (Tx0, Txk+1) are in E(G), we obtain (f(x0), Txk+1) ∈ E(G). Since E(G)

is convex, (f(x0), Txk+1) and (f(x0), f(xk+1)) are in E(G), we obtain

(αk+1f(x0) + (1− αk+1)f(x0), αk+1f(xk+1) + (1− αk+1)Txk+1)

= (f(x0), xk+2) ∈ E(G).

By transitivity of G and since (xk+1, x0) and (x0, f(x0)) are in E(G), we obtain (xk+1, f(x0)) ∈
E(G). Again, by transitivity of G and since (xk+1, f(x0)) and (f(x0), xk+2) are in E(G), we obtain

(xk+1, xk+2) ∈ E(G).
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So, by induction, we can conclude that (xn, xn+1), (x0, xn), and (xn, Txn) are in E(G) for any

n ∈ N. 2

Theorem 3.2 — Let C be a nonempty closed convex subset of a real Hilbert space H and let

G = (V (G), E(G)) be a directed graph such that V (G) = C, E(G) is convex and G is transitive.

Suppose C has Property G. Let T : C → C be a G-nonexpansive mapping. Let f : C → C be

a G-contraction mapping with coefficient α ∈ (0, 1). Assume that there exists x0 ∈ C such that

(f(x0), Tx0) and (x0, f(x0)) are in E(G). Suppose that F (T ) 6= ∅ and F (T )×F (T ) ⊆ E(G). Let

{xn} be a sequence generated by




x0 ∈ C,

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0,
(3)

where {αn} ⊆ (0, 1) satisfies

(i) lim
n→∞αn = 0 , (ii)

∞∑

n=0

αn = ∞ , (iii)
∞∑

n=0

|αn+1 − αn| < ∞.

If {xn} dominates PF (T )f(x0) and {xn} dominates x0, then the sequence {xn} converge strongly to

x0 = PF (T )f(x0).

PROOF : We divide the proof into five steps:

Step 1 : We show that the sequence {xn} is bounded. Let x∗ = PF (T )f(x0). From Proposition 3.1,

(xn, xn+1) ∈ E(G) for all n ∈ N. Since x∗ ∈ F (T ) and x∗ = PF (T )f(x0) is dominated by {xn},

we have (xn, x∗) ∈ E(G). From the definition of xn, we get

‖xn+1 − x∗‖ ≤ αn‖f(xn)− x∗‖+ (1− αn)‖Txn − x∗‖
≤ αn‖f(xn)− x∗‖+ (1− αn)‖xn − x∗‖
≤ αn‖f(xn)− f(x∗)‖+ αn‖f(x∗)− x∗‖+ (1− αn)‖xn − x∗‖
≤ αnα‖xn − x∗‖+ (1− αn)‖xn − x∗‖+ αn‖f(x∗)− x∗‖
= (1− αn(1− α))‖xn − x∗‖+ αn‖f(x∗)− x∗‖.

By mathematical induction, we obtain that

‖xn − x∗‖ ≤ max
{
‖x0 − x∗‖, ‖f(x∗)− x∗‖

1− α

}
,∀n ∈ N.

Therefore, {xn} is bounded and so are {Txn} and {f(xn)}.
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Step 2 : We will show that limn→∞ ‖xn+1 − xn‖ = 0. From the definition of xn and (xn, xn+1) ∈
E(G), we have

‖xn+1 − xn‖ = ‖αnf(xn) + (1− αn)Txn − αn−1f(xn−1)

− (1− αn−1)Txn−1‖
= ‖αnf(xn)− αnf(xn−1) + αnf(xn−1)− αn−1f(xn−1)

+ (1− αn)Txn − (1− αn)Txn−1 + (1− αn)Txn−1

− (1− αn−1)Txn−1‖
= ‖αn(f(xn)− f(xn−1)) + (αn − αn−1)f(xn−1)

+ (1− αn)(Txn − Txn−1) + (αn−1 − αn)Txn−1‖
≤ αn‖f(xn)− f(xn−1)‖+ |αn − αn−1|‖f(xn−1)‖

+ (1− αn)‖Txn − Txn−1‖+ |αn − αn−1|‖Txn−1‖
≤ αnα‖xn − xn−1‖+ |αn − αn−1|‖f(xn−1)‖

+ (1− αn)‖xn − xn−1‖+ |αn − αn−1|‖Txn−1‖
= (1− αn(1− α))‖xn − xn−1‖+ |αn − αn−1|‖f(xn−1)‖

+ |αn − αn−1|‖Txn−1‖. (4)

Applying Lemma 2.3, (4), and the conditions (i), (ii), (iii), we have

lim
n→∞ ‖xn+1 − xn‖ = 0. (5)

Step 3 : We show that limn→∞ ‖xn − Txn‖ = 0. For each n ∈ N, we have

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Txn‖
≤ ‖xn − xn+1‖+ αn‖f(xn)− Txn‖.

Because {Txn} and {f(xn)} are bounded, from the condition (i), (ii), and (5), we have

lim
n→∞ ‖xn − Txn‖ = 0. (6)

Step 4 : We show that lim
n→∞ sup 〈f(z0)− z0, xn − z0〉 ≤ 0 where z0 = PF (T )f(z0). To show

this, choose a subsequence {xnk
} of {xn} such that

lim sup
n→∞

〈f(z0)− z0, xn − z0〉 = lim
k→∞

〈f(z0)− z0, xnk
− z0〉 . (7)
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Because all the {xnk
} lie in the weakly compact set C and C has Property G, we may assume

without loss of generality that {xnk
} ⇀ ω for some ω ∈ C and (xnk

, ω) ∈ E(G). Suppose ω /∈
F (T ), then ω 6= Tω. By G-nonexpansiveness of T , (6), and the Opial’s condition, we have

lim inf
k→∞

‖xnk
− ω‖ < lim inf

k→∞
‖xnk

− Tω‖

≤ lim inf
k→∞

( ‖xnk
− Txnk

‖+ ‖Txnk
− Tω‖)

≤ lim inf
k→∞

‖xnk
− ω‖ .

This is a contradiction. Then ω ∈ F (T ). Since xnk
⇀ ω as k → ∞ and ω ∈ F (T ). By (7) and

Lemma 2.4, we have

lim sup
n→∞

〈f(z0)− z0, xn − z0〉 = lim
k→∞

〈f(z0)− z0, xnk
− z0〉

= 〈f(z0)− z0, ω − z0〉
≤ 0. (8)

Step 5 : Finally, we show that lim
n→∞xn = z0, where z0 = PF (T )f(z0). By G-nonexpansiveness

of T and (z0, xn) ∈ E(G), and Lemma 2.5, we have

‖xn+1 − z0‖2 = ‖αn(f(xn)− z0) + (1− αn)(Txn − z0)‖2

≤ ‖(1− αn)(Txn − z0)‖2 + 2αn〈f(xn)− z0, xn+1 − z0〉
≤ (1− αn)2‖xn − z0‖2 + 2αn〈f(xn)− z0, xn+1 − z0〉
= (1− αn)2‖xn − z0‖2 + 2αn〈f(xn)− f(z0), xn+1 − z0〉

+ 2αn〈f(z0)− z0, xn+1 − z0〉
≤ (1− αn)2‖xn − z0‖2 + 2αn‖f(xn)− f(z0)‖‖xn+1 − z0‖

+ 2αn〈f(z0)− z0, xn+1 − z0〉
≤ (1− αn)2‖xn − z0‖2 + 2αnα‖xn − z0‖‖xn+1 − z0‖

+ 2αn〈f(z0)− z0, xn+1 − z0〉
≤ (1− αn)2‖xn − z0‖2 + αnα‖xn − z0‖2 + αnα‖xn+1 − z0‖2

+ 2αn〈f(z0)− z0, xn+1 − z0〉.

It implies that

‖xn+1 − z0‖2 ≤ (1− αn)2 + αnα

1− αnα
‖xn − z0‖2 +

2αn

1− αnα
〈f(z0)− z0, xn+1 − z0〉
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=
(

1− 2αn(1− α)
1− αnα

)
‖xn − z0‖2 +

2αn(1− α)
1− αnα

(
αn

2(1− α)
‖xn − z0‖2.

+
1

1− α
〈f(z0)− z0, xn+1 − z0〉

)
.

From the conditions (i), (ii), (8), and Lemma 2.3, we can conclude that the sequence {xn} con-

verges strongly to z0 = PF (T )f(z0). This completes the proof. 2

4. NUMERICAL RESULTS

The purpose of this section we give a numerical example to support our some result. The following

example is given for supporting Theorem 3.2.

Example 4.1 : Let H = R and C = [0, 1] with the usual norm ‖x − y‖ = |x − y| and let

G = (V (G), E(G)) be such that V (G) = C, E(G) = {(x, y) : x, y ∈ [0, 3
5 ] such that |x−y| ≤ 1

5}.

Let f : C → C be defined by f(x) = x
9 , for all x ∈ [0, 1]. Define T : C → C by

Tx =





1
10x if x ∈ [0, 1),

8
5 if x = 1.

Solution : We observe that F (T ) = {0}. Choose x0 = 1
5 , then (x0, Tx0) ∈ E(G). It is easy to

see that E(G) is convex. Let (x, y) ∈ E(G). Then x, y ∈ [0, 3
5 ] and |x− y| ≤ 1

5 . It implies that

|Tx− Ty| ≤ 1
10
|x− y| ≤ |x− y| ≤ 1

5
.

Then, we have (Tx, Ty) ∈ E(G) and ‖Tx − Ty‖ ≤ ‖x − y‖. Thus T is G-nonexpansive. For

every n ∈ N, αn = 1
2(n+1) . We rewrite (3) as follows:

xn+1 =
(

1
2(n + 1)

) (xn

9

)
+

(
1− 1

2(n + 1)

)(xn

10

)
. (9)

Since x0 = 1
5 ∈ [0, 1

5 ], from (9), we have

x1 =
(

1
2(1)

)(x0

9

)
+

(
1− 1

2(1)

)(x0

10

)
.
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By the convexity, we have x1 ∈ [0, 1
5 ] . Since x1 ∈ [0, 1

5 ] and (9), we have

x2 =
(

1
2(2)

)(x2

9

)
+

(
1− 1

2(2)

) (x2

10

)
.

By the convexity, we have x2 ∈ [0, 1
5 ] . By continuing in this way, we have xn ∈ [0, 1

5 ], for all n ∈
N. It implies that xn ≤ 1

5 for all n ∈ N. It follows that (xn, PF (T )f(x0)) = (xn, 0) ∈ E(G). That

is. PF (T )f(x0) is dominated by {xn}. It can be observed that parameters satisfy all the conditions of

Theorem 3.2 and C = [0, 1] satisfy Property G. Hence, the sequence {xn} converges strongly to 0.

Next, we show that T is not a nonexpansive mapping. Choose x = 1 and y = 3
5 , we have

∣∣∣∣T (1)− T

(
3
5

)∣∣∣∣ =
∣∣∣∣
8
5
− 3

50

∣∣∣∣ =
77
50

>
2
5

=
∣∣∣∣1−

3
5

∣∣∣∣ .

Mathematicians know that the number π is an important mathematical constant. For the previous

decades, many researcher have been trying to approximate the value of π; see [22, 23] and the refer-

ences therein. By using our main result, we introduce the new method to approximate the value of π

as shown in the following example.

Example 4.2 : Let H = R and C = [3, 4] with the usual norm ‖x − y‖ = |x − y| and let G =

(V (G), E(G)) be such that V (G) = C, E(G) = {(x, y) : x, y ∈ [3, 18
5 ] such that |x − y| ≤ 16

5 }.

Let f : C → C be defined by f(x) = 1
5x + 4

5 (π), for all x ∈ [3, 4]. Define T : C → C by

Tx =





1
3x + 2

3 (π) if x ∈ [3, 4),

56
35 if x = 4.

Solution : We observe that F (T ) = {π}. Choose x0 = 16
5 , then (x0, Tx0) ∈ E(G). It is easy to

see that E(G) is convex. Let (x, y) ∈ E(G). Then x, y ∈ [3, 18
5 ] and |x− y| ≤ 16

5 . It implies that

|Tx− Ty| =
∣∣∣∣
1
3
x +

2
3

(π)− 1
3
y − 2

3
(π)

∣∣∣∣ ≤
1
3
|x− y| ≤ |x− y| ≤ 16

5
.

Then, we have (Tx, Ty) ∈ E(G) and ‖Tx− Ty‖ ≤ ‖x− y‖. Thus T is G-nonexpansive. For every

n ∈ N, αn = 1
2(n+1) . We rewrite (3) as follows:

xn+1 =
(

1
2(n + 1)

) (
1
5
xn +

4
5

(π)
)

+
(

1− 1
2(n + 1)

) (
1
3
xn +

2
3

(π)
)

. (10)

Since x0 = 16
5 ∈ [3, 16

5 ], from (10), we have

x1 =
(

1
2(1)

)(
1
5
x0 +

4
5

(π)
)

+
(

1− 1
2(1)

)(
1
3
x0 +

2
3

(π)
)

.
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By the convexity, we have x1 ∈ [3, 16
5 ]. Since x1 ∈ [3, 16

5 ] and (10), we have

x2 =
(

1
2(2)

) (
1
5
x1 +

4
5

(π)
)

+
(

1− 1
2(2)

) (
1
3
x1 +

2
3

(π)
)

.

By the convexity, we have x2 ∈ (3, 16
5 ] . By continuing in this way, we have xn ∈ [3, 16

5 ], for all

n ∈ N. It implies that 3 ≤ xn ≤ 16
5 for all n ∈ N. Then |xn − π| ≤ 16

5 for all n ∈ N. It follows that

(xn, PF (T )f(π)) = (xn, π) ∈ E(G). That is. PF (T )f(π) is dominated by {xn}. It can be observed

that parameters satisfy all the conditions of Theorem 3.2 and C = [3, 4] satisfy Property G. Since

F (T ) 6= ∅, then the sequence {xn} converges strongly to π.

Next, we show that T is not a nonexpansive mapping. Choose x = 4 and y = 18
5 , we have

∣∣∣∣T (4)− T

(
18
5

)∣∣∣∣ =
∣∣∣∣
56
35
−

(
1
3

(
18
5

)
+

2
3

(π)
)∣∣∣∣

≈
∣∣∣∣
56
35
−

(
1
3

(
18
5

)
+

2
3

(
22
7

))∣∣∣∣

=
178
105

>
2
5

=
∣∣∣∣4−

18
5

∣∣∣∣ .

Using the algorithm (10) and choosing x0 = 16
5 with n = 20 and n = 30, we have the numerical

result to approximate the value of π as shown in Table 1 and Figure 1.

Figure 1: The convergence of {xn} with initial values x0 = 16
5 .

(a) n=20 (b) n=30



THE METHOD FOR SOLVING FIXED POINT PROBLEM 167

n = 20

n xn

0 3.200000000000000

1 3.157167945965848

2 3.146265241302610

3 3.143046347544892

4 3.142052990008907
...

...

10 3.141593185425522
...

...

16 3.141592654255843

17 3.141592653809197

18 3.141592653662115

19 3.141592653613647

20 3.141592653597665

n = 30

n xn

0 3.200000000000000

1 3.157167945965848

2 3.146265241302610

3 3.143046347544892

4 3.142052990008907
...

...

15 3.141592659742157
...

...

26 3.141592653589803

27 3.141592653589797

28 3.141592653589794

29 3.141592653589793

30 3.141592653589793

Table 1: The values of the sequences {xn} with initial value x0 = 16
5 .

5. CONCLUSION

In this work, we introduce a viscosity approximation method of G-nonexpansive mapping defined on a Hilbert

space endowed with a directed graph. We obtain a strong convergence theorem for the sequence generated by

the proposed method under suitable conditions. However, we should like remark the following:

1. In Theorem 3.2, we use the concept of a viscosity approximation method and our result is proved with

an assumption on a directed graph, which is a different result from Xu [14].

2. From Theorem 3.2, we can conclude that the sequence {xn}, in Example 4.2, converges to π.

3. In Example 4.2, the sequence {xn} converges to π as shown in the Table 1 and Figure 1.

4. In order to gain more accuracy of π, the iterative approximation is depended on the number of n as

shown in the Table 1.
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1. Introduction

Let X be a metric space and let M be a nonempty closed convex subset of X. A
mapping T : M →M is said to be nonexpansive, if d(Tx, Ty) ≤ d(x, y), for each x, y ∈M.
In 2011, Aoyama and Kohsaka [1] introduced the class of α-nonexpansive mappings in
Banach spaces as follow: Let X be a Banach space and M be a nonempty closed and
convex subset of X. A mapping T : M → M is said to be α-nonexpansive if for all
x, y ∈ M and α < 1, ‖Tx− Ty‖2 ≤ α ‖Tx− y‖2 + α ‖x− Ty‖2 + (1 − 2α) ‖x− y‖2 .
This class contains the class of nonexpansive mappings and is related to the class of
firmly nonexpansive mappings in Banach spaces. Then F (T ) is nonempty if and only if
there exists x ∈ M such that {Tnx} is bounded, where X is a uniformly convex Banach

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2020 by TJM. All rights reserved.
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space, and M is a nonempty, closed and convex subset of X, and T : M → M is an
α-nonexpansive mapping for some real number α such that α < 1.

In 2013, Naraghirad et al. [2] considered appropriate Ishihawa iterate algorithms
ensure weak and strong convergence to a fixed point of such a mapping. Their theorems
are also extended to CAT(0) spaces as follow : Let {xn} be a sequence with {x1} in M
defined by {

yn = βnTxn ⊕ (1− βn)xn,

xn+1 = γnTyn ⊕ (1− γn)xn.

In 2016, Song et al. [3] introduced the concept of monotone α-nonexpansive mappings
in an ordered Banach space E with the partial order ≤, which contains monotone α-
nonexpansive mappings as special case. With the help of the Mann iteration. In 2017,
Shukla et al. [4] introduced some existence and convergence results for monotone α-
nonexpansive mappings in partially ordered hyperbolic metric spaces as follow : Let {un}
be defined by 

u1 ∈ K,
vn = γnT (un)⊕ (1− γn)un,

un+1 = βnT (vn)⊕ (1− βn)T (un).

In 2018, Mebawondu and Izuchukwu [5] introduced some fixed points properties and
demiclosedness principle for generalized α-nonexpansive mappings in the frame work of
uniformly convex hyperbolic spaces as follow : Suppose that the sequence {xn} is defined
by 

x1 ∈ C,
zn = W (xn, Txn, βn),

yn = W (zn, T zn, γn),

xn+1 = W (Ty, 0, 0).

Recently, there are some works that relate to hyperbolic spaces such as CAT(0) spaces
that appeared (see [6–17]).

In this paper, we prove convergence and ∆-convergence theorems of the generalized
Picard normal S5-iterative process to approximate a fixed point for α-nonexpansive map-
pings. Moreover, we prove some properties of such mappings on a nonempty subset of a
hyperbolic space.

2. Preliminaries

Throughout this paper, we work in the setting of hyperbolic spaces which were intro-
duced by Kohlenbach [18].

Definition 2.1. A hyperbolic space is a metric space (X, d) with a mapping W : X2 ×
[0, 1]→ X satisfying the following conditions.
(i) d(u,W (x, y, α)) ≤ (1− α)d(u, x) + αd(u, y);
(ii) d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y);
(iii) W (x, y, α) = W (y, x, 1− α);
(iv) d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(x, y) + αd(z, w).
for all x, y, z, w ∈ X and α, β ∈ [0, 1].
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Some definitions on hyperbolic space are considered as follow:

Definition 2.2. [19] Let X be hyperbolic space with a mapping W : X2 × [0, 1] → X.
A nonempty subset M ⊆ X is said to be convex, if W (x, y, α) ∈ M for all x, y ∈ M and
α ∈ [0, 1]. A hyperbolic space is said to be uniformly convex if for any r > 0 and ε ∈ (0, 2],
there exists a δ ∈ (0, 1] such that for all u, x, y ∈ X

d(W (x, y,
1

2
), u) ≤ (1− δ)r,

provided d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr. A map η : (0,∞) × (0, 2] → (0, 1]
which provides such a δ = η(r, ε) for given r > 0 and ε ∈ (0, 2], is known as a modulus
of uniform convexity of X. η is said to be monotone, if it decreases with r (for a fixed ε),
i.e., ∀ε > 0, ∀r1 ≥ r2 > 0 [η(r2, ε) ≤ η(r1, ε)]. We denote the unit sphere and the closed
unit ball centered at the origin of M by SM and BM , respectively. We also denote the
closed ball with radius r > 0 centered at the origin of M by rBM .

Definition 2.3. [20] Let {xn} be a bounded sequence in a hyperbolic space (X, d). For
x ∈ X, we define a continuous functional r(·, xn) : X → [0,∞) by

r(x, xn) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, xn) : x ∈ X}.

The asymptotic center AM ({xn}) of a bounded sequence {xn} with respect to M ⊆ X is
the set

AM ({xn}) = {x ∈ X : r(x, xn) ≤ r(y, xn), ∀y ∈M}.
This implies that the asymptotic center is the set of minimizer of the functional r(·, xn)
in M. If the asymptotic center is taken with respect to X, then it is simply denoted by
AM ({xn}). It is known that uniformly convex hyperbolic spaces enjoy the property that
ounded sequences have unique asymptotic centers with respect to closed convex subsets.

Definition 2.4. Recall that a sequence {xn} in X is said to be ∆-convergent which
converges to a point x ∈ X if x is the unique asymptotic centers of {un} for every
subsequence {un} of {xn}. In this case, we write ∆ − limn→∞ xn = x and call x the
∆−limit of {xn}. Moreover, if xn → x, then ∆− limn→∞ xn = x (see [18],[21]).

Lemma 2.5. [20] Let (X, d,W ) be a complete uniformly convex hyperbolic space with
monotone modulus of uniform convexity η. Then every bounded sequence {xn} in X has
a unqiue asymtotic center with respect to any nonempty closed convex subset M of X.

Lemma 2.6. [20] Let (X, d,W ) be a uniformly convex hyperbolic space with mono-
tone modulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a, b] for
some a, b ∈ (0, 1). If {xn} and {yn} are sequences in X such that lim supn→∞ d(xn, p) ≤
c, lim supn→∞ d(yn, p) ≤ c and lim supn→∞ d(W (xn, yn, αn)
, p) = c, for some c ≥ 0. Then limn→∞ d(xn, yn) = 0.

Lemma 2.7. ([21–23]) Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η. Then every bounded sequence {xn} in M
has a unique asymptotic center in M.
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Lemma 2.8. [5] Let X be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η and let {xn} be a bounded sequence in X with AM ({xn}) =
{x}. Suppose {xnk

} is any subsequence of {xn} with AM ({xnk
}) = {x1}. and {d(xn, x1)}

converges, then x = x1.

Definition 2.9. Let M be a nonempty subset of a hyperbolic space X and {xn} be a
sequence in X. Then {xn} is called a Fejér monotone sequence with respect to M if for
all x ∈M and n ≥ 1,

d(xn+1, x) ≤ d(xn, x).

Next, we defined Picard Normal S5-iteration process (PNS5) in hyperbolic spaces
as follow : Let M be a nonempty closed convex subset of a hyperbolic space X and
T : M → M be a mapping which asymptotically Suzuki-generalized nonexpansive, for
any x1 ∈M the sequence {xn} is defined by

xn+1 = W (Tun, 0, 0)

un = W (vn, T vn, βn)

vn = W (yn, Tyn, γn)

yn = W (zn, T zn, δn)

zn = W (xn, Txn, ζn), n ∈ N,

(2.1)

where {βn}, {γn}, {δn} and {ζn} in (0, 1).

3. Main Results

In this section, we will prove some properties for class of α-nonexpansive mappings in
hyperbolic spaces.

Definition 3.1. Let (X, d) be a metric space and M be nonempty subset of X. Then
T : M →M is said to be a square α-nonexpansive mapping (or α-nonexpansive mapping),
if α < 1 such that

d2(Tx, Ty) ≤ αd2(Tx, y) + αd2(x, Ty) + (1− 2α)d2(x, y),

for all x, y ∈M .

Now, we give example for a square α-nonexpansive mapping as follows :

Example 3.2. Let M be a nonempty closed and convex subset of a complete hyperbolic
space X, and let S, T : M → M be firmly nonexpansive mappings such that S(M) and
T (M) are contained by rBM for some positive real number r. Let α and δ be real numbers
such that 0 < α ≤ 1 and δ ≥ (1 + 2/

√
α)r. Then the mapping U : M →M is defined by

Ux =

{
Sx (x ∈ δBM );

Tx (otherwise),
(3.1)

then U is a square α-nonexpansive (See [1]).

From lemma of Naraghirad [2], we obtain the lemma as follow :

Lemma 3.3. Let M be a nonempty subset of a hyperbolic space X. Let T : M → M
be a square α-nonexpansive mapping for some α < 1. Let x, y ∈ M , then the following
assertions hold
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(i) If 0 ≤ α < 1, then

d2(x, Ty) ≤ 1 + α

1− α
d2(x, Tx) +

2

1− α
(αd(x, y) + d(Tx, Ty))d(x, Tx) + d2(x, y)

(ii) If α < 0, then

d2(x, Ty) ≤ d2(x, Tx) +
2

1− α
[(−α)d(x, y) + d(Tx, Ty)]d(x, Tx) + d2(x, y)

Proof. let x, y ∈M .
(i) Suppose that 0 ≤ α < 1. Consider

d2(x, Ty) ≤ (d(x, Tx) + d(Tx, Ty))2

= d2(x, Tx) + d2(Tx, Ty) + 2d(x, Tx)d(Tx, Ty)

≤ d2(x, Tx) + αd2(Tx, y) + αd2(x, Ty) + (1− 2α)d2(x, y)

+ 2d(x, Tx)d(Tx, Ty)

≤ d2(x, Tx) + α(d(Tx, x) + d(x, y))2 + αd2(x, Ty) + (1− 2α)d2(x, y)

+ 2d(x, Tx)d(Tx, Ty)

≤ d2(x, Tx) + αd2(Tx, x) + αd2(x, y) + 2αd(Tx, x)d(x, y) + αd2(x, Ty)

+ (1− 2α)d2(x, y) + 2d(x, Tx)d(Tx, Ty)

= (1 + α)d2(x, Tx) + 2αd(Tx, x)d(x, y) + αd2(x, Ty)

+ (1− α)d2(x, y) + 2d(x, Tx)d(Tx, Ty).

We obtain that

d2(x, Ty) ≤ (1 + α)

1− α
d2(x, Tx) +

2

1− α
(αd(x, y) + d(Tx, Ty))d(Tx, x) + d2(x, y).

(ii) Suppose that α < 0. Consider

d2(x, Ty) ≤ (d(x, Tx) + d(Tx, Ty))2

= d2(x, Tx) + d2(Tx, Ty) + 2d(x, Tx)d(Tx, Ty)

≤ d2(x, Tx) + αd2(Tx, y) + αd2(x, Ty) + (1− 2α)d2(x, y)

+ 2d(x, Tx)d(Tx, Ty)

= d2(x, Tx) + αd2(Tx, y) + αd2(x, Ty) + (1− α)d2(x, y)− αd2(x, y)

+ 2d(x, Tx)d(Tx, Ty)

≤ d2(x, Tx) + αd2(Tx, y) + αd2(x, Ty) + (1− α)d2(x, y)

− α[d2(x, Tx) + d2(Tx, y) + 2d(x, Tx)d(Tx, y)] + 2d(x, Tx)d(Tx, Ty)

= (1− α)d2(x, Tx) + αd2(x, Ty) + (1− α)d2(x, y)

− 2αd(x, Tx)d(Tx, y) + 2d(x, Tx)d(Tx, Ty)

= (1− α)d2(x, Tx) + αd2(x, Tx) + αd2(x, Ty) + (1− α)d2(x, y)

+ 2[(α)d(Tx, y) + d(Tx, Ty)]d(x, Tx),

this implies that
d2(x, Ty) ≤ d2(x, Tx) + 2

1−α [(−α)d(Tx, y) + d(Tx, Ty)]d(x, Tx) + d2(x, y).
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Lemma 3.4. Let M be a nonempty closed and convex subset of a hyperbolic space X with
monotone modulus of uniform convexity η. Let T : M → M be a square α-nonexpansive
mapping for some real number α < 1. In case 0 ≤ α < 1, we have F (T ) 6= ∅ if and only
if {Tnx}∞n=1 is bounded for some x ∈M. If M is compact, then F (T ) 6= ∅.

Proof. Assume that 0 ≤ α < 1. The necessity is obvious. We verify the sufficiency.
Suppose that {Tnx}∞n=1 is bounded for some x in M . Set xn := Tnx for n = 1, 2, . . . . By
the boundedness of {xn}∞n=1, there exists z in X such that AM ({xn}) = {z}. It follows
from Lemma 2.6 that z ∈M . Furthermore, we have

d2(xn, T z) ≤ αd2(xn, z) + αd2(xn−1, T z) + (1− 2α)d2(xn, z), ∀n = 1, 2, . . . .

This implies that

lim sup
n→∞

d2(xn, T z) ≤ α lim sup
n→∞

d2(xn, z) + α lim sup
n→∞

d2(xn−1, T z)

+ (1− 2α) lim sup
n→∞

d2(xn, z).

We obtain

lim sup
n→∞

d2(xn, T z) ≤ lim sup
n→∞

d2(xn, z).

Consequently, Tz ∈ AM ({xn}) = {z}, we obtain that F (T ) 6= ∅.
Next, we assume that α < 0 and M is compact. In particular, T is continuous and the
sequence of xn := Tnx for any x ∈M is bounded. We adapt in [Lemmas 3.1 and 3.2][24],
we have µ is a Banach limit, i.e., µ is a bounded unital positive linear functional of l∞
such that µ◦ s = µ, where s is the left shift operator on l∞. We write µn, an for the value
of µ(a) with a = (an) in l∞ as usual. In particular, µn an+1 = µ(s(a)) = µ(a) = µnan.
We get

µnd
2(xn, T y) ≤ µnd2(xn, y), ∀y ∈M, (3.2)

and

g(y) := µnd
2(xn, y)

defines a continuous function from M into R.
By compactness, there exists y in M such that g(y) = inf g(M). Suppose that there is

another z in M such that g(z) = g(y). Let m be the midpoint by definition 2.1, we see
that g is convex. Thus, g(m) = g(y) too. Observing the comparison triangles in E2, we
have

d2(xn, y) + d2(xn, z) ≥ 2d2(xn,m) +
1

2
d2(y, z), ∀n = 1, 2, . . . .

Consequently,

µnd
2(xn, y) + µnd

2(xn, z) ≥ 2µnd
2(xn,m) +

1

2
µnd

2(y, z).

So,

g(y) + g(z) ≥ 2g(m) +
1

2
d2(y, z).

Since g(y) = g(z) = g(m), we have y = z. Finally, it follows from (3.2) that g(Ty) ≤
g(y) = inf g(M). By uniqueness, we have Ty = y ∈ F (T ).
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Lemma 3.5. Let M be a nonempty closed and convex subset of a hyperbolic space X.
Let T : M →M be a square α-nonexpansive mapping and F (T ) 6= ∅, then F (T ) is closed
and convex.

Proof. Let {xn} ⊂ F (T ) such that {xn} converges to y for some y ∈ M . We will show
that y ∈ F (T ). We consider d2(xn, T y) ≤ αd2(xn, y) + αd2(Ty, xn) + (1 − 2α)d2(xn, y).
So, we get (1− α)d2(xn, T y) ≤ (1− α)d2(xn, y) implies that, d(xn, Ty) ≤ d(xn, y). Since
lim
n→∞

d(xn, y) = 0, then by Sandwish theorem, we obtain that lim
n→∞

d(xn, Ty) = 0. By

uniqueness of limit, we get that Ty = y. Hence y ∈ F (T ), and then F (T ) is closed.
Next, we will show that F (T ) is convex. Let x, y ∈ F (T ). By definition of T , we obtain
that

d2(x, Tz) ≤ αd2(Tx, z) + αd2(Tz, x) + (1− 2α)d2(x, z).

So, we get (1− α)d2(x, Tz) ≤ (1− α)d2(x, z),

d2(x, Tz) ≤ d2(x, z) =⇒ d(x, Tz) ≤ d(x, z). (3.3)

In the other hand, we get

d2(y, Tz) ≤ d2(y, z) =⇒ d(y, Tz) ≤ d(y, z) (3.4)

Let z = W (x, y, η) where η ∈ [0, 1]. From (3.3) and (3.4), we obtain

d(x, y) ≤ d(x, Tz) + d(Tz, y)

≤ d(x, z) + d(z, y) (3.5)

= d2(x,W (x, y, η)) + d(W (x, y, η), y)

≤ (1− η)d(x, x) + ηd(x, y) + (1− η)d(x, y) + ηd(y, y)

= d(x, y).

So d(x, Tz) = d(x, z) and d(y, Tz) = d(y, z), because if d(x, Tz) < d(x, z) or d(y, Tz) <
d(y, z), which is a contradiction to d(x, y) < d(x, y). Hence Tz = z Therefor W (x, y, η) ∈
F (T ), and then F (T ) is convex.

Theorem 3.6. Let M be a nonempty closed and convex subset of a complete hyperbolic
space X with monotone modulus of uniform convexity η. Let T : M →M be a square α-
nonexpansive mapping and {xn} be a bounded sequence in M such that lim

n→∞
d(xn, Txn) =

0 and ∆- lim
n→∞

xn = x. Then x ∈ F (T ).

Proof. Let {xn} be a bounded seqence in X, By Lemma 2.5 we get {xn} has a unique
asymptotic center in M . Since, ∆- lim

n→∞
xn = x, we have that A({xn}) = {x}. Using

Lemma 3.3 and the hypothesis that lim
n→∞

d(xn, Txn) = 0, we have

(i) d2(xn, Tx) ≤ 1+α
1−αd

2(xn, Txn)+ 2
1−α (αd(xn, x)+d(Txn, Tx))d(xn, Txn)+d2(xn, x),

where 0 ≤ α < 1,
(ii) d2(xn, Tx) ≤ d2(xn, Txn)+ 2

1−α [(−α)d(xn, x)+d(Txn, Tx)]d(xn, Txn)+d2(xn, x),
where α < 0.
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Taking limit superior as n→∞ with both sides, we obtain that
Case (i) : 0 ≤ α < 1,

lim sup
n→∞

d2(xn, Tx) ≤ 1 + α

1− α
lim sup
n→∞

d2(xn, Txn)

+
2

1− α
lim sup
n→∞

(αd(x, x) + d(Txn, Tx))d(xn, Txn)

+ lim sup
n→∞

d2(xn, x)

= lim sup
n→∞

d2(xn, x).

Case (ii) : α < 0,

lim sup
n→∞

d2(xn, Tx) ≤ lim sup
n→∞

d2(xn, Txn)

+
2

1− α
lim sup
n→∞

[(−α)d(xn, x) + d(Txn, Tx)]d(xn, Txn)

+ lim sup
n→∞

d2(xn, x)

= lim sup
n→∞

d2(xn, x).

So, we get lim supn→∞ d(xn, Tx) ≤ lim supn→∞ d(xn, x). By the uniqueness of asymptotic
center, we obtain that Tx = x. Therefore x ∈ F (T ).

Now we recall the quasi nonexpansive mappings as follow: A mapping T : M →M is
said to be quasi-nonexpansive, if

d(Tx, p) ≤ d(x, p),

for each x ∈M and p ∈ F (T ).

Lemma 3.7. Let M be a nonempty subset of a hyperbolic space X. Let T : M → M be
a square α-nonexpansive mapping and F (T ) 6= ∅, then T is quasi-nonexpansive.

Proof. Let T : M → M be a square α-nonexpansive mapping and F (T ) 6= ∅, we let
p ∈ F (T ) and x ∈M . We consider

d2(Tx, Tp) ≤ αd2(Tx, p) + αd2(x, p) + (1− 2α)d2(x, p)

= αd2(Tx, p) + (1− α)d2(x, p),

we obtain that

d2(Tx, Tp) ≤ d2(x, p),

implies that

d(Tx, p) ≤ d(x, p).

Hence T is quasi-nonexpansive.

New, we recall Picard normal S5-iteration process (PNS5). Let M be a nonempty
closed convex subset of a hyperbolic space X and T : M → M be a mapping which a
square α-nonexpansive , for any x1 ∈M the sequence {xn} is defined by
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xn+1 = W (Tun, 0, 0)

un = W (vn, T vn, βn)

vn = W (yn, T yn, γn)

yn = W (zn, T zn, δn)

zn = W (xn, Txn, ζn), n ∈ N,

(3.6)

where {αn} and {βn} in (0, 1).

Theorem 3.8. Let M be a nonempty closed and convex subset of a complete hyperbolic
space X with monotone modulus of uniform convexity η. Let T : M → M be a square
α-nonexpansive mapping with F (T ) 6= ∅. Suppose that the sequence {xn} is defined by
(2.1) then {xn} ∆-converges to a fixed point of T .

Proof. Step1: We prove that limn→∞ d(xn, p) exists for each p ∈ F (T ). Let p ∈ F (T ).
Since T is an α-nonexpansive mapping and Lemma 3.7, we get

d(un, p) = d(W (vn, T vnβn), p)

≤ (1− βn)d(vn, p) + βnd(Tvn, p)

= (1− βn)d(vn, p) + βnd(Tvn, p)

≤ (1− βn)d(vn, p) + βnd(vn, p)

= d(vn, p), (3.7)

d(vn, p) = d(W (yn, T yn, γn), p)

≤ (1− γn)d(yn, p) + γnd(Tyn, p)

= (1− γn)d(yn, p) + γnd(Tyn, p)

≤ (1− γn)d(yn, p) + γnd(yn, p)

= d(yn, p), (3.8)

d(yn, p) = d(W (zn, T zn, δn), p)

≤ (1− δn)d(zn, p) + δnd(Tzn, p)

= (1− δn)d(zn, p) + δnd(Tzn, Tp)

≤ (1− δn)d(zn, p) + δnd(zn, p)

= d(zn, p), (3.9)

d(zn, p) = d(W (xn, Txn, ζn), p)

≤ (1− ζn)d(xn, p) + ζnd(Txn, p)

= (1− ζn)d(xn, p) + ζnd(Txn, Tp)

≤ (1− ζn)d(xn, p) + ζnd(xn, p)

= d(xn, p). (3.10)
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By (3.7),(3.8),(3.9), and (3.10), we have

d(xn+1, p) = d(W (Tun, 0, 0), p)

= d(Tun, p)

≤ d(un, p)

≤ d(vn, p)

≤ d(yn, p)

≤ d(zn, p)

≤ d(xn, p). (3.11)

We obtain limn→∞ d(xn, p) exists for each p ∈ F.
Step 2: We will show that limn→∞ d(xn, Txn) = 0. Suppose that limn→∞ d(xn, p) = c ≥
0. If c = 0, then

lim
n→∞

d(xn, Txn) = 0.

Next, we consider c > 0. By (3.11), we obtain that

d(xn+1, p) ≤ d(un, p) ≤ d(vn, p) ≤ d(yn, p) ≤ d(zn, p) ≤ d(xn, p). (3.12)

Taking limsup in (3.12), we get

lim sup
n→∞

d(un, p) ≤ lim sup
n→∞

d(vn, p) ≤ lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(zn, p) ≤ c (3.13)

Since d(Txn, p) ≤ d(xn, p), we have

lim
n→∞

sup d(Txn, p) ≤ c. (3.14)

Since d(xn+1, p) ≤ (zn, p), as n→∞, we get

c = lim inf
n→∞

d(xn+1, p) ≤ lim inf
n→∞

d(zn, p) ≤ lim sup
n→∞

d(zn, p) ≤ c. (3.15)

From (3.14) and (3.15), we have

lim
n→∞

d(zn, p) = c,

it implies that

lim
n→∞

d(W (xn, Txn, γn), p) = c.

By Lemma 2.6, we obtain that

lim
n→∞

d(xn, Txn) = 0. (3.16)

Step 3: Let W∆(xn) :=
⋃
AM ({µn}), where the union is taken over all subsequence

{µn} of {xn}. Next, we prove that W∆(xn) ⊂ F (T ) and contains only one point. Let
u ∈ W∆(xn), there exists a subsequence {µn} of {xn} such that AM ({µn}) = {u}. By
Lemma 2.5 we let subsequence {νn} of {µn} such that ∆− lim

n→∞
νn = v, for some v ∈M .

Since, lim
n→∞

d(νn, T νn) = 0, we have v ∈ F (T ). Hence, {d(un, v)} converges and by

lemma 2.8, we have that v = u ∈ F (T ). Hence, W∆(xn) ⊂ F (T ). Let AM ({xn}) = x
and {µn} be arbitrary subsequence of {xn} such that AM ({µn}) = {u}. We have that
{d(xn, u)} converges, since u ∈ F (T ). Thus, by Lemma 2.8, we have that u = x ∈ F (T ).
and W∆(xn) = {x}. Therefore, {xn} ∆-converges to a common fixed point of T.



The Convergence Theorem for a Square α-Nonexpansive ... 1607

Theorem 3.9. Let M be a nonempty closed and convex subset of a complete hyperbolic
space X with monotone modulus of uniform convexity η. Let T : M →M be a square α-
nonexpansive mapping with F (T ) 6= ∅. Suppose that the sequence {xn} is defined by (2.1).
Then {xn} converges to a fixed point of T if and only if lim infn→∞ d(xn, F (T )) = 0,
where d(xn, F (T )) = infx∈F (T ) d(xn, x).

Proof. First, we show that the fixed point set F (T ) is closed, let {xn} be a sequence in
F (T ) which converges to some point z ∈M.

d(xn, T z) = d(Txn, T z) ≤ d(xn, z).

By taking the limit of both sides we obtain

lim
n→∞

d(xn, T z) ≤ lim
n→∞

d(xn, z) = 0.

In view of the uniqueness of the limit, we have z = Tz, so that F (T ) is closed. Suppose
that

lim
n→∞

inf d(xn, F (T )) = 0.

From (3.11),

d(xn+1, F (T )) ≤ d(xn, F (T )),

then lim
n→∞

d(xn, F (T )) exists. Hence we know lim
n→∞

d(xn, F (T )) = 0.

We have lim
n→∞

d(xn, z) = 0, and since 0 ≤ d(xn, F (T )) ≤ d(xn, z), it follows that

lim
n→∞

d(xn, F (T )) = 0. Therefore, lim infn→∞ d(xn, F (T )) = 0.

Conversely, consider a subsequence {xnk
} of {xn} such that d(xnk

, pk) < 1
3k , for all k ≥ 1

where {pk} is in F (T ). By (3.11), we have

d(xnk+1
, pk) ≤ d(xnk

, pk) <
1

3k
,

which implies that

d(pk+1, pk) ≤ d(pk+1, xnk+1
) + d(xn+1

, pk)

<
1

3k+1
+

1

3k

<
1

3k−1
.

This show that {pk} is a Cauchy sequence. Since F (T ) is closed, {pk} is convergent
sequence. Let lim

n→∞
pk = p. In fact, since d(xnk

, p) ≤ d(xnk
, pk)+d(pk, p)→ 0 as k →∞,

we have lim
k→∞

d(xnk
, p) = 0. Since lim

n→∞
d(xn, p) exists, the sequence {xn} converges to p.

Theorem 3.10. Let M be a nonempty compact convex subset of a complete hyperbolic
space X with monotone modulus of uniformly convexity η. Let T : M → M be a square
α-nonexpansive mapping for some α < 1. Let {βn}, {γn} be sequences in (0, 1) such
that 0 < lim infk→∞ γnk

≤ lim supk→∞ γnk
< 1 for a subsequence {γnk

} of {γn}. In case
α ≤ 0, we assume that lim supk→∞ βnk

< 1. Let {xn} be a sequence with x1 in M defined
by (2.1). Then {xn} converges in metric to a fixed point of T .

Proof. We use Lemma 3.3 and Lemma 3.4, and replacing ‖·, ·‖ with d(·, ·) in the proof of
[Theroem 3.4][2], we conclude the desired result.
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Abstract
The purpose of this research is to introduce a regularized algorithm based on the viscosity
method for solving the proximal split feasibility problem and the fixed point problem in
Hilbert spaces. A strong convergence result of our proposed algorithm for finding a common
solution of the proximal split feasibility problemand thefixed point problem for nonexpansive
mappings is established. We also apply our main result to the split feasibility problem, and
the fixed point problem of nonexpansive semigroups, respectively. Finally, we give numerical
examples for supporting our main result.

Keywords Fixed point problems · Proximal split feasibility problems · Nonexpansive
mappings
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1 Introduction

Throughout this article, let H1 and H2 be two real Hilbert spaces. Let f : H1 → R∪ {+∞}
and g : H2 → R ∪ {+∞} be two proper and lower semicontinuous convex functions and
A : H1 → H2 be a bounded linear operator.
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In this paper, we focus our attention on the following proximal split feasibility problem
(PSFP): find a minimizer x∗ of f , such that Ax∗ minimizes g, namely

x∗ ∈ argmin f such that Ax∗ ∈ argmin g, (1.1)

where argmin f := {x̄ ∈ H1 : f (x̄) ≤ f (x) for all x ∈ H1} and argmin g := {ȳ ∈ H2 :
g(ȳ) ≤ g(y) for all y ∈ H2}. We assume that the problem (1.1) has a nonempty solution set
� := argmin f ∩ A−1(argmin g).

Censor andElfving (1994) introduced the split feasibility problem (in short, SFP). The split
feasibility problem (SFP) has been used for many applications in various fields of science and
technology, such as in signal processing and image reconstruction, and especially applied in
medical fields such as intensity-modulated radiation therapy (IMRT) (for details, see Censor
et al. (2006) and the references therein). Let C and Q be nonempty, closed, and convex
subsets of H1 and H2, respectively, and then, the SFP is to find a point:

x ∈ C such that Ax ∈ Q, (1.2)

where A : H1 → H2 is a bounded linear operator. For solving the problem (1.2), Byrne
(2002) introduced a popular algorithm which is called the CQ algorithm as follows:

xn+1 = PC (xn − μn A
∗(I − PQ)Axn), ∀n ≥ 1,

where PC and PQ denote the metric projection onto the closed convex subsets C and Q,
respectively, and A∗ is the adjoint operator of A and μn ∈ (0, 2/‖A‖2). Many research
papers have increasingly investigated split feasibility problem [see, for instance (Lopez et al.
2012; Chang et al. 2014; Qu and Xiu 2005), and the references therein]. If f = iC [defined
as iC (x) = 0 if x ∈ C and iC (x) = +∞ if x /∈ C] and g = iQ are indicator functions of
nonempty, closed, and convex sets C and Q of H1 and H2, respectively. Then, the proximal
split feasibility problem (1.1) becomes the split feasibility problem (1.2).

Moudafi andThakur (2014) introduced the split proximal algorithmwith away of selecting
the step-sizes, such that its implementation does not need any prior information about the
operator norm. Given an initial point x1 ∈ H1, assume that xn has been constructed and
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2 �= 0, and then compute xn+1 by the following
iterative scheme:

xn+1 = proxλμn f (xn − μn A
∗(I − proxλg)Axn), ∀n ≥ 1, (1.3)

where the stepsize μn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4, h(x) := 1

2‖(I −proxλg)Ax‖2,
l(x) := 1

2‖(I − proxλμn f )x‖2 and θ2(x) := ‖A∗(I − proxλg)Ax‖2 + ‖(I − proxλμn f )x‖2.
If θ2(xn) = 0, then xn is a solution of (1.1) and the iterative process stops; otherwise, we
set n := n + 1 and compute xn+1 using (1.3). They also proved the weak convergence of
the sequence generated by Algorithm (1.3) to a solution of (1.1) under suitable conditions of

parameter ρn where ε ≤ ρn ≤ 4h(xn)

h(xn) + l(xn)
− ε for some ε > 0.

Yao et al. (2014) gave the regularized algorithm for solving the proximal split feasibility
problem (1.1) and proposed a strong convergence theorem under suitable conditions:

xn+1 = proxλμn f (αnu + (1 − αn)xn − μn A
∗(I − proxλg)Axn), ∀n ≥ 1, (1.4)

where the stepsize μn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4.
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Shehu et al. (2015) introduced a viscosity-type algorithm for solving proximal split fea-
sibility problems as follows:{

yn = xn − μn A∗(I − proxλg)Axn,

xn+1 = αnψ(xn) + (1 − αn) proxλμn f yn, ∀n ≥ 1,
(1.5)

where ψ : H1 → H1 is a contraction mapping. They also proved a strong convergence of
the sequences generated by iterative schemes (1.5) in Hilbert spaces.

Recently, Shehu and Iyiola (2015) introduced the following algorithm for solving split
proximal algorithms and fixed point problems for k-strictly pseudocontractive mappings in
Hilbert spaces: ⎧⎪⎨

⎪⎩
un = (1 − αn)xn,

yn = proxλγn f (un − γn A∗(I − proxλg)Aun),

xn+1 = (1 − βn)yn + βnT yn, ∀n ∈ N,

(1.6)

where the stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4. They also showed that,

under certain assumptions imposed on the parameters, the sequence {xn} generated by (1.6)
converges strongly to x∗ ∈ F(S) ∩ �. Many researchers have proposed some methods to
solve the proximal split feasibility problem [see, for instance (Shehu et al. 2015; Shehu and
Iyiola 2017a, b, 2018; Abbas et al. 2018;Witthayarat et al. 2018), and the references therein].

We note that Algorithm (1.6) is the Halpern-type algorithm with u ≡ 0 fixed. However,
a viscosity-type algorithm is more general and desirable than a Halpern-type algorithm,
because a contractionwhich is used in the viscosity-type algorithm influences the convergence
behavior of the algorithm.

In this paper, inspired and motivated by these studies, we are interested to study the
proximal split feasibility problem and the fixed point problem in Hilbert spaces. In Sect. 3,
we introduce a regularized algorithm based on the viscosity method for finding a common
solution of the proximal split feasibility problem and the fixed point problem of nonexpansive
mappings, and prove a strong convergence theoremunder some suitable conditions. In Sects. 4
and 5, we apply our main result to the split feasibility problem, and the fixed point problem of
nonexpansive semigroups, respectively. In the last section, we first give a numerical result in
Euclidean spaces to demonstrate the convergence of our algorithm.We also show the number
of iterations of our algorithm by choosing different contractions ψ . In this case, if we take
ψ = 0 in our algorithm, then we obtain Algorithm (1.6) (Shehu and Iyiola 2015, Algorithm
1). Moreover, we give an example in the infinite-dimensional spaces for supporting our main
theorem.

2 Preliminaries

Throughout this article, let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
Let C be a nonempty closed convex subset of H . Let T : C → C be a nonlinear mapping.
A point x ∈ C is called a fixed point of T if T x = x . The set of fixed points of T is the set
F(T ) := {x ∈ C : T x = x}.

Recall that A mapping T of C into itself is said to be

(i) nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖ , ∀x, y ∈ C .

123



177 Page 4 of 18 W. Khuangsatung et al.

(ii) contraction if there exists a constant δ ∈ [0, 1), such that

‖T x − T y‖ ≤ δ‖x − y‖, ∀x, y ∈ C .

Recall that the proximal operator proxλg : H → H is defined by:

proxλg x := argmin
u∈H

{
g(u) + 1

2λ
‖u − x‖2

}
. (2.1)

Moreover, the proximity operator of f is firmly nonexpansive, namely:〈
proxλg(x) − proxλg(y), x − y

〉 ≥ ‖ proxλg(x) − proxλg(y)‖2; (2.2)

for all x, y ∈ H , which is equivalent to

‖ proxλg(x) − proxλg(y)‖2 ≤ ‖x − y‖2 − ‖(I − proxλg)(x) − (I − proxλg)(y)‖2.
(2.3)

for all x, y ∈ H . For general information on proximal operator, see Combettes and Pesquet
(2011a).

In a real Hilbert space H , it is well known that:

(i) ‖αx + (1 − α)y‖2 = α ‖x‖2 + (1 − α) ‖y‖2 − α(1 − α) ‖x − y‖2 , for all x, y ∈ H
and α ∈ [0, 1];

(ii) ‖x − y‖2 = ‖x‖2 − 2〈x, y〉 + ‖y‖2 for all x, y ∈ H ;
(iii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 for all x, y ∈ H .

Recall that the (nearest-point) projection PC from H onto C assigns to each x ∈ H the
unique point PCx ∈ C satisfying the property:

‖x − PCx‖ = min
y∈C ‖x − y‖.

Lemma 2.1 (Takahashi 2000) Given x ∈ H and y ∈ C. Then, PC x = y if and only if there
holds the inequality:

〈x − y, y − z〉 ≥ 0, ∀z ∈ C .

Lemma 2.2 (Xu 2003) Let {sn} be a sequence of nonnegative real numbers satisfying:

sn+1 = (1 − αn)sn + δn, ∀n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence, such that

1.
∞∑
n=1

αn = ∞;

2. lim sup
n→∞

δn

αn
≤ 0 or

∞∑
n=1

|δn | < ∞.

Then, limn→∞ sn = 0.

Definition 2.3 Let C be a nonempty closed convex subset of a real Hilbert space H . A
mapping S : C → C is called demi-closed at zero if for any sequence {xn} which converges
weakly to x , and if the sequence {T xn} converges strongly to 0, then T x = 0.

Lemma 2.4 (Browder 1976) Let C be a nonempty closed convex subset of a real Hilbert
space H. If S : C → C is a nonexpansive mapping, then I−S is demi-closed at zero.
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Lemma 2.5 (Mainge 2008) Let {�n} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {�ni } of {�n} which satisfies �ni < �ni+1

for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max {k ≤ n : �k < �k+1} ,

where n0 ∈ N, such that {k ≤ n0 : �k < �k+1} �= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) −→ ∞;
(ii) �τn ≤ �τ(n)+1 and �n ≤ �τ(n)+1, ∀n ≥ n0.

3 Main results

In this section, we introduce an algorithm and prove a strong convergence for solving a
common element of the set of fixed points of a nonexpansive mapping and the set of solutions
of proximal split feasibility problems (1.1). Let H1 and H2 be two real Hilbert spaces. Let
f : H1 → R ∪ {+∞} and g : H2 → R ∪ {+∞} be two proper and lower semicontinuous
convex functions and A : H1 → H2 be a bounded linear operator. Let S : H1 → H1 be a
nonexpansive mapping and Let ψ : H1 → H1 be a contraction mapping with δ ∈ (0, 1).

We introduce the modified split proximal algorithm as follows:

Algorithm 3.1 Given an initial point x1 ∈ H1. Assume that xn has been constructed and
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2 �= 0, then compute xn+1 by the following
iterative scheme:{

yn = proxλμn f (αnψ(xn) + (1 − αn)xn − μn A∗(I − proxλg)Axn)

xn+1 = βn yn + (1 − βn)Syn, ∀n ∈ N,
(3.1)

where the stepsize μn := ρn

( 1
2‖(I − proxλg)Axn‖2

) + ( 1
2‖(I − proxλ f )xn‖2

)
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2

with 0 <

ρn < 4 and {αn}, {βn} ⊂ (0, 1).

We now prove our main theorem.

Theorem 3.2 Let H1 and H2 be two real Hilbert spaces. Let f : H1 → R ∪ {+∞} and
g : H2 → R ∪ {+∞}be two proper and lower semicontinuous convex functions, and A :
H1 → H2 be a bounded linear operator. Let ψ : H1 → H1 be a contraction mapping with
δ ∈ [0, 1) and let S : H1 → H1 be a nonexpansive mapping, such that  := F(S) ∩ � �= 0.
If the control sequences {αn}, {βn} and {ρn} satisfy the following conditions:

(C1) lim
n→∞ αn = 0 and

∞∑
n=1

αn = ∞;

(C2) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1;

(C3) ε ≤ ρn ≤ 4(1 − αn)
(‖(I − proxλg)Axn‖2

)
(‖(I − proxλg)Axn‖2

) + (‖(I − proxλ f )xn‖2
) − ε for some ε > 0.

Then, the sequence {xn} defined by Algorithm 3.1 converges strongly to a point x∗ ∈ which
also solves the variational inequality:

〈(ψ − I )x∗, x − x∗〉 ≤ 0, ∀x ∈ .
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Proof Given any λ > 0 and x ∈ H1, we define h(x) := 1
2‖(I − proxλg)Ax‖2, l(x) :=

1
2‖(I − proxλ f )x‖2, θ2(x) := ‖A∗(I − proxλg)Ax‖2 + ‖(I − proxλ f )x‖2, and hence,

μn = ρn
h(xn) + l(xn)

θ2(xn)
where 0 < ρn < 4.

By Banach fixed point theorem, there exists x∗ ∈  such that x∗ = Pψ(x∗). Then,
x∗ = proxλμn f x

∗ and Ax∗ = proxλg Ax∗. Since proxλg is firmly nonexpansive, we have
I − proxλg is also firmly nonexpansive. Hence

〈A∗(I − proxλg)Axn, xn − x∗〉 = 〈(I − proxλg)Axn, Axn − Ax∗〉
= 〈

(I − proxλg)Axn − (I − proxλg)Ax
∗, Axn − Ax∗〉

≥ ‖(I − proxλg)Axn‖2 = 2h(xn). (3.2)

From the definition of yn and the nonexpansivity of proxλμn f , we have:

‖yn − x∗‖ = ‖ proxλμn f (αnψ(xn) + (1 − αn)xn − μn A
∗(I − proxλg)Axn) − x∗‖

≤ ‖αnψ(xn) + (1 − αn)xn − μn A
∗(I − proxλg)Axn − x∗‖

≤ αn‖ψ(xn) − x∗‖ + (1 − αn)

∥∥∥∥xn − μn

(1 − αn)
A∗(I − proxλg)Axn − x∗

∥∥∥∥ .

(3.3)

From (3.2), we have:∥∥∥∥xn − μn

(1 − αn)
A∗(I − proxλg)Axn − x∗

∥∥∥∥
2

= ‖xn − x∗‖2 + μ2
n

(1 − αn)2
‖A∗(I − proxλg)Axn‖2

− 2
μn

(1 − αn)
〈A∗(I − proxλg)Axn, xn − x∗〉

≤ ‖xn − x∗‖2 + μ2
n

(1 − αn)2
‖A∗(I − proxλg)Axn‖2 − 4

μn

(1 − αn)
h(xn)

= ‖xn − x∗‖2 + ρ2
n
(h(xn) + l(xn))2

(1 − αn)2θ4(xn)
‖A∗(I − proxλg)Axn‖2 − 4ρn

(h(xn) + l(xn))

(1 − αn)θ2(xn)
h(xn)

≤ ‖xn − x∗‖2 + ρ2
n
(h(xn) + l(xn))2

(1 − αn)2θ2(xn)
− 4ρn

(h(xn) + l(xn))2

(1 − αn)θ2(xn)

h(xn)

(h(xn) + l(xn))

= ‖xn − x∗‖2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1 − αn

) (
(h(xn) + l(xn))2

(1 − αn)θ2(xn)

)
. (3.4)

By the condition (C3), we have
4h(xn)

(h(xn) + l(xn))
− ρn

1 − αn
≥ 0 for all n ≥ 1. From (3.3)

and (3.4), we have:

‖yn − x∗‖ ≤ αn‖ψ(xn) − x∗‖ + (1 − αn)

∥∥∥∥xn − μn

(1 − αn)
A∗(I − proxλg)Axn − x∗

∥∥∥∥
≤ αn‖ψ(xn) − ψ(x∗)‖ + αn‖ψ(x∗) − x∗‖ + (1 − αn)

∥∥xn − x∗∥∥
≤ αnδ‖xn − x∗‖ + αn‖ψ(x∗) − x∗‖ + (1 − αn)

∥∥xn − x∗∥∥
= (1 − αn(1 − δ))‖xn − x∗‖ + αn‖ψ(x∗) − x∗‖. (3.5)
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Since S is nonexpansive, by (3.1) and (3.5), we obtain:

‖xn+1 − x∗‖ = ‖βn yn + (1 − βn)Syn − x∗‖
≤ βn‖yn − x∗‖ + (1 − βn)‖Syn − x∗‖
≤ βn‖yn − x∗‖ + (1 − βn)‖yn − x∗‖
= ‖yn − x∗‖
≤ (1 − αn(1 − δ))‖xn − x∗‖ + αn‖ψ(x∗) − x∗‖
≤ max

{
‖xn − x∗‖, ‖ψ(x∗) − x∗‖

1 − δ

}
.

By mathematical induction, we have:

‖xn − x∗‖ ≤ max

{
‖x1 − x∗‖, ‖ψ(x∗) − x∗‖

1 − δ

}
, ∀n ∈ N.

Hence, {xn} is bounded and so are {ψ(xn)}, {Syn}.
From the definition of yn and (3.4), we have:

‖yn − x∗‖2 = ‖ proxλμn f (αnψ(xn) + (1 − αn)xn − μn A
∗(I − proxλg)Axn) − x∗‖2

≤ ‖αnψ(xn) + (1 − αn)xn − μn A
∗(I − proxλg)Axn − x∗‖2,

≤ αn‖ψ(xn) − x∗‖2 + (1 − αn)

∥∥∥∥xn − μn

(1 − αn)
A∗(I − proxλg)Axn − x∗

∥∥∥∥
2

≤ αn‖ψ(xn) − x∗‖2 + (1 − αn)

×
(

‖xn − x∗‖2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1 − αn

) (
(h(xn) + l(xn))2

(1 − αn)θ2(xn)

))
= αn‖ψ(xn) − x∗‖2 + (1 − αn)‖xn − x∗‖2

− ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1 − αn

) (
(h(xn) + l(xn))2

θ2(xn)

)
. (3.6)

From the definition of xn and (3.6), we obtain:

‖xn+1 − x∗‖2 = ‖βn yn + (1 − βn)Syn − x∗‖2
≤ βn‖yn − x∗‖2 + (1 − βn)‖Syn − x∗‖2
≤ ‖yn − x∗‖2
≤ αn‖ψ(xn) − x∗‖2 + (1 − αn)‖xn − x∗‖2

− ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1 − αn

) (
(h(xn) + l(xn))2

θ2(xn)

)
≤ αn‖ψ(xn) − x∗‖2 + ‖xn − x∗‖2

− ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1 − αn

) (
(h(xn) + l(xn))2

θ2(xn)

)
.

It implies that

ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1 − αn

) (
(h(xn) + l(xn))2

θ2(xn)

)
≤ αn‖ψ(xn) − x∗‖2 + ‖xn

− x∗‖2 − ‖xn+1 − x∗‖2. (3.7)
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It follows from (3.6) that

‖xn+1 − x∗‖2 = ‖βn yn + (1 − βn)Syn − x∗‖2
≤ βn‖yn − x∗‖2 + (1 − βn)‖Syn − x∗‖2 − βn(1 − βn)‖yn − Syn‖2
≤ ‖yn − x∗‖2 − βn(1 − βn)‖yn − Syn‖2
≤ αn‖ψ(xn) − x∗‖2 + (1 − αn)‖xn − x∗‖2 − βn(1 − βn)‖yn − Syn‖2
≤ αn‖ψ(xn) − x∗‖2 + ‖xn − x∗‖2 − βn(1 − βn)‖yn − Syn‖2,

which implies that

βn(1 − βn)‖yn − Syn‖2 ≤ αn‖ψ(xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (3.8)

Now, we divide our proof into two cases.
Case 1 Suppose that there exists n0 ∈ N, such that {‖xn −x∗‖}∞n=1 is nonincreasing. Then,{‖xn − x∗‖}∞n=1 converges and ‖xn − x∗‖2 −‖xn+1 − x∗‖2 → 0 as n → ∞. From (3.7) and

the condition (C1) and (C3), we obtain:

ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1 − αn

) (
(h(xn) + l(xn))2

θ2(xn)

)
→ 0 as n → ∞.

Hence, we have:

(h(xn) + l(xn))2

θ2(xn)
→ 0 as n → ∞. (3.9)

By the linearity and boundedness of A and the nonexpansivity of proxλg , we obtain that
{θ2(xn)} is bounded.

It follows that

lim
n→∞

(
(h(xn) + l(xn))

2) = 0,

which implies that

lim
n→∞ h(xn) = lim

n→∞ l(xn) = 0.

Next, we show that lim supn→∞ 〈ψ(x∗) − x∗, xn − x∗〉 ≤ 0, where x∗ = Pψ(x∗). Since
{xn} is bounded, there exists a subsequence

{
xn j

}
of {xn} satisfying xn j ⇀ω and

lim sup
n→∞

〈
ψ(x∗) − x∗, xn − x∗〉 = lim

j→∞
〈
ψ(x∗) − x∗, xn j − x∗〉 . (3.10)

By the lower semicontinuity of h, we have:

0 ≤ h(ω) ≤ lim inf
j→∞ h(xn j ) = lim

n→∞ h(xn) = 0.

Therefore, h(ω) = 1
2‖(I −proxλg)Aω‖2 = 0. Therefore, Aω is a fixed point of the proximal

mapping of g or equivalently, Aω is aminimizer of g. Similarly, from the lower semicontinuity
of l, we obtain:

0 ≤ l(ω) ≤ lim inf
j→∞ l(xn j ) = lim

n→∞ l(xn) = 0.

Therefore, l(ω) = 1
2‖(I − proxλμn f )ω‖2 = 0. That is ω ∈ F(proxλμn f ). Then ω is a

minimizer of f . Thus, ω ∈ �. We observe that

0 < μn < 4
h(xn) + l(xn)

θ2(xn)
→ 0 as n → ∞,
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and hence, μn → 0 as n → ∞.
Next, we show that ω ∈ F(S). From (3.8) and the condition (C1), (C2), we have:

‖yn − Syn‖ → 0 as n → ∞. (3.11)

For each n ≥ 1, let un := αnψ(xn) + (1 − αn)xn . Then

‖un − xn‖ = ‖αnψ(xn) + (1 − αn)xn − xn‖
= αn‖ψ(xn) − xn‖.

From the condition (C1), we have:

lim
n→∞ ‖un − xn‖ = 0. (3.12)

Observe that

‖un − proxλμn f xn‖ ≤ ‖un − xn‖ + ‖(I − proxλμn f )xn‖.
From limn→∞ l(xn) = limn→∞ 1

2‖(I − proxλμn f )xn‖2 = 0 and (3.12), we have:

lim
n→∞ ‖un − proxλμn f xn‖ = 0. (3.13)

By the nonexpansiveness of proxλμn f , we have:

‖yn − proxλμn f xn‖ = ∥∥proxλμn f

(
un − μn A

∗ (
I − proxλg

)
Axn

) − proxλμn f xn
∥∥

≤ ‖un − μn A
∗(I − proxλg)Axn − xn‖

≤ ‖un − xn‖ + μn‖A∗(I − proxλg)Axn‖.
From (3.13) and μn → 0 as n → ∞, we have:

lim
n→∞ ‖yn − proxλμn f xn‖ = 0. (3.14)

Since

‖yn − un‖ ≤ ‖yn − proxλμn f xn‖ + ‖un − proxλμn f xn‖,
from (3.13) and (3.14), we obtain:

lim
n→∞ ‖yn − un‖ = 0. (3.15)

From (3.12) and (3.15), we obtain

lim
n→∞ ‖yn − xn‖ = 0. (3.16)

From

‖Syn − xn‖ ≤ ‖Syn − yn‖ + ‖yn − xn‖,
by (3.11), (3.16), we get:

lim
n→∞ ‖Syn − xn‖ = 0. (3.17)

From the definition of xn , we have:

‖xn+1 − xn‖ ≤ βn‖yn − xn‖ + (1 − βn)‖Syn − xn‖.
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This implies from (3.16), and (3.17) that

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.18)

Using xn j ⇀ω ∈ H1 and (3.16), we obtain yn j ⇀ω ∈ H1. Since yn j ⇀ω ∈ H1, ‖yn−Syn‖ →
0 as n → ∞, by Lemma 2.4, we have ω ∈ F(S). Hence, ω ∈ F = F(S) ∩ �. Since xn j ⇀ω

as j → ∞ and ω ∈ F , by Lemma 2.1, we have:

lim sup
n→∞

〈
ψ(x∗) − x∗, xn − x∗〉 = lim

j→∞
〈
ψ(x∗) − x∗, xn j − x∗〉

= 〈
(ψ − I )x∗, ω − x∗〉

≤ 0. (3.19)

Now, by the nonexpansiveness of S and proxλμn f , and from (3.1) and (3.4), we have:

‖xn+1 − x∗‖2 ≤ βn‖yn − x∗‖2 + (1 − βn)‖Syn − x∗‖2 ≤ ‖yn − x∗‖2
≤ ‖αnψ(xn) + (1 − αn)xn − μn A

∗(I − proxλg)Axn − x∗‖2

= (1 − αn)
2‖xn − μn

(1 − αn)
A∗(I − proxλg)Axn − x∗‖2 + α2

n‖ψ(xn) − x∗‖2

+ 2αn(1 − αn)

〈
ψ(xn) − x∗, xn − μn

(1 − αn)
A∗(I − proxλg)Axn − x∗

〉
≤ (1 − αn)

2‖xn − x∗‖2 + α2
n‖ψ(xn) − x∗‖2

+ 2αn(1 − αn)〈ψ(xn) − x∗, xn − x∗〉
− 2αnμn〈ψ(xn) − x∗, A∗(I − proxλg)Axn〉

= (1 − αn)
2‖xn − x∗‖2 + α2

n‖ψ(xn) − x∗‖2
+ 2αn(1 − αn)〈ψ(xn) − ψ(x∗), xn − x∗〉
+ 2αn(1 − αn)〈ψ(x∗) − x∗, xn − x∗〉
+ 2αnμn

〈
x∗ − ψ(xn), A

∗(I − proxλg)Axn
〉

≤ (1 − 2αn + α2
n)‖xn − x∗‖2 + α2

n‖ψ(xn) − x∗‖2
+ 2αn(1 − αn)δ‖xn − x∗‖2
+ 2αn(1 − αn)〈ψ(x∗) − x∗, xn − x∗〉
+ 2αnμn‖ψ(xn) − x∗‖‖A∗(I − proxλg)Axn‖

= (1 − 2αn + α2
n + 2αn(1 − αn)δ)‖xn − x∗‖2 + α2

n‖ψ(xn) − x∗‖2
+ 2αn(1 − αn)〈ψ(x∗) − x∗, xn − x∗〉
+ 2αnμn‖ψ(xn) − x∗‖‖A∗(I − proxλg)Axn‖

= (1 − εn)‖xn − x∗‖2 + εnξn, (3.20)

where εn = αn(2 − αn − 2(1 − αn)δ) and

ξn =
[

αn‖ψ(xn) − x∗‖2 + 2(1 − αn)〈ψ(x∗) − x∗, xn − x∗〉 + 2μn‖A∗(I − proxλg)Axn‖‖ψ(xn) − x∗‖
2 − αn − 2(1 − αn)δ

]
.

Note that μn‖A∗(I − proxλg)Axn‖ = ρn
h(xn) + l(xn)

θ2(xn)
‖A∗(I − proxλg)Axn‖. Thus,

μn‖A∗(I − proxλg)Axn‖ → 0 as n → ∞. From the condition (C1), (3.19), (3.20) and
Lemma 2.2, we can conclude that the sequence {xn} converges strongly to x∗.
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Case 2 Assume that {‖xn − x∗‖} is not monotonically decreasing sequence. Then, there
exists a subsequence nl of n, such that ‖xnl − x∗‖ < ‖xnl+1 − x∗‖ for all l ∈ N. Now, we
define a positive integer sequence τ(n) by:

τ(n) := max
{
k ∈ N : k ≤ n, ‖xnl − x∗‖ < ‖xnl+1 − x∗‖} .

for alln ≥ n0 (for somen0 large enough).ByLemma2.5,wehave τ which is a non-decreasing
sequence, such that τ(n) → ∞ as n → ∞ and

‖xτ(n) − x∗‖2 − ‖xτ(n)+1 − x∗‖2 ≤ 0, ∀n ≥ n0.

By a similar argument as that of case 1, we can show that

ρτ(n)

(
4h(xτ(n))

(h(xτ(n)) + l(xτ(n)))
− ρτ(n)

1 − ατ(n)

) (
(h(xτ(n)) + l(xτ(n)))

2

θ2(xτ(n))

)
→ 0 as n → ∞.

Then, we have:

(h(xτ(n)) + l(xτ(n)))
2

θ2(xτ(n))
→ 0 as n → ∞. (3.21)

It follows that

lim
n→∞

(
(h(xτ(n)) + l(xτ(n)))

2) = 0,

which implies that

lim
n→∞ h(xτ(n)) = lim

n→∞ l(xτ(n)) = 0.

Moreover, we have

lim sup
n→∞

〈
ψ(x∗) − x∗, xτ(n) − x∗〉 ≤ 0.

By the same computation as in Case 1, we have:

‖xτ(n)+1 − x∗‖2 ≤ (1 − ετ(n))‖xτ(n) − x∗‖2 + ετ(n)ξτ(n), (3.22)

where ετ(n) = ατ(n)(2 − ατ(n) − 2(1 − ατ(n))δ) and
ξτ(n)

=
[

ατ(n)‖ψ(xτ (n)) − x∗‖2 + 2(1 − ατ(n))〈ψ(x∗) − x∗, xτ (n) − x∗〉 + 2μτ(n)‖A∗(I − proxλg)Axτ (n)‖‖ψ(xτ (n)) − x∗‖
2 − ατ(n) − 2(1 − ατ(n))δ

]
.

Since ‖xτ(n) − x∗‖2 ≤ ‖xτ(n)+1 − x∗‖2, then by (3.22), we have:
‖xτ(n) − x∗‖2 ≤ ξτ(n).

We note that lim supn→∞ ξτ(n) ≤ 0. Thus, it follows from above inequality that

lim
n→∞ ‖xτ(n) − x∗‖ = 0.

From (3.22), we also have:

lim
n→∞ ‖xτ(n)+1 − x∗‖ = 0.

It follows from Lemma 2.5 that

0 ≤ ‖xn − x∗‖ ≤ ‖xτ(n)+1 − x∗‖ → 0

as n → ∞. Therefore, {xn} converges strongly to x∗. This completes the proof.
��

123



177 Page 12 of 18 W. Khuangsatung et al.

Taking ψ(x) = u in Algorithm 3.1, we have the following Halpern-type algorithm.

Algorithm 3.3 Given an initial point x1 ∈ H1. Assume that xn has been constructed and
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2 �= 0, and then compute xn+1 by the following
iterative scheme:{

yn = proxλμn f (αnu + (1 − αn)xn − μn A∗(I − proxλg)Axn)

xn+1 = βn yn + (1 − βn)Syn, ∀n ∈ N,
(3.23)

where the stepsize μn := ρn

( 1
2‖(I − proxλg)Axn‖2

) + ( 1
2‖(I − proxλ f )xn‖2

)
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2

with 0 <

ρn < 4 and {αn}, {βn} ⊂ [0, 1].
The following result is obtained directly by Theorem 3.2.

Corollary 3.4 Let H1 and H2 be two real Hilbert spaces. Let f : H1 → R ∪ {+∞} and
g : H2 → R ∪ {+∞}be two proper and lower semicontinuous convex functions and A :
H1 → H2 be a bounded linear operator. Let S : H1 → H1 be a nonexpansive mapping, such
that  := F(S) ∩ � �= 0. If the control sequences {αn}, {βn} and {ρn} satisfy the following
conditions:

(C1) lim
n→∞ αn = 0 and

∞∑
n=1

αn = ∞;

(C2) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1;

(C3) ε ≤ ρn ≤ 4(1 − αn)
(‖(I − proxλg)Axn‖2

)
(‖(I − proxλg)Axn‖2

) + (‖(I − proxλ f )xn‖2
) − ε for some ε > 0.

Then, the sequence {xn} defined by Algorithm 3.3 converges strongly to z = Pu.

4 Convergence theorem for split feasibility problems

In this section, we give an application of Theorem 3.2 to the split feasibility problem.

Algorithm 4.1 Given an initial point x1 ∈ H1. Assume that xn has been constructed and
‖A∗(I − PQ)Axn‖2 +‖(I − PC )xn‖2 �= 0, and then compute xn+1 by the following iterative
scheme: {

yn = PC (αnψ(xn) + (1 − αn)xn − μn A∗(I − PQ)Axn)

xn+1 = βn yn + (1 − βn)Syn, ∀n ∈ N,
(4.1)

where the stepsize μn := ρn

( 1
2‖(I − PQ)Axn‖2

) + ( 1
2‖(I − PC )xn‖2

)
‖A∗(I − PQ)Axn‖2 + ‖(I − PC )xn‖2 with 0 < ρn < 4

and {αn}, {βn} ⊂ (0, 1).

We now obtain a strong convergence theorem of Algorithm 4.1 for solving the split
feasibility problem and the fixed point problem of nonexpansive mappings as follows:

Theorem 4.2 Let H1 and H2 be two real Hilbert spaces, and let C and Q be nonempty,
closed and convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear
operator. Let ψ : H1 → H1 be a contraction mapping with δ ∈ [0, 1) and let S : H1 → H1

be a nonexpansive mapping. Assume that  := F(S) ∩ C ∩ A−1(Q) �= ∅. If the control
sequences {αn}, {βn} and {ρn} satisfy the following conditions:
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(C1) lim
n→∞ αn = 0 and

∞∑
n=1

αn = ∞,

(C2) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1;

(C3) ε ≤ ρn ≤ 4(1 − αn)
(‖(I − PQ)Axn‖2

)
(‖(I − PQ)Axn‖2

) + (‖(I − PC )xn‖2
) − ε for some ε > 0.

Then, the sequence {xn} generated by Algorithm 4.1 converges strongly to z = Pψ(z).

Proof Taking f = iC and g = iQ in Theorem 3.2 (iC and iQ are indicator functions of
C and Q, respectively), we have proxλ f = PC and proxλg = PQ for all λ. We also have
argmin f = C and argmin g = Q. Therefore, from Theorem 3.2, we obtain the desired
result. ��

5 Convergence theorem for nonexpansive semigroups

In this section, we prove a strong convergence theorem for finding a common solution of the
proximal split feasibility problem and the fixed point problem of nonexpansive semigroups
in Hilbert spaces.

LetC be a nonempty, closed, and convex subset of a real Banach space X . A one-parameter
family S = S(t) : t ≥ 0 : C → C is said to be a nonexpansive semigroup on C if it satisfies
the following conditions:

(i) S(0)x = x for all x ∈ C ;
(ii) S(s + t)x = S(s)S(t)x for all t, s > 0 and x ∈ C ;
(iii) for each x ∈ C the mapping t �−→ S(t)x is continuous;
(iv) ‖S(t)x − S(t)y‖ ≤ ‖x − y‖ for all x, y ∈ C and t > 0.

We use F(S) to denote the common fixed point set of the semigroup S, i.e., F(S) =⋂
t>0 F(S(t)) = {x ∈ C : x = S(t)x}. It is well known that F(S) is closed and con-

vex (see Browder 1956).

Definition 5.1 (Aleyner and Censor 2005) Let C be a nonempty, closed, and convex subset
of a real Hilbert space H , S = S(t) : t > 0 be a continuous operator semigroup on C . Then,
S is said to be uniformly asymptotically regular (in short, u.a.r.) on C if for all h ≥ 0 and
any bounded subset K of C , such that

lim
t→∞ sup

x∈K
‖S(h)(S(t)x) − S(t)x‖ = 0.

Lemma 5.2 (Shimizu and Takahashi 1997) Let C be a nonempty, closed, and convex subset of
a real Hilbert space H, and let K be a bounded, closed, and convex subset of C. If we denote
S = S(t) : t > 0 is a nonexpansive semigroup on C, such that F(S) = ⋂

t>0 F(S(t)) �= ∅.
For all h > 0, the set σt (x) = 1

t

∫ t
0 S(s)xds, then

lim
t→∞ sup

x∈K
‖σt (x) − S(h)σt (x)‖ = 0.

Let H1 and H2 be two real Hilbert spaces. Let f : H1 → R ∪ {+∞} and g : H2 →
R∪ {+∞} be two proper and lower semicontinuous convex functions and A : H1 → H2 be
a bounded linear operator and let ψ : H1 → H1 be a contraction mapping with δ ∈ [0, 1).
Let S := {S(t) : t > 0} be a u.a.r nonexpansive semigroup on H1.
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Algorithm 5.3 Given an initial point x1 ∈ H1. Assume that xn has been constructed and
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2 �= 0, and then compute xn+1 by the following
iterative scheme:{

yn = proxλμn f (αnψ(xn) + (1 − αn)xn − μn A∗(I − proxλg)Axn)

xn+1 = βn yn + (1 − βn)S(tn)yn, ∀n ∈ N,
(5.1)

where the stepsize μn := ρn

( 1
2‖(I − proxλg)Axn‖2

) + ( 1
2‖(I − proxλ f )xn‖2

)
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2

with 0 <

ρn < 4, {αn}, {βn} ⊂ (0, 1) and {tn} is a positive real divergent sequence.
Wenowprove a strong convergence result for the problem (1.1) and the fixed point problem

of nonexpansive semigroups as follows:

Theorem 5.4 Suppose that
⋂

t>0 F(S(t)) ∩ � �= 0. If the control sequences {αn}, {βn} and
{ρn} satisfy the following conditions:

(C1) lim
n→∞ αn = 0 and

∞∑
n=1

αn = ∞;

(C2) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1;

(C3) ε ≤ ρn ≤ 4(1 − αn)
(‖(I − proxλg)Axn‖2

)
(‖(I − proxλg)Axn‖2

) + (‖(I − proxλ f )xn‖2
) − ε for some ε > 0.

Then, the sequence {xn} generated by Algorithm 5.3 converges strongly to a point x∗ ∈⋂
t>0 F(S(t)) ∩ �.

Proof By continuing in the same direction as in Theorem 3.2, we have that limn→∞ ‖yn −
S(tn)yn‖ = 0. Now, we only show that limn→∞ ‖yn − S(h)yn‖ = 0 for all h ≥ 0. We
observe that

‖yn − S(h)yn‖ ≤ ‖yn − S(tn)yn‖ + ‖S(tn)yn − S(h)S(tn)yn‖ + ‖S(h)S(tn)yn − S(h)yn‖
≤ 2‖yn − S(tn)yn‖ + sup

x∈yn
‖S(tn)x − S(h)S(tn)x‖.

Since {S(t) : t ≥ 0} is a u.a.r. nonexpansive semigroup and tn → ∞ for all h ≥ 0, we have:

lim
n→∞ ‖yn − S(h)yn‖ = 0,

for all h ≥ 0. This completes the proof. ��

6 Numerical examples

We first give a numerical example in Euclidean spaces to demonstrate the convergence of
Algorithm (3.1).

Example 6.1 Let H1 = R
2 and H2 = R

3 with the usual norms. Define a mapping S : R2 →
R
2 by:

S(a, b) :=
√
2

2
(a − b, a + b).
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Table 1 The numerical
experiment of Algorithm (6.1) by
choosing δ = 0.1

n an bn En

1 3.0000000 −2.0000000 –

2 0.1783143 −0.1100519 3.3961470

3 0.0082067 −0.0025830 0.2012117

4 0.0004998 0.0013948 0.0086729

5 0.0001562 0.0010892 0.0004598

6 0.0001076 0.0007884 0.0003047

7 0.0000801 0.0005827 0.0002075

8 0.0000608 0.0004388 0.0001452

9 0.0000467 0.0003353 0.0001045

10 0.0000363 0.0002591 0.0000769

.

.

.
.
.
.

.

.

.
.
.
.

28 0.0000008 0.0000055 0.0000012

29 0.0000007 0.0000046 0.00000098

One can show that S is nonexpansive. Define two functions f :R2 → (−∞,∞] and g :
R
3 → (−∞,∞] by f := 0, where 0 is a zero operator and

g(a, b, c) := | − 3a + 7b − 2c|2
2

.

Then, the explicit forms of the proximity operators of f and g can be written by proxλ f = I

and prox1g = B−1, where B =
⎛
⎝ 10 −21 6

−21 50 −14
6 −14 5

⎞
⎠ (see Combettes and Pesquet 2011b). Let

A : R2 → R
3 be defined by:

A :=
⎛
⎝ 2 1

7 −3
−5 4

⎞
⎠ ,

and let  := F(S) ∩ argmin f ∩ A−1(argmin g). Now, we rewrite Algorithm (3.1) in the
form: {

yn = αnψ(xn) + (1 − αn)xn − μn AT (I − B−1)Axn
xn+1 = βn yn + (1 − βn)Syn, ∀n ∈ N,

(6.1)

where

μn = ρn

2

‖(I − B−1)Axn‖2
‖AT (I − B−1)Axn‖2 .

Take αn = 1
n+1 , βn = 1

2 , ρn = 2n
n+1 . Consider a contraction ψ : R

2 → R
2 defined by

ψ(x) = δx for 0 ≤ δ < 1. We first start with the initial point x1 = (3,−2) and the stopping
criterion for our testing process is set as: En := ‖xn − xn−1‖ < 10−6, where xn = (an, bn).
In Table 1, we show the convergence behavior of Algorithm (6.1) by choosing δ = 0.1.
In Table 2, we also show the number of iterations of Algorithm (6.1) by choosing different
constants δ. –
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Table 2 The number of iterations of Algorithm (6.1) by choosing different constants δ

ψ : R2 → R
2, ψ(x) = δx

Choices of δ n (no. of iterations) xn En

δ = 0 (Shehu and Iyiola
2015,
Algorithm 1)

42 (−0.0000007,−0.0000048) 0.00000098

δ = 0.05 39 (−0.0000007,−0.0000046) 0.00000095

δ = 0.1 29 (−0.0000007,−0.0000046) 0.00000098

δ = 0.2 46 (0.0000007, 0.0000050) 0.00000099

δ = 0.5 59 (0.0000007, 0.0000052) 0.00000097

δ = 0.9 71 (0.0000007, 0.0000049) 0.00000088

Remark 6.2 In Example 6.1, by testing the convergence behavior of Algorithm (6.1), we
observe that

(i) It converges to a solution, i.e., xn → (0, 0) ∈ .
(ii) The selection of a contraction ψ in our algorithm influences the number of iterations of

the algorithm.We also note that ifψ ≡ 0 is zero, then our algorithm becomesAlgorithm
(1.6) (Shehu and Iyiola 2015, Algorithm 1).

Next, we give an example in the infinite-dimensional space L2 as follows.

Example 6.3 Let H1 = L2([0, 1]) = H2. Let x ∈ L2([0, 1]). Define a bounded linear
operator A : L2([0, 1]) → L2([0, 1]) by:

(Ax)(t) := 3t x(t).

Define a mapping S : L2([0, 1]) → L2([0, 1]) by:
(Sx)(t) := sin(x(t)).

Then, S is nonexpansive. Let

C = {
x ∈ L2([0, 1]) : 〈w, x〉 ≤ 0

}
,

where w ∈ L2([0, 1]), such that w(t) = 2t3, and let

Q = {
x ∈ L2([0, 1]) : x ≥ 0

}
.

Define two functions f , g : L2([0, 1]) → (−∞,∞] by f := iC and g := iQ , where iC and
iQ are indicator functions of C and Q, respectively. We can write the explicit forms of the
proximity operators of f and g in the following forms:

proxλ f x = PCx =
{
x − 〈w,x〉

‖w‖2 w, if x /∈ C,

x, if x ∈ C,

and proxλg x = PQx = x+, where x+(t) = max{x(t), 0} (see Cegielski 2012). Therefore,
Algorithm (3.1) can be rewritten in the form:{

yn = PC (αnψ(xn) + (1 − αn)xn − μn A∗(I − PQ)Axn)

xn+1 = βn yn + (1 − βn)Syn, ∀n ∈ N; (6.2)
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μn = ρn

( 1
2‖(I − PQ)Axn‖2

) + ( 1
2‖(I − PC )xn‖2

)
‖A∗(I − PQ)Axn‖2 + ‖(I − PC )xn‖2 , for finding a common element in the

set  := F(S) ∩ C ∩ A−1(Q). By choosing the control sequences {αn}, {βn} and {ρn}
satisfying the conditions (C1)–(C3) in Theorem 3.2, it can guarantee that the sequence {xn}
generated by (6.2) converges strongly to x∗ = 0 ∈ .
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1. Introduction
The existence of a fixed point is of paramount importance in several areas of mathematics
and other sciences. Fixed point results provide conditions under which maps have solutions.
The theory itself is a beautiful mixture of analysis (pure and applied), topology, and geometry.
In particular, fixed point techniques have been applied in such diverse fields as biology, chemistry,
economics, finances, informatics, engineering and physics. Let M be a nonempty subset of a
linear space X , let F(T)= {x ∈ M : Tx = x} denotes the set of fixed points of the mapping T on
M. Let (X ,d) be metric space and let M be a nonempty subset of X . A mapping T : M → M is
said to be nonexpansive, if

d(Tx,T y)≤ d(x, y), (1.1)

for each x, y ∈ M. Define a mapping T on [0,1] by Tx = x
3 , it’s easy to see that T is nonexpansive.

Let (X ,d) be metric space and let M be a nonempty subset of X . A mapping T : M → M is said
to be quasi-nonexpansive, if

d(Tx, p)≤ d(x, p)

for each x ∈ M and p ∈ F(T). Define a mapping T on [0,3] by

Tx =
{

0, x 6= 3,
2, x = 3.

Then F(T) = {0} 6= ; and T is quasi-nonexpansive (see [20]). In the last sixty-five years, the
numerous numbers of researchers attracted in these direction and developed iterative process
has been investigated to approximate fixed point for not only nonexpansive mapping, but also
for some wider class of nonexpansive mappings.

In 1953, Mann [13] has introduced The Mann iteration process is defined as follows: For M
a convex subset of normed space X and a nonlinear mapping T of M into itself, the sequence
{xn} in M is defined by{

x1 = x ∈ M,
xn+1 = (1−αn)xn +αnTxn, n ∈N,

(1.2)

where {αn} is real sequences in (0,1).
In 1974, Ishikawa [6] has introduced The Ishikawa iteration process is defined as follows:

For M a convex subset of normed space X and a nonlinear mapping T of M into itself, the
sequence {xn} and {yn} in M is defined by

x1 = x ∈ M,
xn+1 = (1−αn)xn +αnT yn,
yn = (1−βn)xn +βnTxn, n ∈N,

(1.3)

where {αn} and {βn} are real sequences in (0,1).
In 2007, Agarwal et al. [2] introduced a new iteration process whose rate of convergence

is similar to Picard iteration and faster than other fixed point iteration processes as follows:
For M be a convex subset of a linear space X and T : M → M a mapping. Then the modified
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S-iteration process is a sequence {xn} in M is defined by{
x1 = x ∈ M,
xn+1 = S(xn,αn,βn,Tn), n ∈N,

(1.4)

where {αn} and {βn} are real sequences in (0,1).
In 2008, Suzuki [20] introduced a class of single valued mappings called Suzuki-generalized

nonexpansive mappings (or condition C). The condition C is weaker than nonexpansiveness
and stronger than quasi-nonexpansive, as follows: Let T be a self-mapping on a subset M of a
metric space X . Then T is said to satisfy condition C if

1
2

d(x,Tx)≤ d(x, y)⇒ d(Tx,T y)≤ d(x, y),

for each x, y ∈ M.
It is obvious that every nonexpansive mapping satisfies condition C, but the converse

is not true, that is condition C is weaker than nonexpansiveness and stronger than quasi
nonexpansiveness. The next simple example can show this fact. We see that, if define a mapping
T : [0,3]→ [0,3] by

Tx =
{

0, x 6= 3,
2
3 , x = 3.

Then T is condition C, but T is not nonexpansive (see [20]).
In 2011, Aoyama and Kohsaka [3] introduced the class of α-nonexpansive mappings in

Banach spaces. This class contains the class of nonexpansive mappings and is related to the
class of firmly nonexpansive mappings in Banach spaces as follows: let X be a Banach space
and M be a nonempty subset of X . A mapping T : M → M is said to be α-nonexpansive for some
real number α< 1, if

‖Tx−T y‖ ≤α‖Tx− y‖+α‖T y− x‖+ (1−2α)‖x− y‖, (1.5)

for all x, y ∈ C. Clearly, 0-nonexpansive maps is exactly nonexpansive maps. The next simple
example can show this fact. We see that, let M = [0,4] is a subste of R endowed with the usual
normand usual order. Define T : M → M by

Tx =
{

0; x 6= 4,
2; x = 4.

Then, T is a α-nonexpansive mapping with α≥ 1
2 (see [17]).

In 2011, Sahu [15] has introduced Normal S-iteration Process is defined as follows: For M a
convex subset of normed space X and a nonlinear mapping T of M into itself, the sequence {xn}
and {yn} in M is defined by sequence {xn} in M is defined by

x1 = x ∈ M,
xn+1 = T yn,
yn = (1−αn)xn +αnTxn, n ∈N,

(1.6)

where {αn} is real sequences in (0,1).
In 2014, Kadioglu [7] defined Picard normal S-iteration process (PNS) is defined as follows:

For M a convex subset of normed space X and a nonlinear mapping T of M into itself, the
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sequence {xn}, {yn} and {zn} in M is defined by
x1 = x ∈ M,
xn+1 = T yn,
yn = (1−αn)zn +αnTzn,
zn = (1−βn)xn +βnTxn, n ∈N,

(1.7)

where {αn} and {βn} is real sequences in (0,1). If βn = 0 and αn =βn = 0 in (1.7) then it reduces
to Normal S-iteration process and Picard iteration process, respectively.

In 2014, Abbas and Nazir [1] introduced a new iteration process and proved that it is faster
than all of Picard, Mann and Agarwal et al. processes as follows: For M a convex subset of
normed space X and a nonlinear mapping T of M into itself, the sequence {xn}, {yn} and {zn} in
M is defined by

x1 = x ∈ M,
xn+1 = (1−αn)T yn +αnTzn,
yn = (1−βn)xn +βnTxn,
zn = (1−γn)xn +γnTxn, n ∈N,

(1.8)

where {αn}, {βn} and {γn} are real sequences in (0,1).
In 2017, Pant and Shukla [17] introduced a new type of monotone nonexpansive mappings in

an ordered Banach space X with partial order ≤. This new class of nonlinear mappings properly
contains nonexpansive, firmly-nonexpansive and Suzuki-type generalized nonexpansive
mappings and partially extends α-nonexpansive mappings as follows: Let X be a Banach
space and M be a nonempty subset of X . A mapping T : M → M is said to be generalized
α-nonexpansive, if there exists α ∈ [0,1) such that

1
2
‖x−Tx‖ ≤ ‖x− y‖ =⇒‖Tx−T y‖ ≤α‖Tx− y‖+α‖T y− x‖+ (1−2α)‖x− y‖

for all x, y ∈ M. Clearly, generalized 0-nonexpansive maps is exactly Suzuki-generalized
nonexpansive maps. The next simple example can show this fact. We see that, let M =
{(0,0), (2,0), (0,4), (4,0), (4,5), (5,4)} be a subset of R with dictionary order. Define a norm ‖ · ‖
on M by ‖(x1, x2)‖ = |x1|+ |x2|. Then (X ,‖ · ‖) is a Banach space. Define a mapping T : M → M
by T(0,0) = (0,0), T(2,0) = (0,0), T(0,4) = (0,0), T(4,0) = (2,0), T(4,5) = (4,0), T(5,4) = (0,4).
Then, T is a generalized α-nonexpansive mapping for α≥ 1

5 , but is neither a Suzuki-generalize
nonexpansive nor an a-nonexpansive mapping (see [17]).

In 2018, Mebawondu and Izuchukwu [14] introduced and studied some fixed points
properties and demiclosedness principle for generalized α-nonexpansive mappings in the frame
work of uniformly convex hyperbolic spaces. They further established strong and ∆-convergence
theorems for Picard Normal S-iteration scheme generated by a generalized α-nonexpansive
mapping in the frame work of uniformly convex hyperbolic spaces. A hyperbolic space is a triple
(X ,d,W), where (X ,d) is a metric space and W : X2 × [0,1]→ X is such that

(W1) d(u,W(x, y,α))≤αd(u, x)+ (1−α)d(u, y);

(W2) d(W(x, y,α),W(x, y,β))= |α−β|d(x, y);

(W3) W(x, y,α)=W(y, x,1−α);
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(W4) d(W(x, z,α),W(y,w,α))≤ (1−α)d(x, y)+αd(z,w),

for all x, y, z,w ∈ X and α,β ∈ [0,1]. The setting of hyperbolic spaces introduced by Kohlenbach
[10]. The class of hyperbolic spaces contains normed spaces and convex subsets thereof, the
Hilbert ball equipped with the hyperbolic metric. All normed spaces and their subsets are the
examples of hyperbolic spaces as well convex metric spaces. It is remarked that CAT(0) spaces
and Banach spaces are important examples of this type of hyperbolic spaces.

In this paper, we introduce and study some properties of the generalized α-nonexpansive
mapping on a nonempty subset of a hyperbolic space and prove fixed point theorems for
generalized α-nonexpansive mappings, ∆-convergence theorems and convergence theorems in a
hyperbolic space.

2. Preliminaries
Now, we recall definitions on hyperbolic spaces. If x, y → X and λ ∈ [0,1], then we use the
notation (1−λ)x⊕λy for W(x, y,λ). The following holds even for the more general setting of
convex metric space [21], as follows:

d(x,W(x, y,λ))=λd(x, y) and d(y,W(x, y,λ))= (1−λ)d(x, y)

for all x, y ∈ X and λ ∈ [0,1].
A hyperbolic space (X ,d,W) is uniformly convex [18] if for any r > 0 and ε ∈ (0,2], there

exists δ ∈ (0,1] such that for all a, x, y ∈ X ,

d
(
W

(
x, y,

1
2

)
,a

)
≤ (1−δ)r

provided d(x,a)≤ r,d(y,a)≤ r and d(x, y)≥ εr.
A mapping η : (0,1)× (0,2] → (0,1], which providing such a δ = η(r,ε) for given r > 0 and

ε ∈ (0,2], is called as a modulus of uniform convexity [19]. We call the function η is monotone if
it decreases with r (for fixed ε), that is, η(r2,ε)≤ η(r1,ε), for all r2 ≥ r1 > 0.

Let M be a nonempty subset of metric space (X ,d) and {xn} be any bounded sequence in X
while diam(M) denote the diameter of M.

Definition 2.1. Let M be a nonempty subset of metric space X and let {xn} be any bounded
sequence in M. Let a continuous functional ra(·, {xn}) : X →R+ defined by

ra(x, {xn})= limsup
n→∞

d(xn, x), for all x ∈ X .

Then, consider the following:

(i) The infimum of ra(·, {xn}) over M is said to be the asymptotic radius of {xn} with respect
to M and is denoted by ra(M, {xn});

(ii) a point z ∈ M is said to be an asymptotic center of the sequence {xn} with respect to M if

ra(z, {xn})= inf ra(x, {xn}), x ∈ M

the set of all asymptotic centers of {xn} with respect to M is denoted by A(M)(M, {xn});

(iii) this set may be empty, a singleton, or certain infinitely many points;

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 1, pp. 1–17, 2019



6 The Generalized α-Nonexpansive Mappings and Related Convergence Theorems. . . : C. Suanoom et al.

(iv) if the asymptotic radius and the asymptotic center are taken with respect to X , then these
are simply denoted by ra(X , {xn})= ra({xn}) and A(M)(X , {xn})= A(M)({xn}), respectively;

(v) for x ∈ X , ra(x, {xn})= 0 if and only if lim
n→∞xn = x.

It is known that every bounded sequence has a unique asymptotic center with respect to
each closed convex subset in uniformly convex Banach spaces and even CAT(0) spaces (see [5]).

Definition 2.2 ([9]). A sequence {xn} in X is said to ∆-converge to x ∈ X , if x is the unique
asymptotic center of {xnk } for every subsequence {xnk } of {xn}. In this case, we write ∆- lim

n→∞xn = x.

Remark 2.3 ([11]). We note that ∆-convergence coincides with the usually weak convergence
known in Banach spaces with the usual Opial property.

Lemma 2.4 ([12]). Let (X ,d,W) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η. Then every bounded sequence {xn} in X has a unique asymptotic
center with respect to any nonempty closed convex subset M of X .

Lemma 2.5 ([4]). Let X be a complete uniformly convex hyperbolic space with monotone modulus
of uniform convexity η and let {xn} be a bounded sequence in X with A({xn})= {x}. Suppose {xnk }
is any subsequence of {xn} with A({xn})= {x1} and {d(xn, x1)} converges, then x = x1.

Lemma 2.6 ([8]). Let (X ,d,W) be a uniformly convex hyperbolic space with monotone modulus
of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a,b] for some a,b ∈ (0,1). If {xn} and
{yn} are sequences in X such that limsup

n→∞
d(xn, x)≤ c, limsup

n→∞
d(yn, x)≤ c and lim

n→∞Wd(xn, yn,αn)

for some c ≥ 0. Then lim
n→∞d(xn, yn)= 0.

Definition 2.7. Let M be a nonempty subset of a hyperbolic space X and {xn} be a sequence in
X . Then {xn} is called a Fejér monotone sequence with respect to M if for all x ∈ M and n ≥ 1,

d(xn+1, x)≤ d(xn, x).

Example 2.8. Let M be a nonempty subset of X , and T : M → M be a quasi-nonexpansive (in
particular, nonexpansive) mapping such that F(T) 6= ; and x0 ∈ M. Then the sequence {xn} of
Picard iterates is Fejér monotone with respect to F(T).

Proposition 2.9 ([5]). Let {xn} be a sequence in X and M be a nonempty subset of X . Suppose
that {xn} is Fejér monotone with respect to M, then we have the followings:
(1) {xn} is bounded;

(2) The sequence {d(xn, p)} is decreasing and converges for all p ∈ F(T);

(3) lim
n→∞d(xn,F(T)) exists.

Definition 2.10 ([16]). Let M be a nonempty subset of a metric space X . A self mapping T of M
with nonempty fixed point set F(T) in M is said to satisfy Condition I if there is a nondecreasing
function f : [0,∞)→ [0,∞) with f (0)= 0, f (r)> 0 for r ∈ (0,∞), such that d(x,Tx)≥ f (D(x,F(T)))
for all x ∈ M, where D(x,F(T))= inf{d(x, p) : p ∈ F(T)}.
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3. Main Results
In this section, we will prove some property for class of generalized α-nonexpansive mappings in
a hyperbolic spaces. First, we introduce generalized α-nonexpansive mappings in a hyperbolic
space as follows: Let M be a nonempty subset of hyperbolic space X . Then T : M → M is said to
satisfy generalized α-nonexpansive, if

1
2

d(x,Tx)≤ d(x, y)=⇒ d(Tx,T y)≤αd(y,Tx)+αd(x,T y)+ (1−2α)d(x, y)

for all x, y ∈ M.
From [17, Proposition 3.5, Lemma 3.7 and Lemma 3.8], we introduce Lemma 3.1, Lemma 3.2

and Lemma 3.3 in hyperbolic space respectively.

Lemma 3.1. Let M be a nonempty subset of hyperbolic space X and T : M → M be a generalized
α-nonexpansive mapping. Then, for all x, y ∈ M :

(i) d(Tx,T2x)≤ d(x,Tx);

(ii) Either 1
2 d(x,Tx)≤ d(x, y) or 1

2 d(Tx,T2x)≤ d(Tx, y);

(iii) Either d(Tx,T y)≤α(Tx, y)+αd(x,T y)+ (1−2α)d(x, y)
or d(T2x,T y)≤αd(Tx,T y)+αd(T2x, y)+ (1−2α)d(Tx, y).

Proof. (i) Since,
1
2

d(x,Tx)≤ d(x,Tx)

by definition of T, we obtain that

d(Tx,T2x)≤αd(Tx,Tx)+αd(T2x, x)+ (1−2α)d(x,Tx)

=αd(T2x, x)+ (1−2α)d(x,Tx).

We choose α= 0< 1, then we have d(Tx,T2x)≤ d(x,Tx).
(ii) We will prove by contradiction, suppose that

1
2

d(x,Tx)> d(x, y) and
1
2

d(Tx,T2x)> d(Tx, y).

So, by (i) we have

d(x,Tx)≤ d(x, y)+d(Tx, y)

< 1
2

d(x,Tx)+ 1
2

d(Tx,T2x)

≤ d(x,Tx).

This is a contradiction. Hence, we have 1
2 d(x,Tx)≤ d(x, y) or 1

2 d(Tx,T2x)≤ d(Tx, y). (iii) follows
from (ii).

Lemma 3.2. Let M be a nonempty subset of hyperbolic space X and T : M → M be a generalized
α-nonexpansive mapping. Then, for all x, y ∈ M with x ≤ y,

d(x,Tx)≤ (3+α)
(1−α)

d(x,Tx)+d(x, y).
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Proof. By Lemma 3.1, we have for all x, y ∈ M either

d(Tx,T y)≤α(Tx, y)+αd(x,T y)+ (1−2α)d(x, y)

or

d(T2x,T y)≤αd(Tx,T y)+αd(T2x, y)+ (1−2α)d(Tx, y).

In first case, we consider

d(x,T y)≤ d(x,Tx)+d(Tx,T y)

≤ d(x,Tx)+αd(Tx, y)+αd(T y, x)+ (1−2α)d(x, y)

≤ d(x,Tx)+αd(Tx, x)+αd(x, y)+αd(T y, x)+ (1−2α)d(x, y).

This implies that

d(x,T y)≤ (1+α)
(1−α)

d(Tx, x)+d(x, y)

In other case, we consider

d(x,T y)≤ d(x,Tx)+d(Tx,T2x)+d(T2x,T y)

≤ 2d(x,Tx)+αd(Tx,T y)+αd(T2, y)+ (1−2α)d(Tx, y)

≤ 2d(x,Tx)+αd(Tx, x)+αd(T y, x)+αd(T2x,Tx)+αd(Tx, y)+ (1−2α)d(Tx, y)

≤ (2+α)d(x,Tx)+αd(T y, x)+αd(x,Tx)+ (1−α)d(Tx, y)

≤ (2+α)d(x,Tx)+αd(T y, x)+αd(x,Tx)+ (1−α)d(Tx, x)+ (1−α)d(x, y).

This implies that

d(x,T y)≤ (3+α)
(1−α)

d(x,Tx)+d(x, y).

Lemma 3.3. Let M be a nonempty subset of hyperbolic space X and T : M → M be a generalized
α-nonexpansive mapping and F(T) 6= ;, then T is a quasi-nonexpansive mapping.

Proof. Let p ∈ F(T) and x ∈ M. Since 1
2 d(z,Tz)= 0≤ d(z, x), we obtain that

d(p,Tx)= d(T p,Tx)

≤αd(T p, x)+αd(Tx, p)+ (1−2α)d(p, x).

We choose α= 0< 1, then we have

d(p,Tx)≤ d(p, x).

Hence, T is a quasi-nonexpansive mapping.

Lemma 3.4. Let X be complete uniformly convex hyperbolic space with monotone modulus
of convexity η, M be a nonempty closed convex subset of X and T be a self generalized α-
nonexpansive mapping on M. If {xn} is bounded sequence in M such that

lim
n→∞d(xn,Txn)= 0,

then T has a fixed point.
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Proof. Since {xn} is bounded sequence in X , and by Lemma 2.4, we have {xn} has unique
asymptotic center in M and lim

n→∞d(xn,Txn) = 0. Since T satisfies the generalized α-
nonexpansive and from Lemma 3.2 such that

d(xn,Tx)≤ (3+α)
(1−α)

d(xn,Txn)+d(xn, x).

Now, we take limsup as n →∞ both the sides, we have

ra(Tx, {xn})= limsup
n→∞

d(xn,Tx)

≤ limsup
n→∞

[
(3+α)
(1−α)

d(xn,Txn)+d(xn, x)
]

≤ limsup
n→∞

d(xn, x)= ra(x, {xn}).

By the uniqueness of asymptotic center, Tx = x, this implies that x is fixed point of T . Hence, T
has a fixed point.

Lemma 3.5. Let M be a nonempty and convex subset of a strictly convex hyperbolic space X . Let
T be a self generalized α-nonexpansive mapping on M and F(T) 6= ;, then F(T) is closed and
convex.

Proof. Assume that {xn} ⊆ F(T) such that {xn} converges to some y ∈ M. We will show that
y ∈ F(T). By Lemma 3.2, we get that

d(xn,T y)≤ (3+α)
(1−α)

d(xn,Txn)+d(xn, y),

taking limsup as n →∞ both the sides, we have

limsup
n→∞

d(xn,T y)≤ limsup
n→∞

(3+α)
(1−α)

d(xn,Txn)+ limsup
n→∞

d(xn, y).

So, limsup
n→∞

d(xn,T y)≤ limsup
n→∞

d(xn, y). By the uniqueness of the limit point of M, we obtain that

T y= y. Therefore, F(T) is closed.
Next, we show that F(T) is convex, let x, y ∈ F(T), then for β ∈ [0,1], we have

d(x,T(W(x, y,β)))≤ (3+α)
(1−α)

d(x,Tx)+d(x,W(x, y,β))

≤ d(x,W(x, y,β))

and

d(y,T(W(x, y,β)))≤ (3+α)
(1−α)

d(y,T y)+d(y,W(x, y,β))

≤ d(y,W(x, y,β))

Now, we consider

d(x, y)≤ d(x,T(W(x, y,β)))+d(T(W(x, y,β)), y)

≤ d(x,W(x, y,β))+d(W(x, y,β), y)

≤ d(x, y).

Therefore, if d(x,T(W(x, y,β))) < d(x,W(x, y,β)) or d(T(W(x, y,β)), y) < d(W(x, y,β), y), then
which the contradiction to d(x, y) < d(x, y), so d(x,T(W(x, y,β))) = d(x,W(x, y,β)) and
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d(T(W(x, y,β)), y)= d(W(x, y,β), y). Since M is strictly convex, we have T(W(x, y,β)=W(x, y,β),
that is W(x, y,β) ∈ F(T). Hence, F(T) is convex.

Theorem 3.6. Let M be a nonempty closed bounded and convex subset of a complete uniformly
convex hyperbolic space with monotone modulus of uniform convexity η and T be a self
generalized α-nonexpansive mapping on M. Suppose that {xn} is a sequence in M, with
d(xn,Txn) → 0. If A(M)(M, {xn}) = x, then x is a fixed point of T . Moreover, F(T) is closed
and convex.

Proof. Suppose that there exists some approximate fixed point sequence {xn}. By Lemma 2.4,
the asymptotic center of any bounded sequence is in M has a unique asymptotic center in M.
Let A(M)(M, {xn})= x. We will prove that x = Tx. From Lemma 3.2, we have

d(xn,Tx)≤ (3+α)
(1−α)

d(xn,Txn)+d(xn, x),

taking limsup as n →∞ both the sides, we obtain that

limsup
n→∞

d(xn,Tx)≤ (3+α)
(1−α)

limsup
n→∞

d(xn,Txn)+ limsup
n→∞

d(xn, x)

= limsup
n→∞

d(xn, x).

By uniqueness of the asymptotic center implies Tx = x. Moreover, F(T) closed and convex, by
the prove in Lemma 3.5.

Corollary 3.7. Let M be a nonempty closed bounded and convex subset of a complete uniformly
convex hyperbolic space with monotone modulus of uniform convexity η. Suppose that {xn}
is a sequence in M, with d(xn,Txn) → 0. If T satisfies generalized α-nonexpansive and
A(M)(M, {xn})= x, then x is a fixed point of T . Moreover, F(T) is closed and convex.

Now, we expand the result of Abbas and Nazir [1] to generalized α-nonexpansive mappings
in hyperbolic spaces, as follows: Let M be a nonempty closed convex subset of a hyperbolic space
X and T be a self generalized α-nonexpansive mapping on M. For any x1 ∈ M the sequence {xn}
is defined by

xn+1 =W(T yn,Tzn,αn)
yn =W(zn,Tzn,βn)
zn =W(xn,Txn,γn) n ∈N,

(3.1)

where {αn}, {βn} and {γn} are in [0,1] for all n ∈N.

Lemma 3.8. Let M be a nonempty closed convex subset of a hyperbolic space X and T : M → M
be a mapping which satisfies the generalized α-nonexpansive. If {xn} is a sequence defined by
(3.1), then {xn} is Fejér monotone with respect to F(T).

Proof. Since T satisfies the generalized α-nonexpansive and p ∈ F(T), we have
1
2

d(p,T p)= 0≤ d(p, xn),

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 1, pp. 1–17, 2019



The Generalized α-Nonexpansive Mappings and Related Convergence Theorems. . . : C. Suanoom et al. 11

1
2

d(p,T p)= 0≤ d(p, yn)

and
1
2

d(p,T p)= 0≤ d(p, zn),

for all n ∈N. We obtain that

d(T p,Txn)≤αd(T p, xn)+αd(Txn, p)+ (1−2α)d(p, xn),

d(T p,T yn)≤αd(T p, yn)+αd(T yn, p)+ (1−2α)d(p, yn)

and

d(T p,Tzn)≤αd(T p, zn)+αd(Tzn, p)+ (1−2α)d(p, zn).

By (3.1) and Lemma 3.3, we have

d(T p,Txn)≤ d(p, xn),

d(T p,T yn)≤ d(p, yn)

and

d(T p,Tzn)≤ d(p, zn). (3.2)

Using (3.1) and (3.2), we get

d(xn+1, p)= d(W(T yn,Tzn,αn), p)

≤ (1−αn)d(T yn, p)+αnd(Tzn, p)

≤ (1−αn)d(yn, p)+αnd(zn, p), (3.3)

where

d(yn, p)= d(W(zn,Tzn,βn), p)

≤ (1−βn)d(zn, p)+βnd(Tzn, p)

≤ (1−βn)d(zn, p)+βnd(zn, p)

= d(zn, p), (3.4)

and

d(zn, p)= d(W(xn,Txn,γn), p)

≤ (1−βn)d(xn, p)+γnd(Txn, p)

≤ (1−βn)d(xn, p)+γnd(xn, p)

= d(xn, p). (3.5)

Now, taking (3.4) in (3.3), we have

d(xn+1, p)≤ (1−αn)d(zn, p)+αnd(zn, p)

= d(zn, p). (3.6)

Taking (3.5) in (3.6), we obtain that

d(xn+1, p)≤ d(zn, p)≤ d(xn, p) (3.7)

Hence, {xn} is Fejér monotone with respect to F(T).
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Lemma 3.9. Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic
space with monotone modulus of uniform convexity η and T be a self generalized α-nonexpansive
mapping on M. If {xn} is a sequence defined by (3.1), then F(T) is nonempty if and only if the
sequence {xn} is bounded and lim

n→∞d(xn,Txn)= 0.

Proof. Assume that F(T) is nonempty and let p ∈ F(T). From Lemma 3.8 and Proposition 2.9,
we have {xn} is Fejér monotone with respect to F(T) and bounded such that lim

n→∞d(xn, p) exists,
let lim

n→∞d(xn, p)= k. We divide into two case

(i) If k = 0, we have

d(xn,Txn)≤ d(xn, p)+d(p,Txn),

by Lemma 3.3, we get

d(xn,Txn)≤ 2d(xn, p).

Taking lim as n →∞ on both the sides above inequality, we have

lim
n→∞d(xn,Txn)= 0.

(ii) If k > 0, let p ∈ F(T) and since T satisfies the generalized α-nonexpansive, by Lemma 3.3,
we have

d(Txn, p)≤ d(xn, p),

by taking limsup as n →∞ both the sides, we have

limsup
n→∞

d(Txn, p)≤ k. (3.8)

Taking limsup as n →∞ both the sides in (3.5), we obtain that

limsup
n→∞

d(zn, p)≤ k. (3.9)

From (3.6), we get

d(xn+1, p)≤ d(zn, p),

so, taking liminf as n →∞ both the sides, we obtain that

liminf
n→∞ d(xn+1, p)≤ liminf

n→∞ d(zn, p)

k ≤ liminf
n→∞ d(zn, p) (3.10)

By (3.9) and (3.10), we have

lim
n→∞d(zn, p)= k,

which implies that

k = limsup
n→∞

d(zn, p)

= limsup
n→∞

d(W(xn,Txn,γn), p)

≤ limsup
n→∞

[(1−γn)d(xn, p)+γnd(Txn, p)]

≤ limsup
n→∞

(1−γn)d(xn, p)+ limsup
n→∞

γnd(Txn, p)= k.
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Therefore, by Lemma 2.6, we have lim
n→∞d(xn,Txn)= 0.

Conversely, assume that {xn} is bounded and lim
n→∞d(xn,Txn)= 0. Hence, from Lemma 3.4, we

have Tx = x, that is F(T) is nonempty.

Theorem 3.10. Let M be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let T : M → M satisfies
the generalized α-nonexpansive, such that F(T) 6= ;. Then the sequence {xn} defined in (3.1),
∆-converges to a common fixed point of T .

Proof. By Lemma 3.8, we have {xn} is a bounded sequence then, {xn} has a ∆-convergent
subsequence.

Next, we show that every ∆-convergent subsequence of {xn} has unique ∆-limit F(T). Let
u and v ∆-limits of the subsequences {un} and {vn} of {xn}. By Lemma 2.4, A(M)(M, {un})= {u}
and A(M)(M, {vn})= {v}. By Lemma 3.9, we get

lim
n→∞d(un,Tun)= 0.

From Lemma 3.4, we have u and v are fixed points of T .
Now, we will show that u = v. Assume that u 6= v, then by uniqueness of asymptotic center

we obtain that

limsup
n→∞

d(xn,u)= limsup
n→∞

d(un,u)

< limsup
n→∞

d(un,v)

= limsup
n→∞

d(xn,v)

= limsup
n→∞

d(vn,v)

< limsup
n→∞

d(vn,u)

= limsup
n→∞

d(xn,u),

which is a contradiction, therefore u = v. Hence, the sequence {xn} ∆-converges to a fixed point
of T . This completes the proof.

Theorem 3.11. Let M be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η and T : M → M be a mapping
which satisfies the generalized α-nonexpansive with F(T) 6= ;. Then the sequence {xn} which is
defined by (3.1), converges strongly to some fixed point of T if and only if liminf

n→∞ D(xn,F(T))= 0,
where D(xn,F(T))= inf

x∈F(T)
d(xn, x).

Proof. Assume that {xn} converges to p ∈ F(T). Thus, lim
n→∞d(xn, p) = 0, since 0 ≤ D(xn,F(T) ≤

d(xn, p)≤ 0. Hence, liminf
n→∞ D(xn,F(T))= 0.

Conversely, from Lemma 3.5, we have F(T) is closed. Assume that

lim
n→∞ infD(xn,F(T))= 0.
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From (3.7), we have

D(xn+1,F(T))≤ D(xn,F(T)), n ∈N
then by Lemma 3.8 and Proposition 2.9, we obtain that lim

n→∞d(xn,F(T)) exists. Then we have
lim

n→∞D(xn,F(T))= 0.
Now, we will show that {xn} is convergent to p ∈ F(T). Consider a subsequence {xnk } of {xn}

we get

d(xnk , pk)< 1
2k ,

for all k ≥ 1 where {pk} is in F(T). By Lemma 3.8, we have

d(xnk+1 , pk)≤ d(xnk , pk)< 1
2k ,

this implies that

d(pk+1, pk)≤ d(pk+1, xnk+1)+d(xnk+1 , pk)

< 1
2k+1 + 1

2k

< 1
2k−1 .

This shows that {pk} is a Cauchy sequence in F(T). Since F(T) is closed, {pk} is a convergent
sequence. Let {pk} converges to p. Since

d(xnk , p)≤ d(xnk , pk)+d(pk, p)→ 0, as k →∞,

such that lim
k→∞

d(xnk , p)= 0. Since lim
n→∞d(xn, p) exists, the sequence {xn} is convergent to p. This

completes the proof.

Theorem 3.12. Let M be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η and T : M → M be a mapping
which satisfies the generalized α-nonexpansive. Moreover, T satisfies the condition I with
F(T) 6= ;. Then the sequence {xn} which is defined by (3.1), converges strongly to some fixed point
of T .

Proof. From Lemma 3.5, we have F(T) is closed. Observe that by Lemma 3.8, we have
lim

n→∞d(xn,Txn)= 0. It follows from the condition I that

lim
n→∞ f (D(xn,F(T)))≤ lim

n→∞d(xn,Txn)= 0.

Thus, we get

lim
n→∞ f (D(xn,F(T)))= 0.

Since f : [0,∞) → [0,∞) is a nondecreasing mapping satisfying f (0) = 0 and f (r) > 0 for all
r ∈ (0,∞), we have lim

n→∞d(xn,F(T))= 0. Rest of the proof follows in lines of Theorem 3.11. Hence
the sequence {xn} is convergent to p ∈ F(T). This completes the proof.
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4. Conclusion
In this paper, we studied some properties of the generalized α-nonexpansive mappings

on a nonempty subset of a hyperbolic space, proved fixed point theorems for generalized α-
nonexpansive mappings and proved convergence theorems. Moreover, we obtain that corollary
for the generalized α-nonexpansive mappings on a nonempty subset of a hyperbolic space as
follows:

(1) Let M be a nonempty subset of hyperbolic space X and T : M → M be a generalized
α-nonexpansive mapping. Then, for all x, y ∈ M :

(i) d(Tx,T2x)≤ d(x,Tx);
(ii) Either 1

2 d(x,Tx)≤ d(x, y) or 1
2 d(Tx,T2x)≤ d(Tx, y);

(iii) Either d(Tx,T y)≤α(Tx, y)+αd(x,T y)+ (1−2α)d(x, y) or
d(T2x,T y)≤αd(Tx,T y)+αd(T2x, y)+ (1−2α)d(Tx, y).

(2) Let M be a nonempty closed bounded and convex subset of a complete uniformly
convex hyperbolic space with monotone modulus of uniform convexity η and T be a
self generalized α-nonexpansive mapping on M. Suppose that {xn} is a sequence in M,
with d(xn,Txn)→ 0. If A(M)(M, {xn})= x, then x is a fixed point of T . Moreover, F(T) is
closed and convex.

(3) Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η. Let T : M → M satisfies the
generalized α-nonexpansive, such that F(T) 6= ;. Then the sequence {xn} defined in (3.1),
∆-converges to a common fixed point of T .

(4) Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η and T : M → M be a mapping
which satisfies the generalized α-nonexpansive with F(T) 6= ;. Then the sequence {xn}
which is defined by (3.1), converges strongly to some fixed point of T if and only if
liminf

n→∞ D(xn,F(T))= 0, where D(xn,F(T))= inf
x∈F(T)

d(xn, x).

(5) Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η and T : M → M be a mapping
which satisfies the generalized α-nonexpansive. Moreover, T satisfies the condition I with
F(T) 6= ;. Then the sequence {xn} which is defined by (3.1), converges strongly to some
fixed point of T .
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1. Introduction
In mathematics, a fixed point of a function is an element of the function’s domain that is mapped
to itself by the function. That is to say, x0 is a fixed point of the function f (x) if f (x0) = x0.
In numerical analysis, fixed-point iteration is a method of computing fixed points of iterated
functions. Let M be a nonempty subset of a linear space X , and let F(T) = {x ∈ M : Tx = x}
denotes the set of fixed points of the mapping T on M. Many nonlinear equations are naturally
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formulated as fixed point equations,

x = Tx , (1.1)

where T : X → X is a mappings. A solution x of the equation (1.1) is called a fixed point of the
mapping T . We consider a Picard iteration, which is given by

xn+1 = Txn, ∀ N. (1.2)

For the Banach contraction mapping theorem, the Picard iteration converges unique fixed point
of T , but it fails to approximate fixed point for nonexpansive mappings, even when the existence
of a fixed point of T is guaranteed (see [8]). Consider T : [0,1]→ [0,1] defined by Tx = 1− x for
x ∈ [0,1]. Then T is nonexpansive with a unique fixed point at x = 1

2 . If we choose a starting
value x = a 6= 1

2 , then the successive iteration of T yield the sequence {1−a,a,1−a, · · ·} (see [8]).
Next, let (X ,d) be metric space and let M be a nonempty subset of X . A mapping T : M → M is
said to be nonexpansive, if

d(Tx,T y)≤ d(x, y), (1.3)

for each x, y ∈ M. Define a mapping T on [0,1] by

Tx = x .

It is easy to see that T is nonexpansive. In the last fifty years, the numerous numbers of
researchers attracted in these direction and developed iterative process has been investigated
to approximate fixed point for not only nonexpansive mapping, but also for some wider class of
nonexpansive mappings (see e.g., [2]-[22]), and compare which one is faster to approximate the
fixed point as earliest as possible.

Let (X ,d) be metric space and let M be a nonempty subset of X . A mapping T : M → M is
said to be quasi-nonexpansive, if

d(Tx, p)≤ d(x, p)

for each x ∈ M and p ∈ F(T). Define a mapping T on [0,3] by

Tx =
{

0, x 6= 3,
2, x = 3.

Then F(T)= {0} 6= ; and T is quasi-nonexpansive, but T does not satisfy condition C (see [25]).

In 2008, Suzuki [25] introduced a class of single valued mappings called Suzuki-generalized
nonexpansive mappings (or condition C), as follows: Let T be a self-mapping on a subset M of a
metric space X . Then T is said to satisfy condition C if

1
2

d(x,Tx)≤ d(x, y)⇒ d(Tx,T y)≤ d(x, y),

for each x, y ∈ M.

It is obvious that every nonexpansive mapping satisfies condition C, but the converse
is not true, that is condition C is weaker than nonexpansiveness and stronger than quasi
nonexpansiveness. The next simple example can show this fact. We see that, if define a mapping
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T1 and T2 on [0,3] by

T1x =
{

0, x 6= 3,
1, x = 3

and

T2x =
{

0, x 6= 3,
3
2 , x = 3.

Then T1 and T2 are condition C, but T1 and T2 are not nonexpansive (see [25]).

Definition 1.1. Let (X ,d) be a metric space and M be its nonempty subset. Then T : M → M
said to be i if there exists a constant L > 0 such that

d(Tx,T y)≤ Ld(x, y)

for all x, y ∈ M.

Example 1.2. Consider, T : [0,2]→ [0,2], define by

Tx = x2, ∀ x ∈ [0,2].

It is easy to see that T is L-Lipschitzian, but T is not nonexpansive.

In 2011, Sahu [20] introduced Normal S-iteration Process, whose rate of convergence similar
to the Picard iteration process and faster than other fixed point iteration processes, as follows:
For M a convex subset of normed space X and a nonlinear mapping T of M into itself, for each
x1 ∈ M, the sequence {xn} in M is defined by{

xn+1 = T yn

yn = (1−αn)xn +αnTxn, n ∈N,
(1.4)

where {αn} is real sequences in (0,1).
In 2014, Kadioglu [10] defined Picard normal S-iteration process (PNS) as follows: With C,

X and T as in (NS), for each x1 ∈ C, the sequence {xn} in C is defined by
xn+1 = T yn

yn = (1−αn)zn +αnTzn

zn = (1−βn)xn +βnTxn, n ∈N,
(1.5)

where {αn} and {βn} is real sequences in (0,1). If βn = 0 and αn =βn = 0 in (1.5) then it reduces
to Normal S-iteration process and Picard iteration process respectively.

On the other hand, Kohlenbach [13] introduced hyperbolic spaces, as follows: A hyperbolic
space is a triple (X ,d,W), where (X ,d) is a metric space and W : X2 × [0,1]→ X is such that

W1: d(u,W(x, y,α))≤αd(u, x)+ (1−α)d(u, y);

W2: d(W(x, y,α),W(x, y,β))= |α−β|d(x, y);

W3: W(x, y,α)=W(y, x,1−α);

W4: d(W(x, z,α),W(y,w,α))≤ (1−α)d(x, y)+αd(z,w),

for all x, y, z,w ∈ X and α,β ∈ [0,1].
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Moreover, a metric space is said to be a convex metric space in the sense of Takahashi [26],
where a triple (X ,d,W) satisfy only W1. The concept of hyperbolic spaces in [13] is more
restrictive than the hyperbolictype introduced by Goebel and Kirk [6] since W1-W2 together are
equivalent to (X ,d,W) being a space of hyperbolic type in [6]. But it is slightly more general
than the hyperbolic space defined in Reich and Shafrir [19] (see [13]). This class of metric spaces
in [13] covers all normed linear spaces, R-trees in the sense of Tits, the Hilbert ball with the
hyperbolic metric (see [7]), Cartesian products of Hilbert balls, Hadamard manifolds (see [19]),
and CAT(0) spaces in the sense of Gromov (see [4] for a detailed treatment). A thorough
discussion of hyperbolic spaces and a detailed treatment of examples can be found in [13]
(see also [6], [7], [19]). Define the function d : X2 → [0,∞) by

d(x, y)= ‖x− y‖
as a metric on X , where X is a real Banach space which is equipped with norm ‖ · ‖. Then,
we have that (X ,d,W) is a hyperbolic space with mapping W : X2 × [0,1] → X defined by
W(x, y,α)= (1−α)x+αy (see [24]).

In this paper, we prove some properties of a L-Lipschitzian Suzuki-generalized nonexpansive
mapping on a nonempty subset of a hyperbolic space and prove ∆-convergence theorems and
convergence theorems for a L-Lipschitzian Suzuki-generalized nonexpansive mapping in a
hyperbolic space.

Next, we recall the same basic definitions, notations and some results on hyperbolic spaces
that will be used in the later section.

2. Preliminaries
Now, we recall definitions on hyperbolic spaces. If x, y → X and λ ∈ [0,1], then we use the
notation (1−λ)x⊕λy for W(x, y,λ). The following holds even for the more general setting of
convex metric space [26], as follows:

d(x,W(x, y,λ))=λd(x, y) and d(y,W(x, y,λ))= (1−λ)d(x, y)

for all x, y ∈ X and λ ∈ [0,1].
A hyperbolic space (X ,d,W) is uniformly convex [23] if for any r > 0 and ε ∈ (0,2], there

exists δ ∈ (0,1] such that for all a, x, y ∈ X ,

d
(
W

(
x, y,

1
2

)
,a

)
≤ (1−δ)r

provided d(x,a)≤ r,d(y,a)≤ r and d(x, y)≥ εr.
A mapping η : (0,1)× (0,2] → (0,1], which providing such a δ = η(r,ε) for given r > 0 and

ε ∈ (0,2], is called as a modulus of uniform convexity [24]. We call the function η is monotone if
it decreases with r (for fixed ε), that is, η(r2,ε)≤ η(r1,ε), ∀ r2 ≥ r1 > 0.

Let M be a nonempty subset of metric space (X ,d) and {xn} be any bounded sequence in X
while diam(M) denote the diameter of M. Consider a continuous functional ra(·, {xn}) : X →R+

defined by

ra(x, {xn})= limsup
n→∞

d(xn, x), x ∈ X .
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The infimum of ra(·, {xn}) over M is said to be the asymptotic radius of {xn} with respect to M
and is denoted by ra(M, {xn}). A point z ∈ M is said to be an asymptotic center of the sequence
{xn} with respect to M if

ra(z, {xn})= inf{ra(x, {xn}) : x ∈ M},

the set of all asymptotic centers of {xn} with respect to M is denoted by AM(M, {xn}). This set
may be empty, a singleton, or certain infinitely many points. If the asymptotic radius and the
asymptotic center are taken with respect to X , then these are simply denoted by ra(X , {xn})=
ra({xn}) and AM(X , {xn})= AM({xn}), respectively. We know that for x ∈ X , ra(x, {xn})= 0 if and
only if lim

n→∞xn = x. It is known that every bounded sequence has a unique asymptotic center
with respect to each closed convex subset in uniformly convex Banach spaces and even CAT(0)
spaces (see [8]).

Definition 2.1 ([12]). A sequence {xn} in X is said to ∆-converge to x ∈ X , if x is the unique
asymptotic center of {xnk } for every subsequence {xnk } of {xn}. In this case, we write ∆- lim

n→∞xn = x.

Remark 2.2. We note that ∆-convergence coincides with the usually weak convergence known
in Banach spaces with the usual Opial property.

Lemma 2.3 ([15]). Let (X ,d,W) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η. Then every bounded sequence {xn} in X has a unique asymptotic
center with respect to any nonempty closed convex subset K of X .

Lemma 2.4 ([5]). Let X be a complete uniformly convex hyperbolic space with monotone modulus
of uniform convexity η and let {xn} be a bounded sequence in X with A({xn})= {x}. Suppose {xnk }
is any subsequence of {xn} with A({xn})= {x1} and {d(xn, x1)} converges, then x = x1.

Lemma 2.5 ([11]). Let (X ,d,W) be a uniformly convex hyperbolic space with monotone modulus
of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a,b] for some a,b ∈ (0,1). If {xn} and
{yn} are sequences in X such that limsup

n→∞
d(xn, x)≤ c, limsup

n→∞
d(yn, x)≤ c and lim

n→∞Wd(xn, yn,αn)

for some c ≥ 0. Then lim
n→∞d(xn, yn)= 0.

Lemma 2.6 ([18]). Let {δn}, {βn} and {γn} be three sequences of nonnegative numbers such that

δn+1 ≤βnδn +γn

for all n ∈N. If βn ≥ 1 for all n ∈N,
∞∑

n=1
(βn −1)<∞ and

∞∑
n=1

γn <∞, then lim
n→∞δn exists.

Definition 2.7 ([21]). Let (X ,d) be a metric space and M be it’s nonempty subset of X and T
be a self-mapping on M, then a sequence {xn} in M is called approximate fixed point sequence
for T (AFPS, in short) if lim

n→∞d(xn,Txn)= 0.

Theorem 2.8 ([1]). Let M be a nonempty closed convex subset of a complete CAT(0) space X ,
T : M → M a nearly asymptotically quasi-nonexpansive mapping with sequence {an,un} such
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that
∞∑

n=1
an <∞ and

∞∑
n=1

un <∞. Assume that F(T) is a closed set. Let {xn} be a sequence in M.

Then {xn} converges strongly to a fixed point of T if and only if liminf
n→∞ d(xn,F(T))= 0.

3. Main Results
In this section, we begin with the definition of L-Lipschitzian Suzuki-generalized nonexpansive
mapping.

Definition 3.1. Let T be a self-mapping on a subset M of a metric space X . Then T is said to
satisfy L-Lipschitzian Suzuki-generalized nonexpansive if there exists a constant L > 0 such
that

1
2

d(x,Tx)≤ d(x, y)⇒ d(Tx,T y)≤ Ld(x, y), ∀ n ≥ 1, x, y ∈ M.

Example 3.2. Consider, T : [0,2]→ [0,2], define by

Tx =
{

0, x 6= 2,
x2, x = 2.

If x = 2 and y ∈ (0,1), then
1
2

d(2,T2)= 1≤ d(2, y) and d(T2,T y)= 4≤ Ld(2, y).

Thus, we see that T is not condition C, because d(T2,T y)= 4> d(2, y). In other cases, for any
L ≥ 4

d(2,y) , a map T satisfies L-Lipschitzian Suzuki-generalized nonexpansive.

Remark 3.3. We consider Example 3.2, for x = 2 and y ∈ (0,1), if we choose L < 4
d(2,y) , then

we have a map T satisfies L-Lipschitzian Suzuki-generalized nonexpansive, but T is not
L-Lipschitzian.

Example 3.4. Consider, T : [0,2]→ [0,2], define by

Tx =
{

x2, x 6= 2,
1, x = 2.

If x = 2 and y ∈ (
1, 1

2

)
, then

1
2

d(2,T2)= 1
2
≤ d(x, y) and d(T2,T y)≤ Ld(2, y) (3.1)

hold. Thus, T satisfies L-Lipschitzian Suzuki-generalized nonexpansive mapping for any
L ≥ d(T2,T y)

d(2,y) , but T is not condition (C) because d(T2,T y) > d(2, y). In other cases, it’s easy
to see that, a map T satisfies L-Lipschitzian Suzuki-generalized nonexpansive.

Remark 3.5. We will see that in Example 3.4, for x = 2 and y ∈ (
1, 1

2

)
, if we choose L < d(Tx,T y)

d(x,y) ,
then we have a map T satisfies L-Lipschitzian Suzuki-generalized nonexpansive, but T is not
L-Lipschitzian.

Proposition 3.6. Let {Ti}k
i=1 be a self finite family of L i-Lipschitzian Suzuki-generalized

Communications in Mathematics and Applications, Vol. 10, No. 1, pp. 55–69, 2019



The Finite Family L-Lipschitzian Suzuki-Generalized Nonexpansive Mappings: C. Suanoom et al. 61

nonexpansive mappings on M. Then

d(xn,Ti y)≤ (1+2L i)d(xn,Tixn)+L id(xn, y)

for all x, y ∈ M, {xn} is approximate fixed point sequence in M.

Proof. Let x, y ∈ M, since {Ti}k
i=1 is a self finite family of L i-Lipschitzian Suzuki-generalized

nonexpansive mappings on M, we have
1
2

d(xn,Tixn)= 0≤ d(xn, y),

for all n ∈N, then

d(Tixn,Ti y)≤ L id(xn, y).

Now, we consider

d(xn,Ti y)≤ d(xn,Tixn)+d(Tixn,T2
i xn)+d(T2

i xn,Ti y)

≤ (1+L i)d(xn,Tixn)+L id(Tixn, y)

≤ (1+2L i)d(xn,Tixn)+L id(xn, y).

Hence, d(xn,Ti y)≤ (1+2L i)d(xn,Tixn)+L id(xn, y).

Let (X ,d) be a metric space and let M be a nonempty subset of X . We will denote the fixed

point set of mapping {Ti}k
i=1 by F(T) :=

k⋂
i=1

F(Ti).

Lemma 3.7. Let M be a nonempty and convex subset of a strictly convex hyperbolic space X .
If {Ti}k

i=1 be a self finite family of unL i-Lipschitzian Suzuki-generalized nonexpansive mappings
on M, that is there exist a sequence {un} and L i > 0 such that

1
2

d(x,Tix)≤ d(x, y)⇒ d(Tix,Ti y)≤ unL id(x, y),

∀ n ≥ 1, x, y ∈ M with unL i → 1, for all i = 1,2, . . . ,k and F(T) 6= ;. If {xn}, {yn} are bounded
approximate fixed point sequence in M, then F(T) is closed and convex.

Proof. Assume that {xn} is a sequence in F(T) which converges to some y ∈ M. To show that
y ∈ F(T) by Proposition 3.6, we obtain that

d(xn,Ti y)≤ (1+2L i)d(xn,Tixn)+unL id(xn, y)

≤ (1+2L i)d(xn,Tixn)+d(xn, y).

Thus,

limsup
n→∞

d(xn,Ti y)≤ limsup
n→∞

(1+2L i)d(xn,Tixn)+ limsup
n→∞

d(xn, y).

Since {xn} ⊆ F(T), we have limsup
n→∞

d(xn,Ti y) ≤ limsup
n→∞

d(xn, y). By the uniqueness of the limit

point we obtain that Ti y= y, that is y ∈ F(T), and then F(T) is closed.
Now, we will to show that F(T) is convex. Let x, y ∈ F(T) and each α ∈ (0,1). Then,

d(x, y)≤ d(x,Ti(W(x, y,α)))+d(Ti(W(x, y,α)), y)

≤ d(x,W(x, y,α))+d(W(x, y,α), y)
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≤ d(x, y).

Now, we consider

d(x,Ti(W(x, y,α)))≤ (1+2L i)d(x,Tix)+unL id(x,W(x, y,α))

≤ (1+2L i)d(x,Tix)+d(x,W(x, y,α))

≤ d(x,W(x, y,α))

and

d(y,Ti(W(x, y,α)))≤ (1+2L i)d(y,Ti y)+unL id(y,W(x, y,α))

≤ (1+2L i)d(y,Ti y)+d(y,W(x, y,α))

≤ d(y,W(x, y,α)),

we get that d(x,Ti(W(x, y,α))) = d(x, (W(x, y,α))) and d(Ti(W(x, y,α)), y) = d(W(x, y,α), y),
because if d(x,Ti(W(x, y,α)))≤ d(x,W(x, y,α)) or d(Ti(W(x, y,α)), y)≤ d(W(x, y,α), y), then which
the contradiction to d(x, y) < d(x, y). Since M is strictly convex, we have Ti(W(x, y,α)) =
W(x, y,α), so W(x, y,α) ∈ F(T). Hence, F(T) is convex.

Lemma 3.8. Let (X ,d) be complete uniformly convex hyperbolic space with monotone modulus
of convexity η, M be a nonempty closed convex subset of X and {Ti}k

i=1 be a self finite family of
unL i-Lipschitzian Suzuki-generalized nonexpansive mappings on M. Suppose {xn} is bounded
sequence in M with {xn} is bounded approximate fixed point sequence for {Ti}k

i=1, then {Ti}k
i=1

have a fixed point.

Proof. Since {xn} is bounded sequence in X , then by Lemma 2.3, has unique asymptotic center
in M, that is, AM(M, {xn}) = {x} is singleton and lim

n→∞d(xn,Tixn) = 0. Since {Ti}k
i=1 satisfies a

self finite family of unL i-Lipschitzian Suzuki-generalized nonexpansive on M, there exist a
sequence {un} and L i > 0 such that

d(xn,Tix)≤ (1+2L i)d(xn,Tixn)+unL id(xn, x)

≤ (1+2L i)d(xn,Tixn)+d(xn, x).

Taking limsup as n →∞ both the sides, we have

ra(Tix, {xn})= limsup
n→∞

d(xn,Tix)

≤ limsup
n→∞

[(1+2L i)d(xn,Tixn)+d(xn, x)]

≤ limsup
n→∞

d(xn, x)= ra(x, {xn}).

By the uniqueness of asymptotic center, Tix = x, thus x is fixed point of T . Hence, F(T) is
nonempty and then {Ti}k

i=1 has a fixed point.

Now, we expand the result of Kadioglu [10] (PNS) to L-Lipschitzian Suzuki-generalized
nonexpansive mappings in hyperbolic spaces, as follows: Let M be a nonempty closed convex
subset of a hyperbolic space X and {Ti}k

i=1 be a self finite family of L-Lipschitzian Suzuki-
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generalized nonexpansive mappings on M. For any x1 ∈ M the sequence {xn} is defined by
xn+1 = Ti y
yn =W(zn,Ti zn,αn)
zn =W(xn,Tixn,βn), n ∈N,

(3.2)

where {αn} and {βn} are in [0,1] for all n ∈N.

Theorem 3.9. Let M be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let a slef-map {Ti}k

i=1
be a self finite family of L i-Lipschitzian Suzuki-generalized nonexpansive mappings on M, such
that F(T) 6= ;. Then the sequence {xn} defined in (3.2), ∆-converges to a common fixed point of
{Ti}k

i=1.

Proof. We divide our proof into three steps.
First, we will show that lim

n→∞d(xn, p) exists for each p ∈ F(T). Since {Ti}k
i=1 satisfies the L i-

Lipschitzian Suzuki-generalized and p ∈ F(T), we have
1
2

d(p,Ti p)= 0≤ d(p, zn),

1
2

d(p,Ti p)= 0≤ d(p, yn)

and
1
2

d(p,Ti p)= 0≤ d(p, xn),

for all n ∈N, we get that

d(Ti p,Ti zn)≤ L id(p, zn),

d(Ti p,Ti yn)≤ L id(p, yn)

and

d(Ti p,Tixn)≤ L id(p, xn).

By (3.2), we have

d(zn, p)= d(W(xn,Tixn,βn), p)

≤ (1−βn)d(xn, p)+βnd(Tixn, p)

= (1−βn)d(xn, p)+βnd(Tixn,Ti p)

≤ (1−βn)d(xn, p)+βnL id(xn, p)

= (1−βn +βnL i)d(xn, p), ∀ n ∈N. (3.3)

Using (3.2) and (3.3), we have

d(yn, p)= d(W(zn,Ti zn,αn), p)

≤ (1−αn)d(zn, p)+αnd(Ti zn, p)

= (1−αn)d(zn, p)+αnd(Ti zn,Ti p)

≤ (1−αn)d(zn, p)+αnL id(zn, p)
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= (1−αn +αnL i)d(zn, p)

≤ (1−αn +αnL i)[(1−βn +βnL i)d(xn, p)]

= [(1−αn +αnL i)(1−βn +βnL i)]d(xn, p), ∀ n ∈N. (3.4)

From (3.3) and (3.4), we have

d(xn+1, p)= d(Ti yn, p)

= d(Ti yn,Ti p)

≤ L id(yn, p)

≤ L i[(1−αn +αnL i)(1−βn +βnL i)]d(xn, p)

= [(L i −αnL i −βnL i)+ (αnL2
i +βnL2

i )+ (αnβnL3
i −2αnβnL2

i +αnβnL i)]d(xn, p)

=µnd(xn, p), ∀ n ∈N (3.5)

where µn = (L i−αnL i−βnL i)+ (αnL2
i +βnL2

i )+ (αnβnL3
i −2αnβnL2

i +αnβnL i). Since
∞∑

n=1
αn <∞

and
∞∑

n=1
βn <∞, so that

∞∑
n=1

(µn −1) <∞. Therefore, by Lemma 2.6, we have that lim
n→∞d(xn, p)

exists for each p ∈ F(T).

Secondary step, we prove that lim
n→∞d(xn,Tixn)= 0. Let lim

n→∞d(xn, p)= c ≥ 0.

(i) If c = 0, we obviously have

d(xn,Tixn)≤ d(xn, p)+d(Tixn, p)

≤ (1+L i)d(xn, p),

taking lim as n →∞ on both the sides, we have lim
n→∞d(xn,Tixn)= 0.

(ii) If c > 0, since {Ti}k
i=1 is a self finite family of L i-Lipschitzian Suzuki-generalized

nonexpansive mappings and p ∈ F(T), we have

d(Tixn, p)≤ L id(xn, p),

taking limsup as n →∞ both the sides, we have

limsup
n→∞

d(Tixn, p)≤ L i c,

taking limsup as n →∞ both the sides in (3.3), we have

limsup
n→∞

d(zn, p)≤ L i c. (3.6)

Since

d(xn+1, p)≤ L i(1−αn +αnL i)d(zn, p),

so, we take liminf as n →∞ both the sides, we get

liminf
n→∞ d(xn+1, p)≤ liminf

n→∞ d(zn, p)

L i c ≤ liminf
n→∞ d(zn, p). (3.7)

By (3.6) and (3.7), we have

lim
n→∞d(zn, p)= L i c,
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it implies that

L i c = limsup
n→∞

d(zn, p)

= limsup
n→∞

[d(W(xn,Tixn,βn), p)]

= limsup
n→∞

[d((1−βn)xn ⊕βnTixn, p)]

≤ limsup
n→∞

[(1−βn)d(xn, p)+βnd(Tixn, p)]

≤ limsup
n→∞

(1−βn)d(xn, p)+ limsup
n→∞

βnd(Tixn, p)= L i c.

From Lemma 2.5, we have lim
n→∞d(xn,Tixn)= 0.

Finally, we will prove that the sequence {xn} ∆-converges to a fixed point of Ti . Since
{d(xn, p)} is bounded, by Lemma 2.3, it follows that {xn} has a unique asyptotic center. Let u,v
∆-limits of the subsequence of {un}, {vn}⊂ {xn}. Since F(T) 6= ;, we have u and v are fixed points
of {Ti}k

i=1. Now, we claim that u = v. Let u 6= v, then by uniqueness of asymptotic center

limsup
n→∞

d(xn,u)= limsup
n→∞

d(un,u)

< limsup
n→∞

d(un,v)

= limsup
n→∞

d(xn,v)

= limsup
n→∞

d(vn,v)

< limsup
n→∞

d(vn,u)

= limsup
n→∞

d(xn,u),

which is a contradiction. Therefore u = v, the sequence {xn} ∆-converges to a fixed point of T .
This completes the proof.

Theorem 3.10. Let M be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let a self-map {Ti}k

i=1 be
a self finite family of L i-Lipschitzian Suzuki-generalized nonexpansive mappings on M, such
that F(T) 6= ; and F(T) is closed. Then the sequence {xn} defined in (3.2) converges strongly to
p ∈ F(T) if and only if liminf

n→∞ d(xn,F(T))= 0, where d(xn,F(T))= inf
p∈F(T)

d(xn, p).

Proof. Necessity is obvious, we only prove the sufficiency. Assume that

liminf
n→∞ d(xn,F(T))= 0.

From (3.5)

d(xn+1,F(T))≤µnd(xn,F(T)), n ∈N
then lim

n→∞d(xn,F(T)) exists. Hence by the hypothesis, liminf
n→∞ d(xn,F(T)) = 0, then we have

lim
n→∞d(xn,F(T))= 0.

Now, we show that {xn} is a Cauchy sequence. By Theorem 2.8, we obtained the following

Communications in Mathematics and Applications, Vol. 10, No. 1, pp. 55–69, 2019



66 The Finite Family L-Lipschitzian Suzuki-Generalized Nonexpansive Mappings: C. Suanoom et al.

inequality

d(xn+m, p)≤ Kd(xn, p)

for each p ∈ F(T) and for all m,n ∈ N, where K = e

(n+m−1∑
j=n

µ j

)
> 0. As,

∞∑
n=1

µn < ∞ thus

K∗ = e

( ∞∑
n=1

µn

)
≥ K = e

(n+m−1∑
j=n

µ j

)
> 0. Let ε > 0 be arbitrarily. Since lim

n→∞d(xn,F(T)) = 0, there
exists a positive integer n0 such that

d(xn,F(T))< ε

4K∗ , ∀ n ≥ n0.

In particular, inf{d(xn0 , p) : p ∈ F(T)}< ε
4K∗ . So there exist p∗ ∈ F(T) such that

d(xn0 , p∗)< ε

2K∗ .

Thus, for n ≥ n0, we have

d(xn+m, xn)≤ d(xn+m, p∗)+d(p∗, xn)

≤ 2K∗d(xn0 , p∗)

< 2K∗
( ε

2K∗
)
= ε.

Hence, {xn} is a Cauchy sequence in M. Since M is a closed subset of a complete uniformly
convex hyperbolic space, so it must converge strongly to a point p in M. Since F(T) is closed,
lim

n→∞d(xn,F(T))= 0, that is, p ∈ F(T). This completes the proof.

4. Conclusion

In this paper, we introduce an algorithm by the iteration process of Kadioglu (PNS) to
approximating a fixed point for L-Lipschitzian Suzuki-generalized nonexpansive mappings in
hyperbolic spaces and introduce a L-Lipschitzian Suzuki-generalized nonexpansive mapping,
i.e.,

1
2

d(x,Tx)≤ d(x, y)⇒ d(Tx,T y)≤ Ld(x, y).

We obtain fixed point theorems, ∆-convergence theorems, and convergence theorems for L-
Lipschitzian Suzuki-generalized nonexpansive mappings in a hyperbolic space. Moreover,
we obtain that examples, lemmas and theorems for L-Lipschitzian Suzuki-generalized
nonexpansive mappings on a nonempty subset of a hyperbolic spaces in the following way:

(1) Let {Ti}k
i=1 be a self finite family of L i-Lipschitzian Suzuki-generalized nonexpansive

mappings on M. Then

d(xn,Ti y)≤ (1+2L i)d(xn,Tixn)+L id(xn, y)

for all x, y ∈ M, {xn} is approximate fixed point sequence in M.

(2) Let M be a nonempty and convex subset of a strictly convex hyperbolic space X . If {Ti}k
i=1

be a self finite family of unL i-Lipschitzian Suzuki-generalized nonexpansive mappings
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on M, that is there exist a sequence {un} and L i > 0 such that
1
2

d(x,Tix)≤ d(x, y)⇒ d(Tix,Ti y)≤ unL id(x, y), ∀ n ≥ 1, x, y ∈ M.

with unL i → 1, for all i = 1,2, . . . ,k and F(T) 6= ;. If {xn}, {yn} are bounded approximate
fixed point sequence in M, then F(T) is closed and convex.

(3) Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η. Let a slef-map {Ti}k

i=1 be a self
finite family of L i-Lipschitzian Suzuki-generalized nonexpansive mappings on M, such
that F(T) 6= ;. Then the sequence {xn} defined in (3.2), ∆-converges to a common fixed
point of {Ti}k

i=1 .

(4) Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic space
X with monotone modulus of uniform convexity η. Let a slef-map {Ti}k

i=1 be a self finite
family of L i-Lipschitzian Suzuki-generalized nonexpansive mappings on M, such that
F(T) 6= ; and F(T) is closed. Then the sequence {xn} defined in (3.2) converges strongly to
p ∈ F(T) if and only if liminf

n→∞ d(xn,F(T))= 0, where d(xn,F(T))= inf
p∈F(T)

d(xn, p).
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[15] L. Leuştean, Nonexpansive iteration in uniformly convex Whyperbolic spaces, in Nonlinear
Analysis and Optimization I, Nonlinear Analysis, A. Leizarowitz, B.S. Mordukhovich, I. Shafrir
and A. Zaslavski (eds.), Contemporary Mathematics, Vol. 513, pp. 193 – 210, Ramat Gan American
Mathematical Society, Bar Ilan University, Providence (2010).

[16] W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953), 506 – 510,
DOI: 10.1090/S0002-9939-1953-0054846-3.

[17] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl.
251 (2000), 217 – 229, DOI: 10.1006/jmaa.2000.7042.

[18] M.O. Osilike and S.C. Aniagbosor, Weak and strong convergence theorems for fixed points
of asymptotically nonexpansive mappings, Math. Comput. Modeling 32 (2000), 1181 – 1191,
DOI: 10.1016/S0895-7177(00)00199-0.

[19] S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990),
537 – 558, DOI: 10.1016/0362-546X(90)90058-O.

[20] D.R. Sahu, Application of the S-iteration process to constrained minimization problem and split
feasibility problems, Fixed Point Theory 12 (2011), 187 – 204.

[21] G.S. Saluja, Strong and ∆-convergence of modified two-STEP iteration for nearly asymptotically
nonexpansive mapping in hyperbolic spaces, International Journal of Analysis and Applications
8(1) (2015), 39 – 52.

[22] H. Schaefer, Über die methode sukzessiver approximationen, ber. Dtsch. Math. 59 (1957), 131 –
140.

Communications in Mathematics and Applications, Vol. 10, No. 1, pp. 55–69, 2019

http://doi.org/10.1007/s40096-016-0187-8
http://doi.org/10.1090/S0002-9939-1974-0336469-5
https://arxiv.org/abs/1402.6530
http://doi.org/10.1186/1687-1812-2012-54
http://doi.org/10.1186/1687-1812-2012-54
http://doi.org/10.1016/j.na.2007.04.011
http://doi.org/10.7146/brics.v10i21.21791
http://mi.mathnet.ru/eng/umn7954
http://doi.org/10.1090/S0002-9939-1953-0054846-3
http://doi.org/10.1006/jmaa.2000.7042
http://doi.org/10.1016/S0895-7177(00)00199-0
http://doi.org/10.1016/0362-546X(90)90058-O


The Finite Family L-Lipschitzian Suzuki-Generalized Nonexpansive Mappings: C. Suanoom et al. 69

[23] C. Suanoom and C. Klin-eam, Fixed point theorems for generalized nonexpansive mappings
in hyperbolic spaces, Journal of Fixed Point Theory and Applications (2017), 2511 – 2528,
DOI: 10.1007/s11784-017-0432-2.

[24] C. Suanoom and C. Klin-eam, Remark on fundamentally nonexpansive mappings in hyperbolic
spaces, Bull. Austral J. Nonlinear Sci. Appl. 9 (2016), 1952 – 1956, DOI: 10.22436/jnsa.009.05.01.

[25] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive
mappings, J. Math. Anal. Appl. 340 (2008), 1088 – 1095, DOI: 10.1016/j.jmaa.2007.09.023.

[26] W.A. Takahashi, A convexity in metric spaces and nonexpansive mappings I, Kodai Math. Sem.
Rep. 22 (1970), 142 – 149, DOI: 10.2996/kmj/1138846111.

Communications in Mathematics and Applications, Vol. 10, No. 1, pp. 55–69, 2019

http://doi.org/10.1007/s11784-017-0432-2
http://doi.org/10.22436/jnsa.009.05.01
http://doi.org/10.1016/j.jmaa.2007.09.023
http://doi.org/10.2996/kmj/1138846111


Khuangsatung and Sunthrayuth Journal of Inequalities and Applications  (2018) 2018:167 
https://doi.org/10.1186/s13660-018-1760-5

R E S E A R C H Open Access

The generalized viscosity explicit rules for
a family of strictly pseudo-contractive
mappings in a q-uniformly smooth Banach
space
Wongvisarut Khuangsatung1 and Pongsakorn Sunthrayuth1*

*Correspondence:
pongsakorn_su@rmutt.ac.th
1Department of Mathematics and
Computer Science, Faculty of
Science and Technology,
Rajamangala University of
Technology Thanyaburi (RMUTT),
Pathumthani, Thailand

Abstract
In this paper, we construct an iterative method by a generalized viscosity explicit rule
for a countable family of strictly pseudo-contractive mappings in a q-uniformly
smooth Banach space. We prove strong convergence theorems of proposed
algorithm under some mild assumption on control conditions. We apply our results
to the common fixed point problem of convex combination of family of mappings
and zeros of accretive operator in Banach spaces. Furthermore, we also give some
numerical examples to support our main results.

Keywords: Strict pseudo-contractions; Banach space; Strong convergence; Fixed
point problem; Iterative method

1 Introduction
In this paper, we assume that E is a real Banach space with dual space E∗ and C is a
nonempty subset of E. Let q > 1 be a real number. The generalized duality mapping
Jq : E → 2E∗ is defined by

Jq(x) =
{

x̄ ∈ E∗ : 〈x, x̄〉 = ‖x‖q,‖x̄‖ = ‖x‖q–1},

where 〈·, ·〉 denotes the generalized duality pairing between elements of E and E∗. In par-
ticular, Jq = J2 is called the normalized duality mapping. If E is smooth, then Jq is single-
valued and denoted by jq (see [1]). If E := H is a real Hilbert space, then J = I , where I is
the identity mapping. Further, we have the following properties of the generalized duality
mapping Jq:

• Jq(x) = ‖x‖q–2J2(x) for all x ∈ E with x �= 0.
• J(tx) = tq–1Jq(x) for all x ∈ E and t ≥ 0.
• Jq(–x) = –Jq(x) for all x ∈ E.

Let T be a self-mapping of C. We denote the fixed point set of the mapping T by F(T) =
{x ∈ C : x = Tx}. A mapping f : C → C is said to be a contraction if there exists a constant
ρ ∈ (0, 1) satisfying

∥∥f (x) – f (y)
∥∥ ≤ ρ‖x – y‖, ∀x, y ∈ C.
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vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.
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We use �C to denote the collection of all contractions from C into itself. Recall that a
mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

A mapping T : C → C is said to be λ-strict pseudo-contraction if for all x, y ∈ C, there exist
λ > 0 and jq(x – y) ∈ Jq(x – y) such that

〈
Tx – Ty, jq(x – y)

〉 ≤ ‖x – y‖q – λ
∥∥(I – T)x – (I – T)y

∥∥q, ∀x, y ∈ C. (1)

It is not hard to show that (1) equivalent to the following inequality:

〈
(I – T)x – (I – T)y, jq(x – y)

〉 ≥ λ
∥∥(I – T)x – (I – T)y

∥∥q, ∀x, y ∈ C. (2)

If E := H is a Hilbert space, then (1) (and so (2)) is equivalent to the following inequality:

‖Tx – Ty‖2 ≤ ‖x – y‖2 + k
∥∥(I – T)x – (I – T)y

∥∥2, ∀x, y ∈ C, (3)

where k = 1 – 2λ < 1. We assume that k ≥ 0, so that k ∈ [0, 1). Note that the class of strictly
pseudo-contractive mappings include the class of nonexpansive mappings as a particular
case in Hilbert spaces. Clearly, T is nonexpansive if and only if T is a 0-strict pseudo-
contraction. Strict pseudo-contractions were first introduced by Browder and Petryshyn
[2] in 1967. They have more powerful applications than nonexpansive mappings do in
solving inverse problems (see, e.g., [3]). Therefore it is more interesting to study the theory
of iterative methods for strictly pseudo-contractive mappings. Several researchers studied
the class of strictly pseudo-contractive mappings in Hilbert and Banach spaces (see, e.g.,
[4–9] and the references therein).

Now, we give some examples of λ-strictly pseudo-contractive mappings.

Example 1.1 ([8]) Let E = R with the usual norm, and let C = (0,∞). Let T : C → C be
defined by

Tx =
x2

1 + x
, x ∈ C.

Then, T is a 1-strict pseudo-contraction.

Example 1.2 ([8]) Let E = R with the usual norm, and let C = [–1, 1]. Let T : C → C be
defined by

Tx =

⎧⎨
⎩x, x ∈ [–1, 0],

x – x2, x ∈ [0, 1].

Then, T is a λ-strict pseudo-contraction with constant λ > 0.

Over the last several years, the implicit midpoint rule (IMR) has become a powerful nu-
merical method for numerically solving time-dependent differential equations (in partic-
ular, stiff equations) (see [10–15]) and differential algebraic equations (see [16]). Consider
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the following initial value problem:

x′(t) = f
(
x(t)

)
, x(t0) = x0, (4)

where f : RM →R
M is a continuous function. The IMR is an implicit method given by the

following finite difference scheme [17]:

⎧⎨
⎩y0 = x0,

yn+1 = yn + hf ( yn+yn+1
2 ), n ≥ 0,

(5)

where h > 0 is a time step. It is known that if f : RM → R
M is Lipschitz continuous and

sufficiently smooth, then the sequence {yn} converges to the exact solution of (4) as h → 0
uniformly over t ∈ [t0, t∗] for any fixed t∗ > 0. If the function f is written as f (x) = x – g(x),
then (5) becomes

⎧⎨
⎩y0 = x0,

yn+1 = yn + h[ yn+yn+1
2 – g( yn+yn+1

2 )], n ≥ 0,
(6)

and the critical points of (4) are the fixed points of the problem x = g(x).
Based on IMR (5), Alghamdi et al. [18] introduced the following two algorithms for the

solution of the fixed point problem x = Tx, where T is a nonexpansive mapping in a Hilbert
space H :

xn+1 = xn – tn

[
xn + xn+1

2
– T

(
xn + xn+1

2

)]
, n ≥ 0, (7)

xn+1 = (1 – tn)xn + tnT
(

xn + xn+1

2

)
, n ≥ 0, (8)

for x0 ∈ H , with {tn}∞n=1 ⊂ (0, 1). They proved that these two schemes converge weakly to
a point in F(T).

To obtain strong convergence, Xu et al. [19] applied the viscosity approximation method
introduced by Moudafi [20] to the IMR for a nonexpansive mapping T and proposed the
following viscosity implicit midpoint rule in Hilbert spaces H as follows:

xn+1 = αnf (xn) + (1 – αn)T
(

xn + xn+1

2

)
, n ≥ 1, (9)

where {αn} is a real control condition in (0, 1). They also proved that the sequence {xn}
generated by (9) converges strongly to a point x∗ ∈ F(T), which solves the variational in-
equality

〈
(f – I)x∗, z – x∗〉 ≤ 0, z ∈ F(T). (10)

Later, Ke and Ma [21] improved the viscosity implicit midpoint rule by replacing the mid-
point by any point of the interval [xn, xn+1]. They introduced the so-called generalized vis-
cosity implicit rules to approximating the fixed point of a nonexpansive mapping T in
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Hilbert spaces H as follows:

xn+1 = αnf (xn) + (1 – αn)T
(
snxn + (1 – sn)xn+1

)
, n ≥ 1. (11)

They also proved that the sequence {xn} generated by (11) converges strongly to a point
x∗ ∈ F(T) that solves the variational inequality (10).

In numerical analysis, it is clear that the computation by the IMR is not an easy work in
practice. Because the IMR need to compute at every time steps, it can be much harder to
implement. To overcome this difficulty, for solving (4), we consider the helpful method, the
so-called explicit midpoint method (EMR), given by the following finite difference scheme
[22, 23]:

⎧⎪⎪⎨
⎪⎪⎩

y0 = x0,

ȳn+1 = yn + hf (yn),

yn+1 = yn + hf ( yn+ȳn+1
2 ), n ≥ 0.

(12)

Note that the EMR (12) calculates the system status at a future time from the currently
known system status, whereas IMR (5) calculates the system status involving both the
current state of the system and the later one (see [23, 24]).

In 2017, Marino et al. [25] combined the generalized viscosity implicit midpoint rules
(11) with the EMR (12) for a quasi-nonexpansive mapping T and introduced the following
so-called generalized viscosity explicit midpoint rule in Hilbert spaces H as follows:

⎧⎨
⎩x̄n+1 = βnxn + (1 – βn)Txn,

xn+1 = αnf (xn) + (1 – αn)T(snxn + (1 – sn)x̄n+1), n ≥ 1.
(13)

They also showed that, under certain assumptions imposed on the parameters, the se-
quence {xn} generated by (13) converges strongly to a point x∗ ∈ F(T), which solves the
variational inequality (10).

The above results naturally bring us to the following questions.

Question 1 Can we extend the generalized viscosity explicit midpoint rule (13) to higher
spaces other than Hilbert spaces? Such as a 2-uniformly smooth Banach space or, more
generally, in a q-uniformly smooth Banach space.

Question 2 Can we obtain a strong convergence result of generalized viscosity explicit
midpoint rule (13) for finding the set of common fixed points of a family of mappings?
Such as a countable family of strict pseudo-contractions.

The purpose of this paper is to give some affirmative answers to the questions raised.
We introduce an iterative algorithm for finding the set of common fixed points of a count-
able family of strict pseudo-contractions by a generalized viscosity explicit rule in a q-
uniformly smooth Banach space. We prove the strong convergence of the proposed al-
gorithm under some mild assumption on control conditions. We apply our results to the
common fixed point problem of a convex combination of a family of mappings and ze-
ros of an accretive operator in Banach spaces. Furthermore, we also give some numerical
examples to support our main results.
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2 Preliminaries
Let E be a real Banach space with norm ‖ · ‖ and dual space E∗ of E. The symbol 〈x, x∗〉
denotes the pairing between E and E∗, that is, 〈x, x∗〉 = x∗(x), the value of x∗ at x. The
modulus of convexity of E is the function δ : (0, 2] → [0, 1] defined by

δ(ε) = inf

{
1 –

‖x + y‖
2

: x, y ∈ E,‖x‖ = ‖y‖ = 1,‖x – y‖ ≥ ε

}
.

A Banach space E is said to be uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2]. For p > 1, we
say that E is said to be p-uniformly convex if there is cp > 0 such that δE(ε) ≥ cpε

p for all
ε ∈ (0, 2].

The modulus of smoothness of E is the function ρE : R+ := [0,∞) →R
+ defined by

ρE(τ ) = sup

{‖x + τy‖ + ‖x – τy‖
2

– 1 : ‖x‖,‖y‖ ≤ 1
}

.

A Banach space E is said to be uniformly smooth if ρE(τ )
τ

→ 0 as τ → 0. For q > 1, a Banach
space E is said to be q-uniformly smooth if there exists cq > 0 such that ρE(τ ) ≤ cqτ

q for
all τ > 0. If E is q-uniformly smooth, then q ≤ 2, and E is also uniformly smooth. Further,
E is p-uniformly convex (q-uniformly smooth) if and only if E∗ is q-uniformly smooth
(p-uniformly convex), where p ≥ 2 and 1 < q ≤ 2 satisfy 1

p + 1
q = 1. It is well known that

Hilbert spaces Lp and lp (p > 1) are uniformly smooth (see [26]). More precisely, the spaces
Lp and lp are min{p, 2}-uniformly smooth for every p > 1.

Definition 2.1 Let C a be nonempty closed convex subsets of E, and let Q be a mapping
of E onto C. Then Q is said to be:

• sunny if Q(Qx + t(x – Qx)) = Qx for all x ∈ C and t ≥ 0.
• retraction if Qx = x for all x ∈ C.
• a sunny nonexpansive retraction if Q is sunny, nonexpansive, and a retraction from E

onto C.

It is known that if E := H is a real Hilbert space, then a sunny nonexpansive retraction Q
coincides with the metric projection from E onto C. Moreover, if E is uniformly smooth
and T is a nonexpansive mapping of C into itself with F(T) �= ∅, then F(T) is a sunny
nonexpansive retraction from E onto C (see [27]). We know that in a uniformly smooth
Banach space, a retraction Q : C → E is sunny and nonexpansive if and only if 〈x–Qx, jq(y–
Qx)〉 ≤ 0 for all x ∈ E and y ∈ C (see [28]).

Lemma 2.2 ([29]) Let C be a nonempty closed convex subset of a uniformly smooth Banach
space E. Let S : C → C be a nonexpansive self-mapping such that F(S) �= ∅ and f ∈ �C . Let
{zt} be the net sequence defined by

zt = tf (zt) + (1 – t)Szt , t ∈ (0, 1).

Then:
(i) {xt} converges strongly as t → 0 to a point Q(f ) ∈ F(S), which solves the variational

inequality

〈
(I – f )Q(f ), jq

(
Q(f ) – z

)〉 ≤ 0, z ∈ F(S).
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(ii) Suppose that {xn} is a bounded sequence such that limn→∞ ‖xn – Sxn‖ = 0. If
Q(f ) := limt→0 xt exists, then

lim sup
n→∞

〈
(f – I)Q(f ), jq

(
xn – Q(f )

)〉 ≤ 0.

Lemma 2.3 ([30]) Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space E. Let T : C → C be a λ-strict pseudo-contraction. For all x ∈ C, we define
Tθ x := (1 – θ )x + θTx. Then, as θ ∈ (0, δ], δ = min{1, ( qλ

κq
)

1
q–1 }, where κq is the q-uniform

smoothness constant, and Tθ : C → C is nonexpansive such that F(Tθ ) = F(T).

Using the concept of subdifferentials, we have the following inequality.

Lemma 2.4 ([31]) Let q > 1, and let E be a real normed space with the generalized duality
mapping Jq. Then, for any x, y ∈ E, we have

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x + y)

〉
, (14)

where jq(x + y) ∈ Jq(x + y).

Lemma 2.5 ([32]) Let p > 1 and r > 0 be two fixed real numbers, and let E be a uniformly
convex Banach space. Then, for all x, y ∈ Br and t ∈ [0, 1],

∥∥tx + (1 – t)y
∥∥p ≤ t‖x‖p + (1 – t)‖y‖p – t(1 – t)c‖x – y‖p,

where c > 0.

Lemma 2.6 ([33]) Suppose that q > 1. Then

ab ≤ 1
q

aq +
(

q – 1
q

)
b

q
q–1

for positive real numbers a, b.

Lemma 2.7 ([34]) Let {an} be a sequence of nonnegative real numbers, {γn} be a sequence of
(0, 1) with

∑∞
n=1 γn = ∞, {cn} be a sequence of nonnegative real number with

∑∞
n=1 cn < ∞,

and let {bn} be a sequence of real numbers with lim supn→∞ bn ≤ 0. Suppose that

an+1 = (1 – γn)an + γnbn + cn

for all n ∈N. Then, limn→∞ an = 0.

Lemma 2.8 ([35]) Let {sn} be sequences of real numbers such that there exists a subse-
quence {ni} of {n} such that sni < sni+1 for all i ∈ N. Then there exists an increasing sequence
{mk} ⊂ N such that limk→∞ mk = ∞ and the following properties are satisfied by all suffi-
ciently large numbers k ∈N:

smk ≤ smk +1 and sk ≤ smk +1.

In fact, mk := max{j ≤ k : sj ≤ sj+1}.
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Definition 2.9 ([34]) Let C be a nonempty closed convex subset of a real Banach space E.
Let {Tn}∞n=1 be a family of mappings of C into itself. We say that {Tn}∞n=1 satisfies the AKTT-
condition if

∞∑
n=1

sup
w∈C

‖Tn+1w – Tnw‖ < ∞. (15)

Lemma 2.10 ([34]) Let C be a nonempty closed convex subset of a real Banach space E.
Suppose that {Tn}∞n=1 satisfies the AKTT-condition. Then, for each x ∈ C, {Tnx} converges
strongly to some point of C. Moreover, let T be the mapping of C into itself defined by Tx =
limn→∞ Tnx for all x ∈ C. Then, limn→∞ supw∈C ‖Tw – Tnw‖ = 0.

In the following, we will write that ({Tn}, T) satisfies the AKTT-condition if {Tn} satisfies
the AKTT-condition and T is defined by Lemma 2.10 with F(T) =

⋂∞
n=1 F(Tn).

3 Main results
Theorem 3.1 Let C be a nonempty closed convex subset of a real uniformly convex and
q-uniformly smooth Banach space E. Let f ∈ �C with coefficient ρ ∈ (0, 1), and let {Tn}∞n=1 :
C → C be a family of λ-strict pseudo-contractions such that  :=

⋂∞
n=1 F(Tn) �= ∅. For all

x ∈ C, define the mapping Snx = (1 – θn)x + θnTnx, where 0 < θn ≤ δ, δ = min{1, ( qλ

κq
)

1
q–1 }, and∑∞

n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩x̄n+1 = βnxn + (1 – βn)Snxn,

xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,
(16)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying the following conditions:
(C1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(C2) lim infn→∞ βn(1 – βn)(1 – tn) > 0.
Suppose in addition that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then, {xn} defined by
(16) converges strongly to x∗ = Q(f ) ∈ , which solves the variational inequality

〈
(I – f )Q(f ), jq

(
Q(f ) – z

)〉 ≤ 0, z ∈ , (17)

where Q is a sunny nonexpansive retraction of C onto .

Proof First, we show that {xn} is bounded. From Lemma 2.3 we have that Sn is non-
expansive such that F(Sn) = F(Tn) for all n ≥ 1. Put zn := tnxn + (1 – tn)x̄n+1. For each
z ∈  :=

⋂∞
n=1 F(Tn), we have

‖zn – z‖ =
∥∥tn(xn – z) + (1 – tn)(x̄n+1 – z)

∥∥
≤ tn‖xn – z‖ + (1 – tn)‖x̄n+1 – z‖
≤ tn‖xn – z‖ + (1 – tn)

(
βn‖xn – z‖ + (1 – βn)‖Snxn – z‖)

≤ tn‖xn – z‖ + (1 – tn)βn‖xn – z‖ + (1 – tn)(1 – βn)‖xn – z‖
= ‖xn – z‖. (18)
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It follows that

‖xn+1 – z‖ =
∥∥αnf (xn) + (1 – αn)Snzn – z

∥∥
=

∥∥αn
(
f (xn) – f (z)

)
+ αn

(
f (z) – z

)
+ (1 – αn)(Snzn – z)

∥∥
≤ αn

∥∥f (xn) – f (z)
∥∥ + αn

∥∥f (z) – z
∥∥ + (1 – αn)‖Snzn – z‖

≤ (
1 – (1 – ρ)αn

)‖xn – z‖ + (1 – ρ)αn
‖f (z) – z‖

1 – ρ

≤ max

{
‖xn – z‖,

‖f (z) – z‖
1 – ρ

}
.

By induction we have

‖xn – z‖ ≤ max

{
‖x1 – z‖,

‖f (z) – z‖
1 – ρ

}
, n ≥ 1.

Hence {xn} is bounded. Consequently, we deduce immediately that {f (xn)} and {Sn(tnxn +
(1 – tn)x̄n+1)} are bonded. Let x∗ = Q(f ). By the convexity of ‖ · ‖q and Lemma 2.5 we have

∥∥Snzn – x∗∥∥q ≤ ∥∥zn – x∗∥∥q

=
∥∥tn

(
xn – x∗) + (1 – tn)

(
x̄n+1 – x∗)∥∥q

≤ tn
∥∥xn – x∗∥∥q + (1 – tn)

∥∥x̄n+1 – x∗∥∥q

= tn
∥∥xn – x∗∥∥q + (1 – tn)

∥∥βn
(
xn – x∗) + (1 – βn)

(
Snxn – x∗)∥∥q

≤ tn
∥∥xn – x∗∥∥q + (1 – tn)

[
βn

∥∥xn – x∗∥∥q + (1 – βn)
∥∥Snxn – x∗∥∥q

– βn(1 – βn)c‖xn – Snxn‖q]
≤ ∥∥xn – x∗∥∥q – βn(1 – βn)(1 – tn)c‖xn – Snxn‖q. (19)

It follows from Lemma 2.4 and (19) that

∥∥xn+1 – x∗∥∥q

=
∥∥αn

(
f (xn) – x∗) + (1 – αn)

(
Snzn – x∗)∥∥q

=
∥∥αn

(
f (xn) – f

(
x∗)) + αn

(
f
(
x∗) – x∗) + (1 – αn)

(
Snzn – x∗)∥∥q

≤ ∥∥αn
(
f (xn) – f

(
x∗)) + (1 – αn)

(
Snzn – x∗)∥∥q + qαn

〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉

≤ αn
∥∥f (xn) – f

(
x∗)∥∥q + (1 – αn)

∥∥Snzn – x∗∥∥q + qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉

≤ αn
∥∥f (xn) – f

(
x∗)∥∥q + (1 – αn)

[∥∥xn – x∗∥∥q – βn(1 – βn)(1 – tn)c‖xn – Snxn‖q]
+ qαn

〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉

≤ (
1 – (1 – ρ)αn

)∥∥xn – x∗∥∥q – (1 – αn)βn(1 – βn)(1 – tn)c‖xn – Snxn‖q

+ qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉. (20)

The rest of the proof will be divided into two cases:
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Case 1. Suppose that there exists n0 ∈N such that {‖xn – x∗‖}∞n=n0 is nonincreasing. This
implies that {‖xn – x∗‖}∞n=1 is convergent. From (20) we see that

(1 – αn)βn(1 – βn)(1 – sn)c‖xn – Snxn‖q ≤ ∥∥xn – x∗∥∥q –
∥∥xn+1 – x∗∥∥q + αnM,

where c > 0 and M = supn≥1{q‖f (x∗) – x∗‖‖xn+1 – x∗‖q–1, (1 – ρ)‖xn – x∗‖q} < ∞. From (C1)
and (C2) we get that

lim
n→∞‖xn – Snxn‖ = 0. (21)

We observe that

sup
x∈{xn}

‖Sn+1x – Snx‖

= sup
x∈{xn}

∥∥(1 – θn+1)x + θn+1Tn+1x – (1 – θn)x – θnTnx
∥∥

≤ |θn+1 – θn| sup
x∈{xn}

‖x‖ + θn+1 sup
x∈{xn}

‖Tn+1x – Tnx‖ + |θn+1 – θn| sup
x∈{xn}

‖Tnx‖

≤ |θn+1 – θn|
(

sup
x∈{xn}

‖x‖ + sup
x∈{xn}

‖Tnx‖
)

+ sup
x∈{xn}

‖Tn+1x – Tnx‖.

Since {Tn}∞n=1 satisfies the AKTT-condition and
∑∞

n=1 |θn+1 – θn| < ∞, we have

∞∑
n=1

sup
x∈{xn}

‖Sn+1x – Snx‖ < ∞,

that is, {Sn}∞n=1 satisfies the AKTT-condition. From this we can define the nonexpansive
mapping S : C → C by Sx = limn→∞ Snx for all x ∈ C. Since {θn} is bounded, there exists a
subsequence {θni} of {θn} such that θni → θ as i → ∞. It follows that

Sx = lim
i→∞ Sni x = lim

i→∞
[
(1 – θni )x + θni Tni x

]
= (1 – θ )x + θTx, x ∈ C.

This shows that F(S) = F(T) =
⋂∞

n=1 F(Tn) := . By (21) and Lemma 2.10 we have

‖xn – Sxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Sxn‖
≤ ‖xn – Snxn‖ + sup

x∈{xn}
‖Snx – Sx‖ → 0 as n → ∞. (22)

Let {zt} be a sequence defined by

zt = f (zt) + (1 – t)Szt , t ∈ (0, 1).

From Lemma 2.2(i) we know that {xt} converges strongly to x∗ = Q(f ), which solves the
variational inequalities

〈
(I – f )Q(f ), jq

(
Q(f ) – z

)〉 ≤ 0, z ∈ .



Khuangsatung and Sunthrayuth Journal of Inequalities and Applications  (2018) 2018:167 Page 10 of 20

Moreover, we obtain that

lim sup
n→∞

〈
f
(
x∗) – x∗, jq

(
xn – x∗)〉 ≤ 0. (23)

Note that

‖Snzn – xn‖ ≤ ‖Snzn – Snxn‖ + ‖Snxn – xn‖
≤ ‖zn – xn‖ + ‖Snxn – xn‖
= (1 – sn)(1 – βn)‖Snxn – xn‖ + ‖Snxn – xn‖
≤ 2‖xn – Snxn‖.

From (21), we get that

lim
n→∞‖Snzn – xn‖ = 0. (24)

It follows that

‖xn+1 – xn‖
≤ ∥∥αn

(
f (xn) – xn

)
+ (1 – αn)(Snzn – xn)

∥∥
≤ αn

∥∥f (xn) – xn
∥∥ + (1 – αn)‖Snzn – xn‖ → 0 as n → ∞. (25)

We also have

lim sup
n→∞

〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉 ≤ 0. (26)

Again from (20), we have

∥∥xn+1 – x∗∥∥q (27)

≤ (
1 – (1 – ρ)αn

)∥∥xn – x∗∥∥q + qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉. (28)

Apply Lemma 2.7 and (26) to (27), we obtain that xn → x∗ as n → ∞.
Case 2. There exists a subsequence {ni} of {n} such that

∥∥xni – x∗∥∥ ≤ ∥∥xni+1 – x∗∥∥
for all i ∈ N. By Lemma 2.8, there exists a nondecreasing sequence {mk} ⊂ N such that
mk → ∞ as k → ∞ and

∥∥xmk – x∗∥∥ ≤ ∥∥xmk +1 – x∗∥∥ and
∥∥xk – x∗∥∥ ≤ ∥∥xmk+1 – x∗∥∥ (29)

for all k ∈N. From (20) we have

(1 – αmk )βmk (1 – βmk )(1 – smk )c‖xmk – Smk xmk ‖q

≤ ∥∥xmk – x∗∥∥q –
∥∥xmk+1 – x∗∥∥q + αmk M

≤ αmk M,
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where c > 0 and M < ∞. This implies by (C1) and (C2) that

‖xmk – Smk xmk ‖ → 0 as k → ∞. (30)

Since

sup
x∈{xmk }

‖Smk +1x – Smk x‖

= sup
x∈{xmk }

∥∥(1 – θmk +1)x + θmk +1Tmk +1x – (1 – θmk )x – θmk Tmk x
∥∥

≤ |θmk +1 – θmk | sup
x∈{xmk }

‖x‖ + θmk +1 sup
x∈{xmk }

‖Tmk +1x – Tmk x‖

+ |θmk +1 – θmk | sup
x∈{xmk }

‖Tmk x‖

≤ |θmk +1 – θmk |
(

sup
x∈{xmk }

‖x‖ + sup
x∈{xmk }

‖Tmk x‖
)

+ sup
x∈{xmk }

‖Tmk +1x – Tmk x‖ < ∞,

that is, {Smk }∞k=1 satisfies the AKTT-condition. Then, by (30) and Lemma 2.10, we get that

‖xmk – Sxmk ‖
≤ ‖xmk – Smk xmk ‖ + ‖Smk xmk – Sxmk ‖
≤ ‖xmk – Smk xmk ‖ + sup

x∈{xmk }
‖Smk x – Sx‖ → 0 as k → ∞. (31)

By the same argument as in Case 1, we can show that

lim sup
k→∞

〈
f
(
x∗) – x∗, j

(
xmk – x∗)〉 ≤ 0. (32)

It follows from (31) that

‖Smk zmk – xmk ‖ ≤ ‖Smk zmk – Smk xmk ‖ + ‖Smk xmk – xmk ‖
≤ ‖zmk – xmk ‖ + ‖Smk xmk – xmk ‖
= (1 – smk )(1 – βmk )‖Smk xmk – xmk ‖ + ‖Smk xmk – xmk ‖
≤ 2‖xmk – Smk xmk ‖ → 0 as k → ∞,

and hence

‖xmk +1 – xmk ‖ ≤ ∥∥αmk

(
f (xmk ) – xmk

)
+ (1 – αmk )(Smk zmk – xmk )

∥∥
≤ αmk

∥∥f (xmk ) – xmk

∥∥ + (1 – αmk )‖Smk zmk – xmk ‖ → 0 as k → ∞.

Then, we also have

lim sup
k→∞

〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉 ≤ 0. (33)
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Again from (27) we have

∥∥xmk +1 – x∗∥∥q

≤ (
1 – (1 – ρ)αmk

)∥∥xmk – x∗∥∥q + qαmk

〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉, (34)

which implies that

(1 – ρ)αmk

∥∥xmk – x∗∥∥q ≤ ∥∥xmk – x∗∥∥q –
∥∥xmk +1 – x∗∥∥q

+ qαmk

〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉

≤ qαmk

〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉. (35)

Since αmk > 0, we get limk→∞ ‖xmk – x∗‖ = 0. So, we have

∥∥xk – x∗∥∥ ≤ ∥∥xmk +1 – x∗∥∥
=

∥∥xmk – x∗∥∥ +
∥∥xmk+1 – x∗∥∥ –

∥∥xmk – x∗∥∥
≤ ∥∥xmk – x∗∥∥ + ‖xmk +1 – xmk ‖ → 0 as k → ∞,

which implies that xk → x∗ as k → ∞. This completes the proof. �

Applying Theorem 3.1 to a 2-uniformly smooth Banach space, we obtain the following
result.

Corollary 3.2 Let C be a nonempty closed convex subset of a real uniformly convex
and 2-uniformly smooth Banach space E. Let f ∈ �C with coefficient ρ ∈ (0, 1), and let
{Tn}∞n=1 : C → C be a family of λ-strict pseudo-contractions such that  :=

⋂∞
n=1 F(Tn) �= ∅.

For all x ∈ C, define the mapping Snx = (1 – θ )x + θTnx, where 0 < θ ≤ δ, δ = min{1, λ

K2 },
and

∑∞
n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩x̄n+1 = βnxn + (1 – βn)Snxn,

xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,
(36)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying the conditions (C1) and (C2)
of Theorem 3.1. Suppose in addition that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then
{xn} converges strongly to x∗ = Q(f ) ∈ , which solves the variational inequality

〈
(I – f )Q(f ), j

(
Q(f ) – z

)〉 ≤ 0, ∀z ∈ , (37)

where Q is a sunny nonexpansive retraction of C onto .

Utilizing the fact that a Hilbert space H is uniformly convex and 2-uniformly smooth
with the best smooth constant κ2 = 1, we obtain the following result.

Corollary 3.3 Let C be a nonempty closed convex subset of a Hilbert space H . Let f ∈
�C with coefficient ρ ∈ (0, 1), and let {Tn}∞n=1 : C → C be a family of λ-strict pseudo-
contractions with λ ∈ [0, 1) such that  :=

⋂∞
n=1 F(Tn) �= ∅. For all x ∈ C, define the mapping
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Snx = (1 –θn)x +θnTnx, where 0 < θn ≤ δ, δ = min{1, 2λ}, and
∑∞

n=1 |θn+1 –θn| < ∞. For given
x1 ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩x̄n+1 = βnxn + (1 – βn)Snxn,

xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,
(38)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying conditions (C1) and (C2) of
Theorem 3.1. Suppose, in addition, that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then
{xn} converges strongly to x∗ = P(f ) ∈ , which solves the variational inequality

〈
(I – f )P(f ), P(f ) – z

〉 ≤ 0, z ∈ , (39)

where P is a metric projection of C onto .

4 Application
4.1 The generalized viscosity explicit rules for convex combination of family of

mappings
In this subsection, we apply our main result to convex combination of a countable family
of strict pseudo-contractions. The following lemmas can be found in [36, 37].

Lemma 4.1 ([36, 37]) Let C be a closed convex subset of a smooth Banach space E.
Suppose that {Tn}∞n=1 : C → C is a family of λ-strictly pseudo-contractive mappings with⋂∞

n=1 F(Tn) �= ∅ and {μn}∞n=1 is a real sequence in (0, 1) such that
∑∞

n=1 μn = 1. Then the
following conclusions hold:

(i) A mapping G : C → E defined by G :=
∑∞

n=1 μnTn is a λ-strictly pseudocontractive
mapping.

(ii) F(G) =
⋂∞

n=1 F(Tn).

Lemma 4.2 ([37]) Let C be a closed convex subset of a smooth Banach space E. Suppose
that {Tk}∞k=1 : C → C is a countable family of λ-strictly pseudocontractive mappings with⋂∞

k=1 F(Sk) �= ∅. For all n ∈ N, define Sn : C → C by Snx :=
∑n

k=1 μk
nTkx for all x ∈ C, where

{μk
n} is a family of nonnegative numbers satisfying the following conditions:
(i)

∑n
k=1 μk

n = 1 for all n ∈N;
(ii) μk := limn→∞ μk

n > 0 for all k ∈N;
(iii)

∑∞
n=1

∑n
k=1 |μk

n+1 – μk
n| < ∞.

Then:
(1) Each Tn is a λ-strictly pseudocontractive mapping.
(2) {Tn} satisfies the AKTT-condition.
(3) If T : C → C is defined by Tx =

∑∞
k=1 μkSkx for all x ∈ C,

then, Tx = limn→∞ Tnx and F(T) =
⋂∞

n=1 F(Tn) =
⋂∞

k=1 F(Sk).

Using Theorem 3.1 and Lemmas 4.1 and 4.2, we obtain the following result.

Theorem 4.3 Let C be a nonempty closed convex subset of a real uniformly convex and
q-uniformly smooth Banach space E. Let f ∈ �C with coefficient ρ ∈ (0, 1), and let {Tk}∞k=1 :
C → C be a countable family of λk-strict pseudo-contractions with inf{λk : k ∈ N} = λ > 0.
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For all x ∈ C, define a mapping Snx := (1–θn)x+θn
∑n

k=1 μk
nTkx such that  :=

⋂∞
k=1 F(Tk) �=

∅, where 0 < θn ≤ δ, δ = min{1, ( qλ

κq
)

1
q–1 }, and

∑∞
n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn}

be a sequence generated by

⎧⎨
⎩x̄n+1 = βnxn + (1 – βn)Snxn,

xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,
(40)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfy conditions (C1) and (C2) of Theo-
rem 3.1, and {μk

n} is a real sequence satisfying (i)–(iii) of Lemma 4.2. Then {xn} converges
strongly to a x∗ ∈ .

4.2 The generalized viscosity explicit rules for zeros of accretive operators
In this subsection, we apply our main result to problem of finding a zero of an accretive
operator. An operator A ⊂ E×E is said to be accretive if for all (x1, y1) and (x2, y2) ∈ A, there
exists jq ∈ Jq(x1 – x2) such that 〈y1 – y2, jq〉 ≥ 0. An operator A is said to satisfy the range
condition if D(A) = R(I + λA) for all λ > 0, where D(A) is the domain of A, R(I + λA) is the
range of I + λA, and D(A) is the closure of D(A). If A is an accretive operator that satisfies
the range condition, then we can defined a single-valued mapping JA

λ : R(I +λA) → D(A) by
Jλ = (I + λA)–1, which is called the resolvent of A. We denote A–10 by the set of zeros of A,
that is, A–10 = {x ∈ D(A) : 0 ∈ Ax}. It is well known that Jλ is nonexpansive and F(Jλ) = A–10
(see [38]). We also know the following [39]: For all λ,μ > 0 and x ∈ R(I + λA) ∩ R(I + μA),
we have

‖Jλx – Jμx‖ ≤ |λ – μ|
λ

‖x – Jλx‖.

Lemma 4.4 ([34]) Let C be a nonempty closed convex subset of a Banach space E. Let
A ⊂ E × E be an accretive operator such that A–10 �= ∅, which satisfies the condition
D(A) ⊂ C ⊂ ⋂

λ>0 R(I + λA). Suppose that {λn} ⊂ (0,∞) such that inf{λn : n ∈ N} > 0 and∑∞
n=1 |θn+1 – θn| < ∞. Then, {Jλn} satisfies the AKTT-condition. Consequently, for each

x ∈ C, {Jλn x} converges strongly to some point of C. Moreover, let Jλ : C → C be defined
by Jλx = limn→∞ Jλn x for all x ∈ C and F(Jλ) =

⋂∞
n=1 F(Jλn ), where λn → λ as n → ∞. Then,

limn→∞ supx∈C ‖Jλx – Jλn x‖ = 0.

Utilizing Theorem 3.1 and and Lemma 4.4, we obtain the following result.

Theorem 4.5 Let C be a nonempty closed convex subset of a q-uniformly smooth Banach
space E. Let f ∈ �C with coefficient ρ ∈ (0, 1) and let A ⊂ E × E be an accretive operator
such that A–10 �= ∅ which satisfies the condition D(A) ⊂ C ⊂ ⋂

λ>0 R(I + λA). Suppose that
{λn} ⊂ (0,∞) is such that inf{λn : n ∈ N} > 0 and

∑∞
n=1 |λn+1 – λn| < ∞. For given x1 ∈ C,

let {xn} be the sequence generated by

⎧⎨
⎩x̄n+1 = βnxn + (1 – βn)Jλn xn,

xn+1 = αnf (xn) + (1 – αn)Jλn (tnxn + (1 – tn)x̄n+1), n ≥ 1,
(41)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying conditions (C1) and (C2) of
Theorem 3.1. Then {xn} converges strongly to x∗ ∈ A–10.
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4.3 The generalized viscosity explicit rules with weak contraction
In this subsection, we apply our main result to the viscosity approximation method with
weak contraction.

Definition 4.6 ([40–42]) Let C be a closed and convex subset of a real Banach space E.
A mapping g : C → C is said to be weakly contractive if there exists a continuous strictly
increasing function ψ : [0,∞) → [0,∞) with ψ(0) = 0 and limt→∞ ψ(t) = ∞ such that

∥∥g(x) – g(y)
∥∥ ≤ ‖x – y‖ – ψ

(‖x – y‖), x, y ∈ C.

As a particular case, if ψ(t) = (1 – ρ)t for all t ≥ 0, where ρ ∈ (0, 1), then the weakly con-
tractive mapping is contraction with coefficient ρ .

In 2001, Rhoades [42] first proved Banach’s contraction principle for the weakly con-
tractive mapping in complete metric space.

Lemma 4.7 ([42]) Let (E, d) be a complete metric space, and let g be a weakly contractive
mapping on E. Then g has a unique fixed point in E.

Lemma 4.8 ([43]) Assume that {an} and {bn} are sequences of nonnegative real number,
and {λn} is a sequence of a positive real number satisfying the conditions

∑∞
n=1 λn = ∞ and

limn→∞ bn
λn

= 0. Suppose that

an+1 ≤ an – λnψ(an) + bn, n ≥ 1,

where ψ(t) is a continuous strictly increasing function on R with ψ(0) = 0. Then,
limn→∞ an = 0.

Utilizing Theorem 3.1, we obtain the following result.

Theorem 4.9 Let C be a nonempty closed convex subset of a real uniformly convex and
q-uniformly smooth Banach space E. Let g : C → C be a weak contraction, and let {Tn}∞n=1 :
C → C be a family of λ-strict pseudo-contractions such that  :=

⋂∞
n=1 F(Tn) �= ∅. For all

x ∈ C, define the mapping Snx = (1 – θn)x + θnTnx, where 0 < θn ≤ δ, δ = min{1, ( qλ

κq
)

1
q–1 }, and∑∞

n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn} be the sequence generated by

⎧⎨
⎩x̄n+1 = βnxn + (1 – βn)Snxn,

xn+1 = αng(xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,
(42)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfy conditions (C1) and (C2) of The-
orem 3.1. Suppose in addition that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then {xn}
converges strongly to x∗ ∈ .

Proof By the smoothness of E there exists a sunny nonexpansive retraction Q from C
onto . Moreover, Q(g) is a weakly contractive mapping of C into itself. For all x, y ∈ C,
we have

∥∥Q
(
g(x)

)
– Q

(
g(y)

)∥∥ ≤ ∥∥g(x) – g(y)
∥∥ ≤ ‖x – y‖ – ψ

(‖x – y‖).
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Lemma 4.7 guarantees that Q(g) has a unique fixed point x∗ ∈ C such that x∗ = Q(g). Now,
we define a sequence {yn} and y1 ∈ C as follows:

⎧⎨
⎩ȳn+1 = βnyn + (1 – βn)Snyn,

yn+1 = αng(yn) + (1 – αn)Sn(tnyn + (1 – tn)ȳn+1), n ≥ 1.

Then, by Theorem 3.1 with a constant f = g(x∗), we have that {yn} converges strongly to
x∗ = Q(g)) ∈ . Next, we show that xn → x∗ as n → ∞. Since

‖x̄n+1 – ȳn+1‖ ≤ βn‖xn – yn‖ + (1 – βn)‖Snxn – Snyn‖ ≤ ‖xn – yn‖,

it follows that

‖xn+1 – yn+1‖
=

∥∥αn
(
g(xn) – g

(
x∗)) + (1 – αn)

(
Sn

(
tnxn + (1 – tn)x̄n+1

)
– Sn

(
tnyn + (1 – tn)ȳn+1

))∥∥
≤ αn

∥∥g(xn) – g
(
x∗)∥∥ + (1 – αn)

∥∥Sn
(
tnxn + (1 – tn)x̄n+1

)
– Sn

(
tnyn + (1 – tn)ȳn+1

)∥∥
≤ αn

∥∥g(xn) – g(yn)
∥∥ + αn

∥∥g(yn) – g
(
x∗)∥∥

+ (1 – αn)
(
tn‖xn – yn‖ + (1 – tn)‖x̄n+1 – ȳn+1‖

)
≤ αn‖xn – yn‖ – αnψ

(‖xn – yn‖
)

+ αn
∥∥yn – x∗∥∥

– αnψ
(∥∥yn – x∗∥∥)

+ (1 – αn)‖xn – yn‖
≤ ‖xn – yn‖ – αnψ

(‖xn – yn‖
)

+ αn
∥∥yn – x∗∥∥. (43)

Since {yn} converges strongly to x∗, applying Lemma 4.8 to (43), we obtain that
limn→∞ ‖xn – yn‖ = 0. Therefore xn → x∗. This completes the proof. �

5 Numerical examples
In this section, we present a numerical example of our main result.

Example 5.1 Let E = �4 and C = {x = (x1, x2, x3, x4, . . .) ∈ �4 : xi ∈ R for i = 1, 2, 3, . . .} with
norm ‖x‖�4 = (

∑∞
i=1 |xi|4)1/4. Let f : C → C be the contraction defined by f (x) = 1

3 x. Let
{Tn}∞n=1 : C → C be the strictly pseudo-contractive mapping defined by

Tnx =

⎧⎨
⎩

1
n (1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .) – 2x if x �= 0,

0 if x = 0,

where 0 = (0, 0, 0, 0, 0, 0, 0, . . .) is the null vector on �4.
• We show that Tn is strictly pseudo-contractive. For each n ≥ 1, if x, y �= 0, then

〈
(I – Tn)x – (I – Tn)y, j2(x – y)

〉
=

〈
3x – 3y, j2(x – y)

〉
= 3‖x – y‖2

�4

=
1
3
‖3x – 3y‖2

�4

≥ λ
∥∥(I – Tn)x – (I – Tn)y

∥∥2
�4
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for λ ≤ 1
3 . Then, we can choose λ = 1

3 . Thus, Tn is 1
3 -strictly pseudo-contractive with⋂∞

n=1 F(Tn) = {0}. Further, we observe that Tn is not nonexpansive.
• We show that ({Tn}∞n=1, T) satisfies the AKTT-condition. Since

sup
x∈�4

‖Tn+1x – Tnx‖�4

= sup
x∈�4

∥∥∥∥ 1
n + 1

(
1,

1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)

– 2x –
1
n

(
1,

1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)

+ 2x
∥∥∥∥

�4

=
∥∥∥∥ 1

n + 1

(
1,

1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)

–
1
n

(
1,

1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)∥∥∥∥

�4

=
(

1
n

–
1

n + 1

)∥∥∥∥
(

1,
1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)∥∥∥∥

�4

.

So we have

∞∑
n=1

sup
x∈�4

‖Tn+1x – Tnx‖�4 = lim
n→∞

n∑
k=1

sup
x∈�4

‖Tk+1x – Tkx‖�4

=
∥∥∥∥
(

1,
1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)∥∥∥∥

�4

< ∞,

that is, ({Tn}∞n=1, T) satisfies the AKTT-condition, where T : C → C is defined by

Tx = lim
n→∞ Tnx = –2x, x ∈ C.

Since in �4, q = 2 and κ2 = 3, we can choose θn = 1
9n + 1

9 . Define the mapping {Sn}∞n=1 : C → C
by

Snx =

⎧⎨
⎩( 2

3 – 1
3n )x + ( 1

9n2 + 1
9n )(1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .) if x �= 0,

0 if x = 0.

Since ({Tn}∞n=1, T) satisfies the AKTT condition, we also have that ({Sn}∞n=1, S) satisfies the
AKTT condition, where S : C → C is defined by

Sx = lim
n→∞ Snx =

2
3

x, x ∈ C.

Then, we have F(S) = F(T) =
⋂∞

n=1 F(Tn) = {0}. Let αn = 1
32n+1 , βn = 1

100n+3 + 0.32, and tn =
n

2n+1 . So our algorithm (16) has the following form:

⎧⎨
⎩x̄n+1 = ( 1

100n+3 + 0.32)xn + (0.68 – 1
100n+3 )Snxn,

xn+1 = 1
32n+2 f (xn) + 32n

32n+1 Sn( n
2n+1 xn + n+1

2n+1 x̄n+1), n ≥ 1.
(44)

Let x1 = (1, –0.25, 1.46, 1.85, 0, 0, 0, . . .) be the initial point. Then, we obtain numerical
results in Table 1 and Fig. 1.
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Table 1 The values of the sequences {xn}
n xn ‖xn+1 – xn‖�4

1 (1.000000, –0.250000, 1.460000, 1.850000, 0, 0, 0,. . . ) 1.459e+00
50 (0.007006, 0.003503, 0.002335, 0.001751, 0, 0, 0,. . . ) 1.471e–04
100 (0.003416, 0.001708, 0.001139, 0.000854, 0, 0, 0,. . . ) 3.531e–05
150 (0.002258, 0.001129, 0.000753, 0.000565, 0, 0, 0,. . . ) 1.549e–05
200 (0.001687, 0.000843, 0.000562, 0.000422, 0, 0, 0,. . . ) 8.657e–06
...

...
...

400 (0.000838, 0.000419, 0.000279, 0.000210, 0, 0, 0,. . . ) 2.143e–06
450 (0.000745, 0.000372, 0.000248, 0.000186, 0, 0, 0,. . . ) 1.692e–06
500 (0.000670, 0.000335, 0.000223, 0.000167, 0, 0, 0,. . . ) 1.369e–06

Figure 1 The behavior of errors

6 Conclusion
In this work, we introduce an algorithm by a generalized viscosity explicit rule for finding
a common fixed point of a countable family of strictly pseudo-contractive mappings in a
q-uniformly smooth Banach space. We obtain some strong convergence theorem for the
sequence generated by the proposed algorithm under suitable conditions. However, we
should like remark the following:

(1) We extend the results of Ke and Ma [21] and Marino et al. [25] from a one
nonexpansive mapping in Hilbert spaces to a countable family of strictly
pseudo-contractive mappings in a q-uniformly smooth Banach space.

(2) Our result is proved with a new assumption on the control conditions {βn} and {tn}.
(3) The method of proof of our result is simpler in comparison with the results of [19,

21, 44, 45]). Moreover, we remove the conditions
∑∞

n=1 |αn+1 – αn| < ∞ and
0 < ε ≤ sn ≤ sn+1 < 1 in Theorem 3.1 of [21].

(4) We give a numerical example that shows the efficiency and implementation of our
main result in the space �4, which is a uniformly convex and 2-uniformly smooth
Banach space but not a Hilbert space.
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Let (X , || · ||) be a real Banach space and let K be a nonempty subset of X . A mapping

T : K → K is said to be nonexpansive, if ||T x− Ty|| ≤ ||x− y||, for each x,y ∈ K. (see [1]).

During last four decades many authors have investigated nonexpansive mappings and the set of

its fixed points. We now review the needed definitions and results. Throughout this paper, we

denote by N the set of all positive integers and R the set of all real numbers, respectively. A

nonempty subset K ⊆ X is said to be convex, if αx+(1−α)y ∈ K for all x,y ∈ K and α ∈ [0,1].

A Banach space K be strictly convex if ‖ x+y
2 ‖< 1 for each x,y ∈ K with ||x|| = ||y|| = 1 and

x 6= y. A Banach space K be uniformly convex if for any ε ∈ (0,2] there exists δ = δ (ε) > 0,

whenever x,y ∈ K, ||x|| ≤ 1, ||y|| ≤ 1 and ||x− y|| ≥ ε then ||x+y
2 || < 1− δ . It is clear that

uniform convexity implies strict convexity (see [2]). A mapping T : K → K have a coupled

fixed point, if there exist x,y ∈ X such that T (x,y) = x and T (y,x) = y. Let {xn} be a bounded

sequence in a Banach space (X , || · ||). For x ∈ X , we define a continuous functional r(·,xn) :

X → [0,∞) by r(x,xn) = limsupn→∞ ||x− xn||. The asymptotic radius r({xn}) of {xn} is given

by r({xn}) = inf{r(x,xn) : x∈ X}. The asymptotic center AK({xn}) of a bounded sequence {xn}

with respect to K ⊆ X is the set AK({xn}) = {x ∈ X : r(x,xn)≤ r(y,xn), ∀y ∈ K}. This implies

that the asymptotic center is the set of minimizer of the functional r(·,xn) in K. If the asymptotic

center is taken with respect to X , then it is simply denoted by A({xn}) (see [3]).

Lemma 1. [3] Let (X , || · ||) be a uniformly convex Banach space with modulus of convexity of

δ . Then every bounded sequence {xn} in K has a unique asymptotic center in K.

The Banach fixed point theorem concerns certain mappings of a complete metric space itself.

It states conditions sufficient for the existence and uniqueness of a fixed point and it’s also

given a constructive procedure for obtaining better and better approximations to the fixed point,

this is a method such that we choose x0 in a given set and calculate recursively a sequence

x0,x1,x2, ... from a relation of the form xn = T xn−1 = T nx0, ∀n ≥ 1. It is also know as the

Picard iteration starting at xo. Now, fixed point iteration processes for approximating fixed

point of nonexpansive mappings have been studied many mathematicians as follows:
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Definition 2. Let (X , || · ||) be a normed space and K ⊆ X be a closed and convex. Three

classical iteration processes are often used to approximate a fixed point of a nonlinear mapping

T : K→ K.

Krasnoselskij’s iteration

The first one is introduced by Schaefer [4] which is defined as follows: x0 ∈ K

xn+1 = λxn +(1−λ )T xn, n≥ 0,

where λ ∈ (0,1).

Halpern’s iteration

The second one is introduced by Halpern [5] which is defined as follows: x0 ∈ K

xn+1 = αnx0 +(1−αn)T xn, n≥ 0,

where {αn}∞
n=0 ⊆ [0,1].

Mann’s iteration

The third one is introduced by Mann [6] which is defined as follows: x0 ∈ K

xn+1 = αnxn +(1−αn)T xn, n≥ 0,

where {αn}∞
n=0 ⊆ [0,1].

Next, Takahashi [2] proved fixed point theorems for nonexpansive mappings in Hilbert spaces

as follows:

Theorem 3. Let K be a nonempty closed and convex subset of a Hilbert space H and let F :

K→ K be a nonexpansive. Then the following are equivalent:

(i) The set Fix(F) of fixed points of T is nonempty;

(ii) {Fnx} is bounded for some x ∈ K.

In 2006, Bhaskar and Lakshmikantham [7] established a fixed point theorem for mixed mono-

tone mappings in partially ordered metric spaces. Moreover, the double sequence {(xn,yn)}n≥

0, defined by the Picard-type iteration xn+1 = T (xn,yn), yn+1 = T (yn,xn), n ≥ 0, with

x0,y0 ∈ X , is convergent and its limit is always a coupled fixed point of F. In 2013, Olaoluwa



CONVERGENCE THEOREMS FOR A BIVARIATE NONEXPANSIVE OPERATOR 277

et al.[8] introduced the definitions of nonexpansive condituon for coupled maps in product s-

paces and proved the existence of coupled fixed points of such mappings when X is a uniformly

convex as follows:

Definition 4. Let X be a Banach spaces and K be a nonempty subset of X . A mapping T :

K×K→ K is said to be coupled-nonexpansive if

||T (x,y)−T (u,v))|| ≤ 1
2
(||x−u||+ ||y− v||),(1)

for all x,y,u,v ∈ K.

Throughout this paper, a mapping T : K×K→ K is call bivariate nonexpansive or coupled-

nonexpansive if T satisfies 1.

Example 5. Let X = R. Defined

||x||= |x|,

for every x ∈ R and T : X ×X → X be defined by T (x,y) = x−y
2 , for all x,y ∈ X . Indeed for all

x,y ∈ X , we consider

||T (x,y)−T (u,v)||= |x− y
2
− u− v

2
|

=
1
2
|(x− y)− (u− v)|

≤ 1
2
(|x− y|+ |u− v|)

=
||x−u||+ ||y− v||

2
.

Hence T is coupled-nonexpansive mapping.

Next, Berinde et al.[9] proved weak and strong convergence theorems for a double Krasnoselskij-

type iterative method to approximate coupled solutions of a bivariate nonexpansive operator

T : K×K→ K, where K is a nonempty closed and convex subset of a Hilbert space as follows:

Definition 6. A mapping T : K ×K → K is called demicompact if it has the property that

whenever {un} and {vn} are bounded sequences in K with the property that {T (un,vn)− un}

and {T (vn,un, )− vn} converge strongly to 0, then there exists a subsequence {(unk ,vnk)} of

{(un,vn)} such that unk → u and vnk → v strongly.
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Theorem 7. Let K be a bounded, closed and convex subset of a Hilbert space H and let T :

K×K→ K be weakly nonexpansive and demicompact operator. Then the set of coupled fixed

points of T is nonempty and the double iterative algorithm {(xn,xn)}∞
n=0 given by x0 in K and

xn+1 = λxn +(1−λ )T (xn,xn), n≥ 0,

where {λ}∞
n=0 ∈ (0,1), converges (strongly) to a coupled fixed point of T.

In this paper, we prove some fixed point theorems for coupled-nonexpansive mapping and

prove strong convergence and weakly convergence theorems for a double Mann-type iterative

process to approximating a fixed point for coupled-nonexpansive operator in Hilbert spaces.

Moreover, we prove some properties of the coupled fixed point set for coupled-nonexpansive

mapping and prove fixed point theorem for such mapping on Banach spaces.

2. Fixed Point Theorems

In this section, we prove fixed point theorems for coupled-nonexpansive mapping and prove

strong convergence theorems in Banach spaces.

Theorem 8. Let K be a nonempty closed and convex subset of a Hilbert space H and let T :

K×K→ K be a coupled-nonexpansive. Then the following are equivalent:

(i) The set Fc(T ) of fixed points of T is nonempty;

(ii) {T n(x,x)} is bounded for some (x,x) ∈ K×K.

Proof. Let F : K→K be given by Fx = T (x,x), for all x∈K. By the coupled-nonexpansiveness

property of T, we obtain the nonexpansiveness of F and hence, by Theorem 3, it follows that

Fc(T ) 6= /0. �

3. The Properties of Coupled-Fixed Point Set

In this section, we will prove some properties of coupled-fixed point set for coupled-nonexpansive

mapping in a Banach space. Let (X , || · ||) be a Banach space. and let K be a nonempty subset
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of X . We will denote the coupled fixed point set of a mapping T by Fc(T ) = {(x,y) ∈ K×K :

T (x,y) = x and T (y,x) = y}.

Lemma 9. Let K be a nonempty bounded closed convex subset of strictly Banach spaces X ,

with ||(x,y)||X2 = ||x||+ ||y|| for all x,y ∈ X . Let T : K×K→ K be coupled-nonexpansive and

Fc(T ) 6= /0, then Fc(T ) are closed and convex.

Proof. Suppose that {xn} is a sequence in Fc(T ) which converges to some x ∈ K, where xn =

(yn,zn) and x = (y,z). Then ||yn− y||+ ||zn− z||= ||xn− x||X2 → 0 as n→ ∞. Then yn→ y and

zn→ z. We will to show that x ∈ Fc(T ). We consider

||yn−T x||= ||T xn−T x||= ||T (yn,zn)−T (y,z)|| ≤ 1
2
||yn− y||+ 1

2
||zn− z||(2)

and

||zn−T (z,y)||= ||T (zn,yn)−T (z,y)|| ≤ 1
2
||zn− z||+ 1

2
||yn− y||.(3)

So

lim
n→∞
||yn−T x|| ≤ lim

n→∞

1
2
||yn− y||+ lim

n→∞

1
2
||zn− z||= 0

and

lim
n→∞
||zn−T (z,y)|| ≤ lim

n→∞

1
2
||zn− z||+ lim

n→∞

1
2
||yn− y||= 0.

Thus T (y,z) = y and T (z,y) = z by the uniqueness of limit point. Hence F(T ) is closed. Next,

we will to show that Fc(T ) is convex, let u,v ∈ Fc(T ) and each α ∈ [0,1], where u = (u1,u2),

v = (v1,v2). Now, to show that w = αu + (1− α)v ∈ F(T ). Let w = (w1,w2). Then w1 =

αu1 +(1−α)v1 and w2 = αu2 +(1−α)v2. Since

||u1− v1||= ||Tu−T v|| ≤ 1
2
(||u1− y1||+ ||u2− v2||)

and

||u2− v2||= ||T (u2,v1)−T (y2,v1)|| ≤
1
2
(||u2− v2||+ ||u1− v1||),

we have ||u1− v1|| ≤ ||u2− v2|| and ||u1− v1|| ≥ ||u2− v2||. Thus,

||u1− v1||= ||u2− v2||.(4)
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Since

||u1−w1||= ||u1− (αu1 +(1−α)v1)||= (1−α)||u1− v1||

and

||u2−w2||= ||u2− (αu2 +(1−α)v2)||= (1−α)||u2− v2||,

we get

||u1−w1||= ||u2−w2||.(5)

Since

||v1−w1||= ||v1− (αu1 +(1−α)v1)||= α||u1− v1||

and

||v2−w2||= ||v2− (αu2 +(1−α)v2)||= α||u2− v2||,

it follows that

||v1−w1||= ||v2−w2||.(6)

Similar to the above proof, it follows that

||u1−Tw||= ||Tu−Tw|| ≤ 1
2
(||u1−w1||+ ||u2−w2||) = ||u1−w1||,

||u2−T (w2,w1)|| ≤
1
2
(||u2−w2||+ ||u1−w1||) = ||u2−w2||,

||v1−Tw||= ||T v−T (z1,z2)|| ≤
1
2
(||v1−w1||+ ||v2−w2||) = ||v1−w1||,

and

||v2−T (w2,w1)||= ||T (v2,v1)−T (w2,w1)|| ≤
1
2
(||v2−w2||+ ||v1−w1||) = ||v2−w2||.

For w = αu+(1−α)v where w = (w1,w2), we consider

||u1− v1|| ≤ ||u1−Tw||+ ||Tw− v1|| ≤ ||u1−w1||+ ||w1− v1||

= ||u1− (αu1 +(1−α)v1)||+ ||(αu1 +(1−α)v1)− v1||

= ||u1− v1||,(7)
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and

||u2− v2|| ≤ ||u2−T (w2,w1)||+ ||T (w2,w1)− v2||

≤ ||u2−w2||+ ||w2− v2||

= ||u2− (αu2 +(1−α)v2||+ ||(αu2 +(1−α)v2)− v2||= ||u2− v2||.(8)

Thus ||u1−Tw||= ||u1−w1|| and ||Tw−v1||= ||w1−v1||, because if ||u1−Tw||< ||u1−w1||

or ||Tw− v1||< ||w1− v1||, then which the contradiction to ||u1− v1||< ||u1− v1||. Since X is

strictly convex, we have Tw=αu1+(1−α)v1 =w1. Similarly, T (w2,w1)=αw2+(1−α)v2 =

w2, and then w is a coupled fixed point of T, that is αu+(1−α)v ∈ Fc(T ). Hence Fc(T ) is

convex.

�

Theorem 10. Let K be a nonempty bounded closed convex subset of uniformly convex Banach

space X such that ||(x,y)||X2 = ||x||+ ||y|| with uniformly convex Banach space with modulus of

convexity of δ . Suppose that a map T : K×K→K be coupled-nonexpansive and {xn} and {yn}

are a sequences in K defined by xn+1 = T (xn,yn), yn+1 = T (yn,xn) and ||xn− z||, ||yn− z|| are

increase sequences in R for all z ∈ K with ||xn−1− x||= ||yn−1− y|| for all n ∈ N. Then Fc(T )

are nonempty, closed and convex.

Proof. By Lemma 1, the asymptotic center of any bounded sequence in K, particularly, the

asymptotic center of approximate coupled fixed point sequence for T is in K. Let A({xn}) = {x}

and A({yn}) = {y}. We consider

||xn−T (x,y)|| ≤ ||xn+1−T (x,y)||= ||T (xn,yn)−T (x,y)||

≤ 1
2
(||xn− x||+ ||yn− y||) = ||xn− x||,(9)

thus limsupn→∞ ||xn−T (x,y)|| ≤ limsupn→∞ ||xn− x||. Similarly,

||yn−T (y,x)|| ≤ ||yn+1−T (y,x)||= ||T (yn,xn)−T (y,x)||

≤ 1
2
(||yn− x||+ ||xn− y||) = ||yn− y||,(10)
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hence limsupn→∞ ||yn−T (y,x)|| ≤ limsupn→∞ ||yn−y||. By the uniqueness of the asymptotic

center, T (x,y) = x and T (y,x) = y. Hence Fc(T ) is nonempty. By Lemmas 9,we conclude that

Fc(T ) are nonempty, closed and convex. �

4. Iterative Approximation of Fixed Points

Theorem 11. Let K be a nonempty, bounded, closed and convex subset of a Hilbert space H

and let T : K×K → K be coupled-nonexpansive operator. Then the Mann iterative {xn}∞
n=0

given by x0 in K and

xn+1 = αnxn +(1−αn)T (xn,xn), n≥ 0,

(11)

where {αn}∞
n=0 ⊆ (0,1), weakly converges to coupled fixed point of T.

Proof. As in proof of Theorem 8, for each w ∈ Fix(T ) and each n, we have,

||xn+1−w|| ≤ ||xn−w||.

Defined g : Fix(T )→ [0,∞) by g(w) = limn→∞ ||xn−w||. we see that g is well defined and is a

lower semi-continuous convex function on the nonempty convex set Fix(F). Let r = inf{g(w) :

w ∈ Fix(F)}. For each ε > 0, the set Mε = {z : g(z) ≤ r + ε} is closed and convex and then

weakly compact. Therefore ∩ε>0Mε in fact ε > 0, Mε = z : g(z) = r≡ L. Moreover, L contains

exactly one point. Indeed, since L is convex and closed, for w1,w2 ∈ L, and wαn = αnw1 +(1−
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αn)w2, we get

g2(wαn) = lim
n→∞
||wαn− xn||2

= lim
n→∞
||αnw1 +(1−αn)w2− xn||2

= lim
n→∞

(α2
n ||w1− xn||2 +(1−αn)

2||w2− xn||2

+αn(1−αn)〈w1− xn,w2− xn〉)

≤ lim
n→∞

(α2
n ||w1− xn||2 +(1−αn)

2||w2− xn||2

+αn(1−αn)||w1− xn|| ||w2− xn||)

+ lim
n→∞

αn(1−αn)[〈w1− xn,w2− xn〉− ||w1− xn|| ||w2− xn||].(12)

So limn→∞ αn(1−αn)[〈w1− xn,w2− xn〉− ||w1− xn|| ||w2− xn||] = 0. Since

lim
n→∞
||w1− xn||= r = r lim

n→∞
||w2− xn||,

we have

||w1−w2||2 = ||w1− xn− (w2− xn)||2

= ||w1− xn||2 + ||w2− xn||2−2〈w1− xn,w2− xn〉 → r2 + r2−2r2 = 0,(13)

a contradiction. Now, we will show that xn = Fn(x0,x0)⇀ w1, it suffices to assume that xn j ⇀

w for an infinite subsequence and then prove that w = w1. By the arguments in the proof of

Theorem 8, w ∈ Fix(F). Considering the definition of g and the fact that xn j → p, we obtain

that

||xn j −w1||2 = ||xn j −w− (w1−w)||2

= ||xn j −w||2 + ||w1−w||2−2〈xn j − p,w1− p〉 → g2(w)+ ||w1−w||2

= g2(w1) = r2.(14)

Since g2(wαn)≥ r2, we conclude that ||w−w1|| ≤ 0. Therefore w = w1. �

Theorem 12. Let K be a nonempty, bounded, closed, and convex subset of a Hilbert space H

and let T : K×K → K be coupled-nonexpansive and demicompact operator. Then the set of
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coupled fixed points of T is nonempty and the double iterative algorithm {(xn,xn)}∞
n=0 given by

x0 in K and

xn+1 = αnxn +(1−αn)T (xn,xn), n≥ 0,(15)

where {αn}∞
n=0 ⊆ [0,1], strongly converges to a coupled fixed point of T.

Proof. By Theorem 8, T has at least one coupled fixed point with equal components, say

(x′,x′) ∈ C×C. We will to show that the sequence {xn− T (xn,xn)} converges strongly to 0.

We consider

||xn+1− x′||2 = ||αnxn +(1−αn)T (xn,xn)− x′||2

= α
2
n ||xn− x′||2 +(1−αn)

2||T (xn,xn)− x′||2

+αn(1−αn)〈xn− x′,T (xn,xn)− x′〉,(16)

and

||xn−T (xn,xn)||2 = ||xn− x′||2 + ||T (xn,xn)− x′||2

+ 〈xn− x′,T (xn,xn)− x′〉.(17)

Since T coupled-nonexpansive and T (x′,x′) = x′, we obtain

||T (xn,xn)− x′||= ||T (xn,xn)−T (x′,x′)|| ≤ ||xn− x′||.(18)

Now, by (16),(17) and (18), it follows that for any {βn} we get

||xn+1− x′||2 +β
2
n ||xn−T (xn,xn)||2 ≤ (2β

2
n +α

2
n +(1−αn)

2)||xn− x′||2

+2(αn(1−αn)−βn)〈T (xn,xn)− x′,xn− x′〉.(19)

If we choose now a sequence such that 0≤ β 2
n ≤ αn(1−αn), ∀n≥ 1 then from the inequality

(16), we obtain

||xn+1− x′||2 +β
2
n ||xn−T (xn,xn)||2 ≤ (2β

2
n +α

2
n +(1−αn)

2 +2αn(1−αn)−2β
2
n )||xn− x′||

= ||xn− x′||(20)
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By the Cauchy-Schwarz inequality,

〈T (xn,xn)− x′,xn− x′〉 ≤ ||T (xn,xn)− x′|| ||xn− x′|| ≤ ||xn− x′||.

By (20), we get

β
2
n ||xn−T (xn,xn)||2 ≤ ||xn− x′||2−||xn+1− x′||2, ∀n≥ 1.(21)

Thus {||xn− x′||} is a decreasing sequence, hence it is convergent. By the inequality (20), we

get

0≤ ||xn−T (xn,xn)||2

≤ 1
β 2

n
(||xn− x′||2−||xn+1− x′||2)||xn− x′||2−||xn+1− x′||2, ∀n≥ 1,(22)

Take n → ∞, we have ||xn − T (xn,xn)|| → 0. By demicompactness of T that there exist a

converges subsequence {xnk} of xn in K, say xnk → w. Since T is coupled-nonexpansive, we

get T is continuous, and then T (xnk ,xnk) → T (w,w). Since ||xn − T (xn,xn)|| → 0, we have

xnk − T (xnk ,xnk)→ w− Tw,w), which shows that (w,w) is a coupled fixed point of T. Using

(20), with x′ = w, we deduce that the sequence of nonnegative real numbers {xn−w} is non-

increasing, so convergent. Since its subsequence {xnk −w} converges to 0, it follows that the

sequence {xn−w} itself converges to 0, Therefore {(xn,xn)} converges strongly to (w,w) as

n→ ∞. �

Example 13. Let R be a real number. Defined 〈x,y〉 = xy, and |x|2 = 〈x,x〉, for every x,y ∈ R

and T : R×R→ R defined by

T (x,y) =
x− y

2
,

for all x,y ∈ R. Indeed, we see that consider, T satisfies (1) and is demicompact. Hence, all the

assumptions of Theorem 8 are satisfied. It is easy to see that T possesses a unique coupled fixed

point, (0,0), and the Mann-type iteration (15) yields the sequence xn = (1−αn)
nx0, n ≥ 0,

where αn =
2n+2

2n ⊆ [0,1]. Since limn→∞ αn =
1
2 , it follows that (xn,xn)→ (0,0) as n→ ∞, for

any x0 ∈ K.
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1 Introduction

Throughout this article, let H1 and H2 be two real Hilbert spaces. Let f :
H1 → R∪{+∞} and g : H2 → R∪{+∞}be two proper and lower semicontinuous
convex functions and A : H1 → H2 be a bounded linear operator. Now, we will
introduce one of the famous problems in many fields of pure and applied sciences,
that is the split feasibility problem (SFP) was first introduced by Censor and
Elfving [18] in 1994: Find a point

x ∈ C such that Ax ∈ Q, (1.1)

where A : H1 → H2 be a bounded linear operator. Split feasibility problem can be
applied to medical image reconstruction, especially intensity-modulated therapy
(see, [2]). In the past decade, many researchers have increasingly stuided the split
feasibility problem, see, for instance [3, 4, 5, 6, 7, 8, 9, 10], and the references
therein.
In this paper, we study more general problem which is the following: find a solution
z ∈ H1 such that

min
z∈H1

{f(x) + gλ(Ax)}, (1.2)

where gλ(y) := minu∈H2
{g(u)+ 1

2λ∥u− y∥2} is the Moreau-Yosida approximate of
the function f of parameter λ, also called proximal operator of f of order λ and
below denoted by proxλg(x). If f = δC [defined as δC(x) = 0 if x ∈ C and +∞
ortherwise] and g = δQ are indicator functions of nonempty, closed, and convex
sets C and Q of H1 and H2, respectively. Then problem (1.2) reduces to

min
x∈H1

{δC(x) + (δQ)λ(Ax)} ⇔ min
x∈H1

{ 1

2λ
∥(I − PQ)(Ax)∥2}

which is equivalent to SFP when C ∩A−1(Q).
In the case argmin f ∩A−1(argmin g) ̸= ∅, the split minimization problem ( SMP)
is to find a minimizer z of f such that Az minimizes g ; that is,

z ∈ argmin f such that Az ∈ argmin g, (1.3)

where argmin f := {x̄ ∈ H1 : f(x̄) ≤ f(x) for all x ∈ H1} and argmin g := {ȳ ∈
H2 : g(ȳ) ≤ g(y) for all y ∈ H2}. The solution set of the problem (1.3) is denote
by Γ.
Recall that the proximal operator proxλg : H → H is defined by

proxλg(x) := argmin
u∈H

{g(u) + 1

2λ
∥u− x∥2}. (1.4)

Moreover, the proximity operator of f is firmly nonexpansive, namely,

⟨proxλg(x)− proxλg(y), x− y⟩ ≥ ∥ proxλg(x)− proxλg(y)∥2. (1.5)
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for all x, y ∈ H, which is equivalent to

∥ proxλg(x)−proxλg(y)∥2 ≤ ∥x−y∥2−∥(I−proxλg)(x)−(I−proxλg)(y)∥2. (1.6)

for all x, y ∈ H. For general information on proximal operator, see the research
paper by Combettes and Pesquet [23].
In 2014, Moudafi and Thakur [24] introduced the split proximal algorithm for
estimating the stepsizes which do not need prior knowledge of the operator norms
for solving SMP (1.3) as follows.

xn+1 = proxλγnf (xn − γnA
∗(I − proxλg)Axn)∀n ≥ 1, (1.7)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4, h(x) := 1

2∥(I−proxλg)Ax∥2,

l(x) := 1
2∥(I − proxλγnf )x∥

2 and θ(x) :=
√

∥∇h(x)∥2 + ∥∇l(x)∥2. Thay also
proved the weak convergence theorem of the sequence generated by algorithm
(1.7) to a solution of SMP (1.3).

In 2014, Yao et al. [25] introduced the regularized algorithm for solving the
split proximal algorithm as follows:

xn+1 = proxλγnf (αnu+ (1− αn)xn − γnA
∗(I − proxλg)Axn),∀n ≥ 1, (1.8)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4. Then, they proved a

strong convergence theorem of the sequence {xn} under suitable conditions of
parameter αn and γn.

Recently, Shehu and Ogbuisi [12]introduced the following algorithm for solving
split proximal algorithms and fixed point problems for k-strictly pseudocontractive
mappings in Hilbert spaces:

un = (1− αn)xn,

yn = proxλγnf (un − γnA
∗(I − proxλg)Aun),

xn+1 = (1− βn)yn + βnTyn,∀n ∈ N,
(1.9)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4. They also showed that,

under certain assumptions imposed on the parameters, the sequence {xn} gener-
ated by (1.9) converges strongly to x∗ ∈ Fix(S) ∩ Γ.

Very recently, Abbas et al. [16] studied the following algorithm for finding
the minimum-norm solution of split proximal algorithm, that is,

xn+1 = proxλγnf ((1− αn)xn − γnA
∗(I − proxλg)Axn)∀n ≥ 1, (1.10)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4. Using the split proximal

algorithm 1.10, they also proved a strong convergence theorem of the sequences
generated by the proposed algorithms under some appropriate conditions.



Approximation of Common Solutions to Proximal Split Feasibility Problems 171

After we have studied research related to split proximal algorithm and fixed
point problem, we obtain the following question.
Question Is it possible to obtain a strong convergence theorem for finding the
minimum-norm solution of a proximal split minimization problem and the set
of common fixed points of a family of mappings in Hilbert spaces ? Such as a
countable family of quasi-nonexpansive mappings.

In this paper, we give the answer for the mentioned questions and introduce a
new iterative algorithm for finding the minimum-norm solution of a proximal split
minimization problem and fixed point problem of quasi-nonexpansive mappings in
Hilbert spaces. Under suitable conditions, it is proved that the sequence generated
by the proposed algorithm converges strongly to a common solution of the two
above described problems. The iterative algorithm are proposed in such a way
that the selection of the step-sizes does not need any prior information about the
operator norm.

2 Preliminaries

Throughout this article, let H be a real Hilbert space with inner product
⟨·, ·⟩ and norm ∥·∥. Let C be a nonempty closed convex subset ofH. Let T : C → C
be a nonlinear mapping. A point x ∈ C is called a fixed point of T if Tx = x.
The set of fixed points of T is the set Fix(T ) := {x ∈ C : Tx = x}. A point
z ∈ H is called a mimimum norm fixed point of T if and only if z ∈ Fix(T ) and
∥z∥ = min{∥x∥ : x ∈ Fix(T )}.

Definition 2.1. Let T : C → C be a nonlinear mapping, then

(i) T is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ ,∀x, y ∈ C,

(ii) T is said to be quasi-nonexpansive if

∥Tx− p∥ ≤ ∥x− p∥ ,∀x ∈ C and ∀p ∈ Fix(T ),

Lemma 2.2. [28] Let C be a nonempty closed convex subset of a real Hilbert
space H.For every i = 1, 2, 3, .., N, let Ti : H1 → H1 be a finte fammily of quasi-
nonexpansive mapping such that

∩N
i=1 Fix(Ti) ̸= 0 and I − Ti are demiclosed

at zero. Put T =
∑N

i=1 aiTi, where 0 < ai ≤ 1, for every i = 1, 2, ..., N with
N∑
i=1

ai = 1. Then the following hold:

1. Fix(T ) =
∩N

i=1 Fix(Ti);

2. T is a quasi-nonexpansive mapping;
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3. T is demiclosed at zero.

Recall that the (nearest point) projection PC from H onto C assigns to each
x ∈ H the unique point PCx ∈ C satisfying the property

∥x− PCx∥ = min
y∈C

∥x− y∥.

Lemma 2.3 ([21]). Given x ∈ H1 and y ∈ C. Then, PCx = y if and only if there
holds the inequality

⟨x− y, y − z⟩ ≥ 0,∀z ∈ C.

Lemma 2.4 ([19]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 = (1− αn)sn + δn,∀n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)

∞∑
n=1

αn = ∞;

(2) lim sup
n→∞

δn
αn

≤ 0 or

∞∑
n=1

|δn| < ∞.

Then, lim
n→∞

sn = 0.

Lemma 2.5. ([22]) Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies
Γni

< Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0
of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n) → ∞;

(ii) Γτn ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

3 Main Theorem

In this section, we prove a strong convergence theorem for for finding the
minimum-norm solution of a proximal split minimization problem and fixed point
problem of quasi-nonexpansive mappings in Hilbert spaces. Let H1 and H2 be
two real Hilbert spaces. Let f : H1 → R ∪ {+∞} and g : H2 → R ∪ {+∞}be
two proper and lower semicontinuous convex functions. Let A : H1 → H2 be a
bounded linear operator. For every i = 1, 2, 3, .., N, let Ti : H1 → H1 be a finite
family of quasi-nonexpansive mapping such that

∩N
i=1 Fix(Ti) ̸= ∅ and I − Ti are

demiclosed at zero.
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Now, we introduce the following algorithm for finding the solution set of Γ ∩∩N
i=1 Fix(Ti).

Algorithm 3.1

Step 1: Choose an initial point x1 ∈ H1.

Step 2: Assume that xn has been constructed.
Set θ(xn) :=

√
∥∇h(xn)∥2 + ∥∇l(xn)∥2 where h(xn) :=

1
2∥(I−proxλg)Axn∥2

and l(xn) :=
1
2∥(I − proxλf )xn∥2 with θ(xn) ̸= 0.

We compute xn+1 in the following iterative scheme:{
yn = proxλγnf ((1− αn)xn − γnA

∗(I − proxλg)Axn)

xn+1 = βnyn + (1− βn)
∑N

i=1 aiTiyn,∀n ∈ N,
(3.1)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4, {αn}, {βn} ⊂

[0, 1], and 0 ≤ ai ≤ 1, for every i = 1, 2, ..., N with

N∑
i=1

ai = 1.

Using algorithm (3.1), we prove a strong convergence theorem for approxima-
tion of solutions of problem (1.3) and the set of fixed points of quasi-nonexpansive
mappings as follows:

Theorem 3.1. Suppose that Ω := Γ ∩
∩N

i=1 Fix(Ti) ̸= ∅. Let {αn} and {βn} be
sequences in (0, 1). If the parameters satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞;

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(C3) ε ≤ ρn ≤ 4(1− αn)h(xn)

h(xn) + l(xn)
− ε for some ε > 0 and for any n ∈ N.

Then the sequence {xn} converges strongly to a solution z which is also a minimum
norm solution of Ω. In other words, z = PΩ(0).

Proof. Let z = PΩ(0). Then z = proxλγnf z and Az = proxλg z. Note that
∇h(xn) = A∗(I − proxλg)Axn, ∇l(xn) = (I − proxλγnf )xn

Since proxλg is firmly nonexpansive, we have that I − proxλg is also firmly
nonexpansive. Hence

⟨A∗(I − proxλg)Axn, xn − z⟩ = ⟨(I − proxλg)Axn, Axn −Az⟩
= ⟨(I − proxλg)Axn, Axn −Az⟩
= ⟨(I − proxλg)Axn − (I − proxλg)Az,Axn −Az⟩
≥ ∥(I − proxλg)Axn∥2 = 2h(xn). (3.2)
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From the deffinition of yn and the nonexpansivity of proxλγnf , we have

∥yn − z∥ = ∥ proxλγnf ((1− αn)xn − γnA
∗(I − proxλg)Axn)− z∥

≤ ∥(1− αn)xn − γnA
∗(I − proxλg)Axn − z∥

= ∥αn(z) + (1− αn)

(
xn − γn

(1− αn)
A∗(I − proxλg)Axn − z

)
∥

≤ αn∥z∥+ (1− αn)

∥∥∥∥xn − γn
(1− αn)

A∗(I − proxλg)Axn − z

∥∥∥∥ . (3.3)

Since ∇h(xn) = A∗(I − proxλg)Axn, ∇l(xn) = (I − proxλγnf )xn and (3.2), we
have ∥∥∥∥xn − γn

(1− αn)
A∗(I − proxλg)Axn − z

∥∥∥∥2
= ∥xn − z∥2 + γ2

n

(1− αn)2
∥A∗(I − proxλg)Axn − z∥2

− 2
γn

(1− αn)
⟨A∗(I − proxλg)Axn, xn − z⟩

= ∥xn − z∥2 + γ2
n

(1− αn)2
∥∇h(xn)∥2 − 2

γn
(1− αn)

⟨∇h(xn), xn − z⟩

≤ ∥xn − z∥2 + γ2
n

(1− αn)2
∥∇h(xn)∥2 − 4

γn
(1− αn)

h(xn)

= ∥xn − z∥2 + ρ2n
(h(xn) + l(xn))

2

(1− αn)2θ4(xn)
∥∇h(xn)∥2 − 4ρn

(h(xn) + l(xn))

(1− αn)θ2(xn)
h(xn)

≤ ∥xn − z∥2 + ρ2n
(h(xn) + l(xn))

2

(1− αn)2θ4(xn)
− 4ρn

(h(xn) + l(xn))
2

(1− αn)θ2(xn)

h(xn)

(h(xn) + l(xn))

= ∥xn − z∥2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

(1− αn)θ2(xn)

)
. (3.4)

Without loss of generality, by condition (C3), we can assume that
4h(xn)

(h(xn) + l(xn))
−

ρn
1− αn

≥ 0 for all n ≥ 1. From (3.3), (3.4), we have

∥yn − z∥ ≤ αn∥z∥+ (1− αn)

∥∥∥∥xn − γn
(1− αn)

A∗(I − proxλg)Axn − z

∥∥∥∥
≤ αn∥z∥+ (1− αn) ∥xn − z∥ . (3.5)

Put T =
∑N

i=1 aiTi, where 0 ≤ ai ≤ 1, for every i = 1, 2, ..., N with

N∑
i=1

ai = 1.
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From Lemma 2.2, we have T is a quasi-nonexpansive mapping. It follows that

∥xn+1 − z∥ = ∥βnyn + (1− βn)Tyn − z∥
≤ βn∥yn − z∥+ (1− βn)∥Tyn − z∥
≤ βn∥yn − z∥+ (1− βn)∥yn − z∥
= ∥yn − z∥
≤ (1− αn) ∥xn − z∥+ αn∥z∥
≤ max {∥xn − z∥, ∥z∥} .

By mathematical induction, we have

∥xn − z∥ ≤ max {∥x1 − z∥, ∥z∥} ,∀n ∈ N.

It implies that {xn} is bounded and so are , {T (yn)}.

From the definition of yn, we have

∥yn − z∥2 = ∥ proxλγnf ((1− αn)xn − γnA
∗(I − proxλg)Axn)− z∥2

≤ ∥(1− αn)xn − γnA
∗(I − proxλg)Axn − z∥2,

= ∥αn(z) + (1− αn)

(
xn − γn

(1− αn)
A∗(I − proxλg)Axn − z

)
∥2

≤ αn∥z∥2 + (1− αn)

∥∥∥∥xn − γn
(1− αn)

A∗(I − proxλg)Axn − z

∥∥∥∥2
≤ αn∥z∥2 + (1− αn)

(
∥xn − z∥2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

(1− αn)θ2(xn)

))
= αn∥z∥2 + (1− αn)∥xn − z∥2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

θ2(xn)

)
.

(3.6)

It follows from (3.6), we have

∥xn+1 − z∥2 = ∥βnyn + (1− βn)Tyn − z∥2

≤ βn∥yn − z∥2 + (1− βn)∥Tyn − z∥2 − βn(1− βn)∥yn − Tyn∥2

≤ ∥yn − z∥2 − βn(1− βn)∥yn − Tyn∥2

≤ αn∥z∥2 + (1− αn)∥xn − z∥2 − βn(1− βn)∥yn − Tyn∥2

≤ αn∥z∥2 + ∥xn − z∥2 − βn(1− βn)∥yn − Tyn∥2.

It implies that

βn(1− βn)∥yn − Tyn∥2 ≤ αn∥z∥2 + ∥xn − z∥2 − ∥xn+1 − z∥2. (3.7)
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From the definition of xn and (3.6), we have

∥xn+1 − z∥2 = ∥βnyn + (1− βn)Tyn − z∥2

≤ βn∥yn − z∥2 + (1− βn)∥Tyn − z∥2

≤ ∥yn − z∥2

≤ αn∥z∥2 + (1− αn)∥xn − z∥2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

θ2(xn)

)
≤ αn∥z∥2 + ∥xn − z∥2 − ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

θ2(xn)

)
.

It implies that

ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

θ2(xn)

)
≤ αn∥z∥2 + ∥xn − z∥2 − ∥xn+1 − z∥2.

(3.8)

Now we divide the rest of the proof into two cases.
CASE 1. Suppose that there exists n0 ∈ N such that {∥xn − z∥}∞n=1 is non-
increasing. Then {∥xn − z∥}∞n=1 coverges and ∥xn − z∥2 − ∥xn+1 − z∥2 → 0 as
n → ∞. From (3.8), the condition (C1) and (C3), we obtain

ρn

(
4h(xn)

(h(xn) + l(xn))
− ρn

1− αn

)(
(h(xn) + l(xn))

2

θ2(xn)

)
→ 0 as n → ∞.

Then, we have

(h(xn) + l(xn))
2

θ2(xn)
→ 0 as n → ∞. (3.9)

Observe that θ2(xn) = ∥∇h(xn)∥2 + ∥∇l(xn)∥2 is bounded (see [16]). It follows
that

lim
n→∞

((h(xn) + l(xn))
2) = 0.

It implies that
lim
n→∞

h(xn) = lim
n→∞

l(xn) = 0.

Next, we will show that lim sup
n→∞

⟨−z, xn − z⟩ ≤ 0, where z = Pω(0). To show

this,since {xn} is bounded, there exits a subsequence
{
xnj

}
of {xn} satisfying

xnj
⇀ q and

lim sup
n→∞

⟨−z, xn − z⟩ = lim
j→∞

⟨
−z, xnj

− z
⟩
.

By the lower semicontinuity of h, we have

0 ≤ h(q) ≤ lim inf
j→∞

h(xnj ) = lim
n→∞

h(xn) = 0.
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So, h(q) = 1
2∥(I−proxλg)Aq∥2 = 0. Therefore, Aq is a fixed point of the proximal

mapping of g or equivalently 0 ∈ ∂f(Aq). In other words, Aq is a minimizer of g
. Similarly, from the lower semicontinuity of l, we obtain

0 ≤ l(q) ≤ lim inf
j→∞

l(xnj ) = lim
n→∞

l(xn) = 0.

So, l(q) = 1
2∥(I − proxλγnf )q∥

2 = 0. Therefore, q is a fixed point of the proximal
mapping of f or equivalently 0 ∈ ∂g(q). In other words, q is a minimizer of f .
Hence q ∈ Γ.
From the definition of γn, we have

0 < γn < 4
h(xn) + l(xn)

θ2(xn)
→ 0 as n → ∞

implies that γn → 0 as n → ∞.
Next, we will show that q ∈ Fix(T ) =

∩N
i=1 Fix(Ti). From (3.7) and the condition

(C1) (C2), we have

∥yn − Tyn∥ → 0 as n → ∞. (3.10)

For each n ≥ 1, let un := (1− αn)xn. Then,

∥un − xn∥ = ∥(1− αn)xn − xn∥
= αn∥xn∥.

From the condition (C1), we have

lim
n→∞

∥un − xn∥ = 0. (3.11)

Observe that

∥un − proxλγnf xn∥ ≤ ∥un − xn∥+ ∥(I − proxλγnf )xn∥.

From limn→∞ l(xn) = limn→∞
1
2∥(I − proxλγnf )xn∥2 = 0 and (3.11), we have

lim
n→∞

∥un − proxλγnf xn∥ = 0. (3.12)

By the nonexpansiveness of proxλγnf , we have

∥yn − proxλγnf xn∥ = ∥proxλγnf (un − γnA
∗(I − proxλg)Axn)− proxλγnf xn∥

≤ ∥un − γnA
∗(I − proxλg)Axn − xn∥

≤ ∥un − xn∥+ γn∥A∗(I − proxλg)Axn∥.

From (3.12) and γn → 0 as n → ∞, we have

lim
n→∞

∥yn − proxλγnf xn∥ = 0. (3.13)



178 C. Suanoom and W. Khuangsatung

We observe that

∥yn − un∥ ≤ ∥yn − proxλγnf xn∥+ ∥un − proxλγnf xn∥.

From (3.12) and (3.13), we have

lim
n→∞

∥yn − un∥ = 0. (3.14)

Also, observe that ∥yn−xn∥ ≤ ∥yn−un∥+ ∥un−xn∥ and from (3.12) and (3.13),
we obtain

lim
n→∞

∥yn − xn∥ = 0. (3.15)

Using xnj ⇀ q ∈ H1 and (3.15), we obtain ynj ⇀ q ∈ H1. Since ynj ⇀ q ∈ H1,

∥yn − Tyn∥ → 0 as n → ∞ and Lemma 2.2, we have q ∈ Fix(T ) =
∩N

i=1 Fix(Ti).

Hence q ∈ Ω =
∩N

i=1 Fix(Ti) ∩ Γ. Since xnj
⇀ q as j → ∞ and q ∈ Ω. Lemma

2.3, we have

lim sup
n→∞

⟨−z, xn − z⟩ = lim
j→∞

⟨
−z, xnj − z

⟩
= ⟨−z, q − z⟩
≤ 0. (3.16)

Now, from (3.1)and (3.4) , we have

∥xn+1 − z∥2 ≤ βn∥yn − z∥2 + (1− βn)∥Tyn − z∥2

≤ βn∥yn − z∥2 + (1− βn)∥yn − z∥2

≤ ∥yn − z∥2

≤ ∥(1− αn)xn − γnA
∗(I − proxλg)Axn − z∥2

= ∥(1− αn)

(
xn − γn

(1− αn)
A∗(I − proxλg)Axn − z

)
+ αnz∥2

= (1− αn)
2∥xn − γn

(1− αn)
A∗(I − proxλg)Axn − z∥2 + α2

n∥z∥2

+ 2αn(1− αn)⟨xn − γn
(1− αn)

A∗(I − proxλg)Axn − z,−z⟩

≤ (1− αn)
2∥xn − z∥2 + α2

n∥z∥2 + 2αn(1− αn)⟨xn − z,−z⟩
− 2αnγn⟨A∗(I − proxλg)Ax,−z⟩

= (1− αn)
2∥xn − z∥2 + α2

n∥z∥2 + 2αn(1− αn)⟨xn − z,−z⟩
+ 2αnγn⟨∇h(xn), z⟩

≤ (1− αn)∥xn − z∥2 + αn

(
αn∥z∥2 + 2(1− αn)⟨xn − z,−z⟩

+ 2γn∥∇h(xn)∥∥z∥
)
. (3.17)

Since ∇h(xn) is Lipschitz continuous with Lipschitzian constant ∥A∥2and ∇l(xn)
is nonexpansive, ∇h(xn), ∇l(xn), and θ2(xn) are bounded. From the condition
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(C1), (3.16), (3.17) and Lemma 2.4, we can conclude that the sequence {xn} con-
verges strongly to z.

CASE 2. Assume that {∥xn − z∥} is not monotonically decreasing sequence.
Then there exists a subsequence nk of n such that ∥xnk

− x̄∥ < ∥xnk+1 − x̄∥ for
all k ∈ N. Now we define a positive interger sequence τ(n) by

τ(n) := max{k ∈ N : k ≤ n, ∥xnk
− x̄∥ < ∥xnk+1 − x̄∥}.

for all n ≥ n0 (for some n0 large enough). By lemma 2.5, we have τ is a non-
decreasing sequence such that τ(n) → ∞ as n → ∞ and

∥xτ(n) − x̄∥2 − ∥xτ(n)+1 − x̄∥2 ≤ 0,∀n ≥ n0.

By continuing in the same direction as in CASE 1, we can show that

ρτ(n)

(
4h(xτ(n))

(h(xτ(n)) + l(xτ(n)))
−

ρτ(n)

1− ατ(n)

)(
(h(xτ(n)) + l(xτ(n)))

2

θ2(xτ(n))

)
→ 0 as n → ∞.

Hence, we have

(h(xτ(n)) + l(xτ(n)))
2

θ2(xτ(n))
→ 0 as n → ∞. (3.18)

Consequently, we have

lim
n→∞

((h(xτ(n)) + l(xτ(n)))
2) = 0.

It implies that
lim
n→∞

h(xτ(n)) = lim
n→∞

l(xτ(n)) = 0.

Moreover, By continuing in the same direction as in Case 1, we can prove that

lim sup
n→∞

⟨
−z, xτ(n) − z

⟩
≤ 0.

From (3.17), we have

0 ≤ ∥xτ(n)+1 − z∥2 − ∥xτ(n) − z∥2

≤ (1− ατ(n))∥xτ(n) − z∥2 + ατ(n)ρτ(n) − ∥xτ(n) − z∥2

= ατ(n)(ρτ(n) − ∥xτ(n) − z∥2).

It follows that

∥xτ(n) − z∥2 ≤ ρτ(n),

where ρτ(n) = ατ(n)∥z∥2 + 2(1− ατ(n))⟨xτ(n) − z,−z⟩+ 2γτ(n)∥∇h(xτ(n))∥∥z∥.
By using Lemma 2.4, we have

lim
n→∞

∥xτ(n) − z∥ = 0.
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It follows from Lemma 2.5 that

0 ≤ ∥xτ(n) − x̄∥ ≤ ∥xτ(n)+1 − x̄∥ → 0

as n → ∞. Hence {xn} converges strongly to z. This completes the proof.

As a direct proof of Theorem 3.1, we obtain the following results.

When f = δC and g = δQ are indicator functions of nonempty, closed, and
convex sets C and Q of H1 and H2, respectively, then SMP (1.3) reduces to the
split feasibility problem (1.1). In this case, we obtain the following results.

Algorithm 3.2

Step 1: Choose an initial point x1 ∈ H1.

Step 2: Assume that xn has been constructed.
Set h(xn) :=

1
2∥(I − PQ)Axn∥2 with ∥∇h(xn∥ ̸= 0. We compute xn+1 in

the following iterative scheme:
yn = PC((1− αn)xn − γnA

∗(I − PQ)Axn)

xn+1 = βnyn + (1− βn)

N∑
i=1

aiTiyn,∀n ∈ N,
(3.19)

where stepsize γn := ρn
h(xn)

∥∇h(xn∥2
with 0 < ρn < 4, {αn}, {βn} ⊂ [0, 1],

and 0 ≤ ai ≤ 1, for every i = 1, 2, ..., N with

N∑
i=1

ai = 1.

Using algorithm 3.2, we prove a strong convergence theorem for approximation
of solutions of problem (1.1) and the set of fixed points of quasi-nonexpansive
mappings as follows:

Corollary 3.1. Suppose that Ω := Ψ ∩
∩N

i=1 Fix(Ti) ̸= ∅. Let {αn} and {βn} be
sequences in (0, 1). If the parameters satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞;

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(C3) ε ≤ ρn ≤ 4(1− αn)− ε for some ε > 0.

Then the sequence {xn} converges strongly to a solution z which is also a minimum
norm solution of Ω. In other words, z = PΩ(0).
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Corollary 3.2. Let H1 and H2 be two real Hilbert spaces. Let f : H1 → R∪{+∞}
and g : H2 → R∪{+∞}be two proper and lower semicontinuous convex functions.
Let A : H1 → H2 be a bounded linear operator. Let T : H1 → H1 be a quasi-
nonexpansive mapping such that Fix(T ) ̸= ∅ and I − T are demiclosed at zero.
Suppose that Ω := Γ ∩ Fix(T ) ̸= ∅. Set θ(x) :=

√
∥∇h(x)∥2 + ∥∇l(x)∥2 where

h(x) := 1
2∥(I−proxλg)Ax∥2 and l(x) := 1

2∥(I−proxλf )x∥2 with θ(x) ̸= 0 for each
n ≥ 1. For given x1 ∈ H1 and let {xn}, and {yn} be sequences generated by{

yn = proxλγnf ((1− αn)xn − γnA
∗(I − proxλg)Axn)

xn+1 = βnyn + (1− βn)Tyn,∀n ∈ N,
(3.20)

where stepsize γn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4, and {αn}, {βn} ⊂ [0, 1].

If the parameters satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞;

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(C3) ε ≤ ρn ≤ 4(1− αn)h(xn)

h(xn) + l(xn)
− ε for some ε > 0.

Then the sequence {xn} converges strongly to a solution z which is also a minimum
norm solution of Ω. In other words, z = PΩ(0).

Proof. Take T = Ti for all i = 1, 2, 3, ..., N in Theorem 3.1. So, from Theorem 3.1,
we obtain the desired result.
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Abstract. The purpose of this article, we give a necessary and sufficient condition for the modified Mann
iterative process in order to obtain a strong convergence theorem for finding a common element of the set
of fixed point of a finite family of nonexpansive mappings and variational inequality problem in Hilbert
space without the conditions

⋂N
i=1 Fix(Ti)∩VI(C,A) , ∅. Moreover, we utilize our main result to fixed point

problems of strictly pseudocontractive mappings and the set of solutions of variational inequality problem.

1. Introduction

Throughout this article, let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be
a nonempty closed convex subset of H. Let T : C → C be a nonlinear mapping. A point x ∈ C is called a
fixed point of T if Tx = x. The set of fixed points of T is the set Fix(T) := {x ∈ C : Tx = x}.
A mapping T of C into itself is called nonexpansive if∥∥∥Tx − Ty

∥∥∥ ≤ ∥∥∥x − y
∥∥∥ ,∀x, y ∈ C.

Mann’s iteration process [8] is often used to approximate a fixed point of a nonexpansive mapping. But
Mann’s iteration process has only weak convergence. To obtain strong convergence theorems, the Mann’s
iteration is modified by many researchers; see for instance [7], [12], and the references therein.

Let A : C→ H. The variational inequality problem is to find a point x ∈ C such that

〈Ax, y − x〉 ≥ 0 (1)

for all y ∈ C. The set of solution of (1) is denoted by VI(C,A). In 1964, Stampacchia [13] introduced
and investigated the variational inequality problem. It is well known that the application of the variational
inequality problem has been expanded to problems from economics, finance, optimization and game theory;
see [15]. Several authors have studied the variational inequality problem; see [16], [3], [4], and references
cited therein.
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In 2003, Takahashi and Toyoda [5] introduce an iterative scheme of finding a common element of the set
of fixed points of a nonexpansive mapping and the set of solutions of a variational inequality problem for
an inverse strongly-monotone mapping as follows:

xn+1 = αnxn + (1 − αn)TPC(xn − λnAxn),∀n ≥ 1,

where T : C→ C is a nonexpansive mapping and A is an a inverse strongly-monotone mapping of C into H.
Then, they proved a weak convergence theorem of the sequence {xn} under suitable conditions of parameter
{αn} and {λn}.

In 2013, Kangtunyakarn [6] proved a strong convergence theorem for finding a common element of the
set of fixed point problem of a nonexpansive mapping and the set of solution of (1) without assumption
Fix(T) ∩ VI(C,A) , ∅. He defined the sequence {xn} as follows:

xn+1 = αTxn + (1 − α)PC(I − ρA)xn,∀n ≥ 1, (2)

where T : C → C is a nonexpansive mapping, A : C → H is a strongly positive linear bounded operator
with coefficient γ̄ > 0 and positive real numbers α, ρ. In the last few decades many authors have studied
strong convergence theorems for finding a common element of the set of fixed point of a finite family of
nonexpansive mappings and the set of variational inequality problem by using condition

⋂N
i=1 Fix(Ti) ∩

VI(C,A) , ∅; see for instance [11] and references therein.
In this paper, motivated and inspired by [5] and [6], we give a necessary and sufficient condition for the

modified Mann iterative process in order to obtain a strong convergence theorem for finding a common
element of the set of fixed point of a finite family of nonexpansive mappings and the set of solutions of
variational inequality problem in Hilbert space without the conditions

⋂N
i=1 Fix(Ti)∩VI(C,A) , ∅. Moreover,

we utilize our main result to fixed point problems of strictly pseudocontractive mappings and the set of
solutions of variational inequality problem.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Recall that the (nearest
point) projection PC from H onto C assigns to each x ∈ H the unique point PCx ∈ C satisfying the property

‖x − PCx‖ = min
y∈C
‖x − y‖.

Lemma 2.1 ([9]). Let A be a strongly positive linear bounded operator on a Hilbert space H with coefficient γ̄ and
0 < ρ < ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ̄.

Lemma 2.2 (See [14]). Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let A be a
mapping of C into H. Let u ∈ C. Then, for λ > 0,

u = PC(I − λA)u⇔ u ∈ VI(C,A),

where PC is the metric projection of H onto C.

Lemma 2.3 ([1]). Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of E and S: C→ C
be a nonexpansive mapping. Then I − S is demi-closed at zero.

3. Main Result

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be a strongly
positive linear bounded operator on H with coefficient γ̄ > 0 . Let {Ti}

N
i=1 be a finite family of nonexpansive mappings

of C into itself. Let the sequence {xn} be generated by x0 ∈ H and
yi

n = βTixn + (1 − β)xn,

xn+1 = αxn + (1 − α)PC(I − ρA)
N∑

i=1

aiyi
n,∀n ≥ 0,

(3)
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where 0 < α, β < 1, 0 < ρ < ‖A‖−1, and
∑N

i=1 ai = 1. Then the following are equivalent.

(i) The sequence {xn} defined by (3) converges strongly to x∗ ∈
⋂N

i=1 Fix(Ti) ∩ VI(C,A);

(ii) lim
n→∞
‖Tixn − xn‖ = 0, for all i = 1, 2, . . . ,N.

Proof. (i)⇒ (ii) . Let condition (i) hold. Since x∗ ∈
⋂N

i=1 Fix(Ti) ∩ VI(C,A), we have

‖Tixn − xn‖ ≤ ‖Tixn − Tix∗‖ + ‖x∗ − xn‖ ≤ 2‖x∗ − xn‖,

which implies that limn→∞ ‖Tixn − xn‖ = 0.
Next we claim that (ii) ⇒ (i), let condition (ii) hold. Let x, y ∈ C. Since A is a strongly positive linear bounded
operator and Lemma 2.1 , we have

‖(I − ρA)x − (I − ρA)y‖ = ‖(I − ρA)(x − y)‖
≤ (1 − ργ̄)‖x − y‖.

We have I − ρA is a contractive mapping with coefficient 1 − ργ̄.
For every n ∈N, i = 1, 2, ...,N, and the definition of {yi

n}, we have

‖yi
n+1 − yi

n‖ = ‖βTixn + (1 − β)xn − βTixn−1 − (1 − β)xn−1‖

= ‖β(Tixn − Tixn−1) + (1 − β) (xn − xn−1) ‖
≤ β‖Tixn − Tixn−1‖ + (1 − β)‖xn − xn−1‖

≤ β‖xn − xn−1‖ + (1 − β)‖xn − xn−1‖

= ‖xn − xn−1‖. (4)

From the definition of {xn} and (4), we have

‖xn+1 − xn‖ = ‖αxn + (1 − α)PC(I − ρA)
N∑

i=1

aiyi
n − αxn−1 − (1 − α)PC(I − ρA)

N∑
i=1

aiyi
n−1‖

= ‖α(xn − xn−1) + (1 − α)

PC(I − ρA)
N∑

i=1

aiyi
n − PC(I − ρA)

N∑
i=1

aiyi
n−1

 ‖
≤ α‖xn − xn−1‖ + (1 − α)‖PC(I − ρA)

N∑
i=1

aiyi
n − PC(I − ρA)

N∑
i=1

aiyi
n−1‖

≤ α‖xn − xn−1‖ + (1 − α)‖(I − ρA)
N∑

i=1

aiyi
n − (I − ρA)

N∑
i=1

aiyi
n−1‖

≤ α‖xn − xn−1‖ + (1 − α)(1 − ργ̄)
N∑

i=1

ai
‖yi

n − yi
n−1‖

≤ α‖xn − xn−1‖ + (1 − α)(1 − ργ̄)‖xn − xn−1‖

= (1 − ργ̄(1 − α))‖xn − xn−1‖

= a‖xn − xn−1‖

≤ a2
‖xn−1 − xn−2‖

...

≤ an
‖x1 − x0‖, (5)
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where a = (1 − ργ̄(1 − α)) ∈ (0, 1).
For any number n,m ∈N and (5), we have

‖xn+m − xn‖ ≤

n+m−1∑
j=n

‖x j+1 − x j‖

≤

n+m−1∑
j=n

a j
‖x1 − x0‖

≤

( an

1 − a

)
‖x1 − x0‖. (6)

Since an
→ 0 as n→∞, and (6), we have {xn} is a Cauchy sequence. Since H is a Hilbert space, we get {xn} converges

to x∗, i.e.,

lim
n→∞

xn = x∗. (7)

Next, we will show that x∗ ∈
⋂N

i=1 Fix(Ti)∩VI(C,A). Since C is closed, so we get x∗ ∈ C. By limn→∞ ‖Tixn − xn‖ = 0,
(7), and Lemma 2.3, we have x∗ ∈ Fix(Ti) for all i = 1, 2, . . . ,N. It implies that x∗ ∈

⋂N
i=1 Fix(Ti). From the definition

of yi
n, limn→∞ xn = x∗, and x∗ ∈

⋂N
i=1 Fix(Ti), we have

lim
n→∞

yi
n = x∗. (8)

From the definition of xn, (7), and (8), we have

x∗ = αx∗ + (1 − α)PC(I − ρA)x∗.

It implies that x∗ ∈ Fix(PC(I − ρA)). From Lemma 2.2, we have x∗ ∈ VI(C,A). Hence, the sequence {xn} defined by
(3) converges strongly to x∗ ∈

⋂N
i=1 Fix(Ti) ∩ VI(C,A).

As direct proof of Theorem 3.1, we obtain the following results.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be a strongly
positive linear bounded operator on H with coefficient γ̄ > 0 . Let T be a nonexpansive mappings of C into itself. Let
the sequence {xn} be generated by x0 ∈ H and yn = βTxn + (1 − β)xn,

xn+1 = αxn + (1 − α)PC(I − ρA)yn,∀n ≥ 0,
(9)

where 0 < α, β < 1 and 0 < ρ < ‖A‖−1. Then the following are equivalent.

(i) The sequence {xn} defined by (9) converges strongly to x∗ ∈ Fix(T) ∩ VI(C,A);

(ii) lim
n→∞
‖Txn − xn‖ = 0.

Next, in order to prove a strong convergence theorem for κ-strictly pseudo-contractive mappings and
variational inequality problem, we need Lemma 3.3. A mapping T : C→ C is said to be κ-strictly pseudo-
contractive if there exists a constant κ ∈ [0, 1) such that∥∥∥Tx − Ty

∥∥∥2
≤

∥∥∥x − y
∥∥∥2

+ κ
∥∥∥(I − T)x − (I − T)y

∥∥∥2
,

for all x, y ∈ C. Note that the class of strictly pseudo-contractions strictly includes the class of nonexpansive
mapping.
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Lemma 3.3 (See [2]). Let T : C→ H be a κ-strict pseudo-contraction. Define S : C→ H by Sx = λx + (1 − λ)Tx
for each x ∈ C. Then, as λ ∈ [k, 1), S is a nonexpansive mapping such that Fix(S) = Fix(T).

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be a strongly
positive linear bounded operator on H with coefficient γ̄ > 0 . Let {Ti}

N
i=1 be a finite family of κi-strictly pseudo-

contractive mappings of C into itself withκ = maxi=1,2,...,N κi. Define the mapping Si = C→ C by Six = σx+(1−σ)Tix
for every i = 1, 2, ...,N, x ∈ C and σ ∈ (k, 1). Let the sequence {xn} be generated by x0 ∈ H and

yi
n = βSixn + (1 − β)xn,

xn+1 = αxn + (1 − α)PC(I − ρA)
N∑

i=1

aiyi
n,∀n ≥ 0,

(10)

where 0 < α < 1, κ ≤ β < 1, 0 < ρ < ‖A‖−1, and
∑N

i=1 ai = 1. Then the following are equivalent.

(i) The sequence {xn} defined by (10) converges strongly to x∗ ∈
⋂N

i=1 Fix(Ti) ∩ VI(C,A);

(ii) lim
n→∞
‖Tixn − xn‖ = 0, for all i = 1, 2, . . . ,N.

Proof. From Lemma 3.3 and Theorem 3.1, we obtain the desired result.
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ABSTRACT
In this paper,weprovea strongconvergence theorem for findinga common
element of the solution set of a constrained convex minimization problem
and the set of solutions of a finite family of variational inclusion problems
in Hilbert space. A strong convergence theorem for finding a common
element of the solution set of a constrained convex minimization problem
and the solution sets of a finite family of zero points of the maximal
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main result, we have some additional results for various types of non-linear
problems in Hilbert space.
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1. Introduction

Throughout this article, let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. Let C
be a nonempty closed convex subset ofH . Let g : C → R be a real-valued convex function. Consider
the following constrained convex minimization problem:

min
x∈C g(x). (1.1)

Assume that the constrained convex minimization problem (1.1) is solvable, that is, it has a solution,
and let ! denote the solution set of (1.1). If g is Frechet differentiable, then x0 ∈ C solves (1.1) if and
only if x0 ∈ C satisfies the following optimality condition:

⟨∇g(x0), x − x0⟩ ≥ 0,∀x ∈ C. (1.2)

where ∇g denotes the gradient of g . Observe that (1.1) can be rewritten as follows:

⟨x0 − (x0 − ∇g(x0)), x − x0⟩ ≥ 0,∀x ∈ C. (1.3)

From (1.3), it is easy to show that the constrained convex minimization problem (1.1) is equivalent
to the fixed point problem

PC(x0 − β∇g(x0)) = x0. (1.4)
where β > 0 is any constant and PC is the metric projection fromH onto C. The gradient projection
algorithm (GPA) generates a sequence {xn}∞n=0 using the following the recursion:

xn+1 = PC(I − βn∇g)xn, (1.5)

CONTACT Atid Kangtunyakarn beawrock@hotmail.com
© 2017 Informa UK Limited, trading as Taylor & Francis Group
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where the parameters βn are real positive numbers. It is well known that the GPA is a powerful tool
for solving constrained convex optimization problems (1.1). Many research papers have increasingly
investigated these problems, see, for instance, [1–4] and the references therein.

However, we all know that the minimization problem (1.1) has more than one solution under
some conditions, so regularization is needed in finding the unique solution of the minimization
problem (1.1). Now, we consider the following regularized minimization problem:

min
x∈C gα(x) = g(x) + α

2
∥x∥2, (1.6)

where α > 0 is the regularization parameter and g is a convex function with a 1/L-ism continuous
gradient ∇g . The regularized gradient projection algorithm (RGPA) generates a sequence {xn}∞n=0
using the following the recursion:

xn+1 = PC(I − β∇gλn)xn = PC(I − β(∇g + αnI))xn, (1.7)

where the parameter αn > 0, β is a constant with 0 < β < 2/L. Many authors have extensively studied
a strong convergence theorem based on the RGPA under some control conditions, see, for instance,
[5,6] and references therein.

A mapping T of C into itself is called nonexpansive if∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥ ,∀x, y ∈ C.

Amapping A : C → H is called α-inverse strongly monotone if there exists a positive real number
α such that 〈

Ax − Ay, x − y
〉 ≥ α

∥∥Ax − Ay
∥∥2 ,

for all x, y ∈ C.
Let A : C → H . The variational inequality problem is to find a point u ∈ C such that

⟨Au, v − u⟩ ≥ 0, (1.8)

for all v ∈ C. The set of solutions of the variational inequality is denoted by VI(C,A).
Let B : H → H be a mapping and M : H → 2H be a multi-valued mapping. The variational

inclusion problem is to find u ∈ H such that

θ ∈ Bu + Mu, (1.9)

where θ is zero vector in H . The set of the solution of (1.9) is denoted by VI(H ,B,M).
A multi-valued mappingM : H → 2H is calledmonotone, if for all x, y ∈ H , u ∈ Mx and v ∈ My

implies that ⟨u − v, x − y⟩ ≥ 0. Amulti-valued mappingM : H → 2H is calledmaximal monotone,
if it is monotone and if for any (x, u) ∈ H × H , ⟨u − v, x − y⟩ ≥ 0 for every (y, v) ∈ Graph(M) (the
graph of mappingM) implies that u ∈ Mx.

LetM : H → 2H be a multi-valued maximal monotone mapping and the single-valued mapping
JM,λ : H → H be defined by

JM,λ(u) = (I + λM)−1(u),∀u ∈ H ,

which is called the resolvent operator associated with M where λ is a positive number and I is an
identity mapping, see [7].

Moreover, letM be a maximal monotone operator on H and define the set of zero points ofM as
follows:

M−10 = {x ∈ H : 0 ∈ Mu}. (1.10)
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It is well known thatM−10 = Fix(JM,λ). Many research papers have increasingly investigated these
problems, see, for instance, [8,9] and the references therein.

In 2015, Tian and Jiao [10] introduced a new iterative algorithm for finding a common element
of the solution set of a constrained convex minimization problem and the set of zero points of
the maximal monotone operator problem based on the viscosity approximation method and the
regularized gradient projection algorithm as follows: Find x1 ∈ C and

{
un = JM,rn(xn),
xn+1 = αnf (xn) + (1 − αn)Tλn(un),∀n ∈ N,

(1.11)

where PC(I − β∇gλn) = Tλn , ∇gλn = ∇g + λnI , λn ⊂ (0, 2
ρ−L ), β ∈ (0, 2L ). Under appropriate

conditions, they proved that the sequence {xn}∞n=0 generated by (1.11) converges strongly to a point
q = ! ∩ M−10 which solves the variational inequality

⟨(I − f )q, q − z⟩ ≤ 0,∀z ∈ ! ∩ M−10. (1.12)

Equivalently, we have P!∩M−10 f (q) = q.
In 2015, Qiu et al. [11] introduced two families of finite maximal monotone mappings by

SAmAm−1···A1
rn := JAm,rn JAm−1,rn · · · JA1,rn and Trn := a0I + a1JB1,rn + a2JB2,rn + · · · + alJBl ,rn , where
JAi ,rn = (I + rnAi)

−1, (i = 1, 2, . . . ,m), JBj ,rn = (I + rnBj)−1, (j = 1, 2, . . . , l), ak ∈ (0, 1), k =
1, 2, . . . , l,

∑N
i=0 ak = 1 and proved a strong convergence theorem for finding a common element of

the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality
problem for a monotone, Lipschitz continuous mapping and the set of common zeros of two families
of finite maximal monotone mappings in a real Hilbert space.

In 2008, Zhang et al. [7] introduced an iterative scheme for finding a common element of the
set of solutions of the variational inclusion problem with multi-valued maximal monotone mapping
and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in
Hilbert space. They introduced the iterative scheme as follows:

yn = JM,λ(xn − λAxn),
xn+1 = αnx + (1 − αn)Syn,∀n ≥ 0,

andproved a strong convergence theoremof the sequence {xn}under suitable conditions of parameter
{αn} and λ.

Very recently, Khuangsatung and Kangtunyakarn [12] have modified (1.9) as follows: Find u ∈ H
such that

θ ∈
N∑
i=1

aiAiu + Mu, (1.13)

where Ai : H → H is a single-valued mapping,M : H → 2H is a multi-valued mapping, ai ∈ (0, 1)
with

∑N
i=1 ai = 1 and θ is a zero vector, for all i = 1, 2, . . . ,N . This problem is called the modified

variational inclusion. The set of solutions (1.13) is denoted by VI
(
H ,
∑N

i=1 aiAi,M
)
. If Ai ≡ A for

all i = 1, 2, . . . ,N , then (1.13) reduces to (1.9). They also introduced an iterative scheme for finding
a common element of the set of fixed points of a κ-strictly pseudononspreading mapping and the
set of solutions of a finite family of variational inclusion problems and the set of solutions of a finite
family of equilibrium problems as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

aiFi
(
un, y

)
+ 1

rn
〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnu + βnxn + γnJM,λ

(
I − λ

N∑
i=1

biAi

)
xn

+ ηn(I − ρn(I − T))xn + δnun,∀n ≥ 1,

(1.14)

where Fi : C × C → R is a bifunction satisfying (A1)-(A4). Then, they proved that the sequence
{xn} generated by (1.14) converges strongly to an element of a set F := F(T) ∩ ⋂N

i=1 EP(Fi) ∩⋂N
i=1 VI(H ,Ai,M) ̸= ∅, under some appropriate conditions of {αn}, {βn}, {γn}, {ηn} and {δn}.
In this paper, motivated by the above-mentioned results, we first prove a strong convergence

theorem for finding a common element of the solution set of a constrained convex minimization
problem and the set of solutions of a finite family of variational inclusion problems in Hilbert space.
Secondly, A strong convergence theorem for finding a common element of the solution set of a
constrained convex minimization problem and the solution sets of a finite family of zero points of
the maximal monotone operator problem in Hilbert space is also obtained. Using our main result,
we prove a strong convergence theorem involving a finite family of equilibrium problems in Hilbert
space. Moreover, we utilize our main theorem to prove a strong convergence theorem for a finite
family of κ-strictly pseudo-contractive mappings and the constrained convex minimization problem
in Hilbert space. In the last section, we give the numerical example to support some of our results.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H . We denote weak and
strong convergence by notations !!⇀′′ and !! →′′, respectively. In a real Hilbert space H , it is well
known that ∥∥αx + (1 − α)y

∥∥2 = α ∥x∥2 + (1 − α)
∥∥y∥∥2 − α(1 − α)

∥∥x − y
∥∥2 ,

for all x, y ∈ H and α ∈ [0, 1]. Recall that H satisfies Opial’s condition[13], i.e. for any sequence {xn}
with xn⇀x, the inequality

lim
n→∞ inf ∥xn − x∥ < lim

n→∞ inf
∥∥xn − y

∥∥ ,
holds for every y ∈ H with y ̸= x.

Lemma 2.1: Let H be a real Hilbert space. Then, the following inequality holds

∥x + y∥2 ≤ ∥x∥2 + 2⟨y, x + y⟩,

for all x, y ∈ H.

Lemma 2.2 [14]: Given x ∈ H and y ∈ C. Then, PCx = y if and only if there holds the inequality

⟨x − y, y − z⟩ ≥ 0,∀z ∈ C.

Lemma 2.3 [15]: Let A be a strongly positive linear bounded operator on a Hilbert space H with
coefficient γ̄ > 0 and 0 < ρ ≤ ∥A∥−1. Then, ∥I − ρA∥ ≤ 1 − ργ̄ .

Lemma 2.4 [16]: Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 − αn)sn + δn,∀n ≥ 0,
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where {αn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1
αn = ∞;

(2) lim supn→∞
δn
αn

≤ 0 or
∑∞

n=1
|δn| < ∞.

Then, limn→∞ sn = 0.

Lemma 2.5 [17]: Let {xn} and {zn} be the bounded sequences in a Banach space X and let {βn} be a
sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = βnxn + (1−βn)zn
for all integer n ≥ 0 and lim supn→∞ (∥zn+1−zn∥−∥xn+1−xn∥) ≤ 0.Then, limn→∞ ∥xn−zn∥ = 0.

Lemma 2.6 [18]: Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of
E and S : C → C be a nonexpansive mapping. Then, I − S is demi-closed at zero.

Lemma 2.7 [7]: u ∈ H is a solution of variational inclusion (1.9) if and only if u = JM,λ(u−λBu),∀λ

> 0, i.e.
VI(H ,B,M) = Fix(JM,λ(I − λB)),∀λ > 0.

Further, if λ ∈ (0, 2α], then VI(H ,B,M) is closed convex subset in H.

Lemma 2.8 [7]: The resolvent operator JM,λ associated with M is single-valued, nonexpansive for all
λ > 0 and 1-inverse-strongly monotone.

Lemma 2.9 [12]: Let H be a real Hilbert space and let M : H → 2H be a multi-valued maximal
monotone mapping. For every i = 1, 2, . . . ,N, let Ai : H → H be αi-inverse strongly monotone
mapping with η = mini=1,2,...,N {αi} and

⋂N
i=1 VI(H ,Ai,M) ̸= ∅. Then,

VI

(
H ,

N∑
i=1

aiAi,M

)
=

N⋂
i=1

VI(H ,Ai,M),

where
∑N

i=1 ai = 1, and 0 < ai < 1 for every i = 1, 2, . . . ,N .Moreover, we have JM,λ(I−λ
∑N

i=1 aiAi)
is a nonexpansive mapping, for all 0 < λ < 2η.

Lemma 2.10 [9]: Let H be a real Hilbert space, C be a nonempty closed and convex subset of H, and let
Ai,Bj : C → C(i = 1, 2, . . . ,m; j = 1, 2, . . . , l) be two families of finite maximal monotone mappings
such that D := ⋂m

i=1 A−10 ∩ ⋂l
j=1 B−10 ̸= ∅. Suppose SAmAm−1···A1

rn := JAm,rn JAm−1,rn · · · JA1,rn and
Wrn := a0I + a1JB1,rn + a2JB2,rn + · · · + alJBl ,rn , where JAi ,rn = (I + rnAi)

−1, (i = 1, 2, . . . ,m),
JBj ,rn = (I + rnBj)−1, (j = 1, 2, . . . , l), ak ∈ (0, 1), k = 1, 2, . . . , l,

∑N
i=0 ak = 1, and rn > 0. Then,

SAmAm−1···A1
rn : C → C and Wrn : C → C are nonexpansive.

Lemma 2.11 [9]: Let H, C, Ai,Bj : C → C(i = 1, 2, . . . ,m; j = 1, 2, . . . , l), SAmAm−1···A1
rn and Wrn be

the same as those in Lemma 2.10. Suppose that D ̸= ∅. Then, Fix(SAmAm−1···A1
rn ) = ⋂m

i=1 A−10 and
Fix(Wrn) = ⋂l

j=1 B−10, for ∀r > 0.

3. Main result

Theorem 3.1: Let C be a nonempty closed convex subset of a real Hilbert space H. Let M : H → 2H
be a multi-valued maximal monotone mapping with D(M) = C and Ai : C → H be αi-inverse
strongly monotone mapping with η = mini=1,2,...,N {αi}. Let g be a real-valued convex function of C
into R, and the gradient ∇g is 1/L-ism continuous with L > 0 , let D : C → H be a strongly positive
bounded linear operator with coefficient 0 < γ̄ < 1 and let f : C → C be a contractive mapping with
α ∈ (0, 1) and 0 < γ < γ̄

α . Assume that F := ! ∩⋂N
i=1 VI(H ,Ai,M) ̸= ∅. Suppose that the sequence
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{xn} is generated by x1 ∈ C and

⎧⎪⎨
⎪⎩

un = JM,µ

(
I − µ

N∑
i=1

aiAi

)
xn

xn+1 = PC
(
αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλn(un)

)
,∀n ∈ N,

(3.1)

where PC(I − ρ∇gλn) = Tλn , ∇gλn = ∇g + λnI, λn ⊂ (0, 2ρ − L), ρ ∈ (0, 2L ),
∑N

i=1 ai = 1, and
0 < ai < 1 for every i = 1, 2, . . . ,N . Let {αn}, {βn} ⊂ [0, 1], satisfying the following conditions:
(i) limn→∞ αn = 0 and

∑∞
n=1

αn = ∞,
∑∞

n=1
|αn+1 − αn| < ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) λn = o(αn),

∑∞
n=1

|λn+1 − λn| < ∞;
(iv) 0 < µ < 2η, where η = mini=1,2,...,N {αi}.
Then, the sequence {xn} converges strongly to z ∈ F , which solves uniquely the following variational
inequality

⟨(D − γ f )z, z − x∗⟩ ≤ 0,∀x∗ ∈ F . (3.2)

Equivalently, we have PF (I − D + γ f )z = z.

Proof: Without loss of generality, by conditions (i) and (ii), we have αn ≤ (1 − βn)∥D∥−1. Since D
is a strongly positive linear-bounded self-adjoint operator, it’s easy to see that

∥(1 − βn)I − αnD∥ ≤ 1 − βn − αnγ̄ .

It is clear that x̃ ∈ C solves the minimization problem (1.1) if and only if for each fixed 0 < ρ < 2/L,
x̃ solves the fixed point equation

x̃ = PC(I − ρ∇g)x̃ = Tx̃,

and x̃ = Tx̃, that is, x̃ ∈ ! = Fix(T). It is easy to prove that gλn is 1
L+λn

-inverse strongly monotone
and Tλn is nonexpansive mapping (See[10]).

Now, we divide the proof 3.1 into five steps:
Step 1 We show that the sequence {xn} is bounded.

Let x∗ ∈ F . From Lemmas 2.7 and 2.9, we have

x∗ = JM,µ

(
I − µ

N∑
i=1

aiAi

)
x∗.

From the nonexpansiveness of JM,µ(I − µ
∑N

i=1 aiAi), we have

∥un − x∗∥ = ∥JM,µ

(
I − µ

N∑
i=1

aiAi

)
xn − x∗∥ ≤ ∥xn − x∗∥. (3.3)

For x ∈ C, note that
PC
(
I − ρ∇gλn

)
x = Tλnx

and
PC(I − ρ∇g)x = Tx.



OPTIMIZATION 7

It follows that

∥Tλnx − Tx.∥ = ∥PC(I − ρ∇gλn)x − PC(I − ρ∇g)x∥
≤ ∥(I − ρ∇gλn)x − (I − ρ∇g)x∥
= ρ∥∇gλn(x) − ∇g(x)∥
= ρ∥∇g(x) + λnx − ∇g(x)∥
= λnρ∥x∥. (3.4)

From the definition of xn, (3.3) and (3.4), we have

∥xn+1 − x∗∥ = ∥PC
(
αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλnun

)− PCx∗∥
≤ ∥αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλnun − x∗∥
= ∥αn(γ f (xn) − Dx∗) + βn(xn − x∗) + ((1 − βn)I − αnD)(Tλnun − x∗)∥
≤ αn∥γ f (xn) − Dx∗∥ + βn∥xn − x∗∥ + ∥((1 − βn)I − αnD)(Tλnun − x∗)∥
≤ αn

(∥γ f (xn) − γ f (x∗)∥ + ∥γ f (x∗) − Dx∗∥)+ βn∥xn − x∗∥
+ (1 − βn − αnγ̄ )∥Tλnun − x∗∥

≤ αn
(
γ θ∥xn − x∗∥ + ∥γ f (x∗) − Dx∗∥)+ βn∥xn − x∗∥

+ (1 − βn − αnγ̄ )
(∥Tλnun − Tλnx

∗∥ + ∥Tλnx
∗ − x∗∥)

≤ αnγ θ∥xn − x∗∥ + αn∥γ f (x∗) − Dx∗∥ + βn∥xn − x∗∥
+ (1 − βn − αnγ̄ )

(∥un − x∗∥ + ∥Tλnx
∗ − x∗∥)

≤ αnγ θ∥xn − x∗∥ + αn∥γ f (x∗) − Dx∗∥ + βn∥xn − x∗∥
+ (1 − βn − αnγ̄ )∥xn − x∗∥ + (1 − βn − αnγ̄ )λnρ∥x∗∥

≤ αnγ θ∥xn − x∗∥ + αn∥γ f (x∗) − Dx∗∥ + βn∥xn − x∗∥
+ (1 − βn − αnγ̄ )∥xn − x∗∥ + λnρ∥x∗∥

= (1 − αn(γ̄ − γ θ))∥xn − x∗∥ + αn∥γ f (x∗) − Dx∗∥ + λnρ∥x∗∥
= (1 − αn(γ̄ − γ θ))∥xn − x∗∥ + αn(γ̄ − γ θ)

(∥γ f (x∗) − Dx∗∥
γ̄ − γ θ

+ λnρ∥x∗∥
αn(γ̄ − γ θ)

)
.

Since λn = o(αn), there exists a real numberM > 0 such that λn
αn

≤ M, then

∥xn+1 − x∗∥ ≤ (1 − αn(γ̄ − γ θ))∥xn − x∗∥ + αn(γ̄ − γ θ)

(∥γ f (x∗) − Dx∗∥
γ̄ − γ θ

+ Mρ∥x∗∥
γ̄ − γ θ

)

≤ max
{
∥x1 − x∗∥, 1

γ̄ − γ θ

(∥γ f (x∗) − Dx∗∥ + Mρ∥x∗∥)} .

Put K = max
{
∥x1 − x∗∥, 1

γ̄−γ θ

(∥γ f (x∗) − Dx∗∥ + Mρ∥x∗∥)}. By mathematical induction, we
have ∥xn − x∗∥ ≤ K ,∀n ∈ N. It implies that {xn} is bounded and so is {un}.
Step 2 We will show that limn→∞ ∥xn+1 − xn∥ = 0. From the nonexpansiveness of JM,µ
(I − µ

∑N
i=1 aiAi), we have

∥un+1 − un∥ = ∥JM,µ

(
I − µ

N∑
i=1

aiAi

)
xn+1 − JM,µ

(
I − µ

N∑
i=1

aiAi

)
xn∥

≤ ∥xn+1 − xn∥. (3.5)
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Putting yn = Tλnun. From the nonexpansiveness of Tλn and (3.5), we have

∥yn − yn−1∥ = ∥Tλnun − Tλn−1un−1∥
≤ ∥Tλnun − Tλnun−1∥ + ∥Tλnun−1 − Tλn−1un−1∥
≤ ∥un − un−1∥ + ∥Tλnun−1 − Tλn−1un−1∥
≤ ∥xn − xn−1∥ + ∥PC(I − ρ∇gλn)un−1 − PC(I − ρ∇gλn−1)un−1∥
≤ ∥xn − xn−1∥ + ∥(I − ρ∇gλn)un−1 − (I − ρ∇gλn−1)un−1∥
= ∥xn − xn−1∥ + ρ∥ − (∇g(un−1) + λnun−1) + ∇g(un−1) + λn−1un−1∥
= ∥xn − xn−1∥ + ρ|λn − λn−1|∥un−1∥. (3.6)

From the definition of xn, we have

∥xn+1 − xn∥
= ∥PC

(
αnγ f (xn) + βnxn + ((1 − βn)I − αnD)yn

)
− PC

(
αn−1γ f (xn−1) + βn−1xn−1 + ((1 − βn−1)I − αn−1D)yn−1

) ∥
≤ ∥αnγ f (xn) + βnxn + ((1 − βn)I − αnD)yn

− (
αn−1γ f (xn−1) + βn−1xn−1 + ((1 − βn−1)I − αn−1D)yn−1

) ∥
= ∥αnγ f (xn) − αnγ f (xn−1) + αnγ f (xn−1)

+ βnxn − βnxn−1 + βnxn−1

+ ((1 − βn)I − αnD)yn − ((1 − βn)I − αnD)yn−1 + ((1 − βn)I − αnD)yn−1

− αn−1γ f (xn−1) − βn−1xn−1 − ((1 − βn−1)I − αn−1D)yn−1∥
= ∥αnγ (f (xn) − f (xn−1)) + (αn − αn−1)γ f (xn−1)

+ βn(xn − xn−1) + (βn − βn−1)xn−1

+ ((1 − βn)I − αnD)(yn − yn−1) + (((1 − βn)I − αnD)yn−1 − ((1 − βn−1)I − αn−1D)yn−1)

= ∥αnγ (f (xn) − f (xn−1)) + (αn − αn−1)γ f (xn−1)

+ βn(xn − xn−1) + (βn − βn−1)xn−1 + ((1 − βn)I − αnD)(yn − yn−1)

+ (1 − βn)yn−1 − αnDyn−1 − (1 − βn−1)yn−1 + αn−1Dyn−1

= ∥αnγ (f (xn) − f (xn−1)) + (αn − αn−1)γ f (xn−1)

+ βn(xn − xn−1) + (βn − βn−1)xn−1 + ((1 − βn)I − αnD)(yn − yn−1)

+ (βn−1 − βn)yn−1 + (αn−1 − αn)Dyn−1

≤ αnγ ∥f (xn) − f (xn−1)∥ + γ |αn − αn−1|∥f (xn−1)∥
+ βn∥xn − xn−1∥ + |βn − βn−1|∥xn−1∥ + ∥((1 − βn)I − αnD)(yn − yn−1)∥
+ |βn−1 − βn|∥yn−1∥ + |αn−1 − αn|∥Dyn−1∥

≤ αnγ θ∥xn − xn−1∥ + γ |αn − αn−1|∥f (xn−1)∥
+ βn∥xn − xn−1∥ + |βn − βn−1|∥xn−1∥ + (1 − βn − αnγ̄ )∥yn − yn−1∥
+ |βn−1 − βn|∥yn−1∥ + |αn−1 − αn|∥Dyn−1∥. (3.7)

From (3.6) and (3.7), we have

∥xn+1 − xn∥ ≤ αnγ θ∥xn − xn−1∥ + γ |αn − αn−1|∥f (xn−1)∥
+ βn∥xn − xn−1∥ + |βn − βn−1|∥xn−1∥
+ (1 − βn − αnγ̄ )

(∥xn − xn−1∥ + ρ|λn − λn−1|∥un−1∥
)

+ |βn−1 − βn|∥yn−1∥ + |αn−1 − αn|∥Dyn−1∥
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= (1 − αn(γ̄ − γ θ))∥xn − xn−1∥ + γ |αn − αn−1|∥f (xn−1)∥
+ |βn − βn−1|∥xn−1∥ + ρ(1 − βn − αnγ̄ )|λn − λn−1|∥un−1∥
+ |βn−1 − βn|∥yn−1∥ + |αn−1 − αn|∥Dyn−1∥. (3.8)

Applying Lemma 2.4, the conditions (i), (ii), (iii) and (3.8), we have

lim
n→∞ ∥xn+1 − xn∥ = 0. (3.9)

Step 3 We show that lim
n→∞ ∥xn − un∥ = lim

n→∞ ∥un − Tun∥ = 0. From the definition of xn, we have

∥xn+1 − Tλnun∥ = ∥PC
(
αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλnun

)− PC
(
Tλnun

) ∥
≤ ∥αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλnun − Tλnun∥
= ∥αn

(
γ f (xn) − DTλnun

)
+ βn

(
xn − Tλnun

) ∥
≤ αn∥γ f (xn) − DTλnun∥ + βn∥xn − Tλnun∥
≤ αn∥γ f (xn) − DTλnun∥ + βn∥xn − xn+1∥ + βn∥xn+1 − Tλnun∥.

It follows that

∥xn+1 − Tλnun∥ ≤ αn
1 − βn

∥γ f (xn) − DTλnun∥ + βn
1 − βn

∥xn − xn+1∥.

By the conditions (i), (ii) and (3.9), we have

lim
n→∞

∥∥xn+1 − Tλnun
∥∥ = 0. (3.10)

Since ∥Tλnun − xn∥ ≤ ∥Tλnun − xn+1∥ + ∥xn+1 − xn∥, (3.9) and (3.10), we have

lim
n→∞

∥∥Tλnun − xn
∥∥ = 0. (3.11)

From the nonexpansiveness of JM,λ, we have

∥un − x∗∥2 = ∥JM,µ

(
I − µ

N∑
i=1

aiAi

)
xn − JM,µ

(
I − µ

N∑
i=1

aiAi

)
x∗∥2

≤ ∥
(
I − µ

N∑
i=1

aiAi

)
xn −

(
I − µ

N∑
i=1

aiAi

)
x∗∥2
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= ∥(xn − x∗) − µ

( N∑
i=1

aiAixn −
N∑
i=1

aiAix∗
)

∥2

≤ ∥xn − x∗∥2 − 2µ
N∑
i=1

ai⟨xn − x∗,Aixn − Aix∗⟩ + µ2
N∑
i=1

ai∥Aixn − Aix∗∥2

≤ ∥xn − x∗∥2 − 2µ
N∑
i=1

aiαi∥Aixn − Aix∗∥2 + µ2
N∑
i=1

ai∥Aixn − Aix∗∥2

≤ ∥xn − x∗∥2 − 2µη

N∑
i=1

ai∥Aixn − Aix∗∥2 + µ2
N∑
i=1

ai∥Aixn − Aix∗∥2

= ∥xn − x∗∥2 + µ

N∑
i=1

ai(µ − 2η)∥Aixn − Aix∗∥2. (3.12)

From the definition of xn, we have

∥xn+1 − x∗∥2
= ∥PC

(
αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλnun

)− PCx∗∥2
≤ ∥αnγ f (xn) + βnxn + Tλnun − βnTλnun − αnDTλnun − x∗∥2
= ∥αnγ f (xn) − αnDx∗ + αnDx∗ + βnxn − βnTλnun

+ (1 − αnD)Tλnun − (1 − αnD)x∗ + (1 − αnD)x∗ − x∗∥2
= ∥αn(γ f (xn) − Dx∗) + βn(xn − Tλnun) + (1 − αnD)(Tλnun − x∗)∥2
≤ ∥(1 − αnD)(Tλnun − x∗) + βn(xn − Tλnun)∥2

+ 2αn⟨γ f (xn) − Dx∗,αn(γ f (xn) − Dx∗) + βn(xn − Tλnun)
+ (1 − αnD)(Tλnun − x∗)⟩

≤ (∥(1 − αnD)(Tλnun − x∗)∥ + βn∥xn − Tλnun∥
)2

+ 2α2
n⟨γ f (xn) − Dx∗, γ f (xn) − Dx∗⟩

+ 2αnβn⟨γ f (xn) − Dx∗, xn − Tλnun⟩
+ 2αn⟨γ f (xn) − Dx∗, (1 − αnD)(Tλnun − x∗)⟩

≤ (∥1 − αnD∥∥Tλnun − x∗∥ + βn∥xn − Tλnun∥
)2

+ 2α2
n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥

+ 2αn∥γ f (xn) − Dx∗∥∥(1 − αnD)(Tλnun − x∗)∥
≤ (

(1 − αnγ̄ )∥un − x∗∥ + βn∥xn − Tλnun∥
)2

+ 2α2
n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥

+ 2αn(1 − αnγ̄ )∥γ f (xn) − Dx∗∥∥Tλnun − x∗∥
≤ (1 − αnγ̄ )2∥un − x∗∥2 + β2

n∥xn − Tλnun∥2 + 2(1 − αnγ̄ )βn∥un − x∗∥∥xn − Tλnun∥
+ 2α2

n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥
+ 2αn(1 − αnγ̄ )∥γ f (xn) − Dx∗∥∥Tλnun − x∗∥

≤ ∥un − x∗∥2 + β2
n∥xn − Tλnun∥2 + 2(1 − αnγ̄ )βn∥un − x∗∥∥xn − Tλnun∥

+ 2α2
n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥

+ 2αn(1 − αnγ̄ )∥γ f (xn) − Dx∗∥∥Tλnun − x∗∥. (3.13)
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From (3.12) and (3.13), we have

∥xn+1 − x∗∥2 ≤ ∥xn − x∗∥2 + µ

N∑
i=1

ai(µ − 2η)∥Aixn − Aix∗∥2 + β2
n∥xn − Tλnun∥2

+ 2(1 − αnγ̄ )βn∥un − x∗∥∥xn − Tλnun∥
+ 2α2

n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥
+ 2αn(1 − αnγ̄ )∥γ f (xn) − Dx∗∥∥Tλnun − x∗∥.

It follows that

µ

N∑
i=1

ai(2η − µ)∥Aixn − Aix∗∥2

≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 + β2
n∥xn − Tλnun∥2

+ 2(1 − αnγ̄ )βn∥un − x∗∥∥xn − Tλnun∥
+ 2α2

n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥
+ 2αn(1 − αnγ̄ )∥γ f (xn) − Dx∗∥∥Tλnun − x∗∥

≤ (∥xn − x∗∥ + ∥xn+1 − x∗∥)∥xn+1 − xn∥ + β2
n∥xn − Tλnun∥2

+ 2(1 − αnγ̄ )βn∥un − x∗∥∥xn − Tλnun∥
+ 2α2

n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥
+ 2αn(1 − αnγ̄ )∥γ f (xn) − Dx∗∥∥Tλnun − x∗∥. (3.14)

From the condition (i), (ii), (iv), (3.9), (3.11), and (3.14), we have

lim
n→∞

∥∥Aixn − Aix∗∥∥ = 0,∀i = 1, 2, 3, . . . ,N . (3.15)

Since Jm,µ is 1-inverse strongly monotone, we have

∥un − x∗∥2 = ∥JM,µ

(
I − µ

N∑
i=1

aiAi

)
xn − JM,µ

(
I − µ

N∑
i=1

aiAiAi

)
x∗∥2

≤
〈(

I − µ

N∑
i=1

aiAi

)
xn −

(
I − µ

N∑
i=1

aiAi

)
x∗, un − x∗

〉

= 1
2

(
∥
(
I − µ

N∑
i=1

aiAi

)
xn −

(
I − µ

N∑
i=1

aiAi

)
x∗∥2 + ∥un − x∗∥2

− ∥
(
I − µ

N∑
i=1

aiAi

)
xn −

(
I − µ

N∑
i=1

aiAi

)
x∗ − un + x∗∥2

)

≤ 1
2
(∥xn − x∗∥2 + ∥un − x∗∥2

− ∥(xn − un) − µ

( N∑
i=1

aiAixn −
N∑
i=1

aiAix∗
)

∥2
)
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= 1
2

(
∥xn − x∗∥2 + ∥un − x∗∥2 − ∥un − xn∥2

− µ2∥
N∑
i=1

aiAixn −
N∑
i=1

aiAix∗∥2

+ 2µ⟨xn − un,
N∑
i=1

aiAixn −
N∑
i=1

aiAix∗⟩
)

≤ 1
2

(
∥xn − x∗∥2 + ∥un − x∗∥2 − ∥un − xn∥2

− µ2∥
N∑
i=1

aiAixn −
N∑
i=1

aiAix∗∥2

+ 2µ∥un − xn∥∥
N∑
i=1

aiAixn −
N∑
i=1

aiAix∗∥
)
.

It implies that

∥un − x∗∥2 ≤ ∥xn − x∗∥2 − ∥un − xn∥2 + 2µ∥un − xn∥∥
N∑
i=1

aiAixn −
N∑
i=1

aiAix∗∥

≤ ∥xn − x∗∥2 − ∥un − xn∥2 + 2µ∥un − xn∥
N∑
i=1

ai∥Aixn − Aix∗∥. (3.16)

From (3.13) and (3.16), we have

∥xn+1 − x∗∥2 ≤ ∥un − x∗∥2 + β2
n∥xn − Tλnun∥2 + 2(1 − αnγ̄ )βn∥un − x∗∥∥xn − Tλnun∥

+ 2α2
n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥

+ 2αn(1 − αnγ̄ )∥γ f (xn) − Dx∗∥∥Tλnun − x∗∥

≤ ∥xn − x∗∥2 − ∥un − xn∥2 + 2µ∥un − xn∥
N∑
i=1

ai∥Aixn − Aix∗∥

+ β2
n∥xn − Tλnun∥2 + 2(1 − αnγ̄ )βn∥un − x∗∥∥xn − Tλnun∥

+ 2α2
n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥

+ 2αn(1 − αnγ̄ )∥γ f (xn) − Dx∗∥∥Tλnun − x∗∥. (3.17)

It follows that

∥un − xn∥2 ≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 + 2µ∥un − xn∥
N∑
i=1

ai∥Aixn − Aix∗∥

+ β2
n∥xn − Tλnun∥2 + 2(1 − αnγ̄ )βn∥un − x∗∥∥xn − Tλnun∥

+ 2α2
n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥

+ 2αn(1 − αnγ̄ )∥γ f (xn) − Dx∗∥∥Tλnun − x∗∥
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≤ (∥xn − x∗∥ + ∥xn+1 − x∗∥)∥xn+1 − xn∥ + 2µ∥un − xn∥
N∑
i=1

ai∥Aixn − Aix∗∥

+ β2
n∥xn − Tλnun∥2 + 2(1 − αnγ̄ )βn∥un − x∗∥∥xn − Tλnun∥

+ 2α2
n∥γ f (xn) − Dx∗∥2 + 2αnβn∥γ f (xn) − Dx∗∥∥xn − Tλnun∥

+ 2αn(1 − αnγ̄ )∥γ f (xn) − Dx∗∥∥Tλnun − x∗∥.

From the condition (i), (ii), (iv), (3.9), (3.11) and (3.15), we have

lim
n→∞ ∥un − xn∥ = lim

n→∞

∥∥∥∥∥JM,µ(I − µ

N∑
i=1

aiAi)xn − xn

∥∥∥∥∥ = 0. (3.18)

Observe that

∥Tλnun − un∥ ≤ ∥Tλnun − xn∥ + ∥xn − un∥. (3.19)

It follows from (3.11), (3.19) and (3.18) that

lim
n→∞

∥∥Tλnun − un
∥∥ = 0. (3.20)

Step 4 We will show that lim supn→∞
〈
(γ f − D)z, xn − z

〉 ≤ 0, where z = PF (I − (D − γ f ))z.
To show this, choose a subsequence

{
xnk
}
of {xn} such that

lim sup
n→∞

〈
(γ f − D)z, xn − z

〉
= lim

k→∞
〈
(γ f − D)z, xnk − z

〉
. (3.21)

Without loss of generality, we can assume that xnk⇀q as k → ∞. From (3.18), we obtain unk⇀q as
k → ∞.

First, we will show that q ∈ !. Assume that q /∈ !. Since! = Fix(T), then we have q ̸= Tq. Since
unk⇀q as k → ∞, by Opial’s condition, the condition (i), λn = o(αn), and (3.20), we obtain

lim inf
k→∞

∥unk − q∥ < lim inf
k→∞

∥unk − Tq∥
≤ lim inf

k→∞
(∥unk − Tλnk

unk∥ + ∥Tλnk
unk − Tλnk

q∥ + ∥Tλnk
q − Tq∥)

≤ lim inf
k→∞

(∥unk − Tλnk
unk∥ + ∥unk − q∥ + λnkρ∥q∥)

≤ lim inf
k→∞

(∥unk − Tλnk
unk∥ + ∥unk − q∥ + αnkMρ∥q∥)

≤ lim inf
k→∞

∥unk − q∥.

This is a contradiction. Then, we have

q ∈ Fix(T) = !.

Next, we will show that q ∈ ⋂N
i=1 VI(H ,Ai,M). Assume that q /∈ ⋂N

i=1 VI(H ,Ai,M). By Lemmas
2.7 and 2.9. Then, q ̸= JM,µ(I −µ

∑N
i=1 aiAi)q. By the nonexpansiveness of JM,λ((I −λ

∑N
i=1 aiAi)),

(3.18) and Opial’s condition, we obtain
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lim inf
k→∞

∥xnk − q∥ < lim inf
k→∞

∥xnk − JM,µ

((
I − µ

N∑
i=1

aiAi

))
q∥

≤ lim inf
k→∞

(∥xnk − JM,µ

((
I − µ

N∑
i=1

aiAi

))
xnk∥

+ ∥JM,µ

((
I − µ

N∑
i=1

aiAi

))
xnk − JM,µ

((
I − µ

N∑
i=1

aiAi

))
q∥

≤ lim inf
k→∞

∥xnk − q∥.

This is a contradiction. Then, we have

q ∈
N⋂
i=1

VI(H ,Ai,M).

Therefore, q ∈ F = ! ∩⋂N
i=1 VI(H ,Ai,M).

Since xnk⇀q as k → ∞ and q ∈ F . By (3.21) and Lemma 2.2, we have

lim sup
n→∞

〈
(γ f − D)z, xn − z

〉
= lim

k→∞
〈
(γ f − D)z, xnk − z

〉
=
〈
(γ f − D)z, q − z

〉
≤ 0. (3.22)

Step 5 Finally, we will show that limn→∞ xn = z, where z = PF (I − (D − γ f ))z. Putting mn =
αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλnun, then xn+1 = PCmn. Since

∥xn+1 − z∥2
= ⟨PCmn − z,PCmn − z⟩
= ⟨PCmn − mn + mn − z,PCmn − z⟩
= ⟨PCmn − mn,PCmn − z⟩ + ⟨mn − z, xn+1 − z⟩
≤ ⟨mn − z, xn+1 − z⟩
= ⟨αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλnun − z, xn+1 − z⟩
= ⟨αn(γ f (xn) − Dz) + βn(xn − z) + ((1 − βn)I − αnD)(Tλnun − z), xn+1 − z⟩
= αn⟨γ f (xn) − Dz, xn+1 − z⟩ + βn⟨xn − z, xn+1 − z⟩

+ ⟨((1 − βn)I − αnD)(Tλnun − z), xn+1 − z⟩
= αn⟨γ f (xn) − γ f (z), xn+1 − z⟩ + αn⟨γ f (z) − Dz, xn+1 − z⟩ + βn⟨xn − z, xn+1 − z⟩

+ ⟨((1 − βn)I − αnD)(Tλnun − Tλnz), xn+1 − z⟩
+ ⟨((1 − βn)I − αnD)(Tλnz − z), xn+1 − z⟩

≤ αn∥γ f (xn) − γ f (z)∥∥xn+1 − z∥ + αn⟨γ f (z) − Dz, xn+1 − z⟩ + βn∥xn − z∥∥xn+1 − z∥
+ ∥((1 − βn)I − αnD)(Tλnun − Tλnz)∥∥xn+1 − z∥
+ ∥((1 − βn)I − αnD)(Tλnz − z)∥∥xn+1 − z∥

≤ αnγ θ∥xn − z∥∥xn+1 − z∥ + αn⟨γ f (z) − Dz, xn+1 − z⟩ + βn∥xn − z∥∥xn+1 − z∥
+ (1 − βn − αnγ̄ )∥Tλnun − Tλnz∥∥xn+1 − z∥
+ (1 − βn − αnγ̄ )∥Tλnz − z∥∥xn+1 − z∥

≤ αnγ θ∥xn − z∥∥xn+1 − z∥ + αn⟨γ f (z) − Dz, xn+1 − z⟩ + βn∥xn − z∥∥xn+1 − z∥
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+ (1 − βn − αnγ̄ )∥xn − z∥∥xn+1 − z∥
+ (1 − βn − αnγ̄ )λnρ∥z∥∥xn+1 − z∥

= (αnγ θ + βn + 1 − βn − αnγ̄ )∥xn − z∥∥xn+1 − z∥ + αn⟨γ f (z) − Dz, xn+1 − z⟩
+ (1 − βn − αnγ̄ )λnρ∥z∥∥xn+1 − z∥

≤ (1 − αn(γ̄ − γ θ))∥xn − z∥∥xn+1 − z∥ + αn⟨γ f (z) − Dz, xn+1 − z⟩
+ λnρ∥z∥∥xn+1 − z∥

≤ (1 − αn(γ̄ − γ θ))
1
2
(∥xn − z∥2 + ∥xn+1 − z∥2) + αn

(⟨γ f (z) − Dz, xn+1 − z⟩

+ λn
αn

ρ∥z∥∥xn+1 − z∥).
It implies that

∥xn+1 − z∥2 ≤ (1 − αn(γ̄ − γ θ))

(1 + αn(γ̄ − γ θ))
∥xn − z∥2 + 2αn

(1 + αn(γ̄ − γ θ))

(⟨γ f (z) − Dz, xn+1 − z⟩

+ λn
αn

ρ∥z∥∥xn+1 − z∥)
≤ (1 − αn(γ̄ − γ θ))∥xn − z∥2 + 2αn(γ̄ − γ θ)

(1 + αn(γ̄ − γ θ))(γ̄ − γ θ)

(⟨γ f (z) − Dz, xn+1 − z⟩

+ λn
αn

ρ∥z∥∥xn+1 − z∥)
= (1 − pn)∥xn − z∥2 + pnqn,

where pn = αn(γ̄ −γ θ) and qn = 2
(1+αn(γ̄−γ θ))(γ̄−γ θ)

(⟨γ f (z)−Dz, xn+1 − z⟩+ λn
αn

ρ∥z∥∥xn+1 − z∥.
From the condition (i), (3.34), λn = o(αn) and Lemma 2.4, we can conclude that the sequence {xn}
converges strongly to z = PF (I − (D − γ f ))z.

Next, we introduce and prove a strong convergence theorem for finding a common element of the
solution set of a constrained convex minimization problem and the solution sets of a finite family of
zero points of the maximal monotone operator problem in Hilbert space as follows:
Theorem 3.2: Let C be a nonempty closed convex subset of a real Hilbert space H. For every i =
1, 2, . . . ,N , let Mi : H → 2H be a finite family of multi-valued maximal monotone mappings with
D(M) = C and Let g be a real-valued convex function of C into R, and the gradient ∇g is 1/L-ism
continuous with L > 0, let D : C → H be a strongly positive bounded linear operator with coefficient
0 < γ̄ < 1, and let f : C → C be a contractive mapping with α ∈ (0, 1) and 0 < γ < γ̄

α . Assume that
F := ! ∩⋂N

i=1M
−1
i 0 ̸= ∅. Suppose that the sequence {xn} is generated by x1 ∈ C and

{
un = Wrnxn
xn+1 = PC

(
αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλn(un)

)
,∀n ∈ N,

(3.23)

where Wrn := a0I + a1JM1,rn + a2JM2,rn + · · · + aNJMN ,rn , with JMi ,rn = (I + rnMi)
−1, ai ∈ (0, 1),∑N

i=0 ai = 1, and 0 < ai < 1 for every i = 1, 2, . . . ,N, PC(I − ρ∇gλn) = Tλn , ∇gλn = ∇g + λnI,
λn ⊂ (0, 2ρ − L), ρ ∈ (0, 2L ). Let {αn}, {βn} ⊂ [0, 1], satisfying the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1
αn = ∞,

∑∞
n=1

|αn+1 − αn| < ∞;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) λn = o(αn),

∑∞
n=1

|λn+1 − λn| < ∞;

(iv) rn ∈ [c, d] ⊂ (0, 1),
∑∞

n=1
|rn+1 − rn| < ∞.
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Then, the sequence {xn} converges strongly to z ∈ F , which solves uniquely the following variational
inequality

⟨(D − γ f )z, z − x∗⟩ ≤ 0,∀x∗ ∈ F . (3.24)

Equivalently, we have PF (I − D + γ f )z = z.

Proof: Some parts of the proof are also the same as Theorem 3.1. Now, we divide the proof 3.2 into
five steps:
Step 1 We show that the sequence {xn} is bounded.

Let x∗ ∈ F . From Lemmas 2.10 and 2.11, we have

x∗ = Wrnx
∗.

and
∥un − x∗∥ = ∥Wrnxn − x∗∥ ≤ ∥xn − x∗∥. (3.25)

By continuing in the same direction as in step 1 of Theorem 3.1. It implies that {xn} is bounded and
so is {un}.
Step 2 We will show that limn→∞ ∥xn+1 − xn∥ = 0.

Using in the same direction as of Theorem 2.2 in [9], we have

∥un − un−1∥ = ∥Wrnxn − Wrn−1xn−1∥

≤ a0∥xn − xn−1∥ +
N∑
i=1

ai
(

∥xn − xn−1∥ + |rn − rn−1|
c

∥JMi ,rnxn − xn−1∥
)

≤ ∥xn − xn−1∥ +
N∑
i=1

ai
|rn − rn−1|

c
(∥JMi ,rnxn∥ + ∥xn−1∥). (3.26)

Putting yn = Tλnun. From the nonexpansiveness of Tλn and (3.26), we have

∥yn − yn−1∥ = ∥Tλnun − Tλn−1un−1∥
≤ ∥Tλnun − Tλnun−1∥ + ∥Tλnun−1 − Tλn−1un−1∥
≤ ∥un − un−1∥ + ∥Tλnun−1 − Tλn−1un−1∥

≤
(

∥xn − xn−1∥ +
N∑
i=1

ai
|rn − rn−1|

c
(∥JMi ,rnxn∥ + ∥xn−1∥)

)

+ ∥PC(I − ρ∇gλn)un−1 − PC(I − ρ∇gλn−1)un−1∥

≤ ∥xn − xn−1∥ +
N∑
i=1

ai
|rn − rn−1|

c
(∥JMi ,rnxn∥ + ∥xn−1∥)

+ ∥(I − ρ∇gλn)un−1 − (I − ρ∇gλn−1)un−1∥

= ∥xn − xn−1∥ +
N∑
i=1

ai
|rn − rn−1|

c
(∥JMi ,rnxn∥ + ∥xn−1∥)

+ ρ∥ − (∇g(un−1) + λnun−1) + ∇g(un−1) + λn−1un−1∥

≤ ∥xn − xn−1∥ +
N∑
i=1

ai
|rn − rn−1|

c
(∥JMi ,rnxn∥ + ∥xn−1∥)

+ ρ|λn − λn−1|∥un−1∥. (3.27)
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From the definition of xn and by continuing in the same direction as in step 2 of Theorem 3.1, we
have

∥xn+1 − xn∥ ≤ αnγ θ∥xn − xn−1∥ + γ |αn − αn−1|∥f (xn−1)∥
+ βn∥xn − xn−1∥ + |βn − βn−1|∥xn−1∥ + (1 − βn − αnγ̄ )∥yn − yn−1∥
+ |βn−1 − βn|∥yn−1∥ + |αn−1 − αn|∥Dyn−1∥. (3.28)

From (3.27) and (3.28), we have

∥xn+1 − xn∥ ≤ αnγ θ∥xn − xn−1∥ + γ |αn − αn−1|∥f (xn−1)∥
+ βn∥xn − xn−1∥ + |βn − βn−1|∥xn−1∥ + (1 − βn − αnγ̄ )∥yn − yn−1∥
+ |βn−1 − βn|∥yn−1∥ + |αn−1 − αn|∥Dyn−1∥

≤ αnγ θ∥xn − xn−1∥ + γ |αn − αn−1|∥f (xn−1)∥
+ βn∥xn − xn−1∥ + |βn − βn−1|∥xn−1∥

+ (1 − βn − αnγ̄ )
(∥xn − xn−1∥ +

N∑
i=1

ai
|rn − rn−1|

c
(∥JMi ,rnxn∥ + ∥xn−1∥)

+ ρ|λn − λn−1|∥un−1∥
)
+ |βn−1 − βn|∥yn−1∥ + |αn−1 − αn|∥Dyn−1∥

= (1 − αn(γ̄ − γ θ))∥xn − xn−1∥ + γ |αn − αn−1|∥f (xn−1)∥

+ |βn − βn−1|∥xn−1∥ + (1 − βn − αnγ̄ )

N∑
i=1

ai
|rn − rn−1|

c
(∥JMi ,rnxn∥ + ∥xn−1∥)

+ ρ(1 − βn − αnγ̄ )|λn − λn−1|∥un−1∥
+ |βn−1 − βn|∥yn−1∥ + |αn−1 − αn|∥Dyn−1∥. (3.29)

From the condition (i)–(iv), (3.29), we have

lim
n→∞ ∥xn+1 − xn∥ = 0. (3.30)

Step 3 We show that limn→∞ ∥xn − un∥ = lim
n→∞ (1 − βn) ∥un − Tun∥ = 0.

By continuing in the same direction as in step 3 of Theorem 3.1, we have

lim
n→∞ ∥xn − un∥ = lim

n→∞ ∥xn − Wrnxn∥ = 0. (3.31)

and

lim
n→∞ ∥Tun − un∥ = 0, (3.32)

where T ≡ PC(I − ρ∇g).
Step 4 We will show that lim supn→∞

〈
(γ f − D)z, xn − z

〉 ≤ 0, where z = PF (I − (D − γ f ))z.
To show this, choose a subsequence

{
xnk
}
of {xn} such that

lim sup
n→∞

〈
(γ f − D)z, xn − z

〉
= lim

k→∞
〈
(γ f − D)z, xnk − z

〉
. (3.33)

Without loss of generality, we can assume that xnk⇀q as k → ∞. From (3.31), we obtain unk⇀q as
k → ∞.

First, by continuing in the same direction as in step 4 of Theorem 3.1, we have q ∈ Fix(T) = !.
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Next, we will show that q ∈ ⋂N
i=1M

−1
i 0. Assume that q /∈ ⋂N

i=1M
−1
i 0. By Lemmas 2.10 and 2.11.

Then, q ̸= Wrnk q. By the nonexpansiveness ofWrnk , (3.31) and Opial’s condition, we obtain

lim inf
k→∞

∥xnk − q∥ < lim inf
k→∞

∥xnk − Wrnk q∥
≤ lim inf

k→∞
(∥xnk − Wrnk xnk∥ + ∥Wrnk xnk − Wrnk q∥)

≤ lim inf
k→∞

∥xnk − q∥.

This is a contradiction. Then, we have

q ∈
N⋂
i=1

M−1
i 0.

Therefore, q ∈ F = ! ∩⋂N
i=1M−10.

Since xnk⇀q as k → ∞ and q ∈ F . By (3.21) and Lemma 2.2, we have

lim sup
n→∞

〈
(γ f − D)z, xn − z

〉
= lim

k→∞
〈
(γ f − D)z, xnk − z

〉
=
〈
(γ f − D)z, q − z

〉
≤ 0. (3.34)

Step 5. Finally, we will show that limn→∞ xn = z, where z = PF (I − (D − γ f ))z. By continuing
in the same direction as in step 5 of Theorem 3.1, we can conclude that the sequence {xn} converges
strongly to z = PF (I − (D − γ f ))z.

4. Application

In this section, we prove a strong convergence theorem involving a finite family of equilibrium
problems in Hilbert space. Moreover, we utilize our main theorem to prove a strong convergence
theorem for a finite family of κ-strictly pseudo-contractive mappings and the constrained convex
minimization problem in Hilbert space.

To obtain this result, we recall some definitions, lemmas and remarks as follows:
Let F : C×C → R be a bifunction. The equilibrium problem for F is to determine its equilibrium

point. The set of solution of equilibrium problem is denoted by

EP(F) = {x ∈ C : F(x, y) ≥ 0,∀y ∈ C}. (4.1)

In 2013, Suwannaut and Kangtunyakarn [19] have modified (4.1) as follows:

EP

( N∑
i=1

aiFi

)
=
{
x ∈ C :

( N∑
i=1

aiFi

)
(x, y) ≥ 0,∀y ∈ C

}
, (4.2)

where Fi : C × C → R is for bifunctions and ai > 0 with
∑N

i=1 ai = 1 for every i = 1, 2, . . . ,N . It is
obvious that (4.2) reduces to (4.1), if Fi = F, for all i = 1, 2, . . . ,N .

For finding solutions of the equilibrium problem, assume a bifunction F : C × C → R to satisfy
the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e. F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t↓0 F

(
tz + (1 − t)x, y

) ≤ F(x, y);
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(A4) for each x ∈ C, y 5→ F(x, y) is convex and lower semicontinuous.

Lemma 4.1 [20]: Let C be a nonempty closed convex subset of H and let F be a bifunction of C × C
into R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

F(z, y) + 1
r
〈
y − z, z − x

〉 ≥ 0,∀y ∈ C.

Lemma 4.2 [21]: Assume that F : C × C → R satisfies (A1)-(A4). For r > 0, define a mapping
,r : H → C as follows:

,r(x) =
{
z ∈ C : F(z, y) + 1

r
⟨y − z, z − x⟩ ≥ 0,∀y ∈ C

}
for all x ∈ H. Then, the following hold:

(i) ,r is single valued;
(ii) ,r is firmly nonexpansive, i.e. for any x, y ∈ H,

∥∥,r(x) − ,r(y)
∥∥2 ≤ 〈

,r(x) − ,r(y), x − y
〉
;

(iii) Fix
(
,r
)

= EP(F);
(iv) EP(F) is closed and convex.

Lemma 4.3 [19]: Let C be a nonempty closed convex subset of a real Hilbert space H. For i =
1, 2, . . . ,N, let Fi : C × C → R be bifunctions satisfying (A1)-(A4) with

⋂N
i=1 EP

(
Fi
) ̸= ∅. Then,

EP

( N∑
i=1

aiFi

)
=

N⋂
i=1

EP
(
Fi
)
,

where ai ∈ (0, 1) for every i = 1, 2, . . . ,N and
∑N

i=1 ai = 1.

Remark 1 [19]: From Lemma 4.3

Fix(,r) = EP

( N∑
i=1

aiFi

)
=

N⋂
i=1

EP
(
Fi
)
,

where ai ∈ (0, 1), for each i = 1, 2, . . . ,N , and
∑N

i=1 ai = 1.

Lemma 4.4 [22]: LetC be anonempty closed convex subset of a realHilbert spaceH. Let F : C×C → R

be bifunctions satisfying (A1) − (A4). Let AF be a multivalued mapping of H into itself defined by

AFx =
{

{F(x, y) ≥ ⟨y − x, z⟩,∀y ∈ C}, x ∈ C,
∅, x /∈ C.

Then, EP(F) = A−1
F 0 and AF is a maximal monotone operator with D(AF) ⊂ C. Further, for any

x ∈ H and r > 0, the resolvent ,r of F coincides with the resolvent of AF; i.e.

,r(x) = (I + rAF)
−1x.

Remark 2: Let C be a nonempty closed convex subset of a real Hilbert space H . For every i =
1, 2, 3, . . . ,N , let Fi : C × C → R be bifunctions satisfying (A1) − (A4) with

⋂N
i=1 EP

(
Fi
) ̸= ∅.
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Define A∑N
i=1 aiFi

: H → 2H by

A∑N
i=1 aiFi

x =

⎧⎪⎨
⎪⎩
{ N∑

i=1
aiFi(x, y) ≥ ⟨y − x, z⟩,∀y ∈ C

}
, x ∈ C,

∅, x /∈ C,

where 0 ≤ ai ≤ 1, for every i = 1, 2, . . . ,N , and
∑N

i=1 ai = 1. From Lemma 4.3 and 4.4, we have
A−1∑N

i=1 aiFi
0 = ⋂N

i=1 EP(Fi) and A∑N
i=1 aiFi

is a maximal monotone operator with D(A∑N
i=1 aiFi

) ⊂ C

for all i = 1, 2, . . . ,N . Further, for any x ∈ H and r > 0, the resolvent,r of
∑N

i=1 aiFi coincides with
the resolvent of A∑N

i=1 aiFi
; i.e.

,r(x) =
(
I + rA∑N

i=1 aiFi

)−1
x.

Let B : H → H be a mapping andM : H → 2H be a multi-valued mapping. It is well-known that
VI(H ,B,M) = M−10, where B = 0. From above fact, we have the following theorem.
Theorem 4.5: Let C be a nonempty closed convex subset of a real Hilbert space H. For every i =
1, 2, . . . ,N, let Fi : C×C → R be a bifunction satisfying (A1)-(A4) and,µ be the resolvent of Fi. Let g
be a real-valued convex function of C intoR, and the gradient∇g is 1/L-ism continuous with L > 0, let
D : C → H be a strongly positive bounded linear operatorwith coefficient 0 < γ̄ < 1, and let f : C → C
be a contractive mapping with α ∈ (0, 1) and 0 < γ < γ̄

α . Assume that F := ! ∩⋂N
i=1 EP(Fi) ̸= ∅.

Suppose that the sequence {xn} is generated by x1 ∈ C and
⎧⎪⎨
⎪⎩

N∑
i=1

aiFi
(
un, y

)
+ 1

µ

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = PC
(
αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλn(un)

)
, ∀n ∈ N,

(4.3)

where PC(I − ρ∇gλn) = Tλn , ∇gλn = ∇g + λnI, λn ⊂ (0, 2ρ − L), ρ ∈ (0, 2L ),
∑N

i=1 ai = 1, and
0 < ai < 1 for every i = 1, 2, . . . ,N . Let {αn}, {βn} ⊂ [0, 1], satisfying the following conditions:
(i) limn→∞ αn = 0 and

∑∞
n=1

αn = ∞,
∑∞

n=1
|αn+1 − αn| < ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) λn = o(αn),

∑∞
n=1

|λn+1 − λn| < ∞;
(iv) 0 < µ < 2η, where η = mini=1,2,...,N {αi}.
Then, the sequence {xn} converges strongly to z ∈ F , which solves uniquely the following variational
inequality

⟨(D − γ f )z, z − x∗⟩ ≤ 0,∀x∗ ∈ F . (4.4)

Equivalently, we have PF (I − D + γ f )z = z.

Proof: For every i = 1, 2, . . . ,N , put Ai = 0 in Theorem 3.1. For a bifunction Fi : C × C → R

be a bifunction satisfying (A1)-(A4), we can define a maximal monotone operator A∑N
i=1 aiFi

with
D(A∑N

i=1 aiFi
) = C. Put M = A∑N

i=1 aiFi
, in Theorem 3.1. Then, by Remark 2, we have ,µxn =

(I + µA∑N
i=1 aiFi

)−1xn = JA∑N
i=1 aiFi ,µ

xn. So, from Theorem 3.1, we obtain the desired result.

Recall that let S : C → C be a mapping. Then, S is said to be ξ -strictly pseudo-contractive if there
exists a constant ξ ∈ [0, 1) such that

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 + ξ
∥∥(I − S)x − (I − S)y

∥∥2 ,∀x, y ∈ C.
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Now, we consider a property of finite family of strictly pseudo-contractive mappings in Hilbert space
as follows:

Proposition 4.6 [23]: Let C be a nonempty closed convex subset of a real Hilbert space H.

(i) Given an integer N ≥ 1, assume, for each 1 ≤ i ≤ N, Si : C → H is a ξi-strict pseudo-
contraction for some 0 ≤ ξi < 1. Assume {ai}Ni=1 is a positive sequence such that

∑N
i=1 ai = 1.

Then,
∑N

i=1 aiSi is a ξ -strict pseudo-contraction, with ξ = maxi=1,2,...,N {ξi}.
(ii) Let {Si}Ni=1 and {ai}Ni=1 be given as in (i) above. Suppose that {Si}Ni=1 has a common fixed point.

Then,

Fix

( N∑
i=1

aiSi

)
=

N⋂
i=1

Fix(Si).

Theorem 4.7: Let C be a nonempty closed convex subset of a real Hilbert space H. Let M : H → 2H
be amulti-valuedmaximalmonotonemappingwithD(M) = C. For every i = 1, 2, . . . ,N, Si : C → H
be ξi-strictly pseudo-contractive mappings with ξ = maxi=1,2,...,N {ξi}. Let g be a real-valued convex
function of C into R, and the gradient ∇g is 1/L-ism continuous with L > 0, let D : C → H be a
strongly positive bounded linear operator with coefficient 0 < γ̄ < 1, and let f : C → C be a contractive
mapping with α ∈ (0, 1) and 0 < γ < γ̄

α . Assume that F := ! ∩⋂N
i=1 Fix(Si) ̸= ∅. Suppose that the

sequence {xn} is generated by x1 ∈ C and⎧⎪⎨
⎪⎩

un = (1 − µ)xn + µ
N∑
i=1

aiSixn

xn+1 = PC
(
αnγ f (xn) + βnxn + ((1 − βn)I − αnD)Tλn(un)

)
,∀n ∈ N,

(4.5)

where PC(I − ρ∇gλn) = Tλn , ∇gλn = ∇g + λnI, λn ⊂ (0, 2ρ − L), ρ ∈ (0, 2L ),
∑N

i=1 ai = 1, and
0 < ai < 1 for every i = 1, 2, . . . ,N . Let {αn}, {βn} ⊂ [0, 1], satisfying the following conditions:
(i) limn→∞ αn = 0 and

∑∞
n=1

αn = ∞,
∑∞

n=1
|αn+1 − αn| < ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) λn = o(αn),

∑∞
n=1

|λn+1 − λn| < ∞;
(iv) µ ∈ (0, 1 − ξ) ⊂ (0, 1).

Then, the sequence {xn} converges strongly to z ∈ F , which solves uniquely the following variational
inequality

⟨(D − γ f )z, z − x∗⟩ ≤ 0,∀x∗ ∈ F . (4.6)

Equivalently, we have PF (I − D + γ f )z = z.

Proof: Put Ai = I − Si and M = 0 for all i = 1, 2, . . . ,N . Since Ai = I − Si for all i = 1, 2, . . . ,N ,
then we have that Ai is 1−ξ

2 -inverse strongly monotone. Now, we show that
⋂N

i=1 VI(H ,Ai,M) =⋂N
i=1 Fix(Si). Since Ai = I − Si,M = 0, Lemma 2.9, and Proposition 4.6, then

x ∈
N⋂
i=1

VI(H ,Ai,M) ⇔ x ∈ VI

(
H ,

N∑
i=1

aiAi,M

)
⇔0 ∈

N∑
i=1

aiAix + Mx

⇔0 =
N∑
i=1

aiAix

⇔0 =
N∑
i=1

ai(I − Si)x
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⇔x =
N∑
i=1

aiSix

⇔x ∈ Fix

( N∑
i=1

aiSi

)

⇔x ∈
N⋂
i=1

Fix(Si).

It implies that

! ∩
N⋂
i=1

VI(H ,Ai,M) = ! ∩
N⋂
i=1

Fix(Si).

From the definition of JM,µ, we have

JM,µ

(
I − µ

N∑
i=1

aiAi

)
un = (I + µM)−1

(
I − µ

N∑
i=1

aiAi

)
xn

= xn − µ

N∑
i=1

aiAixn

= xn − µ

N∑
i=1

ai(I − Si)xn

= (1 − µ)xn + µ

N∑
i=1

aiSixn.

So, from Theorem 3.1, we obtain the desired result.

5. Numerical results

The purpose of this section is to give a numerical example to support our some result. The following
example is supported by Theorem 3.1.
Example 5.1: Let H = R be the set of real numbers and C = [0, 100]. Define g : [0, 100] → R by
x2
4 . Clearly, g is convex and differentiable with g ′(x) = x

2 . It implies that ∇g is 1-ism, that is L = 1.
From the problem (1.1), we have

min
x∈[0,100]

x2

4
. (5.1)

Observe that the optimal solution x∗ to the minimization problem (5.1) is x∗ = 0. Putting ρ = 1
5 ,

then we can give the parameters λn = 1
25n2 , for every n ∈ N. For every i = 1, 2, . . . ,N , let mappings

Ai : R → R, D : R → R, f : R → R, be defined by

Aix = 2i
5
x,Dx = x

5
, f (x) = x

6
, for all x, y ∈ R,

and suppose that JMµ = I , ai = 6
7i + 1

N7N , and γ = 1
2 , αn = 1

5n , βn = n
8n+9 , for all n ∈ N. Observe

thatAi is 1
2i -ism with η = 1

2N , for all i = 1, 2, . . . ,N . It’s easy to see that all parameters and sequences
satisfy conditions of Theorem 3.1. For every n ∈ N, we rewrite (3.1) as follows:
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Table 1. The values of the sequences {un} and {xn}with initial values x1 = 60, n = 200 and N = 100.

n un xn

1 59.7600000 60.0000000
2 52.3571828 52.5674526
3 46.7706993 46.9585335
4 42.0294924 42.1982856
.
.
.

.

.

.
.
.
.

197 0.0000004 0.0000004
198 0.0000004 0.0000004
199 0.0000003 0.0000003
200 0.0000003 0.0000003

Figure 1. The behaviour of sequences {un} and {xn}with initial values x1 = 60, n = 200 and N = 100.

⎧⎪⎨
⎪⎩

un = xn − 1
N

N∑
i=1

(
6
7i + 1

N7N

)
Aixn

xn+1 = P[0,100]
(

1
60nxn + n

8n+9xn +
((

1 − n
8n+9

)
I − 1

5nD
)
P[0,100]

(
un − 1

5

(
un
2 + 1

25n2 un
)))

.

(5.2)
Then, the sequences {xn} and {un} generated by (5.2) converge strongly to 0.
Using the algorithm (5.2) and choosing x1 = 60, n = 200 andN = 100. The numerical results for

the sequences xn and un are shown in the following Table 1 and Figure 1.

6. Conclusion

(1) Table 1 shows that the sequences {un} and {xn} converge to 0.
(2) Theorem 3.1 guarantees the convergence of {un} and {xn} to 0 in Example 5.1.
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1. Introduction

Let E be a real Banach space. Consider the following so-called monotone inclusion
problem: find x

⇤ 2 E such that

0 2 (A+B)x⇤
, (1.1)

where A : E ! E and B : E ! 2E are single and set-valued mappings, respectively and
0 is a zero vector in E. In particular case, when A = 0, then the problem (1.1) becomes
the inclusion problem introduced by Rockafellar [1] and when E = Rn, then the problem

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c� 2020 by TJM. All rights reserved.
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(1.1) becomes the generalized equation introduced by Robinson [2]. The set of solutions
of the problem (1.1) is denoted by (A+B)�10. Many practical nonlinear problems arising
in applied sciences such as in machine learning, image processing, statistical regression
and linear inverse problem can be formulated as this problem (see [3–5]).

A well-known method for solving the problem (1.1) in Hilbert spaces H, is the forward-
backward algorithm [6] which is defined by the following manner:

(
x1 2 H,

xn+1 = J
B
� (xn � �Axn), 8n � 1,

(1.2)

where J
B
� := (I + �B)�1 is a resolvent of B for � > 0. Here, I denotes the identity

operator of H. It was proved that the sequence generated by (1.2) converge weakly to a
point in (A+B)�10 under the assumption that A is ↵-cocoercivity, that is,

hAx�Ay, x� yi � ↵kAx�Ayk2, 8x, y 2 H

and � is chosen in (0, 2↵).
In order to get strong convergence, Takashashi et al. [7] introduced the following

modified forward–backward algorithm in Hilbert spaces H:
(

x1, u 2 H,

xn+1 = �nxn + (1� �n)(↵nu+ (1� ↵n)JB
�n

(xn � �nAxn)), 8n � 1,
(1.3)

where A is an ↵-cocoercive mapping on H and {�n} ⇢ (0,1). They also proved the
strong convergence of the generated by (1.3) converges strongly to a point in (A+B)�10
under appropriate conditions on {↵n} and {�n}.

López et al. [8] established a strong convergence theorem of the forward-backward
algorithm (1.2) in a q-uniformly smooth and uniformly convex Banach spaces E. They
introduced a modified forward-backward algorithm with errors an and bn in the following
way:

(
x1, u 2 E,

xn+1 = ↵nu+ (1� ↵n)(JB
�n

(xn � �n(Axn + an)) + bn), 8n � 1,
(1.4)

where J
B
�n

:= (I + �nB)�1 is the resolvent of an m-accretive operator B, A is an ↵-
cocoercive mapping, {�n} ⇢ (0,1) and {↵n} ⇢ (0, 1]. They also proved that the sequence
{xn} generated by (1.4) converges strongly to a point in (A+B)�10.

In recent years, various modifications of forward-backward algorithm have been con-
structed and modified by many authors in several settings (see, e.g., [9–16]). It can be
seen that, the cocoercivity of A of most of methods is strong assumption. To avoid this
strong assumption, Tseng [17] introduced the following algorithm in Hilbert spaces H,
later it is known as Tseng’s splitting algorithm:

8
><

>:

x1 2 H,

yn = J
B
�n

(I � �nA)xn,

xn+1 = yn � �n(Ayn �Axn), 8n � 1,

(1.5)

where A is Lipschitz continuous with a constant L > 0. It was shown that the sequence
{xn} generated by (1.5) converges weakly to a solution of (1.1) provided the step-size �n

is chosen in
⇣
0, 1

L

⌘
.
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On the other hand, the fixed point problem is problem of finding a point x⇤ 2 E such
that

x
⇤ = Tx

⇤
, (1.6)

where T : E ! E is a nonlinear mapping. The set of solutions of problem (1.6) is
denoted by F (T ) = {x 2 E : x = Tx}. In real life, many mathematical models have been
formulated as this problem.

In this paper, we study the following problem: find x
⇤ 2 E such that

x
⇤ 2 F (T ) \ (A+B)�10. (1.7)

Currently, there have been many authors who interested in finding a common solution
of the fixed point problem (1.6) and the monotone inclusion problem (1.1) (see, e.g.,
[16, 18–23]).

Motivated by the works in the literature, we introduce two Halpern-Tseng type for
solving the monotone inclusion problem and the fixed point problem of a relatively non-
expansive mapping in the framework of Banach spaces. We prove the strong convergence
results of the proposed methods under some appropriate conditions. Finally, we provide
numerical experiments to compressed sensing in signal recovery. The results presented in
this paper are improve and generalize many known results in this direction.

2. Preliminaries

Let E be a real Banach space with its dual space E
⇤. We denote hx, fi by the value

of a functional f in E
⇤ at x in E, that is, hx, fi = f(x). For a sequence {xn} in E, the

strong convergence and the weak convergence of {xn} to x 2 E are denoted by xn ! x

and xn * x, respectively. The set of all real numbers is denoted by R, while N stands for
the set of nonnegative integers. Let SE denote the unit sphere of E. The space E is said
to be smooth if the limit

lim
t!0

kx+ tyk � kxk
t

(2.1)

exists for all x, y 2 SE . The space E is said to be uniformly smooth if the limit (2.1)
converges uniformly in x, y 2 SE . It is said to be strictly convex if k(x + y)/2k < 1
whenever x, y 2 SE and x 6= y. The space E is said to be uniformly convex if and only if
�E(✏) > 0 for all ✏ 2 (0, 2], where �E is the modulus of convexity of E defined by

�E(✏) = inf
n
1� kx+yk

2 : x, y 2 SE , kx� yk � ✏

o

for all ✏ 2 [0, 2]. Let p � 2. The space E is said to be p-uniformly convex if there is a
c > 0 such that �E(✏) � c✏

p for all ✏ 2 (0, 2]. Let 1 < q  2. The space E is said to be
q-uniformly smooth if there exists a c > 0 such that ⇢E(t)  ct

q for all t > 0, where ⇢E is
the modulus of smoothness of E defined by

⇢E(t) = sup
n

kx+tyk+kx�tyk
2 � 1 : x, y 2 SE

o

for all t � 0. Let 1 < q  2 < p < 1 with 1
p +

1
q = 1. It is observe that every p-uniformly

convex (q-uniformly smooth) space is uniformly convex (uniformly smooth) space. It is
known that E is p-uniformly convex (q-uniformly smooth) if and only if its dual E⇤ is
q-uniformly smooth (p-uniformly convex) (see [24]). If E is uniformly convex then E is
reflexive and strictly convex and if E is uniformly smooth then E is reflexive and smooth



1228 Thai J. Math. Vol. 18 (2020) /P. Cholamjiak et al.

(see [25]). Moreover, we know that for every p > 1, Lp and `p spaces are min{p, 2}-
uniformly smooth and max{p, 2}-uniformly convex, while Hilbert space is 2-uniformly
smooth and 2-uniformly convex (see [26] for more details).

Definition 2.1. Let C be a nonempty subset of E. Recall that a mapping A : C ! E
⇤

is said to be:

(i) cocoercive if there exists a constant � > 0 such that hAx � Ay, x � yi �
�kAx�Ayk2 for all x, y 2 C;

(ii) monotone if hAx�Ay, x� yi � 0 for all x, y 2 C;
(iii) L-Lipschitz continuous if there exists a constant L > 0 such that kAx�Ayk 
Lkx� yk for all x, y 2 C;

(iv) hemicontinuous if for each x, y 2 C, the mapping f : [0, 1] ! E
⇤ defined by

f(t) = A(tx+ (1� t)y) is continuous with respect to the weak⇤ topology of E⇤.

Remark 2.2. It is easy to see that if A is cocoercive, then A is monotone and Lipschitz
continuous but converse is not true in general.

Definition 2.3. The normalized duality mapping J : E ! 2E
⇤
is defined by

Jx = {f 2 E
⇤ : hx, fi = kxk2 = kfk2}, 8x 2 E,

where h·, ·i denotes the duality pairing between E and E
⇤.

If E is a Hilbert space, then J = I is the identity mapping on E. It is known that E
is smooth if and only if J is single-valued from E into E

⇤ and if E is a reflexive, smooth
and strictly convex, then J

�1 is single-valued, one-to-one, surjective and it is the duality
mapping from E

⇤ into E. Moreover, if E is uniformly smooth then J is norm-to-norm
uniformly continuous on bounded subsets of E (see [25] for more details).

Lemma 2.4. [27, 28] (i) Let E be a 2-uniformly smooth Banach space. Then there exists
a constant  > 0 such that

kx� yk2  kxk2 � 2hy, Jxi+ kyk2, 8x, y 2 E.

(ii) Let E be a 2-uniformly convex Banach space. Then there exists a constant c > 0 such
that

kx� yk2 � kxk2 � 2hy, Jxi+ ckyk2, 8x, y 2 E.

Remark 2.5. It is well-known that  = c = 1 whenever E is a Hilbert space. Moreover,
we refer to [28] for the exact values of the constants  and c.

Next, we recall the following Lyapunov function which introduced in [29]:

Definition 2.6. Let E be a smooth Banach space. The Lyapunov functional � : E⇥E !
R is defined by

�(x, y) = kxk2 � 2hx, Jyi+ kyk2, 8x, y 2 E.

In the particular case in which E is a Hilbert space, then �(x, y) = kx � yk2 for all
x, y 2 E. It is obvious from the definition of the function � that

(kxk � kyk)2  �(x, y)  (kxk+ kyk)2, 8x, y 2 E

and

�(x, J�1(↵Jy + (1� ↵)Jz)  ↵�(x, y) + (1� ↵)�(x, z), 8x, y, z 2 E, ↵ 2 [0, 1]. (2.2)
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In addition, the function � satisfies the following three point identity :

�(x, y) = �(x, z)� �(y, z) + 2hy � x, Jy � Jzi, 8x, y, z 2 E.

Lemma 2.7. [30] Let E be a 2-uniformly convex Banach space. Then there exists a
constant c > 0 such that

ckx� yk2  �(x, y), 8x, y 2 E,

where c is the constant in Lemma 2.4 (ii).

Lemma 2.8. [31] Let E be a uniformly convex Banach space. Then there exists a con-
tinuous strictly increasing convex function g : [0, 2r) ! [0,1) such that g(0) = 0 and

�(x, J�1(↵Jy + (1� ↵)Jz)  ↵�(x, y) + (1� ↵)�(x, z)� ↵(1� ↵)g(kJy � Jzk)
for all ↵ 2 [0, 1], x 2 E and y, z 2 Br := {! : k!k  r} for some r > 0.

The following important fact can be found in [32]. For two sequences {xn} and {yn}
in a uniformly convex and uniformly smooth Banach space E. Then

kxn � ynk ! 0 , kJxn � Jynk ! 0 , �(xn, yn) ! 0. (2.3)

Let C be a nonempty subset of a smooth Banach space E. A point p 2 C is a fixed
point of T if p = Tp and we denote by F (T ) the set of fixed points of T . A mapping
T : C ! C is called relatively nonexpansive if it satisfies the following conditions:

(i) F (T ) 6= ;;
(ii) �(p, Tx)  �(p, x) for all p 2 F (T ) and x 2 C;
(iii) I �T is demi-closed at zero, that is, whenever a sequence {xn} in C such that
xn * p and limn!1 kxn � Txnk = 0, it follows that p 2 F (T ).

Remark 2.9. If T satisfies (i) and (ii), then T is called relatively quasi-nonexpansive. In
a Hilbert space H, we know that �(x, y) = kx� yk2 for all x, y 2 H. Hence, if T : C ! C

is relatively quasi-nonexpansive, then it is quasi-nonexpansive, that is, kTx�pk  kx�pk
for all p 2 F (T ) and x 2 C.

Lemma 2.10. [33] Let E be a strictly convex and smooth Banach space. Let C be a
closed and convex subset of E. If T : C ! C be a relatively nonexpansive mapping, then
F (T ) is closed and convex.

We make use of the following mapping V : E ⇥ E
⇤ ! R studied in [29]:

V (x, x⇤) = kxk2 � 2hx, x⇤i+ kx⇤k2, 8x 2 E, x
⇤ 2 E

⇤
.

Obviously, V (x, x⇤) = �(x, J�1
x
⇤) for all x 2 E and x

⇤ 2 E
⇤.

Lemma 2.11. [29] Let E be a reflexive, strictly convex and smooth Banach space. Then

V (x, x⇤) + 2hJ�1
x
⇤ � x, y

⇤i  V (x, x⇤ + y
⇤), 8x 2 E, x

⇤
, y

⇤ 2 E
⇤
.

Let E be a reflexive, strictly convex and smooth Banach space. Let C be a nonempty,
closed convex subset of E. Then we know that for any x 2 E, there exists a unique point
z 2 C such that

�(z, x) = min
y2C

�(y, x).

Such a mapping ⇧C : E ! C defined by z = ⇧C(x) is called the generalized projection.
If E is a Hilbert space, then ⇧C is coincident with the metric projection denoted by PC .
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Lemma 2.12. [29] Let E be a reflexive, strictly convex and smooth Banach space. Let
C be a nonempty, closed, and convex subset of E. For each x 2 E and z 2 C. Then the
following statements hold:

(i) z = ⇧C(x) if and only if hy � z, Jx� Jzi  0, 8y 2 C.
(ii) �(y,⇧C(x)) + �(⇧C(x), x)  �(y, x), 8y 2 C.

Let B : E ! 2E
⇤
be a multi-valued mapping. The e↵ective domain of B is denoted

by D(B) = {x 2 E : Bx 6= ;} and the range of B is also denoted by R(B) =
S
{Bx :

x 2 D(B)}. The set of zeros of B is denoted by B
�10 = {x 2 D(B) : 0 2 Bx}. A

multi-valued mapping B from E into E
⇤ is said to be monotone if

hx� y, u� vi � 0, 8x, y 2 D(B), u 2 Bx and v 2 By.

A monotone operator B on E is said to be maximal if its graph G(B) = {(x, y) 2 E⇥E
⇤ :

x 2 D(B), y 2 Bx} is not properly contained in the graph of any other monotone operator
on E. In other words, the maximality of B is equivalent to R(J + �B) = E

⇤ for � > 0
(see [34, Theorem 1.2]). It is known that if B is maximal monotone, then B

�10 is closed
and convex (see [35]). For a maximal monotone operator B, we define the resolvent of B
by J

B
� (x) = (J + �B)�1

Jx for x 2 E and � > 0. It is also known that B�10 = F (JB
� ).

Lemma 2.13. [34] Let E be a reflexive Banach space. Let A : E ! E
⇤ be a mono-

tone, hemicontinuous and bounded mapping. Let B : E ! 2E
⇤
be a maximal monotone

mapping. Then A+B is a maximal monotone mapping.

Lemma 2.14. Let E be a reflexive, strictly convex and smooth Banach space. Let A :
E ! E

⇤ be a mapping and B : E ! 2E
⇤
be a maximal monotone mapping. Then the

following statements hold:

(i) Define a mapping T�x := J
B
� � J

�1(J � �A)x for x 2 E and � > 0, then
F (T�) = (A+B)�10.

(ii) (A+B)�10 is closed and convex.

Proof. (i) Let x 2 E and � > 0. We see that

x = T�x , x = J
B
� � J�1(J � �A)x

, x = (J + �B)�1
J � J�1(J � �A)x

, Jx� �Ax 2 Jx+ �Bx

, 0 2 (A+B)x

, x 2 (A+B)�10.

Hence F (T�) = (A+B)�10.
(ii) By Lemma 2.13, we know that A + B is maximal monotone, then we can show

that the set (A+B)�10 = {x 2 E : 0 2 (A+B)x} is closed and convex.

Lemma 2.15. [36] Assume that {an} is a sequence of nonnegative real numbers such
that

an+1  (1� �n)an + �n�n,

where {�n} is a sequence in (0, 1) and {�n} is a sequence of real numbers such that

(i)
P1

n=1 �n = 1;
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(ii) lim supn!1 �n  0 or
P1

n=1 |�n�n| < 1.

Then limn!1 an = 0.

Lemma 2.16. [37] Let {an} be sequences of real numbers such that there exists a subse-
quence {ni} of {n} such that ani < ani+1 for all i 2 N. Then there exists an increasing
sequence {mk} ⇢ N such that mk ! 1 and the following properties are satisfied by all
(su�ciently large) numbers k 2 N:

amk  amk+1 and ak  amk+1.

In fact, mk := max{j  k : aj  aj+1}.

3. Main Results

In this section, we introduce two Halpern-Tseng type for finding a common solution
of the monotone inclusion problem and the fixed point problem in Banach spaces. From
now on, let E be a real 2-uniformly convex and uniformly smooth Banach space. Let the
mapping A : E ! E

⇤ be monotone and L-Lipschitz continuous and B : E ! 2E
⇤
be

a maximal monotone operator. Let T : E ! E be a relatively nonexpansive mapping.
Assume that ⌦ := F (T )\(A+B)�10 6= ;. To prove the strong convergence results, we also
need to assume that {↵n} and {�n} are sequences in (0, 1), such that {�n} ⇢ [a, b] ⇢ (0, 1)
for some a, b > 0 and limn!1 ↵n = 1 and

P1
n=1 ↵n = 1.

Algorithm 1 Halpern-Tseng type algorithm

Step 0. Let u, x1 2 E be arbitrary. Set n = 1.

Step 1. Compute

yn = J
B
�n

J
�1(Jxn � �nAxn). (3.1)

Step 2. Compute

zn = J
�1(Jyn � �n(Ayn �Axn)). (3.2)

Step 3. Compute

xn+1 = J
�1(↵nJu+ (1� ↵n)(�nJzn + (1� �n)JTzn)). (3.3)

Set n := n+ 1 and go to Step 1.

Lemma 3.1. Let {xn} be a sequence generated by Algorithm 3. Then

�(p, zn)  �(p, xn)�
⇣
1� �

2
nL

2

c

⌘
�(yn, xn), 8p 2 (A+B)�10,

where c and  are the constants in Lemma 2.4.
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Proof. Let p 2 (A+B)�10. By Lemma 2.4 (ii), we have

�(p, zn) = �(p, J�1(Jyn � �n(Ayn �Axn)))

= V (p, Jyn � �n(Ayn �Axn))

= kpk2 � 2hp, Jyn � �n(Ayn �Axn)i+ kJyn � �n(Ayn �Axn)k2

 kpk2 � 2hp, Jyni+ 2�nhp,Ayn �Axni+ kJynk2 � 2�nhyn, Ayn �Axni
+k�n(Ayn �Axn)k2

= kpk2 � 2hp, Jyni+ kynk2 � 2�nhyn � p,Ayn �Axni+ �
2
nkAyn �Axnk2

= �(p, yn)� 2�nhyn � p,Ayn �Axni+ �
2
nkAyn �Axnk2

= �(p, xn) + �(xn, yn) + 2hxn � p, Jyn � Jxni � 2�nhyn � p,Ayn �Axni
+�

2
nkAyn �Axnk2

= �(p, xn) + �(xn, yn)� 2hyn � xn, Jyn � Jxni+ 2hyn � p, Jyn � Jxni
�2�nhyn � p,Ayn �Axni+ �

2
nkAyn �Axnk2

= �(p, xn)� �(yn, xn) + 2hyn � p, Jyn � Jxni � 2�nhyn � p,Ayn �Axni
+�

2
nkAyn �Axnk2 + �

2
nkAyn �Axnk2

= �(p, xn)� �(yn, xn) + �
2
nkAyn �Axnk2

�2hyn � p, Jxn � Jyn + �
2
nkAyn �Axnk2 � �n(Axn �Ayn)i. (3.4)

By Lemma 2.7, we have

�(p, zn)  �(p, xn)�
⇣
1� �

2
nL

2

c

⌘
�(yn, xn) + �

2
nkAyn �Axnk2

�2hyn � p, Jxn � Jyn � �n(Axn �Ayn)i. (3.5)

We now show that

hyn � p, Jxn � Jyn � �n(Axn �Ayn)i � 0.

From the definition of {yn}, we note that Jxn � �nAxn 2 Jyn + �nByn. Since B is
maximal monotone, there exists vn 2 Byn such that Jxn � �nAxn = Jyn + �nvn, it
follows that

vn =
1

�n

�
Jxn � Jyn � �nAxn

�
. (3.6)

Since 0 2 (A+ B)p and Ayn + vn 2 (A+ B)yn, it follows from Lemma 2.13 that A+ B

is maximal monotone. Hence

hyn � p,Ayn + vni � 0. (3.7)

Substituting (3.6) into (3.7), we have

1

�n
hyn � p, Jxn � Jyn � �nAxn + �nAyni � 0,

which implies that

hyn � p, Jxn � Jyn � �n(Axn �Ayn)i � 0. (3.8)

Combining (3.5) and (3.8), we have

�(p, zn)  �(p, xn)�
⇣
1� �

2
nL

2

c

⌘
�(yn, xn). (3.9)
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Theorem 3.2. Let {xn} be a sequence generated by Algorithm 3. Suppose that {�n} be a

sequence in
�
0,

p
cp
L

�
such that {�n} ⇢ [a0, b0] ⇢

�
0,

p
cp
L

�
for some a

0
, b

0
> 0. Then {xn}

converges strongly to x
⇤ 2 ⌦, where x

⇤ = ⇧⌦(u).

Proof. We first show that {xn} is bounded. Let z 2 ⌦. Since �n 2
�
0,

p
cp
L

�
, we have

1� �2
nL

2

c > 0. This implies by Lemma 3.1 that

�(z, zn)  �(z, xn). (3.10)

Put wn = J
�1(�nJzn + (1� �n)JTzn) for all n 2 N. Thus by (2.2) and (3.10), we have

�(z, wn)  �n�(z, zn) + (1� �n)�(z, Tzn)

 �n�(z, zn) + (1� �n)�(z, zn)

 �(z, xn). (3.11)

Using (3.11), we obtain

�(z, xn+1)  ↵n�(z, u) + (1� ↵n)�(z, wn)

 ↵n�(z, u) + (1� ↵n)�(z, xn)

 max{�(z, u),�(z, xn)}
...

 max{�(z, u),�(z, x1)}.

This implies that {�(z, xn)} is bounded. Applying Lemma 2.7, we have {xn} is bounded,
so are {yn} and {zn}.

Let x⇤ = ⇧⌦(u). From Lemma 2.8 and (3.9), we have

�(x⇤
, wn)  �n�(x

⇤
, zn) + (1� �n)�(x

⇤
, T zn)� �n(1� �n)g(kJzn � JTznk)

 �n�(x
⇤
, zn) + (1� �n)�(x

⇤
, zn)� �n(1� �n)g(kJzn � JTznk)

 �n�(x
⇤
, zn) + (1� �n)

n
�(x⇤

, xn)�
⇣
1� �

2
nL

2

c

⌘
�(yn, xn)

o

��n(1� �n)g(kJzn � JTznk)

 �(x⇤
, xn)� (1� �n)

⇣
1� �

2
nL

2

c

⌘
�(yn, xn)

��n(1� �n)g(kJzn � JTznk). (3.12)

Then we have

�(x⇤
, xn+1)

 ↵n�(x
⇤
, u) + (1� ↵n)

n
�(x⇤

, xn)� (1� �n)
⇣
1� �

2
nL

2

c

⌘
�(yn, xn)

��n(1� �n)g(kJzn � JTznk)
o

= ↵n�(x
⇤
, u) + (1� ↵n)�(x

⇤
, xn)� (1� ↵n)(1� �n)

⇣
1� �

2
nL

2

c

⌘
�(yn, xn)

�(1� ↵n)�n(1� �n)g(kJzn � JTznk).
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This implies that

(1� ↵n)(1� �n)
⇣
1� �

2
nL

2

c

⌘
�(yn, xn) + (1� ↵n)�n(1� �n)g(kJzn � JTznk)

 �(x⇤
, xn)� �(x⇤

, xn+1) + ↵nK, (3.13)

where K = supn2N{|�(x⇤
, u)� �(x⇤

, xn)|}.
The rest of the proof will be divided into two cases:

Case 1. Suppose that there exists N 2 N such that �(x⇤
, xn+1)  �(x⇤

, xn) for all
n � N . This implies that limn!1 �(x⇤

, xn) exists. By our assumptions, we have from
(3.13) that

lim
n!1

�(yn, xn) = 0 and lim
n!1

g(kJzn � JTznk) = 0. (3.14)

Consequently,

lim
n!1

kxn � ynk = 0 and lim
n!1

kJzn � JTznk = 0. (3.15)

Moreover, we also have

lim
n!1

kJxn � Jynk = 0. (3.16)

Since A is Lipschitz continuous, we have

lim
n!1

kAxn �Aynk = 0 (3.17)

and hence

kJzn � Jynk = �nkAxn �Aynk
! 0. (3.18)

Combining (3.16) and (3.18), we obtain

kJxn � Jznk  kJxn � Jynk+ kJyn � Jznk
! 0. (3.19)

Moreover from (3.15) and (3.19), we obtain

kJxn+1 � Jxnk  kJxn+1 � Jwnk+ kJwn � Jznk+ kJzn � Jxnk
= ↵nkJu� Jwnk+ (1� �n)kJTzn � Jznk+ kJzn � Jxnk
! 0. (3.20)

Then we have from (3.19) and (3.20) that

lim
n!1

kxn � znk = 0 (3.21)

and

lim
n!1

kxn+1 � xnk = 0. (3.22)

By the boundedness of {xn}, there exists a subsequence {xnk} of {xn} such that xnk *

x̂ 2 E and

lim sup
n!1

hxn � x
⇤
, Ju� Jx

⇤i = lim
k!1

hxnk � x
⇤
, Ju� Jx

⇤i.
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From (3.21), we also have znk * x̂. Since kzn � Tznk ! 0 and I � T is demi-closed at
zero, we have x̂ 2 F (T ). We next show that x̂ 2 (A+B)�10. Let (v, w) 2 G(A+B), we
have w �Av 2 Bv. Since

(J � �nkA)xnk 2 (J + �nkB)ynk .

It follows that
1

�nk

�
Jxnk � Jynk � �nkAxnk

�
2 Bynk .

Since B is maximal monotone, we have
D
v � ynk , w �Av +

1

�nk

�
Jxnk � Jynk � �nkAxnk

�E
� 0

Using the monotonicity of A, we have

hv � ynk , wi �
D
v � ynk , Av +

1

�nk

�
Jxnk � Jynk � �nkAxnk)

E

= hv � ynk , Av �Axnki+
1

�nk

hv � ynk , Jxnk � Jynki

= hv � ynk , Av �Aynki+ hv � ynk , Aynk �Axnki

+
1

�nk

hv � ynk , Jxnk � Jynki

� hv � ynk , Aynk �Axnki+
1

�nk

hv � ynk , Jxnk � Jynki.

Since ynk * x̂, it follows from (3.16) and (3.17) that

hv � x̂, wi � 0.

By the monotonicity of A + B, we get 0 2 (A + B)x̂, that is, x̂ 2 (A + B)�10. So
x̂ 2 ⌦ := F (T ) \ (A+B)�10. Thus we have

lim sup
n!1

hxn � x
⇤
, Ju� Jx

⇤i = hx̂� x
⇤
, Ju� Jx

⇤i  0.

From (3.22), we also have

lim sup
n!1

hxn+1 � x
⇤
, Ju� Jx

⇤i  0. (3.23)

Finally, we show that xn ! x
⇤. By Lemma 2.11, we have

�(x⇤
, xn+1) = �(x⇤

, J
�1(↵nJu+ (1� ↵n)Jwn))

= V (x⇤
,↵nJu+ (1� ↵n)Jwn)

 V (x⇤
,↵nJu+ (1� ↵n)Jwn � ↵n(Ju� Jx

⇤))

+2↵nhxn+1 � x
⇤
, Ju� Jx

⇤i
= V (x⇤

,↵nJx
⇤ + (1� ↵n)Jwn) + 2↵nhxn+1 � x

⇤
, Ju� Jx

⇤i
= �(x⇤

, J
�1(↵nJx

⇤ + (1� ↵n)Jwn)) + 2↵nhxn+1 � x
⇤
, Ju� Jx

⇤i
 ↵n�(x

⇤
, x

⇤) + (1� ↵n)�(x
⇤
, wn) + 2↵nhxn+1 � x

⇤
, Ju� Jx

⇤i
 (1� ↵n)�(x

⇤
, xn) + 2↵nhxn+1 � x

⇤
, Ju� Jx

⇤i. (3.24)

This together with (3.23) and (3.24), so we can conclude by Lemma 2.15 that �(x⇤
, xn) !

0. Therefore, xn ! x
⇤.
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Case 2. Suppose that there exists a subsequence {�(x⇤
, xni)} of {�(x⇤

, xn)} such that

�(x⇤
, xni) < �(x⇤

, xni+1)

for all i 2 N. By Lemma 2.16, there exists a nondecreasing sequence {mk} ⇢ N such that
limk!1 mk = 1 and the following inequalities hold for all k 2 N:

�(x⇤
, xmk)  �(x⇤

, xmk+1) (3.25)

and

�(x⇤
, xk)  �(x⇤

, xmk). (3.26)

As proved in the Case 1, we obtain

(1� ↵mk)(1� �mk)
⇣
1�

�
2
mk

L
2

c

⌘
�(ymk , xmk)

+(1� ↵mk)�mk(1� �mk)g(kJzmk � JTzmkk)
 �(x⇤

, xmk)� �(x⇤
, xmk+1) + ↵mkK

 ↵mkK,

where K = supk2N{|�(x⇤
, u)� �(x⇤

, xmk)|}. By our assumptions, we have

lim
k!1

�(ymk , xmk) = 0 and lim
k!1

g(kJzmk � JTzmkk) = 0.

Consequently,

lim
k!1

kxmk � ymkk = 0 and lim
k!1

kJzmk � JTzmkk = 0.

Using the same arguments as in the proof of Case 1, we can show that

lim
k!1

kxmk+1 � xmkk = 0

and

lim sup
k!1

hxmk+1 � x
⇤
, Ju� Jx

⇤i  0.

From (3.24) and (3.25), we have

�(x⇤
, xmk+1)  (1� ↵mk)�(x

⇤
, xmk) + ↵mkhxmk+1 � x

⇤
, Ju� Jx

⇤i
 (1� ↵mk)�(x

⇤
, xmk+1) + ↵mkhxmk+1 � x

⇤
, Ju� Jx

⇤i.
This implies that

�(x⇤
, xmk+1)  hxmk+1 � x

⇤
, Ju� Jx

⇤i.
Then we have

lim sup
k!1

�(x⇤
, xmk+1)  0. (3.27)

Combining (3.26) and (3.27) we obtain

lim sup
k!1

�(x⇤
, xk)  0.

Hence lim supk!1 �(x⇤
, xk) = 0 and so xk ! x

⇤. This completes the proof.

If we take T = I in Theorem 3.2, then we obtain the following result regarding the
monotone quasi-inclusion problem (1.1).
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Corollary 3.3. Let E be a real 2-uniformly convex and uniformly smooth Banach space.
Let the mapping A : E ! E

⇤ be monotone and L-Lipschitz continuous and B : E ! 2E
⇤

be a maximal monotone mapping. Assume that (A+B)�10 6= ;. Let {xn} be a sequence
generated by

8
><

>:

x1, u 2 E,

yn = J
B
�n

J
�1(Jxn � �nAxn),

xn+1 = J
�1(↵nJu+ (1� ↵n)(Jyn � �n(Ayn �Axn))), 8n � 1,

(3.28)

where {�n} is a sequence in
�
0, 1

L

�
such that {�n} ⇢ [a0, b0] ⇢

�
0, 1

L

�
for some a

0
, b

0
> 0.

Suppose that {↵n} is a sequence in (0, 1) such that limn!1 ↵n = 1 and
P1

n=1 ↵n = 1.
Then the sequence {xn} generated by (3.28) converges strongly to x

⇤ 2 (A+B)�10, where
x
⇤ = ⇧(A+B)�10(u).

We next propose a strong convergence theorem of another modification of Tseng’s
splitting algorithm with line search for solving the monotone inclusion problem and the
fixed point problem in Banach spaces. It is noted that this proposed algorithm does not
required to know the Lipschitz constant of the Lipschitz continuous mapping.

Algorithm 2 Halpern-Tseng type algorithm with Armijo-type line search

Step 0. Given � > 0, l 2 (0, 1) and µ 2
�
0,
p

c


�
. Let u, x1 2 E be arbitrary. Set n = 1.

Step 1. Compute

yn = J
B
�n

J
�1(Jxn � �nAxn), (3.29)

where �n = �l
mn and mn is the smallest nonnegative integer m such that

�nkAxn �Aynk  µkxn � ynk. (3.30)

Step 2. Compute

zn = J
�1(Jyn � �n(Ayn �Axn)). (3.31)

Step 3. Compute

xn+1 = J
�1(↵nJu+ (1� ↵n)(�nJzn + (1� �n)JTzn)). (3.32)

Set n := n+ 1 and go to Step 1.

Lemma 3.4. The Armijo line search rule defined by (3.30) is well defined and

min{�, µl
L
}  �n  �.

Proof. Since A is L-Lipschitz continuous on E, we have

kAxn �A(JB
�lmnJ

�1(Jxn � �l
mnAxn))k  Lkxn � J

B
�lmnJ

�1(Jxn � �l
mnAxn)k.

Using the fact that L > 0 and µ > 0, we get
µ

L
kAxn �A(JB

�lmnJ
�1(Jxn � �l

mnAxn))k  µkxn � J
B
�lmnJ

�1(Jxn � �l
mnAxn)k.

This implies that (3.30) holds for all �lmn  µ
L and so �n is well defined. Obviously,

�n  �. If �n = �, then the lemma is proved. Otherwise, if �n < �, then we have from
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(3.30) that

kAxn �A
�
J
B
�n
l
J
�1

�
Jxn � �n

l
Axn

���� >
µ

�n
l

��xn � J
B
�n
l
J
�1

�
Jxn � �n

l
Axn

���.

Again by the L-Lipschitz continuity of A, we obtain �n >
µl
L . This completes the proof.

Lemma 3.5. Let {xn} be a sequence generated by Algorithm 3. Then

�(p, zn)  �(p, xn)�
⇣
1� µ

2

c

⌘
�(yn, xn), 8p 2 (A+B)�10,

where c and  are the constants in Lemma 2.4.

Proof. From (3.30), we see that kAxn � Aynk  µ
�n

kxn � ynk. By using the same argu-
ments as in the proof of Lemma 3.1, we can show that this lemma holds.

Theorem 3.6. Let {xn} be a sequence generated by Algorithm 3. Then {xn} converges
strongly to x

⇤ 2 ⌦.

Proof. By using the same arguments as in the proof of Theorem 3.2, we immediately
obtain the proof.

If we take T = I in Theorem 3.6, then we obtain the following result regarding the
monotone quasi-inclusion problem (1.1).

Corollary 3.7. Let E be a real 2-uniformly convex and uniformly smooth Banach space.
Let the mapping A : E ! E

⇤ be monotone and L-Lipschitz continuous and B : E ! 2E
⇤

be a maximal monotone operator. Assume that (A+ B)�10 6= ;. Given � > 0, l 2 (0, 1)
and µ 2

�
0,
p

c


�
. Let {xn} be a sequence generated by

8
><

>:

x1, u 2 E,

yn = J
B
�n

J
�1(Jxn � �nAxn),

xn+1 = J
�1(↵nJu+ (1� ↵n)(Jyn � �n(Ayn �Axn))), 8n � 1,

(3.33)

where �n = �l
mn and mn is the smallest nonnegative integer m such that

�nkAxn �Aynk  µkxn � ynk.
Suppose that {↵n} is a sequence in (0, 1) such that limn!1 ↵n = 1 and

P1
n=1 ↵n = 1.

Then the sequence {xn} generated by (3.33) converges strongly to x
⇤ 2 (A+B)�10, where

x
⇤ = ⇧(A+B)�10(u).

4. Numerical Experiments

In this section, we provide numerical experiments to the signal recovery in compressed
sensing by using our proposed algorithms. Moreover, we also compare the mentioned
algorithms with Tseng’s splitting algorithm (1.5). In signal recovery, compressed sensing
can be modeled as the following under determinated linear equation system:

y = Cx+ " (4.1)

where x 2 RN is a vector with m nonzero components to be recovered, y 2 RM is the
observed or measured data with noisy ", and C : RN ! RM (M < N) is a bounded linear
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observation operator. It is known that to solve (4.1) can be seen as solving the LASSO
problem [5]:

min
x2Rn

1

2
kCx� yk22 + �kxk1, (4.2)

where � > 0. In this case, we set A = rf the gradient of f , where f(x) = 1
2kCx � yk22

and B = @g the subdi↵erential of g, where g(x) = �kxk1. Then the LASSO problem
(4.2) can be considered as the monotone quasi-inclusion problem (1.1). It is known
that rf(x) = C

t(Cx � y) and it is kCk2-Lipschitz continuous and monotone (see [3]).
Moreover, @g is maximal monotone (see [1]).

In this experiment, the sparse vector x 2 RN is generated from uniform distribution in
the interval [�2, 2] with m nonzero elements. The matrix C 2 RM⇥N is generated from
a normal distribution with mean zero and one invariance. The observation y is generated
by white Gaussian noise with signal-to-noise ratio (SNR)=40. The restoration accuracy
is measured by the mean squared error (MSE) as follows:

En =
1

N
kxn � xk22 < 10�5

, (4.3)

where xn is an estimated signal of x. In our numerical test, we compare our Algorithm 3
and Algorithm 3 (T = I) with Tseng’s splitting algorithm (1.5).

We take ↵n = 1
15(n+5) and �n = 0.3

kCk2 in Algorithm 3 and take �n = 0.3
kCk2 in Tseng’s

splitting algorithm (1.5). For Alogorithm 3, we take ↵n = 1
15(n+5) , � = 5, µ = 0.5,

l = 0.3. The point u is chosen to be (1, 1, 1, . . . , 1) 2 RN and the starting point x1 is
randomly generated in RN . We perform the numerical test with the following four cases:

Case 1: N = 512, M = 256 and m = 10;
Case 2: N = 1024, M = 512 and m = 30;
Case 3: N = 2048, M = 1024 and m = 60;
Case 4: N = 4096, M = 2048 and m = 100.
The numerical results are reported as follows:

Table 1. The comparison of the proposed algorithms with Tseng’s split-
ting algorithm

Algorithm 3 Algorithm 3 Tseng’s splitting algorithm
Case 1 No. of Iter. 1,850 4,864 5,689

Case 2 No. of Iter. 3,320 10,186 12,753

Case 3 No. of Iter. 7,126 19,076 24,666

Case 4 No. of Iter. 14,889 40,743 48,652

We next demonstrate the graphs of original signal and recovered signal by Algorithm
3, Algorithm 3 and Tseng’s splitting algorithm. The number of iterations are reported in
the Figures 1-8, respectively.
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Original signal ( N=512, M=256, 10 spikes )
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50 100 150 200 250
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Recovered signal by Algorithm 2 ( 1,850 iterations )

50 100 150 200 250 300 350 400 450 500
-1

0

1

Recovered signal by Algorithm 1 ( 4,864 iterations )

50 100 150 200 250 300 350 400 450 500
-1

0

1

Recovered signal by Tseng's splitting algorithm ( 5,689 iterations )

50 100 150 200 250 300 350 400 450 500
-1

0

1

Figure 1: The comparison of recovered signal by using di↵erent algorithms in Case 1.
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Figure 2: The plotting of MSE versus number of iterations in Case 1.
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Original signal ( N=1,024, M=512, 30 spikes )
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Recovered signal by Algorithm 2 ( 3,320 iterations )
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Recovered signal by Algorithm 1 ( 10,186 iterations )
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Recovered signal by Tseng's splitting algorithm ( 12,753 iterations )
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Figure 3: The comparison of recovered signal by using di↵erent algorithms in Case 2.
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Figure 4: The plotting of MSE versus number of iterations in Case 2.
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Original signal ( N=2,048, M=1,024, 60 spikes )
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200 400 600 800 1000 1200 1400 1600 1800 2000
-1

0

1

Figure 5: The comparison of recovered signal by using di↵erent algorithms in Case 3.
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Figure 6: The plotting of MSE versus number of iterations in Case 3.
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Original signal ( N=4,096, M=2,048, 100 spikes )

500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

Measured values with noise ( SNR=40 )

200 400 600 800 1000 1200 1400 1600 1800 2000
-20
0
20

Recovered signal by Algorithm 2 ( 14,889 iterations )

500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

Recovered signal by Algorithm 1 ( 40,743 iterations )

500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

Recovered signal by Tseng's splitting algorithm ( 48,652 iterations )

500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

Figure7: The comparison of recovered signal by using di↵erent algorithms in Case 4.
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Figure 8: The plotting of MSE versus number of iterations in Case 4.
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บทคัดย่อ 
ในบทความนีเ้ราไดศ้ึกษาล าดบัเมทริกซ์พหุนามเกาสเ์ซียนเพลล ์ล าดบัเมทริกซพ์หุนามเกาสเ์ซียนโมดิฟายดเ์พลล ์

ล าดบัเมทริกซเ์กาสเ์ซียนเพลล ์ล าดบัเมทริกซเ์กาสเ์ซียนเพลล-์ลคูสั ล าดบัเมทริกซเ์กาสเ์ซียนโมดิฟายดเ์พลล ์ล าดบัเมทริกซ ์        
พหนุามเพลล ์ล าดบัเมทรกิซพ์หนุามเพลล-์ลคูสั และล าดบัเมทรกิซพ์หนุามโมดิฟายดเ์พลล ์พรอ้มทัง้พิสจูนเ์อกลักษณ์บางอย่าง

ของความสมัพนัธร์ะหวา่งล าดบัเมทรกิซแ์ละเอกลักษณ์บางอย่างของผลบวก 
 

ค ำส ำคัญ  :  ความสมัพนัธเ์วียนเกิด ; ล าดบัเมทรกิซ ์; สตูรไบเนต ; พจนท์ี่ n   
 

Abstract 
In this paper, we study Gaussian Pell polynomial, Gaussian modified Pell polynomial, Gaussian Pell, 

Gaussian Pell-Lucas, Gaussian modified Pell, Pell polynomial, Pell-Lucas polynomial, and modified Pell polynomial 
matrix sequences.  Furthermore, we prove some identities of the relation between matrix sequences and 
summations. 
 

Keywords : recurrence relations ; matrix sequences ; Binet’s formulas ;  nth terms 
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Introduction 
 The Fibonacci numbers n

F , Lucas numbers n
L , Pell numbers n

P , and Pell- Lucus numbers n
Q  are 

examples of the famous number generated by recurrence relation.  Their Binet’s formulas are 1 2

1 2

n n

n

r r
F

r r

−
=

−
 ,

1 2

n n

nL r r= + , 
n n

nP
 

 

−
=

−
, and n n

nQ  = + , where n  is an integer, ( )1

1
1 5

2
r = +  , ( )2

1
1 5

2
r = −  are roots of 

2 1 0t t− − =  and 1 2 = + , 1 2 = −  are roots of 2 2 1 0t t− − = .  So 
1 2 5r r− = , 1 2 1r r = − ,   , 

2 + = , 2 2 − = , and 1 = − . (Horadam, A.F., 1961), (Daykin, D.E. & Dresel, L.A.G., 1967), (Horadam, 
A.F., 1984). 
 In 1985, Alwyn F. Horadam and Brother J.M. Mahon studied properties of the sequences of Pell polynomials 

( )n
P x  and Pell-Lucas polynomials ( )n

Q x . For a natural number n, these sequences are defined by the recurrence 
relations 
 ( ) ( ) ( )1 22n n nP x xP x P x− −= + ,               (1) 
and ( ) ( ) ( )1 22n n nQ x xQ x Q x− −= + ,               (2) 
with initial conditions ( )0 0P x = , ( )1 1P x = , ( )0 2Q x = , and ( )1 2Q x x= .  
 The definitions of negative subscript are extended by 

 ( ) ( ) ( )
1

1
n

n nP x P x
+

− = − , for 1n  ,                                         (3) 

and ( ) ( ) ( )1
n

n nQ x Q x− = − , for 1n  .                                         (4) 
 So, Binet’s formulas can be derived as follows 

 ( )
( ) ( )

( ) ( )

n n

n

x x
P x

x x

 

 

−
=

−
,                (5) 

and ( ) ( ) ( )n n

nQ x x x = +  ,                                                        (6) 

where ( ) 2 1x x x = + +  and ( ) 2 1x x x = − +  are the roots of 2 2 1 0t xt− − = . Then ( ) ( )x x  , 

( ) ( ) 2x x x + = , ( ) ( ) 22 1x x x − = +  and ( ) ( ) 1x x  = − . By (5) and (6), we have the following elementary 
identity:  
 ( ) ( ) ( )1 1n n nP x P x Q x+ −+ = .                             (7) 
The particular cases of the polynomials are ( )1n nP P= , ( )1n nQ Q= , 1

2n nP F
 
 
 

= , and 1

2n nQ L
 
 
 

= . 

 In 2012, Hasan Huseyin Gulec and Necati Taskara studied the ( ),s t -Pell matrix sequence ( ) ,
n n

P s t

 

and ( ),s t - Pell- Lucas matrix sequence ( ) ,
n n

Q s t


 consisting of elements of the ( ),s t - Pell numbers and     

( ),s t -Pell-Lucas numbers defined by 
 ( ) ( ) ( )1 2, 2 , ,n n nP s t sP s t tP s t− −= + , for 2n  ,              (8) 
and ( ) ( ) ( )1 2, 2 , ,n n nQ s t sQ s t tQ s t− −= + , for 2n  ,             (9) 
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with initial conditions ( )0

1 0
,

0 1
P s t

 
=  
 

, ( )1

2 1
,

0

s
P s t

t

 
=  
 

, ( )0

2 2
,

2 2

s
Q s t

t s

 
=  

− 
, and ( )

2

1

4 2 2
,

2 2

s t s
Q s t

st t

 +
=  
 

, 

where 2 0s t+  , 0s  , 0t  , and s , t  are real numbers.  
 In 2016, Serpil Halici and Sinan Öz introduced the complex Pell and complex Pell – Lucas sequences, 
namely Gaussian Pell sequence  n n

GP


 and Gaussian Pell-Lucas sequence  n n
GQ


, which are defined by 

recurrence relations  
 1 22n n nGP GP GP− −= + , for 2n  ,                          (10) 
and 1 22n n nGQ GQ GQ− −= + , for 2n  ,                          (11) 
with initial conditions 0GP i= , 1 1GP = , 0 2 2GQ i= −  and 1 2 2GQ i= + . Their well-known Binet’s formulas are 

   
n n n n

nGP i
   

   

− −
= +

− −
,             (12) 

and n n n n

nGQ i i   = + − − .             (13) 
 Also, Gaussian Pell and Gaussian Pell-Lucas are related to Pell and Pell-Lucas.  Some identities of the 
sequences are  

 1n n nGP P iP −= + , for 1n  ,                           (14) 
and 1n n nGQ Q iQ −= + , for 1n  ,                          (15) 
with initial conditions 0 0P =  , 1 1P = , 0 2Q =  and 1 2Q = .  
 In 2018, Tulay Yagmar and Nusret karaaslan defined Gaussian modified Pell numbers n

Gq  and Gaussian 
modified Pell polynomials ( )n

Gq x  by 
 1 22n n nGq Gq Gq− −= + , for 2n  ,                          (16) 
and ( ) ( ) ( )1 22n n nGq x xGq x Gq x− −= + , for 2n  ,                         (17) 
with initial conditions 0 1Gq i= − , 1 1Gq i= + , ( )0 1Gq x xi= −  and ( )1Gq x x i= + . Then, their Binet’s formulas are  

 
2 2

n n n n

nGq i
   + +

= − ,             (18) 

and ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2

n n n n

n

x x x x x x
Gq x i

     + +
= − .          (19) 

 In 2018, Serpil Halici and Sinan Oz introduced Gaussian Pell polynomials ( )n
GP x , which is defined 

recurrently by 
 ( ) ( ) ( )1 12n n nGP x xGP x GP x+ −= + , for 1n  ,            (20) 
with initial conditions ( )0GP x i=  and ( )1 1GP x = . Their well-known Binet’s formula is 

 ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

n n n n

n

x x x x x x
GP x i

x x x x

     

   

− −
= +

− −
.           (21) 

 That authors observed that relation between Gaussian Pell polynomial and Pell polynomial is 



                           
                          วารสารวิทยาศาสตรบ์รูพา ปีที่ 26 (ฉบบัที่ 1) มกราคม – เมษายน พ.ศ. 2564 

                          BURAPHA SCIENCE JOURNAL Volume 26 (No.1)  January – April   2021                                                    บทความวิจยั 

 

 

 645 
 

 ( ) ( ) ( )1n n nGP x P x iP x−= + , for 1n  .             (22) 
 In 2019, Nusret Karaaslan studied modified Pell polynomials ( )n

q x  defined by 
 ( ) ( ) ( )1 22n n nq x xq x q x− −= + , for 2n  ,            (23) 
with initial conditions ( )0 1q x =  and ( )1q x x= . Then, the Binet’s formula is 

 ( )
( ) ( )

2

n n

n

x x
q x

 +
= .               (24) 

In particular, if 1x = , then ( )1nq  is the modified Pell number nq . 
 
Methods  
 In this section, firstly, we find the first few terms of the recurrence relations nGP , nGQ , nGq , ( )nGq x , 

( )nGP x , and ( )nq x , which the extension of negative subscripts is created by rewriting as 2 12n n nGP GP GP− −= − , 

2 12n n nGQ GQ GQ− −= − , 2 12n n nGq Gq Gq− −= − , ( ) ( ) ( )2 12n n nGq x Gq x xGq x− −= − , ( ) ( ) ( )2 12n n nGP x GP x xGP x− −= − , 
and ( ) ( ) ( )2 12n n nq x q x xq x− −= −  as below. 
 
Table 1   The first few terms of nGP , nGQ , nGq , ( )nGq x , ( )nGP x , and  ( )nq x  for 2 1n−   . 

         :n  2−  1−  0  1  
     :nGP  2 5i− +  1 2i−  i  1  
     :nGQ  6 14i−  2 6i− +  2 2i−  2 2i+  
     :nGq  3 7i−  1 3i− +  1 i−  1 i+  

( ) :nGq x  ( ) ( )2 32 1 4 3x x x i+ − +  ( )22 1x x i− + +  1 xi−  x i+  
( ) :nGP x  ( )22 4 1x x i− + +  1 2xi−  i  1  

  ( ) :nq x  22 1x +  x−  1  x  
 

After that, we define the recurrence relation of a 2x2 matrix for all integer 1n  −  in which the component 
of each matrix consists of numbers and polynomials of these sequences, and the index starts at 1− . 
Definition 1 Let n , x  is a scalar-value polynomial, 0x  , and 2 1 0x +  .  Then the Gaussian Pell polynomial 
matrix sequence ( ) n n

MGP x

 and Gaussian modified Pell polynomial matrix sequence ( ) n n

MGq x


 are 

defined by  
 ( ) ( ) ( )1 22n n nMGP x xMGP x MGP x− −= + ,            (25) 
and  

 ( ) ( ) ( )1 22n n nMGq x xMGq x MGq x− −= + ,            (26) 
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respectively, with initial conditions ( )0

1
,

1 2

i
MGP x

i xi

 
=  

− 
 ( )1

2 1

1

x i
MGP x

i

+ 
=  
 

, 

( )
( )0 2

1

1 2 1

x i xi
MGq x

xi x x i

+ − 
=  
 − − + +
 

, and ( )
2

1

2 1

1

x xi x i
MGq x

x i xi

 + + +
=  

+ − 
. 

Definition 2 Let n . Then the Gaussian Pell matrix sequence  n n
MGP


, Gaussian Pell-Lucas matrix sequence 

 n n
MGQ


, and Gaussian modified Pell matrix sequence  n n

MGq

 are defined by  

1 22n n nMGP MGP MGP− −= + ,                     (27) 
and  

 1 22n n nMGQ MGQ MGQ− −= + ,             (28) 
and  

 1 22n n nMGq MGq MGq− −= + ,             (29) 

respectively, with initial conditions 
0

1

1 2

i
MGP

i i

 
=  

− 
, 

1

2 1

1

i
MGP

i

+ 
=  
 

, 
0

2 2 2 2

2 2 2 6

i i
MGQ

i i

+ − 
=  

− − + 
 ,

1

6 2 2 2

2 2 2 2

i i
MGQ

i i

+ + 
=  

+ − 
, 

0

1 1

1 1 3

i i
MGq

i i

+ − 
=  

− − + 
, and 

1

3 1

1 1

i i
MGq

i i

+ + 
=  

+ − 
. 

Definition 3 Let n , x  is a scalar- value polynomial, 0x  , and 2 1 0x +  .  Then the Pell polynomial matrix 
sequence ( ) n n

MP x


, Pell-Lucas polynomial matrix sequence ( ) n n
MQ x


, and modified Pell polynomial 

matrix sequence ( ) n n
Mq x


 are defined by  

( ) ( ) ( )1 22n n nMP x xMP x MP x− −= + ,            (30) 
and  
 ( ) ( ) ( )1 22n n nMQ x xMQ x MQ x− −= + ,            (31) 
and  

 ( ) ( ) ( )1 22n n nMq x xMq x Mq x− −= + ,            (32) 

respectively, with initial conditions ( )0

1 0

0 1
MP x

 
=  
 

 , ( )1

2 1

1 0

x
MP x

 
=  
 

, ( )0

2 2

2 2

x
MQ x

x

 
=  

− 
 ,

( )
2

1

4 2 2

2 2

x x
MQ x

x

 +
=  
 

, ( )0

1

1

x
Mq x

x

 
=  

− 
, and ( )

2

1

2 1

1

x x
Mq x

x

 +
=  
 

. 

Note that, for all integer 0n  , we find negative subscripts of matrix sequences in which the extension of 
definition is obtained by rewriting 

 ( ) ( ) ( )2 12n n nMGP x MGP x xMGP x− −= − ,          (33)  
 ( ) ( ) ( )2 12n n nMGq x MGq x xMGq x− −= − ,           (34) 
 2 12n n nMGP MGP MGP− −= − ,            (35) 
 2 12n n nMGQ MGQ MGQ− −= − ,            (36) 
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 2 12n n nMGq MGq MGq− −= − ,            (37) 
 ( ) ( ) ( )2 12n n nMP x MP x xMP x− −= − ,          (38) 
 ( ) ( ) ( )2 12n n nMQ x MQ x xMQ x− −= − ,          (39) 
and ( ) ( ) ( )2 12n n nMq x Mq x xMq x− −= − .           (40) 
 
Results 

In this section, the first step, we find the nth general terms of the matrix sequences, which correspond to 
the following theorem and corollary.  
Theorem 4 For n . Then the nth terms of ( ) n n

MGP x


 and ( ) n n
MGq x


 are given by 

( )
( ) ( )

( ) ( )
1

1

n n

n

n n

GP x GP x
MGP x

GP x GP x

+

−

 
=  
 

,            (41) 

and  

 ( )
( ) ( )

( ) ( )
1

1

n n

n

n n

Gq x Gq x
MGq x

Gq x Gq x

+

−

 
=  
 

.            (42) 

Proof. We will show that ( )
( ) ( )

( ) ( )
1

1

n n

n

n n

GP x GP x
MGP x

GP x GP x

+

−

 
=  
 

 for n . 

Since, ( )0

1

1 2

i
MGP x

i xi

 
=  

− 
, it follows that (41) is true. 

Since, ( )1

2 1

1

x i
MGP x

i

+ 
=  
 

, it follows that (41) is true. 

By iterating this procedure and considering induction steps, let us assume that the equality in (41)  holds for all 
n k  . To finish the proof.  
Next, we have to show that (41) also holds for 1n k= +  by considering (20) and (25). 
Then   ( ) ( ) ( )1 12k k kMGP x xMGP x MGP x+ −= +  

   ( ) ( )

( ) ( )

( ) ( )

( ) ( )
1 1

1 1 2

2
k k k k

k k k k

GP x GP x GP x GP x
x

GP x GP x GP x GP x

+ −

− − −

   
= +   

   
 

   ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1

1 1 2

2 2

2 2

k k k k

k k k k

xGP x GP x xGP x GP x

xGP x GP x xGP x GP x

+ −

− − −

 + + 
=  

+ + 
  

   ( ) ( )

( ) ( )
2 1

1

k k

k k

GP x GP x

GP x GP x

+ +

+

 
=  
 

.  

Thus, 1n k= +  is true. 
The similar proof of (41) is used to prove (42). 
Therefore, the proof is complete.                 
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Corollary 5 For n . Then the nth terms of  n n
MGP


,  n n

MGQ


, and  n n
MGq


 are given by  

 1

1

n n

n

n n

GP GP
MGP

GP GP

+

−

 
=  
 

,                       (43) 

and  

 1

1

n n

n

n n

GQ GQ
MGQ

GQ GQ

+

−

 
=  
 

,             (44) 

and  

 1

1

n n

n

n n

Gq Gq
MGq

Gq Gq

+

−

 
=  
 

.                      (45) 

Proof. Take 1x =  in (41) and (42), we have (43) and (45). 
The similar proof of Theorem 4 is used for (44).               
Corollary 6 For n . Then the nth terms of ( ) n n

MP x


, ( ) n n
MQ x


, and ( ) n n

Mq x

 are given by  

 ( )
( ) ( )

( ) ( )
1

1

n n

n

n n

P x P x
MP x

P x P x

+

−

 
=  
 

,              (46) 

and  

 ( )
( ) ( )

( ) ( )
1

1

n n

n

n n

Q x Q x
MQ x

Q x Q x

+

−

 
=  
 

,             (47) 

and  

 ( )
( ) ( )

( ) ( )
1

1

n n

n

n n

q x q x
Mq x

q x q x

+

−

 
=  
 

.               (48) 

Proof. The similar proof of Theorem 4 is used for (46), (47), and (48).             
Next, we find Binet’s formulas of the matrix sequences that lead to some identities.  These formulas 

correspond to the following theorem and corollary. 
Theorem 7 Let n . Then, the Binet’s formula for ( ) n n

MGP x


 and ( ) n n
MGq x


 are given by 

 ( )
( )

( ) ( )
( ) ( ) ( )( )

( )

( ) ( )
( ) ( ) ( )( )1 0 1 0

n n

n

x x
MGP x MGP x x MGP x MGP x x MGP x

x x x x

 
 

   
= − − −

− −
,      (49) 

and  

 ( )
( )

( ) ( )
( ) ( ) ( )( )

( )

( ) ( )
( ) ( ) ( )( )1 0 1 0

n n

n

x x
MGq x MGq x x MGq x MGq x x MGq x

x x x x

 
 

   
= − − −

− −
.      (50) 

Proof. Let 1 2,c c  be the 2x2 matrices and ( ) 2 1x x x = + + , ( ) 2 1x x x = − +  be the roots of 2 2 1 0t xt− − = . 
Then the general term of (25) is  
 ( ) ( ) ( )1 2

n n

nMGP x c x c x = + .            (51) 
Take 0n =  and 1n =  in (51), we get 
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 ( )0 1 2MGP x c c= + ,              (52) 
and ( ) ( ) ( )1 1 2MGP x c x c x = + .            (53) 
By using (52), (53) and scalar multiplication to find 1c  and 2c , we obtain 

 
( ) ( )

( ) ( ) ( )( )1 1 0

1
c MGP x x MGP x

x x


 
= −

−
,          (54) 

and  
( ) ( )

( ) ( ) ( )( )2 1 0

1
c MGP x x MGP x

x x


 
= − −

−
.           (55) 

By using (54), (55) in (51), we get 

( )
( )

( ) ( )
( ) ( ) ( )( )

( )

( ) ( )
( ) ( ) ( )( )1 0 1 0

n n

n

x x
MGP x MGP x x MGP x MGP x x MGP x

x x x x

 
 

   
= − − −

− −
. 

The similar proof of (49) is used to prove (50). 
Therefore, the proof is complete.                 
Corollary 8 Let n . Then, the Binet’s formula for  n n

MGP


,  n n
MGQ


, and  n n

MGq


 are given by 

 ( ) ( )1 0 1 0

n n

nMGP MGP MGP MGP MGP
 

 
   

= − − −
− −

,          (56) 

and   

  ( ) ( )1 0 1 0

n n

nMGQ MGQ MGQ MGQ MGQ
 

 
   

= − − −
− −

,         (57) 

and  

 ( ) ( )1 0 1 0

n n

nMGq MGq MGq MGq MGq
 

 
   

= − − −
− −

.          (58) 

Proof. Take 1x =  in (49) and (50), we have (56) and (58). 
The similar proof of Theorem 7 is used to (57).               
Corollary 9 Let n . Then, the Binet’s formula for ( ) n n

MP x


, ( ) n n
MQ x


, and ( ) n n

Mq x

 are given by 

 ( )
( )

( ) ( )
( ) ( ) ( )( )

( )

( ) ( )
( ) ( ) ( )( )1 0 1 0

n n

n

x x
MP x MP x x MP x MP x x MP x

x x x x

 
 

   
= − − −

− −
,        (59) 

and  

 ( )
( )

( ) ( )
( ) ( ) ( )( )

( )

( ) ( )
( ) ( ) ( )( )1 0 1 0

n n

n

x x
MQ x MQ x x MQ x MQ x x MQ x

x x x x

 
 

   
= − − −

− −
,      (60) 

and  

 ( )
( )

( ) ( )
( ) ( ) ( )( )

( )

( ) ( )
( ) ( ) ( )( )1 0 1 0

n n

n

x x
Mq x Mq x x Mq x Mq x x Mq x

x x x x

 
 

   
= − − −

− −
.        (61) 

Proof. The similar proof of Theorem 7 is used to prove (59), (60), and (61).            
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Next, we find the nth power of ( )1MP x  and 1MP , for any integer 0n  , which are symmetry. They 
correspond to the following lemma.  
Lemma 10 For n , the nth power of ( )1MP x  and 1MP  are given by 

(i) ( )( ) ( )1

n

nMP x MP x= , 

(ii) ( )1

n

nMP MP= . 

Proof. Since, ( )0

1 0

0 1
MP x

 
=  
 

, it follows that (i) is true. 

Since, ( )1

2 1

1 0

x
MP x

 
=  
 

, it follows that (i) is true.  

We assume the result is true for a positive integer n k=  then 

( )
( ) ( )

( ) ( )
( )( )1

1

1

kk k

k

k k

P x P x
MP x MP x

P x P x

+

−

 
= = 
 

. 

We consider a positive integer 1n k= +  . 

Then  ( )( ) ( )( ) ( )
1

1 1 1

k k

MP x MP x MP x
+

=  
( ) ( )

( ) ( )
1

1

2 1

1 0

k k

k k

P x P x x

P x P x

+

−

  
=   

  
 

( ) ( ) ( )

( ) ( ) ( )
1 1

1

2

2

k k k

k k k

xP x P x P x

xP x P x P x

+ +

−

 + 
=  

+ 
 

( ) ( )

( ) ( )
2 1

1

k k

k k

P x P x

P x P x

+ +

+

 
=  
 

 

( )1kMP x+= . 
Thus, the statement is true when 1n k= + .  
Take 1x =  in (i), we have (ii).  
Therefore, the proof is complete.                 

After that, we find some identities of the relations between the studied sequences of numbers and polynomials, 
which corresponds to the following lemma. 
Lemma 11 For ,m n , the following results hold. 
(i) ( ) ( ) ( ) ( ) ( )1 1m n m n m nGP x P x GP x P x GP x+ − ++ = , 
(ii) ( ) ( ) ( ) ( ) ( )1 1m n m n m nGq x P x Gq x P x Gq x+ − ++ = , 
(iii) 1 1m n m n m nGP P GP P GP+ − ++ = , 
(iv) 1 1m n m n m nGQ P GQ P GQ+ − ++ = ,  
(v) 1 1m n m n m nGq P Gq P Gq+ − ++ = , 
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(vi) ( ) ( ) ( ) ( ) ( )1 1m n m n m nP x P x P x P x P x+ − ++ = ,  
(vii) ( ) ( ) ( ) ( ) ( )1 1m n m n m nQ x P x Q x P x Q x+ − ++ = , 
(viii) ( ) ( ) ( ) ( ) ( )1 1m n m n m nq x P x q x P x q x+ − ++ = , 
(ix) ( ) ( ) ( )1 1 2n n nGP x GP x Gq x+ −+ = ,  
(x) 1 1 2n n nGP GP Gq+ −+ = ,       
(xi) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2 2 1n n n n n n nP x Q x P x Q x P x P x Q x+ + + ++ = + = , 
(xii) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 2 1 2 1 1n n n n n n n n n n nP x Q x P x Q x P x P x Q x P x Q x P x Q x+ − + − + −+ = + = = + , 
(xiii) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2 2 1n n n n n n nP x Q x P x Q x P x P x Q x− − − −+ = + = . 

Proof. Since (5), (21) and ( ) 2 1x x x = + + , ( ) 2 1x x x = − +  be the roots of 2 2 1 0t xt− − = , we have 

( ) ( ) ( ) ( )1 1m n m nGP x P x GP x P x+ −+  

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1m m m m n nx x x x x x x x
i

x x x x x x

       

     

+ + + +   − − −
= +       − − −   

 

 
( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1m m m m n nx x x x x x x x
i

x x x x x x

       

     

− −   − − −
+ +       − − −   

  

( ) ( )( )
( ) ( ) ( ) ( ) ( )( ( )1 1 1 1

2

1 m n m n n m m nx x x x x x
x x

     
 

+ + + + + += − − +
−

 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1m n m n n m m nx x x x x x     + − − − + −+ − − +    
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1n m m n m n m ni x x i x x i x x i x x       + + + + + + + ++ − − +  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))1 1n m m n m n m ni x x i x x i x x i x x       + − + −+ − − +  

( ) ( )
( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

1 1 1
1 m n m n n m

x x x x x x
x x x x x

x x x x x x x x

     
    

       

− − −

+
 + + +

= − −− − − −

 

 ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

1 11
m n n m m n

x x x x x x
x i x x i x x

x x x x x x

     
    

     

− −

+ +
+ + +

+ + −
− − −

 

 ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

1 1
m n m n

x x x x
i x x i x x

x x x x

   
   

   

−

+
+ +

− + − − 
 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

1 m n m n m n m nx x i x x i x x
x x

     
 

+ + + += − + −
−

  

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

m n m n m n m nx x x x x x
i

x x x x

     

   

+ + + +− −
= +

− −
 

( )m nGP x+= . 
Thus, ( ) ( ) ( ) ( ) ( )1 1m n m n m nGP x P x GP x P x GP x+ − ++ = . 
The similar proof of (i) is used for (ii), (iii), (iv), (v), (vi), (vii), and (viii). 
Next, we will show that ( ) ( ) ( )1 1 2n n nGP x GP x Gq x+ −+ = .  
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By (21), we have  

( ) ( )1 1n nGP x GP x+ −+  
( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1 1 1 1 1 1 1n n n n n n n nx x x x x x x x x x x x
i i

x x x x x x x x

           

       

+ + + + − − − −− − − −
= + + +

− − − −
  

( )
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

1 1

n n
x x x x

x x
x x x x

   
 

   

− −+ +
= −

− −
 

 ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

1 1

n n
x x x x

i x x i x x
x x x x

   
   

   

− −+ +
+ −

− −
 

( ) ( ) ( ) ( ) ( ) ( )n n n nx x i x x i x x     = + − −  
( )2 nGq x= . 

Thus, ( ) ( ) ( )1 1 2n n nGP x GP x Gq x+ −+ = . 
Take 1x =  in (ix), we have (x). 
Next, we will show that ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2 2 1n n n n n n nP x Q x P x Q x P x P x Q x+ + + ++ = + = . 
By (5) and (6), we have 

( ) ( ) ( ) ( )1 1n n n nP x Q x P x Q x+ + +  

 
( ) ( )

( ) ( )
( ) ( )( )

( ) ( )

( ) ( )
( ) ( )( )

1 1

1 1

n n n n

n n n n
x x x x

x x x x
x x x x

   
   

   

+ +

+ +
   − −

=  + +  +      − −   
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 1 1 1 1 2 2 2 2n n n n n n n n n n n nx x x x x x x x x x x x

x x

           

 

+ + + + + ++ − − + + − −
=

−

 ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2 2 2 2 2n n n nx x x x

x x x x

   

   

+ +− −
= +

− −
  

 ( ) ( )2 2 2n nP x P x+= + .                       (62) 
Since (7), we obtain 
 ( ) ( ) ( )2 2 2 2 1n n nP x P x Q x+ ++ = .            (63) 
By using (62) and (63), we have 
 ( ) ( ) ( ) ( ) ( )1 1 2 1n n n n nP x Q x P x Q x Q x+ + ++ = . 
Thus, ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2 2 1n n n n n n nP x Q x P x Q x P x P x Q x+ + + ++ = + = . 
The similar proof of (xi) is used for (xii) and (xiii). 
Therefore, the identities (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix), (x), (xi), (xii), and (xiii) are immediately seen.      
 Also, we find the relation between these matrix sequences by applying Lemma 10 and Lemma 11.  They 
correspond to the following theorem and corollary. 
Theorem 12 For ,m n , the following results hold. 
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(i) ( ) ( )( ) ( )1

n

m m nMGP x MP x MGP x+= , 

(ii) ( ) ( )( ) ( )1

n

m m nMGq x MP x MGq x+= , 
(iii) ( ) ( ) ( )1 1 2n n nMGP x MGP x MGq x+ −+ = . 
Proof. By Lemma 10 (i), we can write 

 ( ) ( )( ) ( ) ( )1

n

m m nMGP x MP x MGP x MP x= .           (64) 
Since (41), (46), and matrix multiplication, then 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )
1 1

1 1

m m n n

m n

m m n n

GP x GP x P x P x
MGP x MP x

GP x GP x P x P x

+ +

− −

  
=   
  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1

m n m n m n m n

m n m n m n m n

GP x P x GP x P x GP x P x GP x P x

GP x P x GP x P x GP x P x GP x P x

+ + + −

+ − − −

 + + 
=  

+ + 

.         (65) 

By using Lemma 11 (i) in (65), we have 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1

m n m n m n m n

m n

m n m n m n m n

GP x P x GP x P x GP x P x GP x P x
MGP x MP x

GP x P x GP x P x GP x P x GP x P x

+ + + −

+ − − −

 + + 
=  

+ + 

 

   ( ) ( )

( ) ( )
1

1

m n m n

m n m n

GP x GP x

GP x GP x

+ + +

+ + −

 
=  
 

 

   ( )m nMGP x+=                        (66) 
By using (66) in (64), we obtain 

( ) ( )( ) ( )1

n

m m nMGP x MP x MGP x+= . 
The similar proof of (i) is used for (ii). 
Next, we will show that ( ) ( ) ( )1 1 2n n nMGP x MGP x MGq x+ −+ = . 
By (41) and matrix addition, we can write 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )
2 1 1

1 1

1 1 2

n n n n

n n

n n n n

GP x GP x GP x GP x
MGP x MGP x

GP x GP x GP x GP x

+ + −

+ −

+ − −

   
+ = +   

   
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 1 1

1 1 2

n n n n

n n n n

GP x GP x GP x GP x

GP x GP x GP x GP x

+ + −

+ − −

 + + 
=  

+ + 
           (67) 

By using Lemma 11 (ix) in (67), we get 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 1 1

1 1

1 1 2

n n n n

n n

n n n n

GP x GP x GP x GP x
MGP x MGP x

GP x GP x GP x GP x

+ + −

+ −

+ − −

 + + 
+ =  

+ + 
 

  ( ) ( )

( ) ( )
1

1

2 2

2 2

n n

n n

Gq x Gq x

Gq x Gq x

+

−

 
=  
 

 

  ( ) ( )

( ) ( )
1

1

2
n n

n n

Gq x Gq x

Gq x Gq x

+

−

 
=  

 
 

  ( )2 nMGq x= .                
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Therefore, the identities (i), (ii), and (iii) are immediately seen.              
Corollary 13 For ,m n , the following results hold. 

(i) ( )1

n

m m nMGP MP MGP += , 

(ii) ( )1

n

m m nMGQ MP MGQ += , 

(iii) ( )1

n

m m nMGq MP MGq += , 
(iv) 1 1 2n n nMGP MGP MGq+ −+ = . 
Proof. Take 1x =  in Theorem 12 (i), (ii), and (iii), we have (i), (iii), and (iv). 
The similar proof of Theorem 12 is used for (ii).               
Corollary 14 For ,m n , the following results hold. 

(i) ( ) ( )( ) ( )1

n

m m nMP x MP x MP x+= , 

(ii) ( ) ( )( ) ( )1

n

m m nMQ x MP x MQ x+= , 

(iii) ( ) ( )( ) ( )1

n

m m nMq x MP x Mq x+= . 
(iv) ( ) ( ) ( )1 1n n nMP x MP x MQ x+ −+ = , 
(v) ( ) ( ) ( ) ( ) ( )2 1 2 1 2n n n n nMP x MQ x MP x MP x MQ x+ −= + = . 
Proof. The similar proof of Theorem 12 is used for (i), (ii), (iii), and (iv).             
Next, we will show that ( ) ( ) ( ) ( ) ( )2 1 2 1 2n n n n nMP x MQ x MP x MP x MQ x+ −= + = . 
By (46), (47) and matrix multiplication, we have 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )
1 1

1 1

n n n n

n n

n n n n

P x P x Q x Q x
MP x MQ x

P x P x Q x Q x

+ +

− −

  
=   
  

 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1

n n n n n n n n

n n n n n n n n

P x Q x P x Q x P x Q x P x Q x

P x Q x P x Q x P x Q x P x Q x

+ + + −

+ − − −

 + + 
=  

+ + 

.         (68) 

By using Lemma 11 (xi), (xii), and (xiii) in (68), we can write  

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1

n n n n n n n n

n n

n n n n n n n n

P x Q x P x Q x P x Q x P x Q x
MP x MQ x

P x Q x P x Q x P x Q x P x Q x

+ + + −

+ − − −

 + + 
=  

+ + 
 

  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 2 2 2 1 2 1

2 1 2 1 2 2 2

n n n n

n n n n

P x P x P x P x

P x P x P x P x

+ + −

+ − −

 + + 
=  

+ + 
                         (69) 

By matrix addition, we have 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )2 2 2 2 1 2 1 2 2 2 1 2 2 1

2 1 2 1

2 1 2 1 2 2 2 2 1 2 2 1 2 2

n n n n n n n n

n n

n n n n n n n n

P x P x P x P x P x P x P x P x
MP x MP x

P x P x P x P x P x P x P x P x

+ + − + + −

+ −

+ − − + − −

 + +     
= + = +     

+ +     
 

                               (70) 
By using (69) and (70), we get that  
   ( ) ( ) ( ) ( )2 1 2 1n n n nMP x MQ x MP x MP x+ −= +                         (71) 
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By (iv), we obtain 
 ( ) ( ) ( )2 1 2 1 2n n nMP x MP x MQ x+ −+ = .            (72) 
By using (71) and (72), we get 
 ( ) ( ) ( )2n n nMP x MQ x MQ x= . 
Thus, ( ) ( ) ( ) ( ) ( )2 1 2 1 2n n n n nMP x MQ x MP x MP x MQ x+ −= + = . 
Therefore, the identities (i), (ii), (iii), (iv), and (v) are easily seen.             
 Moreover, we get a particular case, which corresponds to the following corollary. 
Corollary 15 For n , the following results hold. 

(i) ( ) ( )( ) ( )0 1

n

nMGP x MP x MGP x= ,  

(ii) ( )0 1

n

nMGP MP MGP= ,  

(iii) ( ) ( )( ) ( )0 1

n

nMP x MP x MP x= . 
Proof. Take 0m =  in Theorem 12 (i), Corollary 13 (i), and Corollary 14 (i), we obtain (i), (ii), and (iii). 
Therefore, the identities (i), (ii), and (iii) are easily seen.              

Note that matrix ( )0

1 0

0 1
MP x

 
=  
 

 is an identity matrix. 

Now, we find that the matrix is a symmetric matrix, which is equal to its transposition as in the following 
theorem and corollary. 
Theorem 16 For ,m n , the following results hold. 

(i) ( ) ( )( ) ( ) ( )
T

m n n mMGP x MGP x MGP x MGP x= ,                      

(ii) ( ) ( )( ) ( ) ( )
T

m n n mMGq x MGq x MGq x MGq x= .                      
Proof. Since the transpose of the matrix, we obtain 

 ( ) ( )( ) ( )( ) ( )( ) ( ) ( )
T T T

m n n m n mMGP x MGP x MGP x MGP x MGP x MGP x= = . 
The similar proof of (i) is used for (ii). 
Therefore, the identities (i) and (ii) are easily seen.                
Corollary 17 For ,m n , the following results hold. 

(i) ( )
T

m n n mMGP MGP MGP MGP= , 

(ii) ( )
T

m n n mMGQ MGQ MGQ MGQ= , 

(iii) ( )
T

m n n mMGq MGq MGq MGq= . 
Proof. Take 1x =  in Theorem 16 (i) and (ii), we have (i) and (iii). 
The similar proof of Theorem 16 is used for (ii).               
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Corollary 18 For ,m n , the following results hold. 

(i) ( ) ( )( ) ( ) ( )
T

m n n mMP x MP x MP x MP x= , 

(ii) ( ) ( )( ) ( ) ( )
T

m n n mMQ x MQ x MQ x MQ x= , 

(iii) ( ) ( )( ) ( ) ( )
T

m n n mMq x Mq x Mq x Mq x= . 
Proof. The similar proof of Theorem 16 is used for (i), (ii), and (iii).             

Finally, we find some identity matrix sequences of summations by using Binet’s formulas (49), (50), (56), (57), 
(58), (59), (60) and (61) as the following theorem and corollary. 
Theorem 19 For n , 0x  , and 2 1 0x +  , the following equalities hold. 

(i) ( ) ( ) ( )( )
( )

( ) ( )( )2

0 1 12 2
0

1 1 1

2 1 2 1

n

k n nk n
k

MGP x t MGP x tMGP x tMGP x MGP x
t t xt t t xt

− +

=

= + − +
− − − −

 ,    

(ii) ( ) ( ) ( )( )
( )

( ) ( )( )2

0 1 12 2
0

1 1 1

2 1 2 1

n

k n nk n
k

MGq x t MGq x tMGq x tMGq x MGq x
t t xt t t xt

− +

=

= + − +
− − − −

 .  

Proof. Let ( )0MGP x , ( )1MGP x  be initial conditions of 2x2 matrix sequence and ( ) 2 1x x x = + + , 

( ) 2 1x x x = − +  be the roots of 2 2 1 0t xt− − = . 
Then we can write 

( )
0

1n

kk
k

MGP x
t=

  

 
( )

( ) ( )( )
( ) ( ) ( )( )

( )

( ) ( )( )
( ) ( ) ( )( )1 0 1 0

0

k kn

k k
k

x x
MGP x x MGP x MGP x x MGP x

t x x t x x

 
 

   =

 
= − − − 

 − − 
 .                (73) 

By definition of a geometric sequence, we have 

( )

( ) ( )( )
( ) ( ) ( )( )

( )

( ) ( )( )
( ) ( ) ( )( )1 0 1 0

0

k kn

k k
k

x x
MGP x x MGP x MGP x x MGP x

t x x t x x

 
 

   =

 
− − − 

 − − 
  

 

( )

( ) ( )( )
( )

( ) ( ) ( )( )

( )

( ) ( )( )
( )

( ) ( ) ( )( )

1 1

1 0 1 0

1 1

1 1

n n

x x

t t
MGP x x MGP x MGP x x MGP x

x x
x x x x

t t

 

 
 

   

+ +      
   − −   
         

= − − −
   

− − − −   
   

 

 
( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )

1 1

1 01

n n

n

t t x t x
MGP x x MGP x

t x x t x t x

 


   

+ +

+

− −
= −

− − −
 

  
( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )

1 1

1 01

n n

n

t t x t x
MGP x x MGP x

t x x t x t x

 


   

+ +

+

− −
− −

− − −
.           (74) 

Since ( )( ) ( )( ) 2 2 1t x t x t xt − − = − − , we can write 
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( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )

1 1

1 01

n n

n

t t x t x
MGP x x MGP x

t x x t x t x

 


   

+ +

+

− −
−

− − −
 

  
( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )

1 1

1 01

n n

n

t t x t x
MGP x x MGP x

t x x t x t x

 


   

+ +

+

− −
− −

− − −

 
( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 02 2 1

n n

n

t x t x
MGP x x MGP x

t t xt x x

 


 

+ +− −
= −

− − −
 

  ( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 02 2 1

n n

n

t x t x
MGP x x MGP x

t t xt x x

 


 

+ +− −
− −

− − −
.            (75) 

By using (75) in (74), we obtain 

( )

( ) ( )( )
( ) ( ) ( )( )

( )

( ) ( )( )
( ) ( ) ( )( )1 0 1 0

0

k kn

k k
k

x x
MGP x x MGP x MGP x x MGP x

t x x t x x

 
 

   =

 
− − − 

 − − 
  

 
( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 02 2 1

n n

n

t x t x
MGP x x MGP x

t t xt x x

 


 

+ +− −
= −

− − −
 

 
( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 02 2 1

n n

n

t x t x
MGP x x MGP x

t t xt x x

 


 

+ +− −
− −

− − −
.           (76) 

By using (76) in (73), we get that 

( )
( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 02
0

1

2 1

n n
n

kk n
k

t x t x
MGP x MGP x x MGP x

t t t xt x x

 


 

+ +

=

− −
= −

− − −
  

( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 02 2 1

n n

n

t x t x
MGP x x MGP x

t t xt x x

 


 

+ +− −
− −

− − −
 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
2 1 1 1

1 02 2 1

n n n n

n

t x t x t x x
MGP x x MGP x

t t xt x x

   


 

+ + + +− − +
= −

− − −

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
2 1 1 1

1 02 2 1

n n n n

n

t x t x t x x
MGP x x MGP x

t t xt x x

   


 

+ + + +− − +
− −

− − −
 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 1 1

0 1 0 12

1

2 1

n n n

n nn
t MGP x t MGP x x x t MGP x tMGP x MGP x

t t xt
 + + +

+= + − + − −
− −

 

( )
( ) ( ) ( )( ) ( ) ( )( )2 1

0 1 0 12

1
2

2 1

n n

n nn
t MGP x t MGP x xMGP x tMGP x MGP x

t t xt

+ +

+= + − − −
− −

.         (77) 

Take 1n =  in (33), we can write 
 ( ) ( ) ( )1 0 12MGP x xMGP x MGP x−− = .            (78) 
By using (78) in (77), we obtain 

( )
( )

( ) ( ) ( ) ( )( )2 1

0 1 12
0

1 1

2 1

n
n n

k n nk n
k

MGP x t MGP x t MGP x tMGP x MGP x
t t t xt

+ +

− +

=

= + − −
− −
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( ) ( )( )
( )

( ) ( )( )2

0 1 12 2

1 1

2 1 2 1
n nn

t MGP x tMGP x tMGP x MGP x
t xt t t xt

− += + − +
− − − −

. 

The similar proof of (i) is used for (ii).                 
Therefore, the identities (i) and (ii) are immediately seen.              
Corollary 20 For n , 0x  , and 2 1 0x +  , the following equalities hold. 

(i) ( )
( )

( )2

0 1 12 2
0

1 1 1

2 1 2 1

n

k n nk n
k

MGP t MGP tMGP tMGP MGP
t t t t t t

− +

=

= + − +
− − − −

 ,   

(iii) ( )
( )

( )2

0 1 12 2
0

1 1 1

2 1 2 1

n

k n nk n
k

MGQ t MGQ tMGQ tMGQ MGQ
t t t t t t

− +

=

= + − +
− − − −

 ,   

(iii) ( )
( )

( )2

0 1 12 2
0

1 1 1

2 1 2 1

n

k n nk n
k

MGq t MGq tMGq tMGq MGq
t t t t t t

− +

=

= + − +
− − − −

 .   

Proof. Take 1x =  in Theorem 19 (i) and (ii), we have (i) and (iii). 
The similar proof of Theorem 19 is used for (ii).               
Corollary 21 For n , 0x  , and 2 1 0x +  , the following equalities hold. 

 (i) ( ) ( ) ( )( )
( )

( ) ( )( )2

0 1 12 2
0

1 1 1

2 1 2 1

n

k n nk n
k

MP x t MP x tMP x tMP x MP x
t t xt t t xt

− +

=

= + − +
− − − −

 , 

(ii) ( ) ( ) ( )( )
( )

( ) ( )( )2

0 1 12 2
0

1 1 1

2 1 2 1

n

k n nk n
k

MQ x t MQ x tMQ x tMQ x MQ x
t t xt t t xt

− +

=

= + − +
− − − −

 ,  

(iii) ( ) ( ) ( )( )
( )

( ) ( )( )2

0 1 12 2
0

1 1 1

2 1 2 1

n

k n nk n
k

Mq x t Mq x tMq x tMq x Mq x
t t xt t t xt

− +

=

= + − +
− − − −

 .   

Proof. The similar proof of Theorem 19 is used for (i), (ii), and (iii).             
Lemma 22 For ,m j  and j m , the following results hold. 

(i) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )( )

( ) ( )

( ) ( )
( ) ( ) ( )( )1 0 1 01

j m j m
m

j m

x x x x
MGP x MGP x x MGP x MGP x x MGP x

x x x x

   
 

   
−− = − − −

− −
, 

(ii) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )( )

( ) ( )

( ) ( )
( ) ( ) ( )( )1 0 1 01

j m j m
m

j m

x x x x
MGq x MGq x x MGq x MGq x x MGq x

x x x x

   
 

   
−− = − − −

− −
, 

(iii) ( ) ( ) ( )1 0 1 01
j m j m

m

j mMGP MGP MGP MGP MGP
   

 
   

−− = − − −
− −

, 

(iv) ( ) ( ) ( )1 0 1 01
j m j m

m

j mMGQ MGQ MGQ MGQ MGQ
   

 
   

−− = − − −
− −

,    

(v) ( ) ( ) ( )1 0 1 01
j m j m

m

j mMGq MGq MGq MGq MGq
   

 
   

−− = − − −
− −

, 

(vi) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )( )

( ) ( )

( ) ( )
( ) ( ) ( )( )1 0 1 01

j m j m
m

j m

x x x x
MP x MP x x MP x MP x x MP x

x x x x

   
 

   
−− = − − −

− −
,    
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(vii) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )( )

( ) ( )

( ) ( )
( ) ( ) ( )( )1 0 1 01

j m j m
m

j m

x x x x
MQ x MQ x x MQ x MQ x x MQ x

x x x x

   
 

   
−− = − − −

− −
, 

(viii) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )( )

( ) ( )

( ) ( )
( ) ( ) ( )( )1 0 1 01

j m j m
m

j m

x x x x
Mq x Mq x x Mq x Mq x x Mq x

x x x x

   
 

   
−− = − − −

− −
. 

Proof. Since (49) and ( ) 2 1x x x = + + , ( ) 2 1x x x = − +  be the roots of 2 2 1 0t xt− − = , we obtain  

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )( ) ( )

( )

( ) ( )
( ) ( ) ( )( )1 0 1 01 1 1

j m j m
m m m

j m

x x
MGP x MGP x x MGP x MGP x x MGP x

x x x x

 
 

   

− −

−− = − − − − −
− −

 ( )
( ) ( )

( ) ( )( ) ( ) ( )
( ) ( ) ( )( )1 01

j m
m

m m

x x
MGP x x MGP x

x x x x

 


   
= − −

−
 

           ( )
( ) ( )

( ) ( )( ) ( ) ( )
( ) ( ) ( )( )1 01

j m
m

m m

x x
MGP x x MGP x

x x x x

 


   
− − −

−
 

( ) ( )

( ) ( )
( ) ( ) ( )( )

( ) ( )

( ) ( )
( ) ( ) ( )( )1 0 1 0

j m j mx x x x
MGP x x MGP x MGP x x MGP x

x x x x

   
 

   
= − − −

− −
. 

Thus, ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )( )

( ) ( )

( ) ( )
( ) ( ) ( )( )1 0 1 01

j m j m
m

j m

x x x x
MGP x MGP x x MGP x MGP x x MGP x

x x x x

   
 

   
−− = − − −

− −
. 

The similar proof of (i) is used for (ii), (iii), (iv), (v), (vi), (vii), and (viii). 
Therefore, the identities (i), (ii), (iii), (iv), (v), (vi), (vii), and (viii) are immediately seen.           
Theorem 23 For , ,m n j  and j m , the following results hold. 
(i) 

( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )1

0

1
1 1

1 1

n
m m

mk j j j m m n m j m n jm m
k

MGP x MGP x MGP x MGP x MGP x
x x 

+

+ − + + +

=

= + − − + −
− −

 , 

(ii)

( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )1

0

1
1 1

1 1

n
m m

mk j j j m m n m j m n jm m
k

MGq x MGq x MGq x MGq x MGq x
x x 

+

+ − + + +

=

= + − − + −
− −

 . 

Proof. Let ( ) 2 1x x x = + + , ( ) 2 1x x x = − +  be the roots of 2 2 1 0t xt− − = . Then we have 

( )
0

n

m k j

k

MGP x+

=

  

( )

( ) ( )
( ) ( ) ( )( )

( )

( ) ( )
( ) ( ) ( )( )1 0 1 0

0

m k j m k jn

k

x x
MGP x x MGP x MGP x x MGP x

x x x x

 
 

   

+ +

=

 
= − − −  − − 
 .        (79) 

Since definition of a geometric sequence, we have 

( )

( ) ( )
( ) ( ) ( )( )

( )

( ) ( )
( ) ( ) ( )( )1 0 1 0

0

m k j m k jn

k

x x
MGP x x MGP x MGP x x MGP x

x x x x

 
 

   

+ +

=

 
− − −  − − 
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( ) ( )( )
( ) ( )( ) ( )( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( ) ( )( )
( ) ( ) ( )( )1 0 1 0

1 1

1 1

j m n m j m n m

m m

x x x x
MGP x x MGP x MGP x x MGP x

x x x x x x

   
 

     

+ +− −
= − − −

− − − −

( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )( )1 0

1 1

1 1

j m n m m

m m

x x x
MGP x x MGP x

x x x x

  


   

+− −
= −

− − −
 

 
( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )1 0

1 1

1 1

j m n m m

m m

x x x
MGP x x MGP x

x x x x

  


   

+− −
− −

− − −
.           (80) 

By using Lemma 22 (i) in (80), we have 

( )

( ) ( )
( ) ( ) ( )( )

( )

( ) ( )
( ) ( ) ( )( )1 0 1 0

0

m k j m k jn

k

x x
MGP x x MGP x MGP x x MGP x

x x x x

 
 

   

+ +

=

 
− − −  − − 

  

 
( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )1 0

1 1

1 1

j m n m m

m m

x x x
MGP x x MGP x

x x x x

  


   

+− −
= −

− − −
 

 
( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )1 0

1 1

1 1

j m n m m

m m

x x x
MGP x x MGP x

x x x x

  


   

+− −
− −

− − −
 

 
( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )11
1 1

1 1

m m

j j m m n m j m n jm m
MGP x MGP x MGP x MGP x

x x 

+

− + + += + − − + −
− −

. 

Thus, 

( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )1

0

1
1 1

1 1

n
m m

mk j j j m m n m j m n jm m
k

MGP x MGP x MGP x MGP x MGP x
x x 

+

+ − + + +

=

= + − − + −
− −

 . 

The similar proof of (i) is used for (ii). 
Therefore, the proof is complete.                 
Corollary 24 For , ,m n j  and j m , the following results hold. 

 (i) 
( )( )

( ) ( )( )1

0

1
1 1

1 1

n
m m

mk j j j m m n m j m n jm m
k

MGP MGP MGP MGP MGP
 

+

+ − + + +

=

= + − − + −
− −

 , 

(ii) 
( )( )

( ) ( )( )1

0

1
1 1

1 1

n
m m

mk j j j m m n m j m n jm m
k

MGQ MGQ MGQ MGQ MGQ
 

+

+ − + + +

=

= + − − + −
− −

 , 

(iii) 
( )( )

( ) ( )( )1

0

1
1 1

1 1

n
m m

mk j j j m m n m j m n jm m
k

MGq MGq MGq MGq MGq
 

+

+ − + + +

=

= + − − + −
− −

 .  

Proof. Take 1x =  in Theorem 23 (i) and (ii), we have (i) and (iii). 
The similar proof of Theorem 23 is used for (ii).               
Corollary 25 For , ,m n j  and j m , the following results hold. 

 (i) ( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )1

0

1
1 1

1 1

n
m m

mk j j j m m n m j m n jm m
k

MP x MP x MP x MP x MP x
x x 

+

+ − + + +

=

= + − − + −
− −

 , 
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(ii) ( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )1

0

1
1 1

1 1

n
m m

mk j j j m m n m j m n jm m
k

MQ x MQ x MQ x MQ x MQ x
x x 

+

+ − + + +

=

= + − − + −
− −

 , 

(iii) ( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )1

0

1
1 1

1 1

n
m m

mk j j j m m n m j m n jm m
k

Mq x Mq x Mq x Mq x Mq x
x x 

+

+ − + + +

=

= + − − + −
− −

 . 

Proof. The similar proof of Theorem 23 is used for (i), (ii), and (iii).             
 
Discussion 
 In this article, we get some identities of the relation between matrix sequences and summations by applying 
some properties of matrix operation, the relation between numbers and polynomials, and Binet’s formulas of matrix 
sequences. 
 
Conclusions  
 In this paper, some identities of matrix sequences prove by some properties of matrix operation, the relation 
between numbers and polynomials, and Binet’s formulas of 2 x 2 matrix representation.  We obtained especially 
some identities of the relationships between matrix sequences. Moreover, we conjecture which this concept extends 
to the matrix sequence in terms of other recurrence relations and present the n x n matrix for 3n  . 
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Abstract  

In this paper, we first presented the generalized Pell Number, Pell-Lucas Number and modified Pell 
Number, which are the recurrence relation by from the previous three terms. We have the Binet’s formula 
generating functions and generating functions of all three sequences. We establish some of the interesting 
properties involving of sequences those sequences. 

Keywords: Pell sequence Pell-Lucas sequence, Modified Pell sequence, Binet’s formula 

1. Introduction  
We will refer to the sequence of 

occurrences starting in the recurring relationship 
from the previous second terms: Fibonacci and 
Lucas number. Because of their general 
characteristics, there are many interesting 
properties and application to almost every fields of 
science and art. 

 

Previously, the sequence mentioned 
above is a sequence of positive integers that have 
been studied for many years. Many researchers 
have therefore examined about these sequences and 
also some properties that are excellent research 
topics. These sequences are examples of a 
sequences defined by a recurrence relation of 
second terms. It is well known that the Fibonacci 
sequence  nF , Lucas sequence  nL , Fibonacci- 

Vol.10 No.1 (2020) : 96-106 
www.sci.rmutt.ac.th/stj 
Online ISSN2229-1547 



Sci. & Tech. RMUTT J. Vol.10 No.1 (2020) 97 

 

 

like  nS  and Generalized Fibonacci-Like  nT  
are defined by the following recurring relationship  

1 2n n nF F F− −= + , 
0 0F = , 

1 1F = , 

1 2n n nL L L− −= + , 
0 2L = , 

1 1L = , 

1 2n n nS S S− −= + , 
0 2S = , 

1 2S =  and 

1 2n n nT T T− −= + , 
0T m= , 

1T m= , for all 
2n  , where m  is a positive integer, respectively 

[1-2], [8].  
In a similar way, other recurrence 

sequences of important positive integers as well are 
the sequence of Pell, Pell-Lucas and modified Pell 
sequence. which those sequences are  represented 
by  nP ,  nQ  and  nq  defined by the 
following recurrence 

1 22n n nP P P− −= + , 

0 0P = ,
1 1P = ,

1 22n n nQ Q Q− −= + ,
0 2Q = , 

1 2Q =  and 
1 22n n nq q q− −= + , 

0 1q = , 

1 1q =  for all 2n  , respectively [3-5].  
 Also, the Pell, Pell-Lucas and modified 

Pell sequence expand to the negative subscript, 
which are defined by [7], [9]. 

( )
1

1

n
n n

P
P− +

=
−

, for all 1n  ,            (1.1) 

and 

( )1

n
n n

Q
Q− =

−
, for all 1n  ,                 (1.2) 

and 

( )1

n
n n

q
q− =

−
, for all 1n  .                  (1.3) 

The properties of the sequence have 
received a lot of attention. Many sequences appear 
in literature, including Pell, Pell-Lucas and 
modified Pell. It is well-known that the proof uses 
Binet's formula [6].  

Moreover, for the reasons mentioned 
above, the sequence has more interest and can be  
used with other work and has an interesting 
direction at present. Therefore, the researchers 
were inspired by the study of Pell, Pell-Lucas and 
modified Pell sequence.  

2. Main Results 
In this section, we formulate some third 

terms sum identities for Pell sequence  nP , Pell-
Lucas sequence  nQ  and modified Pell sequence 

 nq  are present Catalan’s identity, Cassini’s 
identity, d’Ocagne’s identity, Binet’s formula and 
Generating function. 

Definition 2.1: The Pell sequence   nP , The Pell – 
Lucas  nQ  and Modified Pell number  nq  are 
defined by 

1 2 33n n n nP P P P− − −= + + , for all 3n  ,   (2.1) 

with initial conditions 0oP = , 
1 1P =  and 

2 2P = , 
1 2 33n n n nQ Q Q Q− − −= + + , for all 

3n  ,                                                              (2.2) 

with initial conditions 2oQ = , 
1 2Q =  and 

2 6Q = , and 
1 2 33n n n nq q q q− − −= + +    for 

all 3n  ,                                                       (2.3) 
with initial conditions 1oq = , 

1 1q =  and 

2 3q = . 
The first few terms of  nP  are 

0,1,2,5,12,29,70  and so on, and  nQ  are 
2,2,6,14,34,82,198,478  and so on, and 
 nq  are 1,1,3,7,17,41,99,239,577  and  
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so on. Similarly, the first few terms of  nP− , 

 nQ−  and  nq−  can be obtained from the 
equation (1.1), (1.2) and (1.3),  nP−  are 1, 2,−  
5, 12, 29,70− −  and so on,  nQ− are 2,6,−  

14,34, 82,198, 478− − −  and so on, and 
 nq−  are 1,3, 7,17, 41,99, 239,− − − −  
577 and so on,  respectively. Each Pell sequence, 
Pell-Lucas sequence and modified Pell sequence 
are called Pell numbers, Pell-Lucas numbers and 
modified Pell number.  

Furthermore, we will find Binet's formula 
to allow us to show the Pell number, Pell-Lucas 
number, and Modified Pell number, which has the 
following characteristic equation:  

3 2 3 1 0x x x− − − = ,                           (2.4) 

where ,   and   are the root of the equation, 
1 2, 1 2 = + = − , 1 = −  and   . 

  Note that 2 + = , 2 2 − =  
and  = , respectively. 

Next, we will say the equation is related 
to the repetitive relationship of (2.1), (2.2) and 
(2.3) defined by Theorem 2.2. 

Theorem 2.2: (Binet’s formula) The thn  Pell 
number, the thn  Pell – Lucas number and the thn  
Modified Pell number are given by  

n n

nP
 

 

−
=

−
,          (2.5) 

and 
n n

nQ  = + ,          (2.6) 
and 

n n

nq
 

 

+
=

+
,          (2.7) 

where n is not a negative integer and , ,   are 
the roots of the characteristic equation (2.4), which 
    . 

Proof. Since equation (2.4) has three different 
roots, the number of 

nP  is defined by 

1 2 3

n n n

nP c c c  = + + , 

for some coefficients
1c , 

2c  and 
3c . Let 

0, 1n n= =  and 2n = , then solve the system 

of linear equations, we will 
1

1
c

 
=

−
, 

2

1
c

 
= −

−
 and 

3 0c = , therefore 

n n

nP
 

 

−
=

−
. 

Similarly, the number of 
nQ  is given by 

1 2 3

n n n

nQ c c c  = + + ,  
for some coefficients 

1 2,c c  and 
3c . Use the same 

method as above, then solve this linear equation, 
we obtain 

1 21c c= =  and 
3 0c = , thence 

n n

nQ  = + .  
Similarly, the number  nq  is given by 

1 2 3

n n n

nq c c c  = + + ,  
for some coefficients

1 2,c c  and 
3c . Let 

0, 1n n= =  and 2n = , we obtain 

1 2

1
c c

 
= =

+
 and 

3 0c = , thence 

n n

nq
 

 

+
=

+
.  

 The proof completed.               

Theorem 2.3: (Catalan’s identity) 
Let n  is not a negative integer. Then   

2 1 2n r

n r n r n rP P P P − +

+ − − =  ,                (2.8) 
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and 
2 2 2n r n

n r n r n rQ Q Q Q −

+ − − = − ,     (2.9) 
and 

2 2

2

n r n

n r n
r

r nq
q

q q
 −

+ − − =
− .        (2.10) 

Proof. Since Binet’s formula (2.5), we obtain 

2
n r n r n r n r

n r n r nP P P
   

   

+ + − −

+ −

− −
− = 

− −

                               
2

n n 

 

 −
− 

− 
 

                           
( )

( )

2

1 2

2

.

n r n r

r

r r

n

rP

   

 

 − +

− − −
= −

−

=

  

Similarly, by Binet’s formula (2.6), we obtain 

( ) ( )2 n r n r n r n r

n r n r nQ Q Q    + + − −

+ − − = +  +

                                ( )
2

n n − +  

 ( )
2

n r n r r r   − −= −   

 ( )2 2n r n r r r   − −= +  

     2 n r n r r r   − −−  

2 2n r n

rQ −= − . 

Similarly, by Binet’s formula (2.7), we obtain 

2
n r n r n r n r

n r n r nq q q
   

   

+ + − −

+ −

+ +
− = 

+ +

                               
2

n n 

 

 +
− 

+ 
 

                           
( ) ( )

2 2

n r n r n r n r   

   

+ − − +

+
+

=
+

 

                               
( )

2

2 n n 

 
−

+
 

                           
2 2n r n r r r

 



 

  − − +
= 

+ +
 

   
n n



 


−

+
 

2

2

n r n

rq −

=
− . 

The proof completed.                

Theorem 2.4: (Catalan’s identity or Simpson’s 
identity) Let n  is not a negative integer. Then   

2

1 1

n

n n nP P P + − − = ,                            (2.11) 
and 

 2 1

1 1 8 n

n n nQ Q Q  −

+ − − = ,                    (2.12) 
and 

2 1

1 1 2 n

n n nq q q  −

+ − − =  .                     (2.13) 

Proof. Taking r 1=   in Catalan’s identity (2.8), 

(2.9) and (2.10), the proof completed.                

Theorem 2.5: (d’Ocagne’s identity) 
Let m , n  are not a negative integer and m n . 
Then  

1 1

n

m n m n m nP P P P P+ + −− = ,                   (2.14) 

and 

1 1 2 2 m

m n m nQ Q Q Q + +− =  
                                ( )2 n m

n mQ  −

− + ,     (2.15) 

and 

( )1 1 2m n m n

m n m

n mq qq q q   −

−+ +− = − .    (2.16) 

Proof. By Binet’s formula (2.5), we have 
1 1

1 1

m m n n

m n m nP P P P
   

   

+ +

+ +

− −
− = 

− −
 

1 1m m n n   

   

+ +− −
− 

− −
                                                    

                              
m n n m   

 
=

−

−
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m n
n

m n
n  

 
 

− −−

−
=  

n

m nP −= . 
Similarly, by Binet’s formula (2.6), we obtain 

( ) ( )1 1

1 1

m m n n

m n m nQ Q Q Q    + +

+ +− = +  +

                                    
( )

( )

1 1m m

n n

 

 

+ +− +

 +
                                  

                                 ( ) = −   

                                      ( )n m m n   −  

                                 ( ) m m   = −   

                                     ( )n m n m − −−  

                                 2 2 m=  
                                     ( )2 n m

n mQ  −

− + . 

Similarly, by Binet’s formula (2.7), we obtain 
1 1

1 1

m m n n

m n m nq q q q
   

   

+ +

+ +

+ +
− = 

+ +
 

1 1m m n n   

   

+ ++ +
− 

+ +

( )( )
( )

2

n m m n     

 

− −

+
=

 ( ) m m   = −  

 
( )
( )

2

n m n m 

 

− −−

+
 

( )2 m n m

n mq  −

−= − . 

The proof completed.                

Lemma 2.6 Let m , n  are not a negative integer 
and m n . Then  

1 1
2 2

n

m n m nP P P P


+ +− = ,           

                   ( )2 m n

m nQ  −

− +    (2.17) 

 

and 

( )1 1
2

n
m n

m n m n m nP P P P q


 −

+ + −− = + .     (2.18) 

Proof. The Proof same as Theorem 2.5. 

Lemma 2.7 Let m , n  are not a negative integer 
and m n . Then  

1 1 8 m

m n m n n mQ Q Q Q P+ + −− = ,                  (2.19) 
and 

1 1 4 2 m

m n m nQ Q Q Q + +− =  
                                ( )n m

n mq  −

− + .     (2.20) 

Proof. The Proof same as Theorem 2.5. 

Lemma 2.8 Let m , n  are not a negative integer 
and m n . Then  

1 1 2 m

m n m n n mq q q q P+ + −− = ,              (2.21) 
and 

1 1 2 m

m n m nq q q q + +− = .      
                                    ( )n m

n mq  −

− +         (2.22) 

Proof. The Proof same as Theorem 2.5. 

Theorem 2.9: Let    ,n nP Q  and  nq  be 
Pell, Pell–Lucas and Modified Pell sequences, m  
and n  are not a negative integer and m n . 
Then 

1

lim n

n
n

P

P


→
−

= ,            (2.23) 

and 

1

lim n

n
n

Q

Q


→
−

= ,           (2.24) 

and 

1

lim n

n
n

q

q


→
−

=  .           (2.25) 

Proof. By Binet’s formula (2.5), we have 
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1 1

1

lim lim
n n

n

n nn n
n

P

P

 

 − −→ →
−

−
=

−
 

                  
1

lim
1 1

n

nn







  

→

 
−  
 =
 

−  
 

. 

But   , then 1



  and lim 0.

n

n



→

 
= 

 
 

Therefor 
1

lim n

n
n

P

P


→
−

= . 

Similarly,
1 1

1

lim lim
n n

n

n nn n
n

Q

Q

 

 − −→ →
−

+
=

+
               

                                  
1

lim .
1 1

n

nn








  

→

 
+  
 = =
 

+  
 

 

Similarly, 
1 1

1

lim lim
n n

n

n nn n
n

Q

Q

 

 − −→ →
−

+
=

+
 

                                   
1

lim .
1 1

n

nn








  

→

 
+  
 = =
 

+  
 

 

This completes the proof.                

Lemma 2.10: Let    ,n nP Q  and  nq  be 
Pell, Pell–Lucas and Modified Pell sequences and 
n  is not a negative integer. Then 

1

lim n

n
n

P

Q



 →
−

=
−

,           (2.26) 

and 

1

lim n

n
n

P

q

 

 →
−

+
=

−
,           (2.27) 

and 

1

lim n

n
n

Q

q

 

→
−

−
= .           (2.28) 

Proof. The Proof same as Theorem 2.9. 

   In this paper, the generating function 
for Pell, Pell-Lucas and modified Pell sequences 
are given as a result, these sequence are seen and 
the coefficients of the power series of the 
corresponding generating function. 

The generating function for Pell, Pell-
Lucas and modified Pell sequences. We can also 
find the generating function for all three sequences 
by suppose that the Pell, Pell-Lucas and modified 
Pell sequences are the coefficients of a potential 
series center at the origin, and let us consider the 
corresponding analytic    ,n nP Q  and  nq  
of the function, which the function is as follows 
Theorem. 

Theorem 2.11: Let    ,n nP Q  and  nq  be 
Pell, Pell–Lucas and Modified Pell sequences and 
n  is not a negative integer. Then the generating 
function defined by  

( ) 21 2
n

x
P x

x x
=

− −
,           (2.29) 

and 

( ) 2

2 2

1 2
n

x
Q x

x x

−
=

− −
 ,          (2.30) 

and 

( ) 2

1

1 2
n

x
q x

x x

−
=

− −
.           (2.31) 

Proof. Let n  is a not negative integer and 

( ) 2 3 4

0 1 2 3 4nP x P Px P x P x P x= + + + +  
                 .n

nP x+ + +  
Then 
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( ) 2 3

0 1 22 2 2 2nxP x P x Px P x= + +  
                      12 n

nP x ++ + +  
( )2 2 3 4

0 1 2nx P x P x Px P x= + +  
                      2n

nP x ++ + +  
( ) ( ) ( )22n n nP x xP x x P x x− − =  

( ) ( )21 2 nx x P x x− − = . 

Thus ( ) 2
0 1 2

n

n n

n

x
P x P x

x x



=

= =
− −

 . 

Similarly, we have 
( ) 2 3 4

0 1 2 3 4nQ x Q Q x Q x Q x Q x= + + + +  
                  .n

nQ x+ + +  
Then, we obtain 

( ) 2 3

0 1 22 2 2 2nxQ x Q x Q x Q x= + +  
                       + 12 n

nQ x ++ +  
( )2 2 3 4

0 1 2nx Q x Q x Q x Q x= + +  
                       2n

nQ x ++ + +  
( ) ( ) ( )22 2 2n n nQ x xQ x x Q x x− − = −  

( ) ( )21 2 1 2 2nx x Q x x− − = − . 

Thus ( ) 2
0

2 2

1 2

n

n n

n

x
Q x Q x

x x



=

−
= =

− −
 . 

Similarly, we have 
( ) 2 3 4

0 1 2 3 4nq x q q x q x q x q x= + + + +                   

+ n

nq x+ + . 
Then, we write 

( ) 2 3

0 1 22 2 2 2nxq x q x q x q x= + +  
                       12 n

nq x ++ + +  
( )2 2 3 4

0 1 2nx q x q x q x q x= + +  
                      2n

nq x ++ + +  
( ) ( ) ( )22 1n n nq x xq x x q x x− − = −  

( ) ( )21 2 1nx x q x x− − = − . 

Thus ( ) 2
0

1

1 2

n

n n

n

x
q x q x

x x



=

−
= =

− −
 . 

This completes the proof.               

From the Theorem 2.11 used to find the 
generating function. Next will be the polynomial 
of Pell, Pell–Lucas and Modified Pell sequences 
from the generating function, which using 
Maclaurin series helps to find the following 
theorem. 

Theorem 2.12: The equality 
2 3

0 1 2 321 2

x
P Px P x P x

x x
= + + +

− −
 

                           4

4 ,P x+ +                     (2.32) 
and 

2 3

0 1 2 32

2 2

1 2

x
Q Q x Q x Q x

x x

−
= + + +

− −
, 

                           4

4 ,Q x+ +                        (2.33) 
and 

2 3

0 1 2 32

1

1 2

x
q q x q x q x

x x

−
= + + +

− −
 

                           4

4q x+ + .                     (2.34) 
Proof. Since Maclaurin series, ( )f x  

( ) ( )

0

0

!

n

n

n

f
x

n



=

= . Let ( ) 21 2

x
f x

x x
=

− −
 

for all x , we obtain 

( )
( )

( )
2 22

2 2 1

1 21 2

x x
f x

x xx x

− −
 = − +

− −− −
 

( )
( )

( )

( )

( )

2

2 3
2 2

2 2 2 2 2 2

1 2 1 2

x x x
f x

x x x x

− − − −
 = − +

− − − −

                  
( )

2
2

2

1 2

x

x x
+

− −
 

( )
( )

( )

( )

( )

3

4 3
2 2

6 2 2 12 2 2

1 2 1 2

x x x x
f x

x x x x

− − − −
 = − −

− − − −
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              ( )

( )

2

3
2

6 2 2

1 2

x

x x

− −
+

− −
 

              
( )

2
2

6

1 2x x
+

− −
 

( ) ( )

( )

( )

( )

4 2

5 4
2 2

4 24 2 2 72 2 2

1 2 1 2

x x x x

x x x x
f

− − − −
+

− − − −
=  

             
( )

( )

( )

3

3 4
2 2

24 2 224

1 2 1 2

xx

x x x x

− −
+ −

− − − −
  

             ( )

( )
3

2

48 2 2

1 2

x

x x

− −
−

− −
 

and so on.  
Then 
( ) ( ) ( )0 0, 1 1, 0 4,f f f = = =

( ) ( ) ( )4
0 30, 0 288f f = =  and so on, 

2 3

2

1 4 30
0

1 2 1! 2! 3!

x
x x x

x x
= + + +

− −
 

                           4288
.

4!
x+ +  

Thus 2 3

0 1 2 321 2

x
P Px P x P x

x x
= + + +

− −
 

                                   4

4P x+ + . 

Similarly, ( ) 2

2 2

1 2

x
f x

x x

−
=

− −
 for all x , we 

obtain 

( )
( )( )

( )
2 22

2 2 2 2 2

1 21 2

x x

x x
f

x
x

x

− − −
− −

− −− −
 =

( )
( )

( )
2

2

4 2 2

1 2

x
f x

x x

− −
 =

− −
  

                  ( )( )

( )

2

3
2

2 2 2 2 2

1 2

x x

x x

− − −
+

− −
 

( )

( )
2

2

2 2 2

1 2

x

x x

−
+

− −
 

( )
( )( )

( )

3

4
2

6 2 2 2 2

1 2

x x
f x

x x

− − −
 = −

− −
 

                   ( )( )

( )
3

2

12 2 2 2 2

1 2

x x

x x

− − −
−

− −
 

                  ( )

( ) ( )

2

3 2
2 2

12 2 2

1 2 2

1

1

2x

x x x x

− −
− −

− − − −
 

( ) ( )( )

( )2

4

4

5

24 2 2 2 2

1 2

x x

x x
f

− − −

− −
=  

              ( )( )

( )

2

4
2

72 2 2 2 2

1 2

x x

x x

− − −
+

− −
 

              ( )

( )

( )

( )

3

3 4
2 2

24 2 2 48 2 2

1 2 1 2

x x

x x x x

− − −
+ +

− − − −
 

              ( )

( )
3

2

96 2 2
,

1 2

x

x x

− −
+

− −
 

and so on. 
Then 
( ) ( ) ( )0 2, 1 2, 0 12,f f f = = =

( ) ( ) ( )4
0 84, 0 816f f = =  and so on, 

2 3

2

2 2 2 12 84
2

1 2 1! 2! 3!

x
x x x

x x

−
= + + +

− −
 

                          4816
.

4!
x+ +  

Thus 
2 3

0 1 2 32

2 2

1 2

x
Q Q x Q x Q x

x x

−
= + + +

− −
 

                           4

4 .Q x+ +  
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Similarly, ( ) 2

1

1 2

x
f x

x x

−
=

− −
 for all x , we 

obtain 

( )
( )( )

( )
2 22

2 2 1 1

1 21 2
x

x x
f

x xx x

− − −
−= −

− −−


−
 

( )
( )

( )
2

2

2 2 2

1 2

x
f x

x x

− −
 =

− −
  

                 ( )( )

( )

2

3
2

2 1 2 2

1 2

x x

x x

− − −
+

− −
 

                 ( )

( )
2

2

2 1

1 2

x

x x

−
+

− −
 

( )
( )( )

( )

3

4
2

6 1 2 2

1 2

x x
f x

x x

− − −
 = −

− −
 

                   ( )( )

( )
3

2

12 1 2 2

1 2

x x

x x

− − −
−

− −
 

                   ( )

( ) ( )

2

3 2
2 2

6 2 2

1 2 2

6

1

x

x x x x

− −
− −

− − − −
 

( ) ( )( )

( )

4

4

5
2

24 1 2 2

1 2

x x

x x
f

− − −

− −
=   

             ( )( )

( )

2

4
2

72 1 2 2

1 2

x x

x x

− − −
+

− −
 

            ( )

( )

( )

( )

3

3 4
2 2

24 1 24 2 2

1 2 1 2

x x

x x x x

− − −
+ +

− − − −
  

 ( )

( )
3

2

48 2 2

1 2

x

x x

− −
+

− −
, 

and so on.  
Then  
( ) ( ) ( )0 1, 1 1, 0 6,f f f = = =

( ) ( ) ( )4
0 42, 0 408f f = =  and so on, 

2 3

2

1 1 6 42
1

1 2 1! 2! 3!

x
x x x

x x

−
= + + +

− −
 

                           4408
.

4!
x+ +  

Thus 2 3

0 1 2 32

1

1 2

x
q q x q x q x

x x

−
= + + +

− −
 

                                    4

4q x+ + . 

This completes the proof.               

Next, we will discuss the power series, 

including 
0 0

,n n

n n

n n

P x Q x
 

= =

   and 
0

n

n

n

q x


=

  in 

0x x−  but 
0 0x =  converges is always an 

interval center at 0x = . We test convergence of 
such series by complete convergence and series 

converges if 1
x


  and series diverges if 

1
x


 . The series convergences absolutely 

open interval 1 1
,

 

 
− 
 

, making the convergence 

radius equal 1


, as the following Theorem. 

Theorem 2.13: Let 
0 0

,n n

n n

n n

P x Q x
 

= =

   and 

0

n

n

n

q x


=

  are power series. Then interval of 

convergence for the given series is 1 1
,

 

 
− 
 

 

and the radius of convergence is 1


. 

Proof. By absolute convergence and Theorem 2.9, 
we have 

1

1

lim lim
n

n

nn n
n

P x
x x

P x
 

−→ →
−

= = . 

So the 
0

n

n

n

P x


=

  converges absolute if  
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1

1

lim 1
n

n

nn
n

P x

P x −→
−

 , then 1x   and 

1
x


 .  

The test value 1
x


=  or 1

x


= − , when 

replaced in series, will be 

 1 2
0 2

0

1
n

n

n

P P
P P

  



=

 
= + + + 

 
  and 

( )
0 0

1 1
1

n n
n

n n

n n

P P
 

 

= =

   
− = −   
   

   

1 2
0 2

P P
P

 
= − + − . 

 So both of diverge, therefore the interval of 
convergence for the given power series is  

1 1
,

 

 
− 
 

 and the radius of convergence is 1


. 

The 
0

n

n

n

Q x


=

  and 
0

n

n

n

q x


=

  will prove similarly, 

then the interval of convergence for the given 

power series are 1 1
,

 

 
− 
 

 and the radius of 

convergence are 1


, this completes the proof.                                                                      

                                                                             
From the theorem 2.13, found that the 

polynomial of Pell, Pell–Lucas and Modified Pell 

sequences are convergence to 1


 and there is 

scope for convergence during the opening period 
1 1

,
 

 
− 
 

. 

 
 
 

Lemma 2.14: The equality 
( ) 2 3

0 1 2 3nP x P Px P x P x= + + +    
                      4

4 ,P x+ +                          (2.35) 
and 

( ) 2 3

0 1 2 3nQ x Q Q x Q x Q x= + + +  
                  4

4 ,Q x+ +                       (2.36) 
and 

( ) 2 3

0 1 2 3nq x q q x q x q x= + + +      
                 4

4q x+ + .                         (2.37) 

for all 1 1
,x

 

 
 − 
 

. 

Then ( ) 00nP P= , ( ) 00nQ Q=  and 

( ) 00nq q= . 

Proof. Taking 0x =  in (2.35), (2.36) and (2.37).  

The proof completed.                

Furthermore, how to find ( )0nP , 
( )0nQ  and ( )0nq . We also use the equation 

(2.29), (2.30) and (2.31) in the Theorem 2.11 by 
giving x = 0, then ( ) 00nP P= , ( ) 00nQ Q=  
and ( ) 00nq q= , respectively. 

3. Conclusion 
In this article, first of all, we consider the 

generality of Pell, Pell-Lucas and modified Pell 
sequence by the result of the previous three terms. 
Then we introduced the Pell, Pell-Lucas and 
modified Pell number. Until finally, we got the 
Binet’s formula and the generating function of  
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Pell, Pell-Lucas and the modified Pell sequence. In 
addition, we also received the information some 
important identities involving the terms of these 
sequences.  
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Abstract  

In this paper, we first presented the generalized Pell Number, Pell-Lucas Number and modified Pell 
Number, which are the recurrence relation by from the previous three terms. We have the Binet’s formula 
generating functions and generating functions of all three sequences. We establish some of the interesting 
properties involving of sequences those sequences. 

Keywords: Pell sequence Pell-Lucas sequence, Modified Pell sequence, Binet’s formula 

1. Introduction  
We will refer to the sequence of 

occurrences starting in the recurring relationship 
from the previous second terms: Fibonacci and 
Lucas number. Because of their general 
characteristics, there are many interesting 
properties and application to almost every fields of 
science and art. 

 

Previously, the sequence mentioned 
above is a sequence of positive integers that have 
been studied for many years. Many researchers 
have therefore examined about these sequences and 
also some properties that are excellent research 
topics. These sequences are examples of a 
sequences defined by a recurrence relation of 
second terms. It is well known that the Fibonacci 
sequence  nF , Lucas sequence  nL , Fibonacci- 
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like  nS  and Generalized Fibonacci-Like  nT  
are defined by the following recurring relationship  

1 2n n nF F F− −= + , 
0 0F = , 

1 1F = , 

1 2n n nL L L− −= + , 
0 2L = , 

1 1L = , 

1 2n n nS S S− −= + , 
0 2S = , 

1 2S =  and 

1 2n n nT T T− −= + , 
0T m= , 

1T m= , for all 
2n  , where m  is a positive integer, respectively 

[1-2], [8].  
In a similar way, other recurrence 

sequences of important positive integers as well are 
the sequence of Pell, Pell-Lucas and modified Pell 
sequence. which those sequences are  represented 
by  nP ,  nQ  and  nq  defined by the 
following recurrence 

1 22n n nP P P− −= + , 

0 0P = ,
1 1P = ,

1 22n n nQ Q Q− −= + ,
0 2Q = , 

1 2Q =  and 
1 22n n nq q q− −= + , 

0 1q = , 

1 1q =  for all 2n  , respectively [3-5].  
 Also, the Pell, Pell-Lucas and modified 

Pell sequence expand to the negative subscript, 
which are defined by [7], [9]. 

( )
1

1

n
n n

P
P− +

=
−

, for all 1n  ,            (1.1) 

and 

( )1

n
n n

Q
Q− =

−
, for all 1n  ,                 (1.2) 

and 

( )1

n
n n

q
q− =

−
, for all 1n  .                  (1.3) 

The properties of the sequence have 
received a lot of attention. Many sequences appear 
in literature, including Pell, Pell-Lucas and 
modified Pell. It is well-known that the proof uses 
Binet's formula [6].  

Moreover, for the reasons mentioned 
above, the sequence has more interest and can be  
used with other work and has an interesting 
direction at present. Therefore, the researchers 
were inspired by the study of Pell, Pell-Lucas and 
modified Pell sequence.  

2. Main Results 
In this section, we formulate some third 

terms sum identities for Pell sequence  nP , Pell-
Lucas sequence  nQ  and modified Pell sequence 

 nq  are present Catalan’s identity, Cassini’s 
identity, d’Ocagne’s identity, Binet’s formula and 
Generating function. 

Definition 2.1: The Pell sequence   nP , The Pell – 
Lucas  nQ  and Modified Pell number  nq  are 
defined by 

1 2 33n n n nP P P P− − −= + + , for all 3n  ,   (2.1) 

with initial conditions 0oP = , 
1 1P =  and 

2 2P = , 
1 2 33n n n nQ Q Q Q− − −= + + , for all 

3n  ,                                                              (2.2) 

with initial conditions 2oQ = , 
1 2Q =  and 

2 6Q = , and 
1 2 33n n n nq q q q− − −= + +    for 

all 3n  ,                                                       (2.3) 
with initial conditions 1oq = , 

1 1q =  and 

2 3q = . 
The first few terms of  nP  are 

0,1,2,5,12,29,70  and so on, and  nQ  are 
2,2,6,14,34,82,198,478  and so on, and 
 nq  are 1,1,3,7,17,41,99,239,577  and  
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so on. Similarly, the first few terms of  nP− , 

 nQ−  and  nq−  can be obtained from the 
equation (1.1), (1.2) and (1.3),  nP−  are 1, 2,−  
5, 12, 29,70− −  and so on,  nQ− are 2,6,−  

14,34, 82,198, 478− − −  and so on, and 
 nq−  are 1,3, 7,17, 41,99, 239,− − − −  
577 and so on,  respectively. Each Pell sequence, 
Pell-Lucas sequence and modified Pell sequence 
are called Pell numbers, Pell-Lucas numbers and 
modified Pell number.  

Furthermore, we will find Binet's formula 
to allow us to show the Pell number, Pell-Lucas 
number, and Modified Pell number, which has the 
following characteristic equation:  

3 2 3 1 0x x x− − − = ,                           (2.4) 

where ,   and   are the root of the equation, 
1 2, 1 2 = + = − , 1 = −  and   . 

  Note that 2 + = , 2 2 − =  
and  = , respectively. 

Next, we will say the equation is related 
to the repetitive relationship of (2.1), (2.2) and 
(2.3) defined by Theorem 2.2. 

Theorem 2.2: (Binet’s formula) The thn  Pell 
number, the thn  Pell – Lucas number and the thn  
Modified Pell number are given by  

n n

nP
 

 

−
=

−
,          (2.5) 

and 
n n

nQ  = + ,          (2.6) 
and 

n n

nq
 

 

+
=

+
,          (2.7) 

where n is not a negative integer and , ,   are 
the roots of the characteristic equation (2.4), which 
    . 

Proof. Since equation (2.4) has three different 
roots, the number of 

nP  is defined by 

1 2 3

n n n

nP c c c  = + + , 

for some coefficients
1c , 

2c  and 
3c . Let 

0, 1n n= =  and 2n = , then solve the system 

of linear equations, we will 
1

1
c

 
=

−
, 

2

1
c

 
= −

−
 and 

3 0c = , therefore 

n n

nP
 

 

−
=

−
. 

Similarly, the number of 
nQ  is given by 

1 2 3

n n n

nQ c c c  = + + ,  
for some coefficients 

1 2,c c  and 
3c . Use the same 

method as above, then solve this linear equation, 
we obtain 

1 21c c= =  and 
3 0c = , thence 

n n

nQ  = + .  
Similarly, the number  nq  is given by 

1 2 3

n n n

nq c c c  = + + ,  
for some coefficients

1 2,c c  and 
3c . Let 

0, 1n n= =  and 2n = , we obtain 

1 2

1
c c

 
= =

+
 and 

3 0c = , thence 

n n

nq
 

 

+
=

+
.  

 The proof completed.               

Theorem 2.3: (Catalan’s identity) 
Let n  is not a negative integer. Then   

2 1 2n r

n r n r n rP P P P − +

+ − − =  ,                (2.8) 
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and 
2 2 2n r n

n r n r n rQ Q Q Q −

+ − − = − ,     (2.9) 
and 

2 2

2

n r n

n r n
r

r nq
q

q q
 −

+ − − =
− .        (2.10) 

Proof. Since Binet’s formula (2.5), we obtain 

2
n r n r n r n r

n r n r nP P P
   

   

+ + − −

+ −

− −
− = 

− −

                               
2

n n 

 

 −
− 

− 
 

                           
( )

( )

2

1 2

2

.

n r n r

r

r r

n

rP

   

 

 − +

− − −
= −

−

=

  

Similarly, by Binet’s formula (2.6), we obtain 

( ) ( )2 n r n r n r n r

n r n r nQ Q Q    + + − −

+ − − = +  +

                                ( )
2

n n − +  

 ( )
2

n r n r r r   − −= −   

 ( )2 2n r n r r r   − −= +  

     2 n r n r r r   − −−  

2 2n r n

rQ −= − . 

Similarly, by Binet’s formula (2.7), we obtain 

2
n r n r n r n r

n r n r nq q q
   

   

+ + − −

+ −

+ +
− = 

+ +

                               
2

n n 

 

 +
− 

+ 
 

                           
( ) ( )

2 2

n r n r n r n r   

   

+ − − +

+
+

=
+

 

                               
( )

2

2 n n 

 
−

+
 

                           
2 2n r n r r r

 



 

  − − +
= 

+ +
 

   
n n



 


−

+
 

2

2

n r n

rq −

=
− . 

The proof completed.                

Theorem 2.4: (Catalan’s identity or Simpson’s 
identity) Let n  is not a negative integer. Then   

2

1 1

n

n n nP P P + − − = ,                            (2.11) 
and 

 2 1

1 1 8 n

n n nQ Q Q  −

+ − − = ,                    (2.12) 
and 

2 1

1 1 2 n

n n nq q q  −

+ − − =  .                     (2.13) 

Proof. Taking r 1=   in Catalan’s identity (2.8), 

(2.9) and (2.10), the proof completed.                

Theorem 2.5: (d’Ocagne’s identity) 
Let m , n  are not a negative integer and m n . 
Then  

1 1

n

m n m n m nP P P P P+ + −− = ,                   (2.14) 

and 

1 1 2 2 m

m n m nQ Q Q Q + +− =  
                                ( )2 n m

n mQ  −

− + ,     (2.15) 

and 

( )1 1 2m n m n

m n m

n mq qq q q   −

−+ +− = − .    (2.16) 

Proof. By Binet’s formula (2.5), we have 
1 1

1 1

m m n n

m n m nP P P P
   

   

+ +

+ +

− −
− = 

− −
 

1 1m m n n   

   

+ +− −
− 

− −
                                                    

                              
m n n m   

 
=

−

−
  

 



100  Sci. & Tech. RMUTT J. Vol.10 No.1 (2020) 

 

m n
n

m n
n  

 
 

− −−

−
=  

n

m nP −= . 
Similarly, by Binet’s formula (2.6), we obtain 

( ) ( )1 1

1 1

m m n n

m n m nQ Q Q Q    + +

+ +− = +  +

                                    
( )

( )

1 1m m

n n

 

 

+ +− +

 +
                                  

                                 ( ) = −   

                                      ( )n m m n   −  

                                 ( ) m m   = −   

                                     ( )n m n m − −−  

                                 2 2 m=  
                                     ( )2 n m

n mQ  −

− + . 

Similarly, by Binet’s formula (2.7), we obtain 
1 1

1 1

m m n n

m n m nq q q q
   

   

+ +

+ +

+ +
− = 

+ +
 

1 1m m n n   

   

+ ++ +
− 

+ +

( )( )
( )

2

n m m n     

 

− −

+
=

 ( ) m m   = −  

 
( )
( )

2

n m n m 

 

− −−

+
 

( )2 m n m

n mq  −

−= − . 

The proof completed.                

Lemma 2.6 Let m , n  are not a negative integer 
and m n . Then  

1 1
2 2

n

m n m nP P P P


+ +− = ,           

                   ( )2 m n

m nQ  −

− +    (2.17) 

 

and 

( )1 1
2

n
m n

m n m n m nP P P P q


 −

+ + −− = + .     (2.18) 

Proof. The Proof same as Theorem 2.5. 

Lemma 2.7 Let m , n  are not a negative integer 
and m n . Then  

1 1 8 m

m n m n n mQ Q Q Q P+ + −− = ,                  (2.19) 
and 

1 1 4 2 m

m n m nQ Q Q Q + +− =  
                                ( )n m

n mq  −

− + .     (2.20) 

Proof. The Proof same as Theorem 2.5. 

Lemma 2.8 Let m , n  are not a negative integer 
and m n . Then  

1 1 2 m

m n m n n mq q q q P+ + −− = ,              (2.21) 
and 

1 1 2 m

m n m nq q q q + +− = .      
                                    ( )n m

n mq  −

− +         (2.22) 

Proof. The Proof same as Theorem 2.5. 

Theorem 2.9: Let    ,n nP Q  and  nq  be 
Pell, Pell–Lucas and Modified Pell sequences, m  
and n  are not a negative integer and m n . 
Then 

1

lim n

n
n

P

P


→
−

= ,            (2.23) 

and 

1

lim n

n
n

Q

Q


→
−

= ,           (2.24) 

and 

1

lim n

n
n

q

q


→
−

=  .           (2.25) 

Proof. By Binet’s formula (2.5), we have 
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1 1

1

lim lim
n n

n

n nn n
n

P

P

 

 − −→ →
−

−
=

−
 

                  
1

lim
1 1

n

nn







  

→

 
−  
 =
 

−  
 

. 

But   , then 1



  and lim 0.

n

n



→

 
= 

 
 

Therefor 
1

lim n

n
n

P

P


→
−

= . 

Similarly,
1 1

1

lim lim
n n

n

n nn n
n

Q

Q

 

 − −→ →
−

+
=

+
               

                                  
1

lim .
1 1

n

nn








  

→

 
+  
 = =
 

+  
 

 

Similarly, 
1 1

1

lim lim
n n

n

n nn n
n

Q

Q

 

 − −→ →
−

+
=

+
 

                                   
1

lim .
1 1

n

nn








  

→

 
+  
 = =
 

+  
 

 

This completes the proof.                

Lemma 2.10: Let    ,n nP Q  and  nq  be 
Pell, Pell–Lucas and Modified Pell sequences and 
n  is not a negative integer. Then 

1

lim n

n
n

P

Q



 →
−

=
−

,           (2.26) 

and 

1

lim n

n
n

P

q

 

 →
−

+
=

−
,           (2.27) 

and 

1

lim n

n
n

Q

q

 

→
−

−
= .           (2.28) 

Proof. The Proof same as Theorem 2.9. 

   In this paper, the generating function 
for Pell, Pell-Lucas and modified Pell sequences 
are given as a result, these sequence are seen and 
the coefficients of the power series of the 
corresponding generating function. 

The generating function for Pell, Pell-
Lucas and modified Pell sequences. We can also 
find the generating function for all three sequences 
by suppose that the Pell, Pell-Lucas and modified 
Pell sequences are the coefficients of a potential 
series center at the origin, and let us consider the 
corresponding analytic    ,n nP Q  and  nq  
of the function, which the function is as follows 
Theorem. 

Theorem 2.11: Let    ,n nP Q  and  nq  be 
Pell, Pell–Lucas and Modified Pell sequences and 
n  is not a negative integer. Then the generating 
function defined by  

( ) 21 2
n

x
P x

x x
=

− −
,           (2.29) 

and 

( ) 2

2 2

1 2
n

x
Q x

x x

−
=

− −
 ,          (2.30) 

and 

( ) 2

1

1 2
n

x
q x

x x

−
=

− −
.           (2.31) 

Proof. Let n  is a not negative integer and 

( ) 2 3 4

0 1 2 3 4nP x P Px P x P x P x= + + + +  
                 .n

nP x+ + +  
Then 
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( ) 2 3

0 1 22 2 2 2nxP x P x Px P x= + +  
                      12 n

nP x ++ + +  
( )2 2 3 4

0 1 2nx P x P x Px P x= + +  
                      2n

nP x ++ + +  
( ) ( ) ( )22n n nP x xP x x P x x− − =  

( ) ( )21 2 nx x P x x− − = . 

Thus ( ) 2
0 1 2

n

n n

n

x
P x P x

x x



=

= =
− −

 . 

Similarly, we have 
( ) 2 3 4

0 1 2 3 4nQ x Q Q x Q x Q x Q x= + + + +  
                  .n

nQ x+ + +  
Then, we obtain 

( ) 2 3

0 1 22 2 2 2nxQ x Q x Q x Q x= + +  
                       + 12 n

nQ x ++ +  
( )2 2 3 4

0 1 2nx Q x Q x Q x Q x= + +  
                       2n

nQ x ++ + +  
( ) ( ) ( )22 2 2n n nQ x xQ x x Q x x− − = −  

( ) ( )21 2 1 2 2nx x Q x x− − = − . 

Thus ( ) 2
0

2 2

1 2

n

n n

n

x
Q x Q x

x x



=

−
= =

− −
 . 

Similarly, we have 
( ) 2 3 4

0 1 2 3 4nq x q q x q x q x q x= + + + +                   

+ n

nq x+ + . 
Then, we write 

( ) 2 3

0 1 22 2 2 2nxq x q x q x q x= + +  
                       12 n

nq x ++ + +  
( )2 2 3 4

0 1 2nx q x q x q x q x= + +  
                      2n

nq x ++ + +  
( ) ( ) ( )22 1n n nq x xq x x q x x− − = −  

( ) ( )21 2 1nx x q x x− − = − . 

Thus ( ) 2
0

1

1 2

n

n n

n

x
q x q x

x x



=

−
= =

− −
 . 

This completes the proof.               

From the Theorem 2.11 used to find the 
generating function. Next will be the polynomial 
of Pell, Pell–Lucas and Modified Pell sequences 
from the generating function, which using 
Maclaurin series helps to find the following 
theorem. 

Theorem 2.12: The equality 
2 3

0 1 2 321 2

x
P Px P x P x

x x
= + + +

− −
 

                           4

4 ,P x+ +                     (2.32) 
and 

2 3

0 1 2 32

2 2

1 2

x
Q Q x Q x Q x

x x

−
= + + +

− −
, 

                           4

4 ,Q x+ +                        (2.33) 
and 

2 3

0 1 2 32

1

1 2

x
q q x q x q x

x x

−
= + + +

− −
 

                           4

4q x+ + .                     (2.34) 
Proof. Since Maclaurin series, ( )f x  

( ) ( )

0

0

!

n

n

n

f
x

n



=

= . Let ( ) 21 2

x
f x

x x
=

− −
 

for all x , we obtain 

( )
( )

( )
2 22

2 2 1

1 21 2

x x
f x

x xx x

− −
 = − +

− −− −
 

( )
( )

( )

( )

( )

2

2 3
2 2

2 2 2 2 2 2

1 2 1 2

x x x
f x

x x x x

− − − −
 = − +

− − − −

                  
( )

2
2

2

1 2

x

x x
+

− −
 

( )
( )

( )

( )

( )

3

4 3
2 2

6 2 2 12 2 2

1 2 1 2

x x x x
f x

x x x x

− − − −
 = − −

− − − −

    



Sci. & Tech. RMUTT J. Vol.10 No.1 (2020) 103 

 

 

              ( )

( )

2

3
2

6 2 2

1 2

x

x x

− −
+

− −
 

              
( )

2
2

6

1 2x x
+

− −
 

( ) ( )

( )

( )

( )

4 2

5 4
2 2

4 24 2 2 72 2 2

1 2 1 2

x x x x

x x x x
f

− − − −
+

− − − −
=  

             
( )

( )

( )

3

3 4
2 2

24 2 224

1 2 1 2

xx

x x x x

− −
+ −

− − − −
  

             ( )

( )
3

2

48 2 2

1 2

x

x x

− −
−

− −
 

and so on.  
Then 
( ) ( ) ( )0 0, 1 1, 0 4,f f f = = =

( ) ( ) ( )4
0 30, 0 288f f = =  and so on, 

2 3

2

1 4 30
0

1 2 1! 2! 3!

x
x x x

x x
= + + +

− −
 

                           4288
.

4!
x+ +  

Thus 2 3

0 1 2 321 2

x
P Px P x P x

x x
= + + +

− −
 

                                   4

4P x+ + . 

Similarly, ( ) 2

2 2

1 2

x
f x

x x

−
=

− −
 for all x , we 

obtain 

( )
( )( )

( )
2 22

2 2 2 2 2

1 21 2

x x

x x
f

x
x

x

− − −
− −

− −− −
 =

( )
( )

( )
2

2

4 2 2

1 2

x
f x

x x

− −
 =

− −
  

                  ( )( )

( )

2

3
2

2 2 2 2 2

1 2

x x

x x

− − −
+

− −
 

( )

( )
2

2

2 2 2

1 2

x

x x

−
+

− −
 

( )
( )( )

( )

3

4
2

6 2 2 2 2

1 2

x x
f x

x x

− − −
 = −

− −
 

                   ( )( )

( )
3

2

12 2 2 2 2

1 2

x x

x x

− − −
−

− −
 

                  ( )

( ) ( )

2

3 2
2 2

12 2 2

1 2 2

1

1

2x

x x x x

− −
− −

− − − −
 

( ) ( )( )

( )2

4

4

5

24 2 2 2 2

1 2

x x

x x
f

− − −

− −
=  

              ( )( )

( )

2

4
2

72 2 2 2 2

1 2

x x

x x

− − −
+

− −
 

              ( )

( )

( )

( )

3

3 4
2 2

24 2 2 48 2 2

1 2 1 2

x x

x x x x

− − −
+ +

− − − −
 

              ( )

( )
3

2

96 2 2
,

1 2

x

x x

− −
+

− −
 

and so on. 
Then 
( ) ( ) ( )0 2, 1 2, 0 12,f f f = = =

( ) ( ) ( )4
0 84, 0 816f f = =  and so on, 

2 3

2

2 2 2 12 84
2

1 2 1! 2! 3!

x
x x x

x x

−
= + + +

− −
 

                          4816
.

4!
x+ +  

Thus 
2 3

0 1 2 32

2 2

1 2

x
Q Q x Q x Q x

x x

−
= + + +

− −
 

                           4

4 .Q x+ +  
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Similarly, ( ) 2

1

1 2

x
f x

x x

−
=

− −
 for all x , we 

obtain 

( )
( )( )

( )
2 22

2 2 1 1

1 21 2
x

x x
f

x xx x

− − −
−= −

− −−


−
 

( )
( )

( )
2

2

2 2 2

1 2

x
f x

x x

− −
 =

− −
  

                 ( )( )

( )

2

3
2

2 1 2 2

1 2

x x

x x

− − −
+

− −
 

                 ( )

( )
2

2

2 1

1 2

x

x x

−
+

− −
 

( )
( )( )

( )

3

4
2

6 1 2 2

1 2

x x
f x

x x

− − −
 = −

− −
 

                   ( )( )

( )
3

2

12 1 2 2

1 2

x x

x x

− − −
−

− −
 

                   ( )

( ) ( )

2

3 2
2 2

6 2 2

1 2 2

6

1

x

x x x x

− −
− −

− − − −
 

( ) ( )( )

( )

4

4

5
2

24 1 2 2

1 2

x x

x x
f

− − −

− −
=   

             ( )( )

( )

2

4
2

72 1 2 2

1 2

x x

x x

− − −
+

− −
 

            ( )

( )

( )

( )

3

3 4
2 2

24 1 24 2 2

1 2 1 2

x x

x x x x

− − −
+ +

− − − −
  

 ( )

( )
3

2

48 2 2

1 2

x

x x

− −
+

− −
, 

and so on.  
Then  
( ) ( ) ( )0 1, 1 1, 0 6,f f f = = =

( ) ( ) ( )4
0 42, 0 408f f = =  and so on, 

2 3

2

1 1 6 42
1

1 2 1! 2! 3!

x
x x x

x x

−
= + + +

− −
 

                           4408
.

4!
x+ +  

Thus 2 3

0 1 2 32

1

1 2

x
q q x q x q x

x x

−
= + + +

− −
 

                                    4

4q x+ + . 

This completes the proof.               

Next, we will discuss the power series, 

including 
0 0

,n n

n n

n n

P x Q x
 

= =

   and 
0

n

n

n

q x


=

  in 

0x x−  but 
0 0x =  converges is always an 

interval center at 0x = . We test convergence of 
such series by complete convergence and series 

converges if 1
x


  and series diverges if 

1
x


 . The series convergences absolutely 

open interval 1 1
,

 

 
− 
 

, making the convergence 

radius equal 1


, as the following Theorem. 

Theorem 2.13: Let 
0 0

,n n

n n

n n

P x Q x
 

= =

   and 

0

n

n

n

q x


=

  are power series. Then interval of 

convergence for the given series is 1 1
,

 

 
− 
 

 

and the radius of convergence is 1


. 

Proof. By absolute convergence and Theorem 2.9, 
we have 

1

1

lim lim
n

n

nn n
n

P x
x x

P x
 

−→ →
−

= = . 

So the 
0

n

n

n

P x


=

  converges absolute if  
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1

1

lim 1
n

n

nn
n

P x

P x −→
−

 , then 1x   and 

1
x


 .  

The test value 1
x


=  or 1

x


= − , when 

replaced in series, will be 

 1 2
0 2

0

1
n

n

n

P P
P P

  



=

 
= + + + 

 
  and 

( )
0 0

1 1
1

n n
n

n n

n n

P P
 

 

= =

   
− = −   
   

   

1 2
0 2

P P
P

 
= − + − . 

 So both of diverge, therefore the interval of 
convergence for the given power series is  

1 1
,

 

 
− 
 

 and the radius of convergence is 1


. 

The 
0

n

n

n

Q x


=

  and 
0

n

n

n

q x


=

  will prove similarly, 

then the interval of convergence for the given 

power series are 1 1
,

 

 
− 
 

 and the radius of 

convergence are 1


, this completes the proof.                                                                      

                                                                             
From the theorem 2.13, found that the 

polynomial of Pell, Pell–Lucas and Modified Pell 

sequences are convergence to 1


 and there is 

scope for convergence during the opening period 
1 1

,
 

 
− 
 

. 

 
 
 

Lemma 2.14: The equality 
( ) 2 3

0 1 2 3nP x P Px P x P x= + + +    
                      4

4 ,P x+ +                          (2.35) 
and 

( ) 2 3

0 1 2 3nQ x Q Q x Q x Q x= + + +  
                  4

4 ,Q x+ +                       (2.36) 
and 

( ) 2 3

0 1 2 3nq x q q x q x q x= + + +      
                 4

4q x+ + .                         (2.37) 

for all 1 1
,x

 

 
 − 
 

. 

Then ( ) 00nP P= , ( ) 00nQ Q=  and 

( ) 00nq q= . 

Proof. Taking 0x =  in (2.35), (2.36) and (2.37).  

The proof completed.                

Furthermore, how to find ( )0nP , 
( )0nQ  and ( )0nq . We also use the equation 

(2.29), (2.30) and (2.31) in the Theorem 2.11 by 
giving x = 0, then ( ) 00nP P= , ( ) 00nQ Q=  
and ( ) 00nq q= , respectively. 

3. Conclusion 
In this article, first of all, we consider the 

generality of Pell, Pell-Lucas and modified Pell 
sequence by the result of the previous three terms. 
Then we introduced the Pell, Pell-Lucas and 
modified Pell number. Until finally, we got the 
Binet’s formula and the generating function of  
 
 
 
 



106  Sci. & Tech. RMUTT J. Vol.10 No.1 (2020) 

 

Pell, Pell-Lucas and the modified Pell sequence. In 
addition, we also received the information some 
important identities involving the terms of these 
sequences.  
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Abstract  

In this paper, we present generalized identities for Fibonacci, Lucas, Fibonacci-Like and Generalized 
Fibonacci-Like sequence. We obtain some identity relations by using the matrix method and Binet's formula. 
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Binet’s formula, Matrix method 

1. Introduction  
The Fibonacci sequence is a very 

important research in the study and research in the 
past decade. This sequence can be applied to 
engineering business as well as to science. 

 
 

Researcher study about the generalized 
Fibonacci sequence by changing the initials 
conditions 0F a  and 1F b . Moreover the 
coefficients p and q of the recurrence sequence are 
changing by n n 1 n 2F pF qF   for n 2 (see [1]-
[15]). 
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In addition to studying the Fibonacci 
numbers from the recurrence sequence, we also want 
to study the Fibonacci numbers using matrix 
operations to find some properties (see [16]-[18]). 

Sequence can be used with many aspects 
and this direction is very interesting. For this reason, 
researchers are motivated to study of Fibonacci, 
Lucas, and Fibonacci-Like sequences. In addition, 
the sequence can be proved using the matrix method 
and Binet’s formula. In this paper, we use matrix 
method to show some identity. 

2. Preliminaries  
In this section, we will introduce the 

previous article, which is well-known for use in our 
research. 

The Fibonacci sequence  nF  [3] is 
defined by the recurrence relation  

n n 1 n 2F F F ,    for n 3                      (2.1) 

with initial conditions 1 2F F 1  . The first few 
terms of the sequence  nF  are 1,1,2,3,5,8,13,21  
and so on. 

Binet's formula allows us to show the 
Fibonacci numbers in the function of the root 

1 2R & R  from the recurrence relation (2.1), which 
is related to the following characteristic equations    

2x x 1 0   ,                                  (2.2) 

and 1 2

1 5 1 5
R , R

2 2

 
   so that 1 2R R 1, 

1

2 2

1 2 2 1 2R 1 R , R 1 R , R R 1      .  
  
 
 

Thus the Binet’s formula of Fibonacci 
numbers is given by  

1 2

1 2

n n

n

R R
F

R R





,              (2.3) 

where 
1 2R & R  are the root of the characteristic 

equation and  
1 2R R . 

The Lucas sequence  nL  [1] is defined 
by the recurrence relation  

  n n 1 n 2L L L ,    for n 2                        (2.4) 

with initial conditions 0L 2  and 1L 1 . The first 
few terms of the sequence  nL  are 
2,1,3,4,7,11,18,29  and so on. 

The Binet’s formula allows us to express 
the Lucas numbers in function of the roots 

1 2R & R  of the following characteristic equation 
as in (2.2).  

Thus the Binet’s formula of Lucas 
numbers is given by 

 
1 2

n n

nL R R   ,                             (2.5) 
where 

1 2R & R  are the root of the characteristic 
equation and  

1 2R R . 
 The Generalized Fibonacci-Like 

sequence  nT  [4] is defined by the recurrence 
relation  

n n 1 n 2T T T ,    for n 2 .               (2.6) 

with initial conditions 0T m  and 1T m , where  
m is positive integer. The first few terms of the 
sequence  nT  are  
m,m,2m,3m,5m,8m,13m,21m  and so on. 
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The Binet’s formula allows us to express 
the Generalized Fibonacci-Like numbers in function 
of the roots 1 2R & R  of the following characteristic 
equation as in (2.2). 

Thus the Binet’s formula of Fibonacci-
Like numbers is 
given by 

1 2

1 2

n 1 n 1

n

R R
T m

R R

 



 ,             (2.7) 

where 
1 2R & R  are the root of the characteristic 

equation and  
1 2R R . 

Particular cases of (2.6), if  m 2   then 
we call the Fibonacci-Like sequence  nS  [12] is 
defined by  

n n 1 n 2S S S ,    for n 2               (2.8) 

with initial conditions 0S 2  and 1S 2 . The 
first few terms of the sequence  nS  are 
2,2,4,6,10,16,26  and so on. 

The Binet’s formula allows us to express 
the Fibonacci-Like numbers in function of the roots 

1 2R & R  of the following characteristic equation 
as in (2.2).  

Thus the Binet’s formula of Fibonacci-
Like sequence is given by  

1 2

1 2

n 1 n 1

n

R R
S 2

R R

 



 ,              (2.9)   

where  
1 2R & R  are the root of the characteristic 

equation and  
1 2R R . 

In 1960, Charles H. King [22] studied on 
the following Q-matrix 

 
 
 

1 1
Q

1 0

 
  
 

. 

He showed that  det Q 1   and  
n 1 nn

n n 1

F F
Q

F F





 
  
 

, for n 1   

Moreover, it is clearly shown below that 
   

nndet Q 1   then 

 
n2

n 1 n 1 nF F F 1     . 

3. Main Results  
In this section, we establish some identity 

relations of the Fibonacci sequence nF , the Lucas 
sequence nL , the Fibonacci-Like sequence nS , 
the Generalized Fibonacci-Like sequence  nT  by 
using matrix methods. We begin with the following 
Lemma. 

Lemma 3.1: 2n 1 2n 1 2n 2T 2T T    ,             (3.1) 
where n  is positive integer. 
Proof. By Binet’s formula (2.7), we have 

1 2

1 2

2n 2 2n 2

2n 1

R R
T m

R R

 







 

1 1 2 2

1 2

2n 2 2n 2R R R R
m

R R





 

   
1 1 2 2

1 2

2n 1 2n 1R 2 R R 2 R
m

R R

   



 

1 1 2 2

1 2

2n 2n 1 2n 2n 12R R 2R R
m

R R

   



 

1 2 1 2

1 2

2n 2n 2n 1 2n 12R 2R R R
m

R R

   



 

1 2 1 2

1 2 1 2

2n 2n 2n 1 2n 1R R R R
2m m

R R R R

  
 

 
 

2n 1 2n 22T T   . 
Thus, this completes the Proof.                   
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Theorem 3.2:  Let T

2m m
Q

m m

 
  
 

. Then 

2n 2n 1n n 1
T

2n 1 2n 2

T T
Q m ,

T T



 

 
  

 
                             

                                           (3.2) 
where m  and n  are  positive integer.  

Proof. We proof that 2n 2n 1n n 1
T

2n 1 2n 2

T T
Q m

T T



 

 
  

 
 

for every n N , by using the Principle of 
Mathematical Induction on n . Because 

2 1
T

1 0

T T2m m
Q

T Tm m

  
    
   

. 

Thus n 1  is true. We assume the result is true for 
a positive integer n k,  then 

2k 2k 1k k 1
T

2k 1 2k 2

T T
Q m

T T



 

 
  

 
. 

Since Lemma 3.1, we consider the positive integer
n k 1  . Then 

k 1 k
T T TQ Q Q   

2k 2k 1k 1

2k 1 2k 2

T T 2m m
m

T T m m



 

  
   

  
 

2k 2k 1 2k 2k 1k 1

2k 1 2k 2 2k 1 2k 2

2mT mT mT mT
m

2mT mT mT mT

 

   

  
  

  

 
2k 2k 1 2k 2k 1k

2k 1 2k 2 2k 1 2k 2

2T T T T
m

2T T T T

 

   

  
  

  
 

2k 2 2k 1k

2k 1 2k

T T
m

T T

 



 
  

 
. 

Thus n k 1   is true, this completes the Proof.                                    
                                                                             
 

Corollary 3.3: Let T

2m m
Q

m m

 
  
 

. Then 

n 1
2n 2n 1n

T
2n 1 2n 2

S Sm
Q

S S2




 

 
  

 
,            

                                           (3.3)   
where m  and n  are positive integer.  
 

Corollary 3.4: Let T

2m m
Q

m m

 
  
 

. Then 

2n 1 2nn n 1
T

2n 2n 1

F F
Q m

F F





 
  

 
,  (3.4) 

where m  and n  are positive integer. 

Corollary 3.5: Let L

3 1
Q

1 2

 
  
 

. Then 

n

2
n n 1

n 1 n 2

n
L

n 1
n 1 n2

n n 1

T T5
, for n is even,

T Tm

Q

L L
5 , for n is odd,

L L



 







 
 
 


 


 
 
 

   

                                                        (3.5)   
where m  and n  are positive integer. 

From Corollary 3.5, so that if L

3 1
Q

1 2

 
  
 

 then 

n

2
n n 1

n 1 n 2

n
L

n 1
n 1 n2

n n 1

S S5
, for n is even,

S S2

Q

L L
5 , for n is odd,

L L



 







 
 
 


 


 
 
 

  

where m  and n  are  positive integer. 

Theorem 3.6:  For a positive integer n ,  following 
equalities hold: 

i)   n 2n
Tdet Q m ,  

ii)  2 2
2n 2n 2 2n 1T T T m .               (3.6)   

Proof.  By   2
Tdet Q m . Thus  n

Tdet Q 

  
n

Tdet Q  
n

2 2nm m ,   and the 

determinant for n
TQ  in (3.2) will be ii), we get 

 2n 2 2
2n 2n 2 2n 1m T T T

   2nm ,  thus 
2 2

2n 2n 2 2n 1T T T m .                   
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Corollary 3.7:  For a positive integer n , following 
equalities hold: 

i)   n 2n
Tdet Q m ,  

ii)  2
2n 2n 2 2n 1S S S 4.                   (3.7) 

 

Corollary 3.8: For a positive integer n , following 
equalities hold: 

i)   n 2n
Tdet Q m ,  

ii)  2
2n 1 2n 1 2nF F F 1.                      (3.8) 

 

Corollary 3.9:  For a positive integer n ,  
following equalities hold: 

i)   n n
Ldet Q 5 ,  

ii)  2 2
n n 2 n 1T T T m ,    

iii)   2
n n 2 n 1S S S 4,    

iv)  2
n 1 n 1 nL L L 5.                      (3.9) 

 

Theorem 3.10: Let n  is positive integer. Then the 
Binet’s formula of the Generalized Fibonacci-Like 
sequence  nT   is given by  

1 2

1 2

n 1 n 1

n

R R
T m ,

R R

 



                         (3.10) 

where  1

1 5
R

2


  and  2

1 5
R

2


 . 

Proof. Let  TQ  is matrix in Theorem 3.2,  

1

3m 5m

2
 

  and   2

3m 5m

2
 

  are the 

eigenvalues of matrix TQ ,  1 1v R 1  and  

 2 2v R 1  are  eigenvectors  that is correspond 

to a eigenvalues. Then we find diagonalizable of 
matrix  TQ  by 
 
 

1

T

3m 5m

3m 5m

0
2

D P Q P

0
2



 
 
  


 



 


, 

where 

 T T 1 2

1 2

1 5 1 5
R R

P v , v 2 2
1 1

1 1

  
  

     
  

 

 

and 

 1 2

0
2

D diag ,

0

3m 5m

3m 5m

2

 
 
    





 

 


 

. 

Thus  1

TQ PDP   2m m

m m

 
 
 

. 

Since properties of the Diagonal Matrix, we obtain 
2n 1 2n 1 2n 2n

n n1 2 1 2

1 2 1 2n n 1

T 2n 2n 2n 1 2n 1

n n1 2 1 2

1 2 1 2

R R R R
m m

R R R R
Q PD P

R R R R
m m

R R R R

 



 

  
 

   
  
 
   

, 
where n is positive integer. We get 

2n 1 2n 1 2n 2n

1 2 1 2

1 2 1 22n 2n 1n 1 n 1

2n 2n 2n 1 2n 1
2n 1 2n 2 1 2 1 2

1 2 1 2

R R R R
m m

R R R RT T
m m .

T T R R R R
m m

R R R R

 

 

 
 

  
 

         
    

This completes the Proof.                
 

Corollary 3.11: Let m and n  are positive integer. 
Then the Binet’s formula of the Generalized 
Fibonacci-Like sequence  nT   is given by  

1 2

1 2

n 1 n 1

n n

R Rm
T S m ,

2 R R

 
 


            (3.11) 

where  1

1 5
R

2


  and  2

1 5
R

2


 . 
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Corollary 3.12: Let m and n  are positive integer. 
Then the Binet’s formula of the Generalized 
Fibonacci-Like sequence   nT   is given by  

1 2

1 2

n 1 n 1

n n 1

R R
T mF m ,

R R

 




 


           (3.12) 

where  1

1 5
R

2


  and  2

1 5
R

2


 . 

 

Lemma 3.13: 2n 2n 2 2nT T mL  ,            (3.13) 
where  m and n  are positive integer.  
Proof. By Binet’s formula (2.5) and (2.7), we have 

2n 2n 2T T   
1 2 1 2

1 1 2

2n 1 2n 1 2n 1 2n 1

2

R R R R
m m

R R R R

    
 

 
 

1 2 1 2

1

2n 1 2n 1 2n 1 2n 1

2

R R R R
m

R R

     



 

1 1 2 2

1

2n 1 2n 1 2n 1 2n 1

2

R R R R
m

R R

     



 

   
1 1 1 2 2 2

1

2n 1 2n 1

2

R R R R R R
m

R R

   



 

1 2

1

2n 2n

2

R R
m 5

R R





 

 
1 2

2n 2nm R R   

2nmL . 
Thus, this completes the Proof.                              
 

Lemma 3.14: 2 2
2n 2nL 4 5F  ,           (3.14)   

where m and n  are positive integer.  
Proof. By Binet’s formula (2.3) and (2.5), we have 

2

2nL 4  
 

1 2

2
2n 2nR R 4    

1 1 2 2

4n 2n 2n 4nR 2R R R 4     

 
1 1 2 2

2n
4n 4nR 2 R R R 4     

1 2

4n 4nR 2 R 4     

1 2

4n 4nR 2 R    

1 1 2 2

4n 2n 2n 4nR 2R R R    

 
1 2

2
2n 2nR R   

 

 
1 2

1 2

2
2n 2n

2

5 R R

R R





 

2

2n5F .  
Thus, this completes the Proof.               

Theorem 3.15: The generalized two roots of  n
TQ   are 

 2n 2n

1

L 5F
m

2


  and

 2n 2n

2

L 5F
m

2


  . (3.15) 

Where 1  and 2  are roots of n
TQ . Then 

1 2

2n 2n

2nL R R  and 1 2

1 2

2n 2n

2n

R R
F

R R





. 

Proof.  The characteristic equation of n
TQ . By 

Lemma 3.13 and Theorem 3.6, we get 

 
n 1 n 1

2n 2n 1n
T n 1 n 1

2n 1 2n 2

m T m T
det Q I

m T m T

 


 
 


 


  

  2n 2 2n 2 2
2n 2n 2 2n 1m T T m T 

    

 2n 2 2 2n 2
2n 2n 2m m T T 

    

 

 2n 2 2
2n 2n 2 2n 1m T T T

    
2n 2 2 2n 2 2n 2 2

2nm m mL m m     

 
2n 2 2 2n 1 2n

2nm m L m     . 
Thus, the characteristic equation of n

TQ is 
2 2

2nmL m 0    , 
and we get the generalized characteristic roots as 
following: 

2
2n 2n

1 1

mL m L 4
,

2

 
   . 

By Lemma 3.14, it can be writing 

 2n 2n

1 2

L 5F
, m

2


   . 

Therefore, 



84  Sci. & Tech. RMUTT J. Vol.8 No.1 (2018) 
 

2n 2n 2n
1

L 5F
R

2


  and 

2n 2n 2n
2

L 5F
R

2


 . 

Thus, we give the Binet’s formula by matrix method 
for the Fibonacci numbers and Lucas numbers 
given in (2.3) and (2.5) by 

1 2

1 2

2n 2n

2n

R R
F

R R





 and 

1 2

2n 2n

2nL R R  . 

This completes the Proof.                 

Corollary 3.16: The generalized two roots of n
TQ  

are 

 
2

2n 2
2n 2n 1 2

1

mL 5T 2mR 4m

2

  
   

and 

 
2

2n 2
2n 2n 1 2

2

mL 5T 2mR 4m

2

  
  ,          

                                                                    (3.16) 
where 1  and 2  are roots of n

TQ . Then 

1 2

2n 2n

2nL R R  and 1 2

1 2

2n 2n

2n 1

R R
T m

R R






. 

Corollary 3.17: The generalized two roots of  n
TQ   

are 
2

2n 2
2n 2n 1 2

1

5m
mL S 2mR 4m

2

2



 
    

 
   

and 
2

2n 2
2n 2n 1 2

2

5m
mL S 2mR 4m

2

2



 
    

 
  ,   

                                                                    (3.17) 
where 1  and 2  are roots of n

TQ . Then 

1 2

2n 2n

2nL R R   and 1 2

1 2

2n 2n

2n 1

R R
S 2

R R






. 

 

 

Corollary 3.18: The generalized  two roots  of  n
TQ   

are 

 
2

2n 2
2n 2n 2

1

mL 5mF 2mR 4m

2

  
   

and 

 
2

2n 2
2n 2n 2

2

mL 5mF 2mR 4m

2

  
  ,        

(3.18) 
where 1  and 2  are roots of n

TQ . Then 

1 2

2n 2n

2nL R R  and 1 2

1 2

2n 2n

2n

R R
F

R R





. 

 

Lemma 3.19: 2n 1
1

n
2n 2

T
lim R

T






 .           (3.19) 

Proof. By Binet’s formula (2.7), we have 
2n 2n

2n 1 1 2

2n 1 2n 1n n
2n 2 1 2

T R R
lim lim

T R R



  






 

2n

2

1

2n
n

2

1 1 2

R
1

R
lim

R1 1

R R R



 
  
 
 

  
 

 

2n

2

n n
1

2n

2

n n
1 1 2

R
lim1 lim

R

R1 1
lim lim

R R R

 

 

 
  

 
  
   
   

 
2n

2

n n
1

2n

2

n n n
1 1 2

R
lim1 lim

R

R1 1
lim lim lim

R R R

 

  

 
  

 
  
   
   

 

1R .  
Thus, this completes the proof.                                      
 



Sci. & Tech. RMUTT J. Vol.8 No.1 (2018)   85 

Theorem 3.20: Let 
2n 2n 1

n
2n 2 2n 2T

n 1
2n 12n 2

2n 2

T T

T TQ

Tm T
1

T



 






 
 
 
 
  
 

. Then the 

determinant of 
n
T

n 1n
2n 2

Q
lim

m T


 as follows 

characteristic equations of the Generalized 
Fibonacci-Like sequence  nT  is given by 

2
1 1R R 1 0   .             (3.20) 

Proof. Since the matrix n
TQ  in (3.2), we can write 

2n 2n 1

n
2n 2 2n 2T

n 1
2n 12n 2

2n 2

T T

T TQ

Tm T
1

T



 






 
 
 
 
  
 

, 

and by Lemma 3.19 ,  thus 
2n 2n 1

2n n n
2n 2 2n 2 1 1T

n 1n
2n 12n 2 1

n n
2n 2

T T
lim lim

T T R RQ
lim .

Tm T R 1lim lim 1
T



 
 




 


 
   
    

  
  

 

But 2
1 1R R 1  , thus 

n
1 1T

n 1n
2n 2 1

R 1 RQ
lim .

m T R 1




 
  
 
 

 

Therefore 
n

1 1T

n 1n
2n 2 1

R 1 RQ
det lim

m T R 1




  
  

 
 

2
1 1R R 1   , 

and thus 2
1 1R R 1 0   . This completes the 

Proof.                                                                    

 
Corollary 3.21: Let 

2n 2n 1

n
2n 2 2n 2T

n
2n 12n 2

2n 2

S S

S S2Q

Sm S
1

S



 





 
 
 
 
  
 

. Then the  

determinant of  
n
T

nn
2n 2

2Q
lim

m S


 as follows 

characteristic equations of the Fibonacci-Like 
sequence  nS  is given by 

2
1 1R R 1 0.       

 

Corollary 3.22: Let
2n 1 2n

n
2n 1 2n 1T

n
2n2n 1

2n 1

F F

F FQ

Fm F
1

F



 





 
 
 
 
  
 

. 

Then the determinant of  
n
T

nn
2n 1

Q
lim

m F


 as follows 

characteristic equations of Fibonacci sequence 
 nF  is given by 

2
1 1R R 1 0.       

 

Theorem 3.23: Let n and k  are positive integer. 
Then the following relation between  nS  and 

 nT  is given by 

2n 2k 2k 1 2n 1 2k 2n 2mS T S T S     .              
(3.21) 

Proof. By relation between Fibonacci-Like 
sequence  nS  and Fibonacci-Like sequence 
 nT  

2n 1 2n 1

T

2n 2n 2

S S
m Q

S S

 



   
   

   
 . 

And we multiply with k

TQ , we get 

k k 12n 1 2n 1

T T

2n 2n 2

S S
mQ Q

S S

 



   
   

   
. 

Thus 

2n 2k 1 2k 2 2n 1 2k 1 2n 2

2n 2k 2k 1 2n 1 2k 2n 2

S T S T S
m

S T S T S

     

   

   
   

   
. 

This completes the Proof.                                 
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Corollary 3.24: Let n and k  are positive integer. 
Then the following relation between  nF  and 

 nT  is given by 

2n 2k 1 2k 1 2n 2 2k 2 2n 1mF T F T F       .       
(3.22) 

Theorem 3.25: Let n  and r  are positive integers 
and n r.  Then the following equalities are  hold: 

i)  2n 2r 2n 2r 2n 1 2r 1mT T T T T ,     
ii)  2 2

4n 2n 2n 1mT T T ,   
iii)   4n 1 2n 2n 1 2n 1mT T T T ,     

iv)  2n 2r 2n 2r 2 2n 1 2r 1m T T T T T .           
(3.23) 

Proof. Let the n

TQ -matrix in (3.2). By
n r n r

T T TQ Q Q  , we get 
2n 2r 2n 2r 1n r 1

2n 2r 1 2n 2r 2

T T
m

T T

   

   

 
 
 

 

2n 2r 2n 1 2r 1 2n 2r 1 2n 1 2r 2n r 2

2n 1 2r 2n 2 2r 1 2n 1 2r 1 2n 2 2r 2

T T T T T T T T
m

T T T T T T T T

     

      

  
  

   

Thus 
2n 2r 2n 2r 1

2n 2r 1 2n 2r 2

T T
m

T T

  

   

 
 
 

 

2n 2r 2n 1 2r 1 2n 2r 1 2n 1 2r 2

2n 1 2r 2n 2 2r 1 2n 1 2r 1 2n 2 2r 2

T T T T T T T T

T T T T T T T T

    

      

  
  
   

 
Therefore, equalities i), ii), and iii).  And we get 

r r 1 2r 2 2r 1

T

2r 1 2r

T T
Q m

T T

    



 
  

 
. 

Since n r n r

T T TQ Q Q  . We have 
2n 2r 2n 2r 1n r 1

2n 2r 1 2n 2r 2

T T
m

T T

   

   

 
 
 

 

2n 2r 2 2n 1 2r 1 2n 2r 1 2n 1 2rn r 2

2n 1 2r 2 2n 2 2r 1 2n 1 2r 1 2n 2 2r

T T T T T T T T
m

T T T T T T T T

     

      

   
  

    

Thus  
2n 2r 2n 2r 1

2n 2r 1 2n 2r 2

T T
m

T T

  

   

 
 
 

 

2n 2r 2 2n 1 2r 1 2n 2r 1 2n 1 2r

2n 1 2r 2 2n 2 2r 1 2n 1 2r 1 2n 2 2r

T T T T T T T T

T T T T T T T T

    

      

   
  
    

, 

and iv)  immediately seen. This completes the 
Proof.                                                                    

Corollary 3.26: Let n  and r  are positive integers 
and n r.  Then the following equalities are hold: 

i)  2n 2r 2n 2r 2n 1 2r 12T T S T S ,     
ii)  4n 2n 2n 2n 1 2n 12T T S T S ,    
iii)  4n 2 2n 2n 2 2n 1 2n 12T T S T S ,      

iv)  2n 2r 2n 2r 2 2n 1 2r 12T T S T S .       (3.24) 
 

Corollary 3.27: Let n  and r  are positive integers 
and n r. Then the following equalities are hold: 

i)  2n 2r 2n 2r 1 2n 1 2rT T F T F ,     
ii)  4n 2n 2n 1 2n 1 2nT T F T F ,    
iii)  4n 2 2n 2n 3 2n 1 2n 2T T F T F ,      
iv)  2n 2r 2n 2r 1 2n 1 2rT T F T F .            (3.25) 

4. Conclusions  
In this paper, the properties of number are 

proved by Binet’s formula and matrix 
representation. We obtain some properties and 
related some identities for Fibonacci sequence 
 nF , Lucas sequence  nL , Fibonacci-Like 
sequence  nS  and Generalized Fibonacci-Like 
sequence  nT .  
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