
Applied Numerical Mathematics 156 (2020) 174–191

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Estimation of the interpolation error for semiregular prismatic 

elements

Ali Khademi ∗, Jon Eivind Vatne
Department of Computer science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, P.O. Box 
7030, Bergen, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 December 2019
Received in revised form 20 February 2020
Accepted 26 April 2020
Available online 4 May 2020

Keywords:
Interpolation error
Semiregular prismatic element
Maximum angle condition

In this paper we introduce the semiregularity property for a family of decompositions 
of a polyhedron into a natural class of prisms. In such a family, prismatic elements are 
allowed to be very flat or very long compared to their triangular bases, and the edges of 
quadrilateral faces can be nonparallel. Moreover, the triangular faces of each element are 
either parallel or skew to each other. To estimate the error of the interpolation operator 
defined on the finite space whose basis functions are defined on the general prismatic 
elements, we consider quadratic polynomials as the basis functions for that space which 
are bilinear on the reference prism. We then prove that under this modification of the 
semiregularity criterion, the interpolation error is of order O (h) in the H1-norm.

 2020 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The finite element method is one of the most flexible and powerful methods to solve numerically a wide variety of 
partial differential equations [3,13,11,14]. A fundamental problem is to estimate the error between the exact solution and 
its computable finite element approximation. This error can be bounded by the best approximation of the exact solution 
in the finite element space consisting of piecewise polynomial functions (see Céa’s lemma [4]). Hence, it is important to 
estimate the interpolation errors.

In the process of estimation of the interpolation error, some constant times a power of the discretization parameter h
appears. It is crucial that this constant does not blow up when h tends to zero. For linear elliptic boundary value problems 
in 2-dimensional space, Zlámal [15] introduced the minimum angle condition that guarantees a bound on the constant in 
the final error which comes from the estimation error of the defined interpolation operator. See also Synge [12]. Babuška 
and Aziz [2] proposed that the minimum angle condition can be relaxed to the maximum angle condition. In 3-dimensional 
space, the natural extension of the maximum angle condition for tetrahedral elements was proposed by Křížek [9]. Recently, 
the generalization of the maximum angle condition in d-dimensional spaces (d ≥ 2), by means of sind [5], for d-simplices is 
introduced and extended in [7,8] and also the equivalence of the maximum angle condition and its generalized version is 
proved.

The maximum angle condition enables us to keep an optimal error whereas we are allowed to consider degenerating 
families of elements in order to cover the narrow or flat parts of a given bounded domain. For instance, in geophysical 
simulations [10], where the domain consists of horizontal triangles as a base and regular vertical layer, all finite prismatic 
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Fig. 1. Partition of frustum into prisms satisfying Definition 3.

elements are produced by the Cartesian product of triangles and the closed intervals called triangular prisms. For such 
simulation, high aspect-ratio for the elements must be allowed. Therefore, we [6] analyzed the behavior of the interpolation 
error under the maximum angle condition on the above prisms.

The aim of this paper is to estimate the interpolation error for a more general class of prismatic elements than previously 
considered in [6]. This class of elements naturally appear e.g. in some standard geometric models. In Fig. 1 an example of 
a frustum is given. We interpolate a given function by quadratic polynomials which are bilinear on the reference prism. 
To introduce general prismatic element, similar to [6] we consider the maximum angle condition for all dihedral angles. In 
addition, we assume that the ratios between the three edges that connect the triangular faces is bounded from below by 
some positive constant. Note that these ratios for triangular prisms are one. We relax the conditions from [6] to allow e.g. 
slanted or skew elements. In particular small deformations of the geometry from [6] are covered. We refer to [6] for further 
motivation and context.

We use the technique of reference element in several parts of the main proof in order to demonstrate that the inter-
polation error is of order O (h) in the H1-norm for sufficiently smooth functions and sufficiently small h. In that proof we 
use a positive lower bound for the Jacobian determinant. In our case, this determinant is a quadratic polynomial in three 
variables whose coefficients are expressed in terms of volumes of tetrahedra formed by the vertices of the prism.

The outline of the paper is as follows. First, in Section 2, we introduce notations and give some definitions. In addition, 
we propose an extension of the semiregularity property that allows us to consider some degenerate families of prismatic 
elements. In Section 3, we obtain a positive lower bound for the Jacobian determinant in Theorem 6, since we use the 
technique of the reference element to prove the main result. In Section 4 we prove Theorem 7 which states that the 
interpolation error is of the order O (h) under the extended semiregularity condition, followed by some conclusions in 
Section 5.

2. Main definitions and geometric preliminaries

We will consider meshes whose elements are defined in this definition:

Definition 1. A straight-side, triangular based prism is a convex polyhedron with six vertices, two triangular faces and three 
quadrilateral (convex planar) faces. Furthermore, each quadrilateral is incident to the other four faces. The two triangles are 
not incident. See Fig. 2 (right). In this paper, we will refer to this as a general prism.

We define general prismatic meshes as follows:

Definition 2. A general prismatic mesh Ph of a bounded polyhedral domain is a face-to-face partition whose elements are 
general prisms, where h is the maximum diameter of all elements in the mesh.

The following lemma helps us to order the vertices of the prism P . For more details, see also Remark 1.

Lemma 1. The three edges which connect the two triangular faces of P are either parallel or if we extend these edges in one direction 
then they meet each other at some point.

Proof. The planes containing the three quadrilateral faces intersect in one point or this intersection is empty. !
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Fig. 2. The reference prism P̂ (left) and an arbitrary prismatic element P (right). Further, the mapping F is given by formula (9).

Remark 1. We order the vertices of P similar to [9, pp. 517–518], in such a way that the non-parallel edges A3 A0, A4 A1
and A5 A2 satisfy Lemma 1 and the triangular face A3 A4 A5 is closer to the intersection point than the triangle A0 A1 A2. See 
Fig. 2 (right). If the edges are parallel, then we do not need to order the vertices similar to the nonparallel case except that 
the vertices A0 and A3 are the end points of the same edge connecting the triangular faces. Furthermore, we assume that 
in any case the maximum angle for the triangular base is at vertex A0.

We now define the modification of the semiregularity property from [6] to our setting that will be used throughout the 
paper.

Definition 3. A family of general prismatic meshes F = {Ph}h→0 is semiregular if there exist constants γ < π , c1 > 0, and 
c2 > 0 such that the following conditions hold:

a) Maximum angle condition : For any P ∈ Ph and any Ph ∈ F let γP be the maximum angle of any triangular faces and 
dihedral angle between any two faces of P . Then

γP ≤ γ . (1)

b) Edge ratio condition : For any P ∈ Ph and any Ph ∈ F let Lmin and Lmax be the minimum and maximum lengths of 
the three edges connecting the triangular faces. Then

Lmin

Lmax
≥ c1.

c) Tetrahedra ratio condition : For any P ∈ Ph and any Ph ∈ F let the vertices of P be ordered as in Remark 1. Then

VolT (A0, A3, A4, A5)

VolT (A0, A1, A2, A3)
≥ c2.

Lemma 2. The conditions a), b) and c) from Definition 3 are independent.

Proof. In Figs. 3-5 we present examples showing the independence. In each figure, all vertices of triangles on the base and 
on the top of the considered prisms are denoted by • and ©, respectively.

Consider first a case in which a) fails, but b) and c) hold, see Fig. 3. Let A0 = (0, 0, 0), A1 = (−h, −h2, 0), A2 = (h, 0, 0), 
A3 = (0, 0, h), A4 = (−h, −h2, h), and A5 = (h, 0, h) be the vertices of the prism. In this case, ( A1 A0 A2 → π as h → 0, so 
condition a) fails. On the other hand, conditions b) and c) hold with c1 = 1 and c2 = 1.

Consider next a case in which c) fails but a) and b) hold, see Fig. 4. Let A0 = (0, 
√

3
3 h, 0), A1 = (− 1

2 h, −
√

3
6 h, 0), A2 =

( 1
2 h, −

√
3

6 h, 0), A3 = (0, 
√

3
3 h2, h), A4 = (− 1

2 h2, −
√

3
6 h2, h), and A5 = ( 1

2 h2, −
√

3
6 h2, h). The triangles on the base and top of 

the prism are equilateral. Now, if h tends to zero, this family degenerates into a regular tetrahedron, so clearly condition a)
holds. Further, condition b) with c1 = 1 is fulfilled, meanwhile condition c) is violated, since the ratio of the volume of the 
two tetrahedra T (A0, A3, A4, A5) and T (A0, A1, A2, A3) is h2.
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Fig. 3. Orthogonal projection of prism onto x̂ ŷ-plane with vertices A0 = (0, 0, 0), A1 = (−h, −h2, 0), A2 = (h, 0, 0), A3 = (0, 0, h), A4 = (−h, −h2, h),
A5 = (h, 0, h).
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Fig. 4. Orthogonal projection of the prism onto x̂ ŷ-plane with vertices A0 = (0, 
√

3
3 h, 0), A1 = (− 1

2 h, −
√

3
6 h, 0), A2 = ( 1

2 h, −
√

3
6 h, 0),
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√

3
3 h2, h), A4 = (− 1

2 h2, −
√

3
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√

3
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Fig. 5. Orthogonal projection of the prism onto ŷ ẑ-plane with vertices A0 = (0, −h, −h), A1 = (h, 0, −h2), A2 = (0, h, −h), A3 = (0, −h, h),
A4 = (0, h, h), A5 = (h, 0, h2).



178 A. Khademi, J.E. Vatne / Applied Numerical Mathematics 156 (2020) 174–191

Finally, we consider a case in which b) fails, but the two other conditions hold. Let A0 = (0, −h, −h), A1 = (h, 0, −h2), 
A2 = (0, h, −h), A3 = (0, −h, h), A4 = (0, h, h), and A5 = (h, 0, h2), see Fig. 5. Now assume that h → 0. Then the family 
degenerates into a pyramid, so clearly condition a) holds. Moreover, the family satisfies condition c) with c2 = 1. But 
condition b) is violated, since Lmin/Lmax = h. !

The condition c) in Definition 3 implies bounds on ratios of the volumes of other tetrahedra as well. We will see this in 
Lemma 5.

To prove Lemma 5, we need the following lemmas from [9].

Lemma 3. [9] Let ζ ≤ η ≤ τ be angles of an arbitrary face of an arbitrary tetrahedron. Assume furthermore that τ ≤ γ . Then τ ≥ π/3
and

η,τ ∈
[π − γ

2
,γ

]
.

Lemma 4. [9] Let A be an arbitrary vertex of an arbitrary tetrahedron T and let χ ≤ ψ ≤ ϕ be angles between faces passing through 
A. Assume furthermore that ϕ ≤ γ . Then ϕ > π/3 and

ψ,ϕ ∈
(π − γ

2
,γ

]
.

Lemma 5. There exist positive constants Ci(c1, m), i = 0, . . . , 3, which depend only on c1 and m such that

i)

Vol
(
T (A0, A1, A2, A3)

)
≥ C0(c1,m)abLmax,

where

m := min
(

sin(
π − γ

2
), sin(γ )

)
,

a =| A1 A0 |, and b =| A2 A0 |.
ii) The ratio of the volumes of the tetrahedra T (A0, A1, A2, A4) and T (A0, A1, A2, A3) is bounded from below by C1(c1, m).

iii) The ratio of the volumes of the tetrahedra T (A0, A1, A2, A5) and T (A0, A1, A2, A3) is bounded from below by C2(c1, m).
iv) The ratio of the volumes of the tetrahedra T (A0, A1, A2, A3) and T (A0, A3, A4, A5) is bounded from below by C3(c1, m).

Proof. i) The rays −−−→
A4 A1 and −−−→

A3 A0 meet each other at some point or are parallel. One is depicted in Fig. 6, where the angle 
between the lines −−−→

A4 A3 and −−−→
A0 A3, denoted by θ , is not the smallest angle in the triangle A0 A3 A4. Note that for other 

possibilities we have similar results. Lemma 3 implies that sin(θ) is bounded from below by the positive constant m as in 
[9]. Then

sin(θ) = sin(π − θ) = | A4M |
| A4 A3 | ≥ m,

and consequently

| A1 A0 |
| A4 A3 | ≥ | A4M |

| A4 A3 | ≥ m.

Hence,

| A1 A0 |≥ m | A4 A3 |, (2)

and similarly

| A2 A0 |≥ m | A5 A3 | . (3)

We denote the angles between the edges A3 A0 and A1 A0, and the edges A3 A1 and A1 A0, by α and β , respectively, see 
Fig. 6. Now, according to [9, pp. 517–518], Lemmas 3–4, and condition b), if α is greater than or equal to β , we get

Vol
(
T (A0, A1, A2, A3)

)
≥ 1

6
m3 | A1 A0 || A2 A0 || A3 A0 |

≥ 1
6

c1m3 | A1 A0 || A2 A0 | Lmax.
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A0
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A3

A4

M

θ

β

α

Fig. 6. Quadrilateral face of prism P made by vertices A0, A1, A3, and A4.

A0

A1

A3

A4

α

β

Fig. 7. Quadrilateral face of prism P , where β ≥ α and | A4 A1 |≤| A3 A1 |.

Otherwise β is greater than α. In this case, either | A3 A1 |≥| A4 A1 | or | A4 A1 |>| A3 A1 |. First, we assume that | A3 A1 |≥|
A4 A1 |. Then

Vol
(
T (A0, A1, A2, A3)

)
≥ 1

6
m2 sin(α) | A1 A0 || A2 A0 || A3 A0 |

≥ 1
6

c1m2 sin(α) | A1 A0 || A2 A0 | Lmax.

To obtain a lower bound for sin(α), it suffices to use the law of sines for the triangle A0 A1 A3 (see Fig. 7), conditions a)

and b), which implies

sin (α) = sin (β)
| A3 A1 |
| A3 A0 | ≥ m

| A4 A1 |
| A3 A0 | ≥ mc1, (4)

and therefore

Vol
(
T (A0, A1, A2, A3)

)
≥ 1

6
c2

1m3 sin(α) | A1 A0 || A2 A0 | Lmax.

Now, if | A4 A1 |>| A3 A1 |, we consider the triangle A0 A1M , see Fig. 8 (which also defines δ = π − α − β). Then

sin (α) = sin(β + β1)
| M A1 |
| M A0 |

≥ m
| A4 A1 |

| A3 A0 | + | A4 A3 | cos(π − θ)

≥ m
| A4 A1 |

| A3 A0 | + m−1 | A1 A0 | . (5)
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Fig. 8. Quadrilateral face of prism P , where β ≥ α and | A4 A1 |>| A3 A1 |.

Note that for the above inequalities we used Lemma 3, since α < β + β1, and (2), respectively. Writing the law of sines for 
the triangle A0 A1 A3 once again, leads to

| A1 A0 |= sin(δ)

sin(β)
| A3 A0 |≤ m−1 | A3 A0 | . (6)

Substitute the right-hand side of (6) into (5), we have

sin (α) ≥ m3

(1 + m2)

| A4 A1 |
| A3 A0 | ≥ c1m3

(1 + m2)
≥ 1

2
c1m3,

and consequently

Vol
(
T (A0, A1, A2, A3)

)
≥ 1

12
c2

1m5 | A1 A0 || A2 A0 | Lmax.

ii) To estimate a lower bound for the ratio of the volumes of the tetrahedra T (A0, A1, A2, A4) and T (A0, A1, A2, A3), if 
( A4 A1 A0 is greater than or equal to ( A4 A0 A1, condition b) implies

Vol
(
T (A0, A1, A2, A4)

)

Vol
(
T (A0, A1, A2, A3)

) ≥ m3 | A1 A0 || A2 A0 || A4 A1 |
| A1 A0 || A2 A0 | Lmax

≥ c1m3.

Otherwise, exchanging the indices of the vertices A0, A3, A4, A1 in Fig. 8 into 1, 4, 3, 0, respectively, and following the same 
proof as in part i), there exists a positive constant C∗(c1, m) such that

Vol
(
T (A0, A1, A2, A4)

)
≥ C∗(c1,m) | A1 A0 || A2 A0 | Lmax.

iii) The proof is same as in parts i) and ii).
iv) From part i), (2) and (3), we have

Vol
(
T (A0, A1, A2, A3)

)

Vol
(
T (A0, A3, A4, A5)

) ≥ C0(c1,m) | A1 A0 || A2 A0 | Lmax

| A4 A3 || A5 A3 | Lmax
≥ m2C0(c1,m). !

In what follows, we use the standard denotation W k
p(-), k = 0, 1, . . . , p ≥ 1, for Sobolev spaces with norms ‖.‖k,p =

‖.‖k,p,- and seminorms |.|k.p = |.|k,p,- . The symbol C(-) stands for the space of continuous functions over -.
To prove the main result of the paper we will employ the technique based on a transfer of the prism P ∈ Ph onto the 

reference prism P̂ = K̂ × Î , where K̂ is the triangular base and Î is the altitude of P̂ .
The vertices Â0, ..., Â5 of the prism P̂ are given in Fig. 2 (left). The associated basis functions φ̂0, ..., φ̂5 for bilinear 

functions are
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φ̂0(x̂, ŷ, ẑ) = (1 − x̂ − ŷ)(1 − ẑ),

φ̂1(x̂, ŷ, ẑ) = x̂(1 − ẑ),

φ̂2(x̂, ŷ, ẑ) = ŷ(1 − ẑ),

φ̂3(x̂, ŷ, ẑ) = (1 − x̂ − ŷ)ẑ,

φ̂4(x̂, ŷ, ẑ) = x̂ẑ,

φ̂5(x̂, ŷ, ẑ) = ŷ ẑ.

(7)

The prismatic interpolant π̂P̂ of the function û defined on P̂ is constructed as follows:

π̂P̂ û =
5∑

i=0

û( Âi)φ̂i . (8)

By definition, π̂P̂ û( Âi) = û( Âi), i = 0, . . . , 5, for any û ∈ C(P̂).
Let

F (x̂, ŷ, ẑ) =
5∑

i=0

Aiφ̂i(x̂, ŷ, ẑ). (9)

Equation (9) defines a mapping F : P̂ → P , which is a bijection from the prism P̂ onto the prism P . Hence we can 
define φi on P such that

φi(A) = φ̂i( Â) = φ̂i(F −1(A)), for all points A of P ∈ Ph.

With any prismatic mesh Ph we associate the finite element space

Vh = {u ∈ C(-) | u|P ∈ Q (P) ∀P ∈ Ph},
where Q (P) = {ϕ | ϕ = ∑5

i=0 ciφi}. For similar cases, see [1], Section 5.3. Then the interpolation operator πh : C(-) → Vh
is uniquely determined by the requirement

πhu(Ai) = u(Ai) for Ai, i = 0, . . . ,5 of P ∈ Ph. (10)

Consider B be a (3 × 5) matrix whose entries are denoted by Bij ,

B =
[
B1:P B2:P

]
,

where

B1:P =




B11 B12 B13
B21 B22 B23
B31 B32 B33





=




A1,x − A0,x A2,x − A0,x A3,x − A0,x
A1,y − A0,y A2,y − A0,y A3,y − A0,y
A1,z − A0,z A2,z − A0,z A3,z − A0,z



 ,

and

B2:P =




B14 B15
B24 B25
B34 B35





=




A4,x − A0,x − (B11 + B13) A5,x − A0,x − (B12 + B13)
A4,y − A0,y − (B21 + B23) A5,y − A0,y − (B22 + B23)
A4,z − A0,z − (B31 + B33) A5,z − A0,z − (B32 + B33)



 .

Let Ĵ denote the Jacobian of the mapping F . Then

Ĵ =





∂x
∂ x̂

∂x
∂ ŷ

∂x
∂ ẑ

∂ y
∂ x̂

∂ y
∂ ŷ

∂ y
∂ ẑ

∂z
∂ x̂

∂z
∂ ŷ

∂z
∂ ẑ
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=




B11 + B14 ẑ B12 + B15 ẑ B13 + B14x̂ + B15 ŷ
B21 + B24 ẑ B22 + B25 ẑ B23 + B24x̂ + B25 ŷ
B31 + B34 ẑ B32 + B35 ẑ B33 + B34x̂ + B35 ŷ



 . (11)

In order to obtain the rate of convergence of the interpolation operator, we will estimate an upper bound for |det(Ĵ)|−1, 
which plays the key role in the proof of Theorem 7. We will show that the lower bound of |det(Ĵ)| depends on the volumes 
of tetrahedra in the prism P .

3. Jacobian determinant

For prisms [6] the determinant of the Jacobian is a constant. We see that for the general prisms, according to (11), det(Ĵ)
is a polynomial in terms of x̂, ŷ, and ẑ. To show that det(Ĵ) (= 0, using the linearity property of the determinant, the Jacobian 
determinant has the explicit form

det(Ĵ) = A + Bx̂ + C ŷ + Dẑ − Ex̂ẑ − F ŷ ẑ + Gẑ2, (12)

where

A =

∣∣∣∣∣∣

B11 B12 B13
B21 B22 B23
B31 B32 B33

∣∣∣∣∣∣

= 6Vol
(
T (A0, A1, A2, A3)

)
,

B =

∣∣∣∣∣∣

B11 B12 B14
B21 B22 B24
B31 B32 B34

∣∣∣∣∣∣

= 6Vol
(
T (A0, A1, A2, A4)

)
− A

= B1 − A,

C =

∣∣∣∣∣∣

B11 B12 B15
B21 B22 B25
B31 B32 B35

∣∣∣∣∣∣

= 6Vol
(
T (A0, A1, A2, A5)

)
− A

= C1 − A,

D =

∣∣∣∣∣∣

B12 B13 B14
B22 B23 B24
B32 B33 B34

∣∣∣∣∣∣
−

∣∣∣∣∣∣

B11 B13 B15
B21 B23 B25
B31 B33 B35

∣∣∣∣∣∣

= 6
{

Vol
(
T (A0, A2, A3, A4)

)
+ Vol

(
T (A0, A1, A5, A3)

)}
− 2A

= D1 + D2 − 2A,

E =

∣∣∣∣∣∣

B11 B14 B15
B21 B24 B25
B31 B34 B35

∣∣∣∣∣∣

= 6
{

Vol
(
T (A0, A3, A1, A5)

)
− Vol

(
T (A0, A4, A1, A5)

)}
+ B

= D2 − E1 + B,

F =

∣∣∣∣∣∣

B12 B14 B15
B22 B24 B25
B32 B34 B35

∣∣∣∣∣∣

= 6
{

Vol
(
T (A0, A2, A3, A4)

)
− Vol

(
T (A0, A2, A5, A4)

)}
+ C

= D1 − F1 + C,

G =

∣∣∣∣∣∣

B13 B14 B15
B23 B24 B25
B33 B34 B35

∣∣∣∣∣∣

= 6
{

Vol
(
T (A0, A3, A4, A5)

)
− Vol

(
T (A0, A3, A4, A2)

)
− Vol

(
T (A0, A3, A1, A5)

)}
+ A

= G1 − D1 − D2 + A.
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Therefore,

det(Ĵ) = A(1 − x̂ − ŷ)(1 − ẑ) + B1 x̂(1 − ẑ) + C1 ŷ(1 − ẑ) + D1 ẑ(1 − ŷ)

+ D2 ẑ(1 − x̂) + E1x̂ẑ + F1 ŷ ẑ + G1 ẑ2 + Aẑ2 − Aẑ − (D1 + D2)ẑ2. (13)

Theorem 6. Let F = {Ph}h→0 be a semiregular family of general prisms of a bounded polygonal domain. Then, there exists a positive 
constant C̄(c1, c2, m) which depends on c1 , c2 and m, such that

|det(Ĵ)|−1 ≤ C̄(c1, c2,m)
(
abLmax

)−1
. (14)

Proof. For a fixed ẑ = ẑ0, det(Ĵ) is linear, and thus attains its maximum and minimum at vertices of the triangle 0 ≤ x̂, ŷ ≤
1, ̂x + ŷ ≤ 1, ̂z = ẑ0. Therefore it is enough to consider the restriction of det(Ĵ) to the three vertical lines. Then the extremal 
values of det(Ĵ) can be found at one of these points: the six vertices of the prism Âi, i = 0, . . . , 5, as well as if points 
(0, 0, −D/2G), (1, 0, (E − D)/2G) and (0, 1, (F − D)/2G) are in the domain of definition.

Now, if the minimum value of det(Ĵ) occurs at one of the vertices Âi, i = 0, . . . , 5, then

min
{ Â0,..., Â5}

det(Ĵ) = min{A,B1,C1,G1,G1 + E1 − D2,G1 + F1 − D1}. (15)

On the right-hand side of (15), all terms are six times the volume of a tetrahedron. Indeed,

G1 + E1 − D2 = 6
{

Vol
(
P(A0, . . . , A5)

)
− Vol

(
T (A0, A1, A2, A5)

)}
− D2

= 6
{

Vol
(
P(A0, . . . , A5)

)

−
{

Vol
(
T (A0, A1, A2, A5)

)
+ Vol

(
T (A0, A1, A5, A3)

)}}

= 6Vol
(
T (A1, A4, A3, A5)

)
, (16)

and

G1 + F1 − D1 = 6
{

Vol
(
P(A0, . . . , A5)

)
− Vol

(
T (A0, A1, A2, A4)

)}
− D1

= 6
{

Vol
(
P(A0, . . . , A5)

)

−
{

Vol
(
T (A0, A1, A2, A4)

)
+ Vol

(
T (A0, A2, A3, A4)

)}}

= 6Vol
(
T (A3, A4, A5, A2)

)
. (17)

Now, Lemma 5 provides the lower bounds for A, B1 , and C1 . In addition, condition c) and part i) of Lemma 5 imply that

G1 ≥ c2C0(c1,m)abLmax.

Using the same proof as in Lemma 5 for (16) and (17), we obtain the lower bounds which consist of constants in terms of 
c1 and m, times abLmax .

Now if the critical point P (c) = (0, 0, −D/2G) is a point, where det(Ĵ) has a minimum value, we have

det(Ĵ)(P (c)) = A − D2

4G
. (18)

Due to the valid interval of ẑ, there are two possibilities for D and G, D > 0, G < 0 or D < 0, G > 0. When G < 0, we obtain 
det(Ĵ)(P (c)) ≥ A. For D < 0,

det(Ĵ)(P (c)) = 1
4G

{
4AG1 − (D1 + D2)

2}. (19)

If A ≤ G1, we get

det(Ĵ)(P (c)) ≥ 1
4G

{
2A − (D1 + D2)

}{
2A + D1 + D2

}

≥ λ1
{

2A + D1 + D2
}

> 2λ1A, (20)

where
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0 < λ1 = 2A − (D1 + D2)

4G
= 1

2
P (c) ≤ 1

4
.

When λ1 tends to zero, consequently P (c) tends to (0, 0, 0), and due to Lemma 5, the family of functions det(Ĵ)(P (c)) for all 
P ∈ Ph ∈ F is equicontinuous and by (18) we obtain

det(Ĵ)(P (c)) → A.

Otherwise, G1 < A and

det(Ĵ)(P (c)) ≥ 1
4G

{
2G1 − (D1 + D2)

}{
2G1 + D1 + D2

}

Since in this case, condition 2G1 − (D1 + D2) < 0 leads to P (c) be outside of the domain, then the valid condition is 2G1 −
(D1 + D2) > 0. Hence,

det(Ĵ)(P (c)) ≥ λ2
{

2G1 + D1 + D2
}

> 2λ2G1, (21)

where

0 < λ2 = 2G1 − (D1 + D2)

4G
<

1
4
.

When λ2 tends to zero, G1 and (D1 + D2)/2 tend together, and from definition of G we have

2G → 2A − (D1 + D2) = −D. (22)

This means that P (c) tends to (0, 0, 1) and by (18) and condition c), the family of functions det(Ĵ)(P (c)) for all P ∈ Ph and 
Ph ∈ F is equicontinuous, and det(Ĵ)(P (c)) tends to

A + 1
2

D = 1
2
(D1 + D2) → G1 ≥ c2A. (23)

Now, let P (c) = (1, 0, (E − D)/2G) be a critical point, where the Jacobian matrix has a minimum value. Then

det(Ĵ)(P (c)) = B1 − (E − D)2

4G
. (24)

Since (E − D)/2G ∈ (0, 1), then we have either D > E, G < 0 or D < E, G > 0. For the first case, from (24), we get

det(Ĵ)(P (c)) ≥ B1. (25)

For the case that D < E, G > 0, if B1 ≤ G, we have

det(Ĵ)(P (c)) = 1
4G

{4B1G − (E − D)2}

≥ 1
4G

{2B1 − (E − D)}{2B1 + E − D}

≥ 1
4G

{2B1 − (E − D)}{E − D}
≥ λ3{B1 + E1 + D1 − A},

where

0 < λ3 = E − D
4G

<
1
2
.

Furthermore,

B1 + E1 + D1 − A = 6
{

Vol
(
T (A0, A1, A2, A4)

)
+ Vol

(
T (A0, A4, A1, A5)

)

+ Vol
(
T (A0, A2, A3, A4)

)
− Vol

(
T (A0, A1, A2, A3)

)}

= 6
{

Vol
(
P(A0, . . . , A5)

)
− Vol

(
T (A2, A5, A3, A4)

)

+ Vol
(
T (A0, A4, A1, A5)

)
− Vol

(
T (A0, A1, A2, A3)

)}
.
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Using

Vol
(
T (A2, A5, A3, A4)

)
+ Vol

(
T (A0, A1, A2, A3)

)

= Vol
(
P(A0, . . . , A5)

)
− Vol

(
T (A3, A4, A2, A1)

)
,

implies

B1 + E1 + D1 − A = 6
{

Vol
(
T (A0, A4, A1, A5)

)
+ Vol

(
T (A3, A4, A2, A1)

)}
. (26)

Hence

det(Ĵ)(P (c)) ≥ 6λ3Vol
(
T (A0, A4, A1, A5)

)
, (27)

and a same proof as in Lemma 5, parts i) and ii), to obtain a lower bound for Vol(3)

(
T (A0, A4, A1, A5)

)
implies the desirable 

result. Further, if λ3 → 0, then E −D → 0 and P (c) → (1, 0, 0), and according to Lemma 5, the family of Jacobian determinant 
at P (c) for all P ∈ Ph ∈ F is equicontinuous. Therefore (24) yields

det(Ĵ)(P (c)) → B1.

The other case is D < E, G > 0 and G < B1. Since the third coordinate of P (c) must be in (0, 1), we have

(E − D) < 2G. (28)

Hence, we use (E − D)2 < 4G2 to obtain

det(Ĵ)(P (c)) = 1
4G

{4B1G − (E − D)2}
≥ B1 − G

= (1 − λ4)B1,

where

0 < λ4 = G
B1

< 1.

If λ4 tends to zero, then G tends to zero. By (28), D → E (or conversely), and from (25) we conclude that det(Ĵ)(P (c)) → B1. 
When λ4 → 1, then G → B1 and (24) tends to

B1 − (E − D)2

4B1
= 1

4B1
{2B1 − (E − D)}{2B1 + (E − D)}

≥ 1
2
{2B1 − (E − D)}

≥ 3Vol
(
T (A0, A4, A1, A5)

)
. (29)

Note that for the last inequality we used (26). Now, the same argument for (27) implies (14).
Finally, for P (c) = (0, 1, (F − D)/2G),

det(Ĵ)(P (c)) = C1 − (F − D)2

4G
. (30)

Moreover, D > F, G < 0, or D < F, G > 0, since (F − D)/2G ∈ (0, 1).
Let D > F and G < 0. By (30), we then have

det(Ĵ)(P (c)) ≥ C1.

Now, let D < F, G > 0. If C1 < G we have

det(Ĵ)(P (c)) = 1
4G

{4C1G − (F − D)2}

≥ 1
4G

{2C1 − (F − D)}{2C1 + F − D}

≥ 1
4G

{2C1 − (F − D)}{F − D}
≥ λ5{C1 + F1 + D2 − A}, (31)
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where

0 < λ5 = F − D
4G

<
1
2
.

Using

Vol
(
T (A1, A4, A5, A3)

)
+ Vol

(
T (A0, A1, A2, A3)

)

= Vol
(
P(A0, . . . , A5)

)
− Vol

(
T (A1, A2, A5, A3)

)
,

implies

C1 + F1 + D2 − A = 6
{

Vol
(
T (A0, A1, A2, A5)

)
+ Vol

(
T (A0, A2, A5, A4)

)

+ Vol
(
T (A0, A1, A5, A3)

)
− Vol

(
T (A0, A1, A2, A3)

)}

= 6
{

Vol
(
P(A0, . . . , A5)

)
− Vol

(
T (A1, A4, A5, A3)

)

+ Vol
(
T (A0, A2, A5, A4)

)
− Vol

(
T (A0, A1, A2, A3)

)}

= 6
{

Vol
(
T (A0, A2, A5, A4)

)
+ Vol

(
T (A1, A2, A5, A3)

)}
. (32)

Then we can obtain the lower bound for (31) as follows.

det(Ĵ)(P (c)) ≥ 6λ5Vol
(
T (A0, A2, A5, A4)

)
.

Extending the proof of Lemma 5, one comes to (14).
Now, if λ5 → 0, then F − D → 0, and as a result P (c) → (0, 1, 0). Similar to previous cases, due to Lemma 5, here the 

family of Jacobian determinant at P (c) for all prisms belonging to F is also equicontinuous and we get

det(Ĵ)(P (c)) → C1. (33)

For the case that G < C1,

det(Ĵ)(P (c)) = 1
4G

{4C1G − (F − D)2}

≥ C1 − G

= (1 − λ6)C1,

where

0 < λ6 = G
C1

< 1.

If λ6 approaches to zero, then G → 0, which implies (33).
To end the proof, let λ6 tend to 1. Then G → C1, and consequently by (32), (30) tends to

C1 − (F − D)2

4C1
= 1

4C1
{2C1 − (F − D)}{2C1 + (F − D)}

≥ 1
2
{2C1 − (F − D)}

≥ 3Vol(3)

(
T (A0, A2, A5, A4)

)
. ! (34)

4. Interpolation error

Theorem 7. Let u ∈ W3
2(-) and F = {Ph}h→0 be a family of semiregular prismatic partitions of -̄. Then, there exists a positive 

constant C∗ , independent of the diameter h(P), such that

|u − πhu|1,2,- ≤ C∗{h(P) |u|2,2,- + h2(P) |u|3,2,-

}
(35)
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Proof. From the definition of semi-norm we have

|u − πP u|21,2,P =
∫

P

(∣∣∣
∂

∂x
(u − πP u)

∣∣∣
2
+

∣∣∣
∂

∂ y
(u − πP u)

∣∣∣
2
+

∣∣∣
∂

∂z
(u − πP u)

∣∣∣
2
)

dX . (36)

To estimate (36), first we will estimate it on P̂ . Then, from equation (40) in [6], we have
∫

P̂

∣∣∣
∂

∂ x̂
(û − π̂P̂ û)

∣∣∣
2
dX̂ ≤ 12

∫

P̂

(∣∣∣
∂2û
∂ x̂2

∣∣∣
2
+

∣∣∣
∂2û
∂ x̂∂ ŷ

∣∣∣
2
+

∣∣∣
∂2û
∂ x̂∂ ẑ

∣∣∣
2
+

∣∣∣
∂3û

∂ x̂∂ ŷ∂ ẑ

∣∣∣
2)

dX̂, (37)

where
∣∣∣
∂2û
∂ x̂2

∣∣∣
2
=

∣∣∣Ĵ2
(11)

∂2u
∂x2 + Ĵ2

(21)

∂2u
∂ y2 + Ĵ2

(31)

∂2u
∂z2

+ 2
{

Ĵ(11) Ĵ(21)
∂2u
∂x∂ y

+ Ĵ(11) Ĵ(31)
∂2u
∂x∂z

+ Ĵ(21) Ĵ(31)
∂2u
∂ y∂z

}∣∣∣
2

≤ 24
{

Ĵ4
(11)

∣∣∣
∂2u
∂x2

∣∣∣
2
+ Ĵ4

(21)

∣∣∣
∂2u
∂ y2

∣∣∣
2
+ Ĵ4

(31)

∣∣∣
∂2u
∂z2

∣∣∣
2
+ Ĵ2

(11) Ĵ
2
(21)

∣∣∣
∂2u
∂x∂ y

∣∣∣
2

+ Ĵ2
(11) Ĵ

2
(31)

∣∣∣
∂2u
∂x∂z

∣∣∣
2
+ Ĵ2

(21) Ĵ
2
(31)

∣∣∣
∂2u
∂ y∂z

∣∣∣
2}

.

For the last inequalities we used the so-called sum of squares inequality

( s∑

j=1

a j

)2
≤ s

s∑

j=1

a2
j .

In the remaining computations, we will use C as an unspecified positive constant. It is not necessarily the same in two lines 
of a computation, for instance in equation (38). We get

∣∣∣
∂2û
∂ x̂∂ ŷ

∣∣∣
2
≤ C

{
Ĵ2
(11) Ĵ

2
(12)

∣∣∣
∂2u
∂x2

∣∣∣
2
+ Ĵ2

(21) Ĵ
2
(22)

∣∣∣
∂2u
∂ y2

∣∣∣
2
+ Ĵ2

(31) Ĵ
2
(32)

∣∣∣
∂2u
∂z2

∣∣∣
2

+
(
Ĵ2
(12) Ĵ

2
(21) + Ĵ2

(11) Ĵ
2
(22)

)∣∣∣
∂2u
∂x∂ y

∣∣∣
2
+

(
Ĵ2
(12) Ĵ

2
(31) + Ĵ2

(32) Ĵ
2
(11)

)∣∣∣
∂2u
∂x∂z

∣∣∣
2

+
(
Ĵ2
(22) Ĵ

2
(31) + Ĵ2

(21) Ĵ
2
(32)

)∣∣∣
∂2u
∂ y∂z

∣∣∣
2}

,

∣∣∣
∂2û
∂ x̂∂ ẑ

∣∣∣
2
≤ C

{
Ĵ2
(11) Ĵ

2
(13)

∣∣∣
∂2u
∂x2

∣∣∣
2
+ Ĵ2

(21) Ĵ
2
(23)

∣∣∣
∂2u
∂ y2

∣∣∣
2
+ Ĵ2

(31) Ĵ
2
(33)

∣∣∣
∂2u
∂z2

∣∣∣
2

+
(
Ĵ2
(13) Ĵ

2
(21) + Ĵ2

(11) Ĵ
2
(23)

)∣∣∣
∂2u
∂x∂ y

∣∣∣
2
+

(
Ĵ2
(13) Ĵ

2
(31) + Ĵ2

(33) Ĵ
2
(11)

)∣∣∣
∂2u
∂x∂z

∣∣∣
2

+
(
Ĵ2
(23) Ĵ

2
(31) + Ĵ2

(21) Ĵ
2
(33)

)∣∣∣
∂2u
∂ y∂z

∣∣∣
2}

,

∣∣∣
∂3û

∂ x̂∂ ŷ∂ ẑ

∣∣∣
2
≤ C

{
Ĵ2
(11) Ĵ

2
(12) Ĵ

2
(13)

∣∣∣
∂3u
∂x3

∣∣∣
2
+ Ĵ2

(21) Ĵ
2
(22) Ĵ

2
(23)

∣∣∣
∂3u
∂ y3

∣∣∣
2

+ Ĵ2
(31) Ĵ

2
(32) Ĵ

2
(33)

∣∣∣
∂3u
∂z3

∣∣∣
2
+

(
Ĵ2
(12) Ĵ

2
(11) Ĵ

2
(23) + (Ĵ2

(12) Ĵ
2
(21) + Ĵ2

(11) Ĵ
2
(22))Ĵ2

(13)

)∣∣∣
∂3u

∂x2∂ y

∣∣∣
2

+
(

Ĵ2
(11) Ĵ

2
(12) Ĵ

2
(33) + (Ĵ2

(12) Ĵ
2
(31) + Ĵ2

(11) Ĵ
2
(32))Ĵ2

(13)

)∣∣∣
∂3u

∂x2∂z

∣∣∣
2

+
(
(Ĵ2

(12) Ĵ
2
(21) + Ĵ2

(11) Ĵ
2
(22))Ĵ2

(23) + Ĵ2
(22) Ĵ

2
(21) Ĵ

2
(13)

)∣∣∣
∂3u

∂x∂ y2

∣∣∣
2

+
(
(Ĵ2

(12) Ĵ
2
(21) + Ĵ2

(11) Ĵ
2
(22))Ĵ2

(33) + (Ĵ2
(12) Ĵ

2
(31) + Ĵ2

(32) Ĵ
2
(11))Ĵ2

(23) + (Ĵ2
(22) Ĵ

2
(31) + Ĵ2

(32) Ĵ
2
(21))Ĵ2

(13)

)∣∣∣
∂3u

∂x∂ y∂z

∣∣∣
2

+
(

Ĵ2
(22) Ĵ

2
(21) Ĵ

2
(33) + (Ĵ2

(22) Ĵ
2
(31) + Ĵ2

(32) Ĵ
2
(21))Ĵ2

(23)

)∣∣∣
∂3u

∂ y2∂z

∣∣∣
2
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+
(

Ĵ2
(32) Ĵ

2
(31) Ĵ

2
(13) + (Ĵ2

(12) Ĵ
2
(31) + Ĵ2

(32) Ĵ
2
(21))Ĵ2

(33)

)∣∣∣
∂3u

∂x∂z2

∣∣∣
2

+
(

Ĵ2
(32) Ĵ

2
(31) Ĵ

2
(23) + (Ĵ2

(22) Ĵ
2
(31) + Ĵ2

(32) Ĵ
2
(21))Ĵ2

(33)

)∣∣∣
∂3u

∂ y∂z2

∣∣∣
2}

.

To estimate the upper bounds for 
∣∣∣ ∂2 û
∂ x̂∂ ŷ

∣∣∣
2

, 
∣∣∣ ∂2 û
∂ x̂∂ ẑ

∣∣∣
2

, and 
∣∣∣ ∂3 û
∂ x̂∂ ŷ∂ ẑ

∣∣∣
2

, we denote the length of the segments −−−→
A4 A3 and −−−→

A5 A3

by c and d respectively. Now, we have

(A1,x − A0,x)
2 + (A1,y − A0,y)

2 ≤ a2, (A4,x − A3,x)
2 + (A4,y − A3,y)

2 ≤ c2,

(A2,x − A0,x)
2 + (A2,y − A0,y)

2 ≤ b2, (A5,x − A3,x)
2 + (A5,y − A3,y)

2 ≤ d2,

which imply
∣∣Ĵ(11)

∣∣ =
∣∣B11 + (A4,x − A0,x − (B11 + B13))z̃

∣∣

≤
∣∣A1,x − A0,x

∣∣(1 − z̃) +
∣∣A4,x − A3,x

∣∣z̃

≤ a + c,
∣∣Ĵ(21)

∣∣ =
∣∣B21 + (A4,y − A0,y − (B21 + B23))z̃

∣∣

≤
∣∣A1,y − A0,y

∣∣(1 − z̃) +
∣∣A4,y − A3,y

∣∣z̃

≤ a + c,
∣∣Ĵ(31)

∣∣ =
∣∣B31 + (A4,z − A0,z − (B31 + B33))z̃

∣∣

≤
∣∣(A1,z − A0,z

∣∣(1 − z̃) +
∣∣A4,z − A3,z

∣∣z̃

≤ a + c,

and similarly
∣∣Ĵ(12)

∣∣ ≤ b + d,
∣∣Ĵ(22)

∣∣ ≤ b + d,
∣∣Ĵ(32)

∣∣ ≤ b + d.

Now the upper bounds of | J (i, j) |, i = 1, 2, 3, j = 1, 2 can be expressed in terms of a, b, and m as follows.
{∣∣Ĵ(11)

∣∣,
∣∣Ĵ(21)

∣∣,
∣∣Ĵ(31)

∣∣} ≤ (1 + m−1)a,
{∣∣Ĵ(12)

∣∣,
∣∣Ĵ(22)

∣∣,
∣∣Ĵ(32)

∣∣} ≤ (1 + m−1)b.

Moreover
∣∣Ĵ(13)

∣∣ ≤
∣∣A3,x − A0,x

∣∣ +
∣∣A4,x − A1,x

∣∣ +
∣∣A5,x − A2,x

∣∣ ≤ 3Lmax,
∣∣Ĵ(23)

∣∣ ≤
∣∣A3,y − A0,y

∣∣ +
∣∣A4,y − A1,y

∣∣ +
∣∣A5,y − A2,y

∣∣ ≤ 3Lmax,
∣∣Ĵ(33)

∣∣ ≤
∣∣A3,z − A0,z

∣∣ +
∣∣A4,z − A1,z

∣∣ +
∣∣A5,z − A2,z

∣∣ ≤ 3Lmax.

Therefore,

∣∣∣
∂2û
∂ x̂2

∣∣∣
2
≤ 24(1 + m−1)4a4

{∣∣∣
∂2u
∂x2

∣∣∣
2
+

∣∣∣
∂2u
∂ y2

∣∣∣
2
+

∣∣∣
∂2u
∂z2

∣∣∣
2
+

∣∣∣
∂2u
∂x∂ y

∣∣∣
2
+

∣∣∣
∂2u
∂x∂z

∣∣∣
2
+

∣∣∣
∂2u
∂ y∂z

∣∣∣
2}

= 24(1 + m−1)4a4
∑

|β|=2

| Dβu |2,

and
∣∣∣

∂2û
∂ x̂∂ ŷ

∣∣∣
2
≤ 24(1 + m−1)4a2b2

∑

|β|=2

| Dβu |2,

∣∣∣
∂2û
∂ x̂∂ ẑ

∣∣∣
2
≤ 63(1 + m−1)2a2L2

max

∑

|β|=2

| Dβu |2,

∣∣∣
∂3û

∂ x̂∂ ŷ∂ ẑ

∣∣∣
2
≤ 10 × 182(1 + m−1)4a2b2L2

max

∑

|β|=3

| Dβu |2 .
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Using Theorem 6, (37) can be expressed as follows.
∫

P̂

∣∣∣
∂

∂ x̂
(û − π̂P̂ û)

∣∣∣
2
dX̂

≤ C
∫

P

|det(Ĵ)|−1(1 + m−1)2a2{((1 + m−1)2(a2 + b2) + L2
max

) ∑

|β|=2

∣∣Dβu
∣∣2

+
(
(1 + m−1)2b2L2

max
) ∑

|β|=3

∣∣Dβu
∣∣2}

dX

≤ C
∫

P

|det(Ĵ)|−1a2{h2(P)
∑

|β|=2

∣∣Dβu
∣∣2 + h4(P)

∑

|β|=3

∣∣Dβu
∣∣2}

dX . (38)

Similarly, we have
∫

P̂

∣∣∣
∂

∂ ŷ
(û − π̂P̂ û)

∣∣∣
2
dX̂

≤ C
∫

P

|det(Ĵ)|−1(1 + m−1)2b2{((1 + m−1)2(a2 + b2) + L2
max

) ∑

|β|=2

∣∣Dβu
∣∣2

+
(
(1 + m−1)2a2L2

max
) ∑

|β|=3

∣∣Dβu
∣∣2}

dX

≤ C
∫

P

|det(Ĵ)|−1b2{h2(P)
∑

|β|=2

∣∣Dβu
∣∣2 + h4(P)

∑

|β|=3

∣∣Dβu
∣∣2}

dX . (39)

From equation (45) in [6], we get

∫

P̂

∣∣∣
∂

∂ ẑ
(û − π̂P̂ û)

∣∣∣
2
dX̂

≤ 2
∫

P̂

∣∣∣
∂2û
∂ ẑ2

∣∣∣
2
dX̂ + C

∫

P̂

(∣∣∣
∂3û

∂ x̂2∂ ẑ

∣∣∣
2
+

∣∣∣
∂3û

∂ x̂∂ ŷ∂ ẑ

∣∣∣
2
+

∣∣∣
∂3û

∂ ŷ2∂ ẑ

∣∣∣
2
)

dX̂ .

Since

∣∣∣
∂2û
∂ ẑ2

∣∣∣
2
≤ 6 × 182L4

max

∑

|β|=2

∣∣Dβu
∣∣2

,

∣∣∣
∂3û

∂ x̂2∂ ẑ

∣∣∣
2
≤ 10 × 182(1 + m−1)4a4L2

max

∑

|β|=3

∣∣Dβu
∣∣2

,

∣∣∣
∂3û

∂ ŷ2∂ ẑ

∣∣∣
2
≤ 10 × 182(1 + m−1)4b4L2

max

∑

|β|=3

∣∣Dβu
∣∣2

,

we get

∫

P̂

∣∣∣
∂

∂ ẑ
(û − π̂P̂ û)

∣∣∣
2
dX̂

≤ C
∫

P

|det(Ĵ)|−1L2
max

{
L2

max

∑

|β|=2

∣∣Dβu
∣∣2 + (1 + m−1)4(a4 + b4 + a2b2) ∑

|β|=3

∣∣Dβu
∣∣2}

dX

≤ C
∫

P

|det(Ĵ)|−1L2
max

{
h2(P)

∑

|β|=2

∣∣Dβu
∣∣2 + h4(P)

∑

|β|=3

∣∣Dβu
∣∣2}

dX . (40)
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Now, we estimate (36) as follows.

|u − πP u|21,2,P

=
∫

P̂

|det(Ĵ)|
(∣∣∣J−1

(11)

∂

∂ x̂
(û − π̂P̂ û) + J−1

(21)

∂

∂ ŷ
(û − π̂P̂ û) + J−1

(31)

∂

∂ ẑ
(û − π̂P̂ û)

∣∣∣
2

+
∣∣∣J−1

(12)

∂

∂ x̂
(û − π̂P̂ û) + J−1

(22)

∂

∂ ŷ
(û − π̂P̂ û) + J−1

(32)

∂

∂ ẑ
(û − π̂P̂ û)

∣∣∣
2

+
∣∣∣J−1

(13)

∂

∂ x̂
(û − π̂P̂ û) + J−1

(23)

∂

∂ ŷ
(û − π̂P̂ û) + J−1

(33)

∂

∂ ẑ
(û − π̂P̂ û)

∣∣∣
2
)

dX̂

≤ 3
∫

P̂

|det(Ĵ)|
((

| J−1
(11) |2 + | J−1

(12) |2 + | J−1
(13) |2

)∣∣∣
∂

∂ x̂
(û − π̂P̂ û)

∣∣∣
2

+
(

| J−1
(21) |2 + | J−1

(22) |2 + | J−1
(23) |2

)∣∣∣
∂

∂ ŷ
(û − π̂P̂ û)

∣∣∣
2

+
(

| J−1
(31) |2 + | J−1

(32) |2 + | J−1
(33) |2

)∣∣∣
∂

∂ ẑ
(û − π̂P̂ û)

∣∣∣
2
)

dX̂ . (41)

Theorem 6 and computations of cofactors lead to
{

| J−1
(11) |, | J−1

(12) |, | J−1
(13) |

}
≤ 6

|det(Ĵ)|
(1 + m−1)bLmax ≤ C

(1
a

)
,

{
| J−1

(21) |, | J−1
(22) |, | J−1

(23) |
}

≤ 6

|det(Ĵ)|
(1 + m−1)aLmax ≤ C

(1
b

)
,

{
| J−1

(31) |, | J−1
(32) |, | J−1

(33) |
}

≤ 2

|det(Ĵ)|
(1 + m−1)2ab ≤ C

( 1
Lmax

)
. (42)

Using (42) for (41) yields

|u − πP u|21,2,P ≤ C
∫

P̂

(
1
a2

∣∣∣
∂

∂ x̂
(û − π̂P̂ û)

∣∣∣
2
+ 1

b2

∣∣∣
∂

∂ ŷ
(û − π̂P̂ û)

∣∣∣
2
+ 1

L2
max

∣∣∣
∂

∂ ẑ
(û − π̂P̂ û)

∣∣∣
2
)

dX̂,

and by (38), (39), and (40) we deduce

|u − πP u|21,2,P ≤ C
{(

h(P)
)2 |u|22,2,P +

(
h(P)

)4 |u|23,2,P
}
,

which implies (35). !

5. Conclusion

In this paper, we proposed the combination of the edge and tetrahedra ratio conditions with the maximum angle con-
dition in three dimensional space, as the natural version of semiregularity for possibly degenerating families of prismatic 
elements. We have shown that the new semiregularity condition property guarantees that an optimal order of interpolation 
error is preserved.

In future work, we plan to estimate interpolation errors for pyramidal elements under similar conditions.
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Abstract: Visual cryptography scheme (VCS) shares a binary secret image into multiple shadows
printed on transparencies. Stacking shadows can visually decode the secret image without
computational resources. Specifically, a (k, n) threshold VCS ((k, n)-VCS) shares a secret image
into n shadows, stacking any k shadows can reveal the secret image by human visual system, while
any less than k shadows cannot decode any information regarding the secret image. In practice,
some participants (essentials) play more important roles than others (non-essentials). In this paper,
we propose a (t, s, k, n) VCS with essential participants (so called (t, s, k, n)-EVCS). The secret image is
shared into n shadows with s essentials and n-s non-essentials. Any k shadows, including at least t
essentials, can reveal the secret image. The proposed scheme is constructed from a monotonic (K,
N)-VCS. The condition and optimal choice of (K, N)-VCS to construct (t, s, k, n)-EVCS are given by
solving integer programming model. The experimental results are conducted to verify the feasibility
of our scheme.

Keywords: visual secret sharing; secret image sharing; visual cryptography; integer programming;
essential shadows

1. Introduction

Visual cryptography scheme (VCS) is a technique for sharing a secret image among the participants.
The revealing process of the secret image can be implemented by stacking operation without
computation. The first VCS was proposed by Naor and Shamir [1] in 1994. A (k, n) threshold
VCS ((k, n)-VCS) shares a binary secret image into n shadows printed on transparencies, which are
assigned to n participants, respectively. Stacking any k shadows can reveal the secret image by human
visual system without computation. The advantage of VCS is its easy revealing. Stacking shadows
without computational resources can reveal the secret image. However, the disadvantages are the large
shadow size expansion and the degraded visual quality of the revealed image. Many researchers were
dedicated on improving performance of VCS [2–4], and proposed VCS with di↵erent properties, like
VCS for color images [5–7], VCS for multiple secret images [8,9], VCS with meaningful shadows [10,11],
and random grid-based VCS (RGVCS) [12–15], et.al.

A (k, n)-VCS is called the monotonic VCS if it can reveal the secret image by stacking more than k
shadows. Otherwise, it is called the non-monotonic VCS. Jin et al. proposed progressive VCS [16].
Stacking more shadows can decode secret image with better visual quality. Most of existing VCSs do
not distinguish the roles of each shadow. However, in practice, some shadows are more important
than others according to the status of the participants. Arumugam et al. [17] proposed (k, n)-VCS
with one essential participant and n-1 non-essential participants. In the revealing process, any k
participants, including the essential one, can reveal the secret image. Without the essential one, the
secret image cannot be revealed, even with all other non-essentials. Guo et al. [18] extended the scheme
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of Arumugam et al. [17] and proposed a (t, k, n)-VCS with t essential participants, namely (t, k, n)-EVCS
that is constructed from a known (k-t, n-t)-VCS and a known optimal (t, t)-VCS. A qualified set of
shadows should contain k shadows, including t essential ones.

Another category of secret image sharing scheme is based on polynomial. Thien and Lin [19]
proposed a (k, n) threshold secret image sharing (SIS) scheme. The secret pixels are embedded into
the coe�cients of a (k�1)-degree polynomial to generate shadow pixels. With any k shadows, the
secret image can be decoded by Lagrange interpolation. When compared with VCS, polynomial based
SIS can reveal the original grayscale secret image by computation. Many researchers proposed many
polynomial based SIS [20–23]. Li et al. [24] first presented the concept of secret image sharing scheme
with essential participants (ESIS), and proposed (t, s, k, n)-ESIS. For a (t, s, k, n)-ESIS, the secret image
is shared into n shadows with s essentials and n-s non-essentials. A qualified set of shadows should
contain k shadows, including at least t essentials. Many researchers proposed di↵erent (t, s, k, n)-ESIS
schemes to achieve smaller shadow size and equal shadow size [25–28]. Liu et al. [29] combined the
scalable secret image sharing scheme with ESIS, so that k or more shadows, including at least t essential
shadows, can gradually restore the secret image, while restoring the whole secret image requires the
participation of all s essential shadows.

In this paper, we propose general (t, s, k, n) visual cryptography scheme with essential participants
(EVCS). For a (t, s, k, n)-EVCS, the secret image is shared into n shadows with s essentials and n-s
non-essentials. Stacking any k shadows, including at least t essentials, can reveal the secret image. The
proposed (t, s, k, n)-EVCS is constructed from a monotonic (K, N)-VCS based on integer programming.
When compared with ESIS, the revealing process of the proposed EVCS does not need complicated
mathematical operation. EVCS has potential application when some participants are accorded special
privileges due to their status or importance, e.g., heads of government, managers of company, high-level
corporate o�cers, major employers, etc. For example, in a nuclear-powered submarine under the ocean,
the missile launch code is shared by (2, 2, 4, 6)-EVCS into two essential shadows for the commander
and the executive commander and four non-essentials for four other decision members. The missile
launch code can be decoded if and only if at least four participants, including the commander and the
executive commander, have the agreement on the launch of the missile, and stacking their shadows.
EVCS can also be applied in key exchange or key distribution when exchanging message in a public
secure network [30,31].

The layout of this paper is as follows. In next section, we present some preliminaries of VCS.
In Section 3, we propose our (t, s, k, n)-EVCS based on integer programming. Section 4 provides
experimental results and comparisons and Section 5 concludes the paper.

2. Related Works

In this section, we briefly introduce relevant concepts of (k, n)-VCS and Yan et al.’s random grid
based VCS (RGVCS) [32].

2.1. Access Structure of (k, n)-VCS

Let P = {1, 2, · · · , n} be the set of all participants and 2P is the power set of P. Let qualified sets
GQual be the collection of the set of participants that can recover the secret, forbidden sets GForb be the
collection of the set of participants that cannot recover the secret. (GQual, GForb) constitutes an access
structure, where GQual ✓ 2P, GForb ✓ 2P, and GQual \ GForb = ?.

Definition 1 ([33]). A (k, n)-VCS with access structure (GQual, GForb) is monotonic if the following conditions
are satisfied.

(1) GQual is monotonic increasing, i.e. if a subset of Q can reveal the secret, then the participants in Q can
reveal the secret as well.

(2) GForb is monotonic decreasing, i.e. if F 2 GForb cannot reveal the secret, then any subset of F cannot reveal
the secret as well.
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(3) GQual [ GForb = 2p

For a (k, n)-VCS, a qualified set should contain at least k participants. Stacking any k shadows can
reveal the secret image. If stacking more than k shadows can still reveal the secret, the (k, n)-VCS is also
called monotonic (k, n)-VCS.

Usually, a (k, n)-VCS is constructed by a pair of matrices, called basis matrices M0 and M1. Let
S ✓ P, M|S is a submatrix generated by restricting matrix M on the rows of S. Let OR(M) denote the
vector generated by performing OR operation on the rows of matrix M. Let w(a) denote the Hamming
weight of vector a. Formally, we have the definition of monotonic (k, n)-VCS, as follows.

Definition 2. Two binary matrices M0 and M1 with the size n⇥m can be used as basis matrices of a monotonic
(k, n)-VCS if and only if the following conditions satisfied.

(Contrast condition). For any S ✓ P and |S| � k, we have w(OR(M0|S))< w(OR(M1|S)).
(Security condition). For any S ✓ P and 1|S|<k, we have w(OR(M0|S))= w(OR(M1|S)).

For a (k, n)-VCS with basis matrices M0 and M1, if the secret pixel is white (resp. black), permute the
columns of M0 (resp. M1), and then assign its n rows to n shadows, respectively. Since each shadow
receives m pixels for sharing each secret pixel, the shadows size is m times of the secret image. m is also
called size expansion. The visual quality of the revealed image is usually degraded, and it is evaluated
by the contrast defined, as follows.

↵ = (w(OR(M1
���S)) �w(OR(M0

���S)))/m

where S ✓ P and |S|�k. By contrast condition of the definition of VCS, we know that ↵ is larger than 0
and no more than 1. When the contrast is 1, the revealed image has the perfect visual quality. The
larger value of the contrast, the better visual quality of the revealed image.

Example 1. The example of (3, 4)-VCS.

Here we show a (3, 4)-VCS while using the following basis matrices presented in [33].

M0 =

0
BBBBBBBBBBBB@

0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

1
CCCCCCCCCCCCA

and M1 =

0
BBBBBBBBBBBB@

1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1

1
CCCCCCCCCCCCA

The size expansion m is 6, which means the generated shadows have the size six times of the
secret image, as we can see from the basis matrices. The contrast value ↵ when stacking three shadows
is 1/6. When stacking four shadows, the contrast value ↵ is increased to 1/3. Therefore, the (3, 4)-VCS
with above basis matrices is monotonic. Figure 1 shows the experimental results of (3, 4)-VCS. Stacking
any three or four shadows can reveal the secret image.
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Figure 1. The experimental results of (3, 4)-VCS. (a) the secret image; (b–e) four generated shadows; (f)
revealed image by shadow 1, 2 and 3; (g) revealed image by shadow 1, 2, and 4; (h) revealed image by
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and 4.

2.2. Yan et al.’s RGVCS

Kafri and Keren first presented RG-based VCS [34]. Each shadow is noise-like and it has the same
size as the secret image. The revealing operation is also stacking shadows. First, we briefly introduce
the generation of (2, 2)-RGVCS, as described below.

Step 1: Randomly generate the first shadow SC1 with the same size as secret image S.
Step 2: Calculate the corresponding SC2(i, j) according to S(i, j)(the value of pixels in the secret

image), as described in Equation (1).

SC2(i, j) =
8><>:

SC1(i, j) i f S(i, j) = 0
SC1(i, j) i f S(i, j) = 1

(1)

Step 3: Repeat Step2 until all pixels in S are processed.
Finally, the revealed image obtained by stacking shadows (S0 = SC1 ⌦ SC2 as in Equation (2),

where ⌦ denotes the Boolean OR operation) SC1 and SC2 can be directly recognized by the human
visual system.

S0(i, j) = SC1(i, j) ⌦ SC2(i, j) =
8><>:

SC1(i, j) ⌦ SC1(i, j) i f S(i, j) = 0
SC1(i, j) ⌦ SC1(i, j) = 1 i f S(i, j) = 1

(2)

Many (k, n)-RGVCS schemes have been proposed based on (2, 2)-RGVCS. Their similarity is
to repeat the above process for the first k bits, but the di↵erence is the disposal of the last n-k bits.
Yan et al. [32] proposed a novel (k, n)-RGVCS, which makes full use of n-k random bits to improve
the visual quality of the recovered image. Their (k, n)-RGVCS is also a progressive VCS. Better visual
quality of the revealed secret image will be gained by stacking more shadows. The algorithm of Yan et
al.’s (k, n)-RGVCS is given, as follows (Algorithm 1).
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Algorithm 1. Yan et al.’s RGVCS.

Input: secret image S, the threshold parameters (k, n)
Output: n shadows SC1, SC2, . . . , SCn

A1-1:For each pixel S(i, j) in the secret image S, repeat Steps 2–4.
A1-2:Apply the above conventional (2, 2)-RGVCS to encrypt the pixelS(i, j), then b1 and b02 are obtained. b02 is

encrypted in the same way. Repeat the above operation until b1, b2, . . . , b0k(= bk) are obtained.
A1-3:For bl(k + 1  l  n), if lmodk = x, (0  x  k� 1), then bl = bk.
A1-4:Redistribute b1, b2, . . . , bn to SC1(i, j), SC2(i, j), . . . , SCn(i, j) randomly.
A1-5:Output n shadows SC1, SC2, . . . , SCn.

Example 2. The experiment of Yan et al.’s (3, 6)-RGVCS
An experiment of (3, 6) threshold of scheme with secret image “VCS” is conducted in order to demonstrate

the Yan et al.’s algorithm. Figure 2a shows the secret image. Figure 2b–g show six shadows. Figure 2h shows the
revealed image by 2 shadows. Figure 2i–l show the revealed image by stacking 3, 4, 5, and 6 shadows, respectively.
Apparently, better visual quality of the recovered secret will be gained by stacking more shadow images. The
results show that Yan et al.’s scheme satisfies monotonicity, as described in Definition 1.
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Figure 2. An experiment of Yan et al.’s (3, 6)-VCS. (a) secret image; (b–g) six shadows; (h) revealed
image by two shadows; (i) revealed image by three shadows; (j) revealed image by four shadows;
(k) revealed image by five shadows; and, (l) revealed image by six shadows.

3. The Proposed (t, s, k, n)-EVCS Based on Integer Programming

3.1. The Definition of (t, s, k, n)-EVCS

In traditional (k, n)-VCS, a qualified subset of participants should have any k or more participants.
The roles of each participant are the same. However, there are many examples in practical situations
where some participants are given privileges because of their status or importance, such as heads
of government, company managers, etc. Therefore, it is reasonable for us to consider giving special
powers to some participants in VCS. The proposed (t, s, k, n)-EVCS shares the secret image into n
shadows with s essentials and n-s non-essentials. Stacking any k shadows, including at least t essential
one, can reveal the secret image. A qualified subset of participants should have at least k shadows,
including t essentials. Let EP = {1, 2, . . . , s} and NEP = {s + 1, s + 2, . . . , n} denote the set of essential
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participants and non-essential participants, respectively. Subsequently, we can derive all qualified sets
GQual of (t, s, k, n)-EVCS, as follows.

GQual = {Q|Q ✓ P, |Q|� k and |Q\NEP|� t} (3)

If a subset of participant does not belong to the qualified sets GQual, it belongs to forbidden sets.
Hence, we have forbidden sets GForb of (t, s, k, n)-EVCS.

GForb =
n
S
���S ✓ P and S < GQual

o
(4)

Subsequently, (t, s, k, n)-EVCS can be defined if and only if the access structure satisfies Equations
(3) and (4).

We only consider non-trivial EVCS, which cannot be reduced to a threshold VCS. For the
relationships among t, s, k, and n of (t, s, k, n)-EVCS, we have the following facts.

(1) t, s, k and n are all integers no less than 1, and t  s  n, t  k  n.
(2) k > t. Otherwise, (t, s, k, n)-EVCS is reduced to (t, s)-VCS.
(3) k < n. Otherwise, (t, s, k, n)-EVCS is reduced to (n, n)-VCS.
(4) If s = n, (t, s, k, n)-EVCS is reduced to (t, n)-VCS. Hence, s < n. If s = n � 1, then there is only one

non-essential participant. A qualified set of participants contains k members, including at least
t essentials and k - t non-essentials. We have k – t  1. Since k > t, then k = t + 1. If s = t, then
k = s + 1 = n, and (t, s, k, n)-EVCS is reduced to (n, n)-VCS. Otherwise, s � t + 1, which means
that there are more than t essentials. Since there is only one non-essential participant, any t + 1
participants must contain at least t essentials and they can reveal the secret image. Afterwards, (t,
s, k, n)-EVCS is reduced to (t + 1, n)-VCS. Overall, we have s  n-2.

(5) k� t < n� s. The number of non-essentials is n� s, and the largest number of non-essentials in a
qualified set is k� t. Obviously, k� t  n� s. If k� t = n� s, then any k participants will contain at
least k� (n� s) = k� (k� t) = t essentials. Subsequently, (t, s, k, n)-EVCS is reduced to (k, n)-VCS.
Therefore, we have k� t < n� s.

Finally, we have the relationships among t, s, k and n of (t, s, k, n)-EVCS are shown, as follows:

8>>>>>><>>>>>>:

t  s  n� 2
t < k < n

k� t < n� s
t, s, k and n are integers no less than 1

(5)

3.2. Constructing (t, s, k, n)-EVCS Based on Integer Programming

The idea for constructing (t, s, k, n)-EVCS is that we generate the shadows by a monotonic (K,
N)-VCS. The secret image is first shared into N shadows by (K, N)-VCS. Subsequently, each essential
(non-essential) shadow of EVCS is obtained by the superposition of!1 (!2) shadows of VCS. Obviously,
we have

N = s!1 + (n� s)!2 (6)

Since essential shadow is more important than the non-essential shadow of EVCS, !1 must be
larger than !2.

Figure 3 shows the diagram of generating shadows of EVCS by the shadows of a monotonic VCS.
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For (K, N)-VCS, a qualified subset of shadows should have at least K shadows. Each essential
(non-essential) shadow of EVCS represents the stacking result of !1 (!2) shadows of (K, N)-VCS.
A qualified subset of shadows of EVCS should contribute no less than K shadows of (K, N)-VCS
to satisfy the contrast condition of (K, N)-VCS. Any forbidden subset of shadows of EVCS should
contribute less than K shadows of (K, N)-VCS to satisfy the security condition of (K, N)-VCS. Therefore,
our task is determining the proper values of!1,!2, K, and N to be used for constructing (t, s, k, n)-EVCS.
In this paper, we get the values of !1, !2, K, and N by solving an integer programming model.

For (t, s, k, n)-EVCS, we first need to build the relationship among the values of !1, !2, K, and N.
These parameters should satisfy the following conditions.

(1) For all parameters !1, !2, K, and N to make sense, we need to restrict that !1 � 1, !2 � 1, K � 1,
and N � K.

(2) Essential shadows are more important than non-essential shadows. In another word, an essential
shadow can contribute more shadows of VCS than a non-essential shadow. Hence, !1 must be
larger than !2. That is

!1 �!2 � 1 (7)

(3) By Equation (3), we have that a qualified set should contain any k shadows, including at least t
essentials. In another word, k shadows of EVCS, including t essential ones, can contribute at least
K shadows of VCS. Subsequently, we have

t!1 + (k� t)!2 � K (8)

Obviously, Equation (8) guarantees that any k shadows of EVCS, including more than t essential
ones, can also contribute at least K shadows of VCS.

(4) By Equations (3) and (4), the secret image cannot be recovered with less than t essential
shadows. In another word, the threshold value K of (K, N)-VCS is still not satisfied, even if t�1
essential shadows and all n-s non-essential shadows are gathered. Subsequently, we have the
following inequality.

(t� 1)!1 + (n� s)!2  K � 1 (9)
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(5) By Equations (3) and (4), the secret image cannot be recovered with less than k shadows.

If s � k, then any k�1 essential shadows cannot contribute enough shadows of VCS. In order to
satisfy the security condition of VCS, we have

(k� 1)!1  K � 1 (10)

If s < k, then any s essential shadows and k-s � 1 non-essential shadows cannot contribute enough
shadows of VCS. To satisfy the security condition of VCS, we have

s!1 + (k� 1� s)!2  K � 1 (11)

For (K, N)-VCS, the larger values of K and N may reduce the visual quality of the revealed image,
and complicate the sharing process. Therefore, we want to obtain as small values of K and N as possible.
In general, the objective function is:

min K + N (12)

We generate the following integer programming models (IPM) by combining the constraint
conditions and objective function.

(IPM I): When s < k, the corresponding integer programming model is:

min K + s!1 + (n� s)!28>>>>>>>>>>>>><>>>>>>>>>>>>>:

t!1 + (k� t)!2 �K � 0
(t� 1)!1 + (n� s)!2 �K  �1
s!1 + (k� 1� s)!2 �K  �1

!1 �!2 � 1
!1 � 1
!2 � 1
K � 1

(13)

(IPM II): When s � k, the corresponding integer programming model is:

min K + s!1 + (n� s)!28>>>>>>>>>>>>><>>>>>>>>>>>>>:

t!1 + (k� t)!2 �K � 0
(t� 1)!1 + (n� s)!2 �K  �1

(k� 1)!1 �K  �1
!1 �!2 � 1
!1 � 1
!2 � 1
K � 1

(14)

3.3. Determine the Parameters by Solving IPMs

We need to solve IPM I or IPM II to determine the values of !1, !2, K and N. Before we solve
IPM, we divide the relationship among t, s and k into six cases: (Case 1) t = s, s < k; (Case 2) t , s,
s < k; (Case 3) s� t = 1, s = k; (Case 4) s� t , 1, s = k; (Case 5) k� t = 1, s > k; (Case 6) k� t = 1, s > k.
Figure 4 shows the diagram of the division for di↵erent cases. For Case 1 and Case 2, we need to solve
IPM I. For the other cases, we need to solve IPM II.
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Now we solve IPM according to the six cases, respectively.
(Case 1) t = s, s < k.
For this case, we need to solve IPM I. First, we convert IPM I into standard form by generalizing

the sighs of !1, !2 and K to x1, x2, and x3. Subsequently, we have new IPM as follows.

max� tx1 + (t� n)x2 � x38>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

tx1 + (k� t)x2 � x3 � x4 = 0
(1� t)x1 + (t� n)x2 + x3 � x5 = 1
�tx1 + (t + 1� k)x2 + x3 � x6 = 1

x1 � x2 � x7 = 1
x1 � x8 = 1
x2 � x9 = 1
x3 � x10 = 1

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 � 0

(15)

where x4, x5, x6, x7, x8, x9, and x10 are non-negative residual variables (slack variables). We use the
dual simplex method to solve above IPM. Equation (15) is converted to the following form to obtain
the initial feasible basis of the dual problem.

max� tx1 + (t� n)x2 � x38>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

�tx1 + (t� k)x2 + x3 + x4 = 0
(t� 1)x1 + (n� t)x2 � x3 + x5 = �1
tx1 + (k� t� 1)x2 � x3 + x6 = �1

�x1 + x2 + x7 = �1
�x1 + x8 = �1
�x2 + x9 = �1
�x3 + x10 = �1

x1, x2, x3, x4, x5, x6, x7, x8, x9x10 � 0

(16)

Establish the initial simplex table for IPM, as shown in Table 1.
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Table 1. The initial simplex table of integer programming models (IPM) I for Case 1.

cj! -t t�n �1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 x4 0 �t t�k 1 1 0 0 0 0 0 0
0 x5 �1 t �1 n�t [[�1] 0 1 0 0 0 0 0
0 x6 �1 t k�t�1 �1 0 0 1 0 0 0 0
0 x7 �1 �1 1 0 0 0 0 1 0 0 0
0 x8 �1 �1 0 0 0 0 0 0 1 0 0
0 x9 �1 0 �1 0 0 0 0 0 0 1 0
0 x10 �1 0 0 �1 0 0 0 0 0 0 1

cj � zj �t t�n �1 0 0 0 0 0 0 0

From Table 1 it can be seen that the solution of the dual problem corresponding to the row of
checking number is feasible. Since some numbers in column b is negative, iterative operation is required.
Since the values of bi are equal, the non-basic variable with the smallest subscript in XB is selected as
the leaving variable, i.e. x5. Check the coe�cients alj( j = 1, 2, . . . , 10) of the row of al in the simplex
table, if all alj � 0, there is no feasible solution, and the calculation is terminated. If alj < 0, calculate

✓ = min
j

✓
cj�zj

al j

����alj < 0
◆
= ck�zk

alk
, and the non-basic variable xk of the column corresponding to rule of ✓ is

the entering variable. Calculating according to the above steps, we obtain ✓ = min
n
�,�, �1

�1

o
= 1, so x3

is the entering variable. “�1” is the pivot element at the intersection of the column and row where the
variables are entering and leaving. The iteration is performed according to the calculation steps of
dual simplex method, and Table 2 shows the results.

Table 2. Simplex table of IPM I for Case 1 after one iteration.

cj! �t t�n �1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 x4 �1 [�1] n � k 0 1 1 0 0 0 0 0
�1 x3 1 1 � t t�n 1 0 �1 0 0 0 0 0
0 x6 0 1 k � n�1 0 0 �1 1 0 0 0 0
0 x7 �1 �1 1 0 0 0 0 1 0 0 0
0 x8 �1 �1 0 0 0 0 0 0 1 0 0
0 x9 �1 0 �1 0 0 0 0 0 0 1 0
0 x10 0 1 � t t�n 0 0 �1 0 0 0 0 1

cj � zj 1 � 2t 2(t � n) 0 0 �1 0 0 0 0 0

From Table 2 it can be seen that the dual problem is still a feasible solution, and there are still
negative components in column b. Repeat the above iterative steps until the numbers in column b are
all non-negative and the test numbers are all non-positive, as shown in Table 3.

Table 3. The final simplex table of IPM I for Case 1.

cj! �t T � n �1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

�t x1
n � k
+ 1 1 0 0 k – n � 1 �1 k � n 0 0 0 0

�1 x3
t(n �
k) + k 0 0 1 t(k � n) � k + 1 �t t(k � n + 1) � k 0 0 0 0

t � n x2 1 0 1 0 �1 0 �1 0 0 0 0

0 x7
n – k
� 1 0 0 0 k � n �1 k � n + 1 1 0 0 0

0 x8 n � k 0 0 0 k � n�1 �1 k � n 0 1 0 0
0 x9 0 0 0 0 �1 0 �1 0 0 1 0

0 x10

k +
t(n �
k) � 1

0 0 0 t(k � n) � k + 1 �t t(k � n + 1) � k 0 0 0 1

cj � zj 0 0 0 2t(k � n) + 1�k � n �2t 2t(k � n + 1) � n �
k 0 0 0 0

The numbers in column b are all non-negative and the test numbers are all non-positive, as shown
in Table 3. Therefore, the optimal solution of the problem is X* = (n� k + 1, 1, t(n� k) + k,0,0,0, n� k� 1,
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n � k,0,k + t(n � k) � 1). Additionally, since tx1 + (n � t)x2 = N, then t(n � k + 1) + n � t = N. From
what has been discussed above, any (t, t, k, n)-EVCS can be constructed by a monotonic (K, N)-VCS =
(t(n� k) + k, t(n� k + 1)+n� t)-VCS with !1 = n� k + 1 and !2 = 1.

(Case 2) t , s, s < k.
For this case, we need to solve IPM I with the same method. Table 4 shows the simplex table

obtained after two iterations.

Table 4. Simplex table after two iterations for Case 2.

cj! �s s � n �1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

�s x1 1 1 k + s – t � n 0 �1 �1 0 0 0 0 0
�1 x3 t 0 t�k�t(t + n – k � s) 1 1�t �t 0 0 0 0 0

0 x6
t � s
� 1 0 [(t + n – k � s)(s � t) + t � s � 1] 0 S � t

+ 1 s�t 1 0 0 0 0

0 x7 0 0 1 � t�n + k + s 0 �1 �1 0 1 0 0 0
0 x8 0 0 k + s�t�n 0 �1 �1 0 0 1 0 0
0 x9 �1 0 �1 0 0 0 0 0 0 1 0
0 x10 t�1 0 t�k�t(t + n � k � s) 0 1�t �t 0 0 0 0 1

cj � zj 0 2(s � n) + (s – t � 1)(k + s – t � n) 0 1�s�t �s�t 0 0 0 0 0

Since t , s, with the relationship between s and t, we have t� s� 1 < �1. Subsequently, the linear
programming has a solution if and only if (t + n � k � s)(s � t) + t � s � 1 < 0. Continue to iterate.
It is calculated that the elements in column b are 1 � (t�s�1)(k+s�t�n)

(t+n�k�s)(s�t)+t�s�1 , t � (t�s�1)[t�k�t(t+n�k�s)]
(t+n�k�s)(s�t)+t�s�1 ,

t�s�1
(t+n�k�s)(s�t)+t�s�1 , � (t�s�1)(1�t�n+k+s)

(t+n�k�s)(s�t)+t�s�1 , � (t�s�1)(k+s�t�n)
(t+n�k�s)(s�t)+t�s�1 , t�s�1

(t+n�k�s)(s�t)+t�s�1 � 1, t � 1 �
(t�s�1)[t�k�t(t+n�k�s)]
(t+n�k�s)(s�t)+t�s�1 , respectively. They are obviously all non-negative, except � (t�s�1)(1�t�n+k+s)

(t+n�k�s)(s�t)+t�s�1 ,

which needs further discussion. If 1 � t � n + k + s  0, i.e. � (t�s�1)(1�t�n+k+s)
(t+n�k�s)(s�t)+t�s�1 � 0, then the

calculation is terminated. It can be known from conditions (t + n � k � s)(s � t) + t � s � 1 < 0 and
1� t� n + k + s  0 that 1  t + n� k� s < 2, namely, t + n� k� s = 1. Thus, the above simplex table
can be simplified into the following table.

The elements in column b are all non-negative and the checking numbers are all non-positive,
as shown in Table 5. Therefore, the optimal solution of the problem is X* = (s � t + 2, s � t + 1,
t� k(t� s� 1),0,0,0,0, s� t + 1, and t� k(t� s� 1) � 1, s� t). From what has been discussed above, (t, s,
k, n)-EVCS of Case 2 can be constructed by a monotonic (K, N)-VCS = (t � k(t � s � 1), s(s � t + 2) +
(n� s)(s� t + 1))-VCS with !1=s� t + 2 and !2=s� t + 1. If 1� t� n + k + s > 0, we have known that
k + s < n + t, then 0 < t + n� k� s < 1, the absence of t, s, k, and n makes this condition satisfy.

Table 5. The final simplex table of IPM I for Case 2.

cj! �t t�n �1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

�s x1 S � t + 2 1 0 0 t � s � 2 t � s � 1 �1 0 0 0 0
�1 x3 T � k(t � s � 1) 0 0 1 1� t � k(s � t + 1) �t � k(s � t) �k 0 0 0 0

s � n x2 1 + s � t 0 1 0 t � s � 1 t�s �1 0 0 0 0
0 x7 0 0 0 0 �1 �1 0 1 0 0 0
0 x8 1 + s � t 0 0 0 t � s � 2 t � s � 1 �1 0 1 0 0
0 x9 t � k(t � s � 1) � 1 0 0 0 t � s � 1 t�s �1 0 0 1 0
0 x10 s � t 0 0 0 1� t � k(s�t + 1) �t � k(s � t) �k 0 0 0 1

cj � zj 0 0 0 (t � s � 1)(k + n) – s � t
+ 1 (t�s)(k + n) – s � t �k �

n 0 0 0 0

(Case 3) s – t = 1, s = k.

For this case, we need to solve IPM II with the same method. Table 6 shows the simplex table
obtained after three iterations.
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Table 6. Simplex table of IPM II for Case 3 after three iterations.

cj! �s s � n �1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

�s x1 n � s 1 0 0 s � n �1 s � n
+ 1 0 0 0 0

�1 x3
t(n �
s) + 1 0 0 1 t(s �

n) �t
�1�t(n
� s �

1)
0 0 0 0

s � n x2 1 0 1 0 �1 0 �1 0 0 0 0

0 x7 n�s�2 0 0 0 s � n
+ 1 [�1] s � n

+ 2 1 0 0 0

0 x8 n�s�1 0 0 0 s � n �1 s � n
+ 1 0 1 0 0

0 x9 0 0 0 0 �1 0 �1 0 0 1 0

0 x10
t(n �

s) 0 0 0 t(s �
n) �t

�1 �
t(n �
s � 1)

0 0 0 1

cj � zj 0 0 0
(s + t
+ 1)(s
� n)

�s � t

s(s �
n + 2)
� t(n
� s �
1)�1�n

0 0 0 0

If n � s � 2, i.e. n � s � 2 � 0, then the calculation is terminated and we have (K, N)-VCS =
(t(n� s) + 1, s(n� s) + n� s)-VCS with !1 = n�s and !2 = 1. Otherwise, n� s� 2 < 0 does not satisfy
the conditions that are given in Equation (5).

Similarly, for Case 4, Case 5, and Case 6, the same analysis method is used to solve the corresponding
IPM. Finally, we have the solutions of the corresponding IPM with di↵erent conditions. as shown in
Table 7.

Table 7. The solutions of IPM for all cases.

Conditions Solution (!1, !2,K) Case

s < k
t = s (n� k + 1, 1, t(n� k) + k) Case1

t , s V0 � 0 * –
Case2V0 < 0 (s� t + 2, s� t + 1, t� k(t� s� 1))

s = k
s� t = 1 (n� s, 1, t(n� s) + 1) Case3

s� t , 1
V00 � 0 * –

Case4V00 < 0 (s� t + 1, s� t, t� s(t� s))

s > k
k� t = 1 (n� s, 1, t(n� s) + 1) Case5

k� t , 1
V000 � 0 * –

Case6V000 < 0 (k� t + 1, k� t, t� k(t� k))

* Where V0 = (t + n� k� s)(s� t) + t� s� 1, V00 = (t + n� k� s)(s� t) + s� n, V000 = (t + n� k� s)(k� t) + s� n.

From Table 7, for the most cases, we can find the solutions (!1, !2, K) of the corresponding IPM.
Since N can be calculated by Equation (6), we can construct (t, s, k, n)-EVCS by the corresponding
monotonic (K, N)-VCS. For some common cases of (t, s, k, n)-EVCS, we list the solutions of the
corresponding IPM, the values of !1, !2, K, and N in Table 8.
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Table 8. The solutions of IPM for some specific essential participants (EVCSs).

(t, s, k, n)-EVCS (K, N)-VCS !1 !2 Case

(1, 1, 2, 3)-EVCS (3, 4)-VCS 2 1 1
(1, 1, 2, 4)-EVCS (4, 6)-VCS 3 1 1
(1, 1, 2, 5)-EVCS (5, 8)-VCS 4 1 1
(1, 1, 3, 5)-EVCS (5, 7)-VCS 3 1 1
(1, 1, 3, 6)-EVCS (6, 9)-VCS 4 1 1
(1, 2, 2, 4)-EVCS (3, 6)-VCS 2 1 3
(1, 2, 2, 5)-EVCS (4, 9)-VCS 3 1 3
(1, 2, 2, 6)-EVCS (5, 12)-VCS 4 1 3
(1, 2, 3, 5)-EVCS (7, 12)-VCS 3 2 2
(1, 2, 3, 6)-EVCS – – – 2
(1, 3, 2, 5)-EVCS (3, 8)-VCS 2 1 5
(1, 3, 2, 6)-EVCS (4, 12)-VCS 3 1 5
(1, 3, 3, 6)-EVCS (7, 15)-VCS 3 2 4
(1, 3, 3, 7)-EVCS – – – 4
(1, 4, 3, 7)-EVCS (7, 18)-VCS 3 2 6
(1, 4, 3, 8)-EVCS – – – 6
(2, 2, 3, 4)-EVCS (5, 6)-VCS 2 1 1
(2, 2, 3, 5)-EVCS (7, 9)-VCS 3 1 1
(2, 2, 3, 6)-EVCS (9, 12)-VCS 4 1 1
(2, 2, 4, 5)-EVCS (6, 7)-VCS 2 1 1
(2, 2, 4, 6)-EVCS (8, 10)-VCS 3 1 1
(2, 3, 3, 5)-EVCS (5, 8)-VCS 2 1 3
(2, 3, 3, 6)-EVCS (7, 12)-VCS 3 1 3
(2, 3, 4, 6)-EVCS (10, 15)-VCS 3 2 2
(2, 4, 3, 6)-EVCS (5, 10)-VCS 2 1 5

4. Experimental results and Comparison

4.1. Experimental Results

In this subsection, we conduct two experiments to verify the feasibility of the proposed scheme.

Example 3. The experiment of the proposed (1, 1, 2, 3)-EVCS.
By Table 8, we can generate our (1, 1, 2, 3)-EVCS by a monotonic (3, 4)-VCS with !1 = 2, and !2 =

1. First, we share the secret image into four shadows by a monotonic (3, 4)-VCS. Subsequently, the first two
shadows are used to generate the essential shadow of (1, 1, 2, 3)-EVCS by OR operation. Additionally, the left
two shadows are treated as two non-essential shadows of (1, 1, 2, 3)-EVCS, respectively. Finally, we have three
shadows of (1, 1, 2, 3)-EVCS with one essential and two non-essentials.

The chosen (3, 4)-VCS used to construct (1, 1, 2, 3)-EVCS can be any monotonic (3, 4)-VCS proposed by
researchers. In this example, we choose two monotonic (3, 4)-VCS separately to implement (1, 1, 2, 3)-EVCS.
First, we use monotone (3, 4)-VCS in Example 1 to implement (1, 1, 2, 3)-EVCS. We already show the experiment
of (3, 4)-VCS in Example 1. Figure 1 shows the four generated shadows of (3, 4)-VCS. Now, we can generate the
essential shadow of (1, 1, 2, 3)-EVCS, as shown in Figure 1a, by performing OR operation on the Figure 1b,c.
The rest two shadows Figure 1d,e are treated as two non-essential shadows of (1, 1, 2, 3)-EVCS as shown in
Figure 5b,c. For (1, 1, 2, 3)-EVCS, the qualified sets are {1,2}, {1,3}, and {1,2,3}. We show the revealed image by
di↵erent qualified sets of shadows in Figure 5d,e and g. As we can see, the secret image can only be revealed with
at least two shadows, including the essential one. Without the essential shadow, stacking two non-essentials
cannot reveal the secret image, as shown in Figure 5f. Since the (3, 4)-VCS has the size expansion 6 and contrast
loss of the revealed image. Each shadow of (1, 1, 2, 3)-EVCS has the size six times of the secret image. The visual
quality of the revealed image is also degraded.
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any two shadows. It should be noted that the operands of twice OR operations are non-overlapping from each 
other, i.e. the same shadow of VCS can only participate in OR operation for one time in generating shadow of 
EVCS and cannot participate in the formation of two shadows of EVCS at the same time. Figure 2 shows the 
experimental results of Yan et al.’s (3, 6)-RGVCS. Here, we generate the first essential shadow by performing 
OR operation on Figure 2b,c, and the second essential shadow is generated by performing OR operation on 
Figure 2d,e. The remaining two shadows of RGVCS are considered as two non-essential shadows of (1, 2, 2, 
4)-EVCS.  

Figure 5. The experimental results of proposed scheme for (1, 1, 2, 3)-EVCS. (a) essential shadow; (b,c)
two non-essential shadows; (d) revealed image by shadow 1 and 2; (e) revealed image by shadow 1
and 3; (f) revealed image by shadow 2 and 3; and, (g) revealed image by all shadows.

Second, we choose Yan et al.’s (3, 4)-RGVCS to implement (1, 1, 2, 3)-EVCS. First, a secret image
(Figure 1a) is shared into four shadows by Yan et al.’s (3, 4)-RGVCS. With the same method, performing OR
operation on the first two shadows can obtain the essential shadow of (1, 1, 2, 3)-EVCS. The other two shadows
of (3, 4)-RGVCS are treated as two non-essentials, respectively. Since (3, 4)-RGVCS generates shadows without
size expansion, all of the shadows of (1, 1, 2, 3)-EVCS have the same size as the secret image. Figure 6a–c show
the three generated shadows of (1, 1, 2, 3)-EVCS. In the revealing process, stacking qualified set of shadows can
reveal the secret image. Figure 6d–g show the revealed images with di↵erent shadows. As we can see, without the
essential shadow, we cannot reveal the secret image by the shadows. EVCS based on RGVCS can achieve better
performance over that based on traditional VCS since RGVCS has the advantage of no size expansion.
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Example 4. The experiment of the proposed (1,2,2,4)-EVCS.
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(1, 2, 2, 4)-EVCS can be implemented by (3, 6)-VCS according to the solution of the aforementioned IPM.
We still adopt Yan et al. ’s (3, 6) -RGVCS to implement (1, 2, 2, 4)-EVCS in order to achieve better performance.
Since s = 2 and !1 = 2, we can get two essential shadows by performing the OR operation twice on any two
shadows. It should be noted that the operands of twice OR operations are non-overlapping from each other, i.e.
the same shadow of VCS can only participate in OR operation for one time in generating shadow of EVCS and
cannot participate in the formation of two shadows of EVCS at the same time. Figure 2 shows the experimental
results of Yan et al.’s (3, 6)-RGVCS. Here, we generate the first essential shadow by performing OR operation
on Figure 2b,c, and the second essential shadow is generated by performing OR operation on Figure 2d,e. The
remaining two shadows of RGVCS are considered as two non-essential shadows of (1, 2, 2, 4)-EVCS.

Figure 7 shows the experimental results. Figure 7a,b are two essential shadows and Figure 7c,d show two
non-essential shadows, which have the same size of the secret image. Figure 7e–j illustrate the recovered image by
stacking any two shadows. Since none of the essential shadows are included in {3, 4}, Figure 7j is as cluttered as
random noise and does not show any information about the secret image. Figure 7k–n show the revealed image
recovered by any three shadows and the last one is revealed by all shadows. Stacking two or more shadows that
include any one or two essential shadows can reveal the secret image. Reconstruction without the essential
shadow cannot get obtain information regarding the secret.
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Figure 7. An experiment of the proposed (1,2,2,4)-EVCS. (a,b) two essential shadows; (c,d) two
non-essential shadows; (e) revealed image by shadow 1 and 2; (f) revealed image by shadow 1 and 3;
(g) revealed image by shadow 1 and 4; (h) revealed image by shadow 2 and 3; (i) revealed image by
shadow 2 and 4; (j) revealed image by shadow 3 and 4; (k) revealed image by shadow 1, 2, and 3; (l)
revealed image by shadow 1, 2 and 4; (m) revealed image by shadow 1, 3, and 4; (n) revealed image by
shadow 2, 3, and 4; and, (o) revealed image by four shadows.

4.2. Comparison and Discussion

This subsection compares the proposed scheme with some literature schemes in terms of
functionalities, as shown in Table 9. Both [24] and [25] are polynomial-based ESIS schemes that
can reveal secret image perfectly, while they su↵ers from the disadvantage of heavy computation
that secret information cannot be obtained by superimposing shadow images. In addition, these two
schemes have the problem of unequal sizes of essential shadow and non-essential shadow, and the
concatenation of sub-shadows. However, scheme [17,18,28] and the proposed scheme do not have
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these two problems. Among them, scheme [17,18] and [28] are only applicable to (t, k, n), while the
proposed scheme is applicable to a wider range. When compared with the polynomial-based ESIS
scheme, the proposed scheme does not require complicated mathematical calculations in the secret
reconstruction process. Most importantly, our scheme can select the appropriate (k, n)-VCS according
to the actual needs. With the improvement of the (k, n)-VCS scheme, our scheme will also achieve
better visual e↵ects. The threshold condition refers to that the number of shadows in a qualified set
should be no less than a threshold number. The essentiality condition refers to that a qualified set
of shadows should contain at least a certain number of essentials. All of the mentioned schemes in
Table 9 satisfy the threshold condition. When compared with the general VCS [32,35], our scheme not
only satisfies the threshold condition, but it also satisfies the essentiality condition.

Table 9. The comparison of functionality among the literature schemes and proposed EVCS.

Schemes
Construction

Method

Size

Expansion

Concatenation of

Sub-shadows
Essentiality Decoding Operation Stacking-to-see

Scheme [17] VCS Large No Yes OR Yes
Scheme [18] VCS Large No Yes OR Yes

Scheme [24] PSIS Small Yes Yes Lagrange’s
interpolation No

Scheme [25] PSIS Small Yes Yes Lagrange’s
interpolation No

Scheme [26] PSIS Small No Yes Birkho↵ Interpolation No

Scheme [28] PSIS Small No Yes Lagrange’s
interpolation No

Scheme [32] RGVCS Small No No OR Yes
Scheme [35] XVCS Medium Yes No XOR Yes

Proposed scheme VCS Alternative No Yes OR Yes

In general, the reconstructed image of VCS is not completely consistent with the secret image.
The size expansion and visual quality are commonly used to measure the performance of VCS. The
proposed scheme has high flexibility that a (t, s, k, n)-EVCS can be constructed utilizing any monotone
(k, n)-VCS. The performance of EVCS is determined by the performance of chosen VCS. For example, if
we construct (t, s, k, n)-EVCS by Yan et al.’s (k, n)-RGVCS, we can achieve (t, s, k, n)-EVCS without size
expansion. In Example 3, we adopt a traditional (k, n)-VCS and a non-size-expansion (k, n)-RGVCS in
order to validate our scheme, respectively. From Example 3, we know that EVCS based on RGVCS
has better size expansion than that based on traditional VCS. Arumugam et al. [17] proposed (1, 1,
k, n)-EVCS and Guo et al. [18] proposed (t, t, k, n)-EVCS. Both schemes in [17,18] are special cases of
(t, s, k, n)-EVCS, and construct the basis matrices of EVCS from the basis matrices of VCS. The main
disadvantage of EVCS in [17,18] is the large size expansion, which is not convenient for the storage
and transmission. We compare the experiment results among Arumugam et al.’s (1, 1, 3, 4)-VCS,
Guo et al.’s (1, 1, 3, 4)-VCS, and the proposed (1, 1, 3, 4)-EVCS. Figure 8 shows the experimental results.
The sizes of the revealed secret images of the three schemes are six, six, and one times of the secret
image, respectively. Figure 8b,d show the revealed secret images of the three schemes, respectively. As
we can see, the revealed images of Arumugam et al.’s (1, 1, 3, 4)-VCS, Guo et al.’s (1, 1, 3, 4)-VCS have
large size expansion, while the proposed (1, 1, 3, 4)-EVCS has no size expansion, namely, the size of
revealed image is the same as the original secret image. In addition, our proposed scheme can realize
general (t, s, k, n)-EVCS.



Mathematics 2020, 8, 838 17 of 19

Mathematics 2020, 8, x 17 of 20 

 

In general, the reconstructed image of VCS is not completely consistent with the secret image. 
The size expansion and visual quality are commonly used to measure the performance of VCS. The 
proposed scheme has high flexibility that a (t, s, k, n)-EVCS can be constructed utilizing any 
monotone (k, n)-VCS. The performance of EVCS is determined by the performance of chosen VCS. 
For example, if we construct (t, s, k, n)-EVCS by Yan et al.’s (k, n)-RGVCS, we can achieve (t, s, k, 
n)-EVCS without size expansion. In Example 3, we adopt a traditional (k, n)-VCS and a 
non-size-expansion (k, n)-RGVCS in order to validate our scheme, respectively. From Example 3, we 
know that EVCS based on RGVCS has better size expansion than that based on traditional VCS. 
Arumugam et al. [17] proposed (1, 1, k, n)-EVCS and Guo et al. [18] proposed (t, t, k, n)-EVCS. Both 
schemes in [17,18] are special cases of (t, s, k, n)-EVCS, and construct the basis matrices of EVCS from 
the basis matrices of VCS. The main disadvantage of EVCS in [17,18] is the large size expansion, 
which is not convenient for the storage and transmission. We compare the experiment results among 
Arumugam et al.’s (1, 1, 3, 4)-VCS, Guo et al.’s (1, 1, 3, 4)-VCS, and the proposed (1, 1, 3, 4)-EVCS. 
Figure 8 shows the experimental results. The sizes of the revealed secret images of the three schemes 
are six, six, and one times of the secret image, respectively. Figure 8b,d show the revealed secret 
images of the three schemes, respectively. As we can see, the revealed images of Arumugam et al.’s 
(1, 1, 3, 4)-VCS, Guo et al.’s (1, 1, 3, 4)-VCS have large size expansion, while the proposed (1, 1, 3, 
4)-EVCS has no size expansion, namely, the size of revealed image is the same as the original secret 
image. In addition, our proposed scheme can realize general (t, s, k, n)-EVCS. 

 
Figure 8. The experimental results of Arumugam et al.’s (1, 1, 3, 4)-VCS, Guo et al.’s (1, 1, 3, 4)-VCS 
and the proposed (1, 1, 3, 4)-EVCS. (a) the secret image; and, (b–d) the revealed image of the three 
schemes, respectively. 

Table 9. The comparison of functionality among the literature schemes and proposed EVCS. 

Schemes 
Construction 

Method 
Size 

Expansion 

Concatenation 
of 

Sub-shadows 
Essentiality 

Decoding 
Operation 

Stacking-to-see 

Scheme 
[17] 

VCS Large No Yes OR Yes 

Scheme 
[18] 

VCS Large No Yes OR Yes 

Scheme 
[24]  

PSIS Small  Yes Yes 
Lagrange’s 

interpolation 
No 

Scheme 
[25]  

PSIS Small  Yes Yes 
Lagrange’s 

interpolation 
No 

Scheme 
[26]  

PSIS Small No Yes 
Birkhoff 

Interpolation 
No 

Figure 8. The experimental results of Arumugam et al.’s (1, 1, 3, 4)-VCS, Guo et al.’s (1, 1, 3, 4)-VCS
and the proposed (1, 1, 3, 4)-EVCS. (a) the secret image; and, (b–d) the revealed image of the three
schemes, respectively.

In this paper, we propose EVCS based on existing monotonic VCS. From the definition of (K,
N)-VCS, the contrast condition guarantees that no information about the secret can be revealed with
less than K shadows. When we construct (t, s, k, n)-EVCS from a monotonic (K, N)-VCS, the security
condition of EVCS is derived from that of VCS. In Section 3.2, we show the construction method of
EVCS from a monotonic (K, N)-VCS, where w1 (resp. w2) shadows of VCS are stacked together as an
essential (resp. non-essential) shadow of EVCS. Combining with the access structures of EVCS and
VCS, some constraints should be satisfied when determining the values of w1 and w2, as shown in
Equations (9)–(11). Therefore, a forbidden set of EVCS cannot contribute at least K shadows of VCS,
and then they cannot reveal any information regarding the secret image. In other words, the security
level of the proposed EVCS is the same as the VCS.

For the security condition of (K, N)-VCS, no information regarding the secret image can be revealed
with less than K shadows. With less than K shadows, the secret pixel is revealed as a black pixel or a
white pixel with the same probability. From the view point of information theory, the entropy has the
largest value. For the contrast condition of (K, N)-VCS, any K shadows can reveal the secret image
by stacking operation. Each shadow can be viewed as the key to decode the secret image. Since all
of the shadows have the same size, VCS can be also viewed as a one-time pad system. The Shannon
theories have already proven that one-time pad system is a perfect secret system. Therefore, the secret
image cannot be revealed with less than K shadows, even with computational resources. To the best
of our knowledge, there is no cryptoanalysis scheme for VCS while using machine learning or deep
learning algorithms.

4.3. Applications of EVCS

VCS is technique for sharing a binary secret image among the participants. The main advantage of
VCS is that the revealing process does not need the computer resources. VCS has potential application
when the collective decision making is required and the computer resources is not available. For
example, in the battlefield, VCS shares the military instruction from the commander is shared into
multiple shadows. Each shadow is delivered to a soldier. Since the environment of the battlefield is
not predictable, the soldiers can decode the military instruction by stacking their shadows without
any computational resources. VCS with essential participants (EVCS) divide the participants into two
groups: essentials with higher status and non-essentials with lower status. In the revealing process,
(t, e, k, n)-EVCS requires k participants, including t essentials to stacking their shadows. EVCS has
the potential application when some participants are accorded special privileges due to their status
or importance, e.g., heads of government, managers of company, high-level corporate o�cers, major
employers, etc.

EVCS also has potential application in key distribution when exchanging message in a public
secure network [30,31]. The trapped users may have di↵erent social attributes. Hence, they can be
divided as essentials or non-essentials according to their attributes. Before message exchange, users
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need to obtain the correct password in order to ensure the confidentiality of communication. The
password usually consists of letters or numbers. It is suitable to share the password by EVCS. In
addition, EVCS has the advantage of easy-decoding without computation. The environment of the
various emergency events, e.g., natural disaster, terrorist attacks, etc., is terrible. The computational
resources may be also limited. EVCS is a perfect way to decode secret by stacking shadows without
computer. The decoding process is simple, and do not need any cryptography knowledge.

In realistic implementation, the access structure of EVCS should be open to public. The values of t,
s, k, and n are known to the participants. In addition, the essentials and non-essentials are credible and
known to everyone. With the above known information, the participants can confirm whether they
can constitute a qualified set. When the participants of a qualified set are gathered and their shadows
are collected, the secret information can be easily decoded by stacking their shadows.

5. Conclusions

In this paper, we proposed a construction method for (t, s, k, n)-EVCS with essential participants.
The proposed EVCS is constructed from a monotonic VCS that is based on integer programming.
When cmpared with literature EVCS, the proposed EVCS might achieve no size expansion if we adopt
RGVCS to generate shadows. By solving the corresponding integer programming model, we give the
condition and optimal choice of (K, N)-VCS to construct (t, s, k, n)-EVCS. The proposed EVCS also
has the advantage of easy decoding since VCS can reveal the secret image by stacking shadows. The
experimental results show the feasibility of our scheme. The construction method of general (t, s, k,
n)-EVCS scheme with better performance needs further study.
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Abstract: This paper analyzes the volatility dynamics in the financial markets of the (three) most
powerful countries from a military perspective, namely, the U.S., Russia, and China, during the period
2015–2018 that corresponds to their intervention in the Syrian war. As far as we know, there is no
literature studying this topic during such an important distress period, which has had very serious
economic, social, and humanitarian consequences. The Generalized Autoregressive Conditional
Heteroscedasticity (GARCH (1, 1)) model yielded the best volatility results for the in-sample period.
The weighted historical simulation produced an accurate value at risk (VaR) for a period of one month
at the three considered confidence levels. For the out-of-sample period, the Monte Carlo simulation
method, based on student t-copula and peaks-over-threshold (POT) extreme value theory (EVT)
under the Gaussian kernel and the generalized Pareto (GP) distribution, overstated the risk for the
three countries. The comparison of the POT-EVT VaR of the three countries to a portfolio of stock
indices pertaining to non-military countries, namely Finland, Sweden, and Ecuador, for the same
out-of-sample period, revealed that the intervention in the Syrian war may be one of the pertinent
reasons that significantly a↵ected the volatility of the stock markets of the three most powerful military
countries. This paper is of great interest for policy makers, central bank leaders, participants involved
in these markets, and all practitioners given the economic and financial consequences derived from
such dynamics.

Keywords: GARCH; EGARCH; VaR; historical simulation approach; peaks-over-threshold; EVT;
student t-copula; generalized Pareto distribution

1. Introduction

Political uncertainty occurs due to many factors like elections and changes in the government
or parliament, changes in policies, strikes, minority disdain, foreign intervention in national a↵airs,
and others. In many cases, these uncertainties lead to further complications a↵ecting the economy and
the financial market of the concerned country. Accordingly, the currency could devaluate, prices of
assets, commodities, and stocks could fluctuate, and the growth of the economy could be hindered.
From this perspective, countries strive to keep political risks controlled to be able to endure the cost or
consequence of any sudden political unrest. This is one of the main reasons behind the intervention of
powerful countries in the political and military a↵airs of less powerful countries, which is usually done
at a high cost. This paper studies the impact of the intervention of the three most powerful military
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countries in the world, namely, the United States, Russia, and China (Figure 1), in the Syrian war on
their market volatility.
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In March 2011, large peaceful protests broke in Syria to call for economic and political reforms
with few armed protesters, leading to man arrests. Events evolved into violent acts using artillery and
aircrafts, antigovernment rebels, terrorist and extremist attacks, suicide attacks, explosive operations,
the intervention of foreign countries, chemical weapons, and others leading to a humanitarian
crisis. In 2015, Russia started supporting the Syrian president through financial aid and military
support [1]. In the meantime, the United States was providing support for the local Syrians. Later on,
the United States and Russia increased their intervention in the war mainly through arms and aircrafts,
each supporting their own political interests and allies. By the same token, China’s involvement was
shifting from humanitarian assistance and weapon exports [2] to armed forces and increased weapon
exports to support its allies’ objectives during this war [3].

Table 1 shows countries with the highest military spending in the world for 2016, 2017, and 2018.
The U.S. spends the highest budget in the world on defense forces. This expenditure rounded up to
USD 649 billion during 2018 based on information from the Stockholm International Peace Research
Institute [4]. In fact, the defense spending of the United States alone is higher than the sum of that of the
next eight countries in the ranking. These countries include China, Russia, Saudi Arabia, India, France,
UK, Japan, and Germany. The country with the second highest defense expenditure is China with
USD 250 billion in 2018 compared to USD 228 billion in 2017. As for Russia, its expenditure reached
USD 61.4 billion in 2018 compared to USD 66.5 billion in 2017. Figure 1 represents the 10 largest arms
exporters in the world between 2013 and 2017 [5]. Besides having the highest budgets for defense,
the U.S. and Russia are also the top exporters of weapons, and China is among the top five worldwide
countries. Based on these facts, the importance of the U.S., China, and Russia among military countries
is highly reinforced. For this reason, we opted to study the dynamics of their financial markets to
comprehend the risks and opportunities they might face, which would a↵ect their worldwide exposure.
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Table 1. Countries with the highest military spending worldwide in 2016–2018 (In Billion USD).

In USD Billion 2016 2017 2018

USA 600.1 605.8 648.8
China 216.0 227.8 250.0
Russia 69.2 66.5 61.4

Saudi Arabia 63.7 70.4 67.6
India 56.6 64.6 66.5

France 57.4 60.4 63.8

Source: Stockholm International Peace Research Institute (SIPRI), 2019.

To this end, measuring the e↵ect of their intervention in the Syrian war on their financial market
volatility is of great importance for policy makers, central bank leaders, analysts, and practitioners
because there is a complete absence in the literature of studies that involve the volatility of the financial
markets of the U.S., China, and Russia together. Many studies, however, explored the volatility of
these countries during di↵erent periods and using di↵erent volatility models.

In his paper, Wei [6] forecasted the Chinese stock market volatility using non-linear Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) models such as the quadratic GARCH
(QGARCH) and the Glosten, Jagannathan, and Runkle GARCH (GJR GRACH) models. The author
studied seven-year data for the Shanghai Stock Exchange Composite (HSEC) and the Shenzhen Stock
Exchange Component (ZSEC). The QGARCH outperformed the linear GARCH model. Furthermore,
Lin and Fei [7] concluded that the nonlinear asymmetric power GARCH (APGARCH) model
outperformed other GARCH models on di↵erent time scales in estimation of the “long memory
property of the Shanghai and Shenzhen stock markets”. Recently, Lin [8] studied the volatility of the
SSE Composite Index using GARCH models during the period 2013–2017. The asymmetric exponential
GARCH (EGARCH (1, 1)) model outperformed the symmetric ones in the forecasting results.

Value at risk (VaR), extreme value theory (EVT), and expected shortfall (ES) models were also used
by Wang et al. [9], who implemented an EVT based VaR and ES to estimate the exchange rate risk of
the Chinese currency (CNY). They found that the EVT-based VaR estimation produces accurate results
for the currency exchange rate risks of EUR/CNY and JPY/CNY. However, EVT underestimated this
risk for both exchange rates. Chen et al. [10] estimated VaR and ES by applying EVT on 13 worldwide
stock indices. They concluded that China ranks first for VaR and ES with negative returns and ranks
third for positive returns with high levels of risk.

A new strategy to estimate daily VaR based on the autoregressive fractionally integrated moving
average model (ARFIMA), the multifractal volatility (MFV) model, and EVT was implemented by
Wei et al. [11] for the Chinese stock market using high-frequency intraday quotes of the Shanghai Stock
Exchange Component (SSEC). This hybrid ARFIMA-MFV-EVT strategy was compared to a number
of popular linear and nonlinear GARCH-type-EVT models, i.e., the RiskMetrics, GARCH, IGARCH,
and EGARCH models. Although GARCH-type models showed a good performance, VaR results
obtained from the ARFIMA-MFV-EVT method outperformed several of them widely used in the
literature. Furthermore, Hussain and Li [12] focused on the e↵ect of extreme returns in stock markets on
risk management by studying the SSEC index and by using the block maxima (Minima) method (BMM),
instead of the popular peaks-over-threshold (POT) method, with various time intervals of extreme
daily returns. Three well-known distributions in extreme value theory, i.e., generalized extreme value
(GEV), generalized logistic (GL), and generalized Pareto distributions (GP), were employed to model
the SSEC index returns. Results showed that GEV and GL distributions are found to be appropriate for
the modeling of the extreme upward and downward market movements for China.

Another comparative study, conducted by Hou and Li [13], investigated the transmission of
information between the U.S. and China’s index futures markets using an asymmetric dynamic
conditional correlation GARCH (DCC GARCH) approach. They found that the correlation between
U.S. and Chinese index futures markets increases with the rise of negative shocks in these markets,
and that the U.S. index futures market is more e�cient in terms of price adjustment, since it is older
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and more mature. On the other hand, Awartani and Corradi [14] focused on the role of asymmetries
in the prediction of the volatility of the S&P 500 Composite Price Index. They examined the relative
out-of-sample predictive ability of di↵erent GARCH-type models. First, they performed pairwise
comparisons of various models against GARCH (1, 1). Then, they carried out a joint comparison of
all models. They found that for the case of the one-step ahead pairwise comparison, GARCH (1, 1)
is beaten by the asymmetric GARCH models. A similar finding applies to di↵erent longer forecast
horizons. In the multiple comparison case, GARCH (1, 1) is only beaten when compared against the
class of asymmetric GARCH. Another interesting finding is that the RiskMetrics exponential smoothing
seems to be the worst model in terms of predictive ability. Furio and Climent [15] studied extreme
movements in the return of S&P 500, FTSE 100, and NIKKEI 225 using GARCH-type models and EVT
estimates. Results pointed out that more accurate estimates are derived from EVT calculations in both
the in-sample and out-of-sample, when compared to less accurate estimates using the GARCH models.

As can be deduced from the review of the above literature, the question of how devastating wars,
with indirect consequences all around the world, a↵ect the volatility of financial markets of countries
supporting them (and others, of course) might be of core importance for those directly or indirectly
involved in such markets. Therefore, the main research question is the following: are the volatility
dynamics of those countries a↵ected by an event of the importance of the Syrian war? This paper fills
this gap through evaluating the results of a number of traditional volatility models of the GARCH-type
family and using EVT and historical simulation (HS) to estimate the VaR of these markets during the
Syrian war period.

S&P 500 (Standard & Poor’s), SSEC (Shanghai Stock Exchange Composite) and MICEX (Moscow
Interbank Currency Exchange) are used to assess the financial markets’ volatility of the U.S., China,
and Russia, respectively. The period of study extends from 2015 to 2018. The in-sample period extends
from 5 January 2015 until 30 December 2016 as it refers to the beginning of the direct and indirect
intervention of the chosen countries in the war in Syria [1]; the out-of-sample interval is 3 January
2017–31 May 2018.

The paper is structured as follows: Section 2 reviews the methodology and the specificities of
the applied econometric models, and Section 3 shows the estimated GARCH-type models considered
and the selection process. This section also depicts the results related to the calculation of VaR using
HS volatility and the “peaks-over-threshold” (POT) EVT model under the GP distribution. Section 4
concludes and discusses the empirical findings.

2. Econometric Models

As previously outlined, we use the GARCH (1, 1) and EGARCH (1, 1) as competing models to
measure the volatility of the financial markets of the U.S., Russia, and China. GARCH models are
commonly used by financial institutions to obtain volatility and correlation forecasts of asset and
risk factor return. We use the symmetric normal GARCH given its strength to provide short- and
medium-term volatility forecasts. We also use EGARCH, the asymmetric GARCH model, which
is widely recognized in providing a better in-sample fit than other types of GARCH processes and
avoids the need for any parameter constraints (see [16,17] for details on other GARCH-type models).
The exponentially weighted moving average (EWMA) model is not used because it does not account for
mean reversion and overvalue volatility after severe price fluctuation [18]. As said in the introductory
section, for VaR estimation with high confidence intervals, we apply EVT [19], and more specifically
GEV, GL, and GP distributions. We decided to use EVT because of its ability to provide good estimates
and serve of help in situations where high confidence levels are needed, since EVT has proven to
be a robust way of smoothing and extrapolating the tails of an empirical distribution [20]. The EVT
implementation in this paper is based on a multivariate analysis to accurately measure the VaR of the
portfolio composed of the U.S., Russia, and China stock markets. We also estimate the VaR of the
portfolio using HS for comparison.
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2.1. GARCH Model

The pioneering work of Engle [21], where the Autoregressive Conditional Heteroscedasticity
(ARCH) model (that relates the current level of volatility to p past squared error terms) was introduced,
constitutes the main pillar of modern financial econometrics. However, the ARCH strategy has some
limitations, including the typically required 5–8 lagged error terms to adequately model conditional
variance. That was the reason for this model to be generalized by Bollerslev [22], giving rise to
the generalized ARCH (GARCH) model, by adding lagged conditional variance, which acts as a
smoothing term. In practical terms, the GARCH (p, q) model builds on the ARCH (p) by including
q lags of the conditional variance. Therefore, a GARCH specification uses the weighted average of
long-run variance, the predicted variance for the current period, and any new information in this
period, as captured by the squared residuals, to forecast a future variance. More specifically, the general
GARCH (p, q) model is as shown in Equation (1):

�2
t = �VL +

pX

i=1

↵iu2
t�i +

qX

j=1

� j�
2
t� j (1)

where �2
t is the time t � 1 conditional variance, VL is the long run average variance, �2

t� j are the lags of
the conditional variance, and u2

t�i are the lagged squared error terms. ut = �tet with et i.i.d. N(0, 1).
Coe�cients �, ↵i and � j are the weights for VL and the lags of the conditional variance and the squared
error terms, respectively, and their estimates are obtained by Maximum Likelihood.

GARCH (1, 1) is the most used model of all GARCH models. It can be written as follows:

�2
t = �VL + ↵1u2

t�1 + �1�
2
t�1 (2)

or, alternatively,
�2

t = !+ ↵1u2
t�1 + �1�

2
t�1 (3)

where ! = �VL. Coe�cients in the GARCH specification sum up to the unity and have to be restricted
for the conditional variances to be uniformly positive. In the case of the GARCH (1, 1) such restrictions
are: ! > 0, ↵1 � 0 and �1 � 0. In addition, the requirement for stationarity is 1 � ↵1 � �1 > 0.
The unconditional variance can be shown to be E

⇣
�2

t

⌘
= !/(1� ↵1 � �1).

2.2. EGARCH Model

The EGARCH model was proposed by Nelson [23] to capture the leverage e↵ects observed in
financial series and represents a major shift from the ARCH and GARCH models. The EGARCH
specification does not model the variance directly, but its natural logarithm. This way, there is no
need to impose sign restrictions on the model parameters to guarantee that the conditional variance
is positive. In addition, EGARCH is an asymmetric model in the sense that the conditional variance
depends not only on the magnitude of the lagged innovations but also on their sign. This is how the
model accounts for the di↵erent response of volatility to the upwards and downwards movement
of the series of the same magnitude. More specifically, EGARCH implements a function g(et) of the
innovations et, which are i.i.d. variables with zero mean, so that the innovation values are captured by
the expression |et|� E|et|.

An EGARCH (p, q) is defined as:

log �2
t = !+

qX

j=1

� j log �2
t� j +

pX

j=1

✓ig
⇣
et� j

⌘
(4)

where g(et) = �et + ↵(|et|� E|et|) are variables i.i.d. with zero mean and constant variance. It is through
this function that depends on both the sign and magnitude of et, that the EGARCH model captures
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the asymmetric response of the volatility to innovations of di↵erent sign, thus allowing the modeling
of a stylized fact of the financial series: negative returns provoke a greater increase in volatility than
positive returns do.

The innovation (standardized error divided by the conditional standard deviation) is normally
used in this formulation. In such a case, E|e| =

p
2/⇡ and the sequence g(et) is time independent with

zero mean and constant variance, if finite. In the case of Gaussianity, the equation for the variance in
the model EGARCH (1, 1) is:

log �2
t = !+ � log �2

t�1 + �et�1 + ↵

0
BBBB@|et�1|�

r
2
⇡

1
CCCCA. (5)

Stationarity requires
����
��� < 1, the persistence in volatility is indicated by �, and � indicates the

magnitude of the leverage e↵ect. � is expected to be negative, which implies that negative innovations
have a greater e↵ect on volatility than positive innovations of the same magnitude. As in the case of
the standard GARCH specification, maximum likelihood is used for the estimation of the model.

2.3. EVT

EVT deals with the stochastic behavior of extreme events found in the tails of probability
distributions, and, in practice, it has two approaches. The first one relies on deriving block maxima
(minima) series as a preliminary step and is linked to the GEV distribution. The second, referred to
as the peaks over threshold (POT) approach, relies on extracting, from a continuous record, the peak
values reached for any period during which values exceed a certain threshold and is linked to the GP
distribution [24]. The latter is the approach used in this paper.

The generalized Pareto distribution was developed as a distribution that can model tails of a wide
variety of distributions. It is based on the POT method which consists in the modelling of the extreme
values that exceed a particular threshold. Obviously, in such a framework there are some important
decisions to take: (i) the threshold, µ; (ii) the cumulative function that best fits the exceedances over
the threshold; and (iii) the survival function, that is, the complementary of the cumulative function.

The choice of the threshold implies a trade-o↵ bias-variance. A low threshold means more
observations, which probably diminishes the fitting variance but probably increases the fitting bias,
because observations that do not belong to the tail could be included. On the other hand, a high
threshold means a fewer number of observations and, maybe, an increment in the fitting variance and
a decrement in the fitting bias.

As for the distribution function that best fits the exceedances over the threshold, let us suppose
that F(x) is the distribution function for a random variable X, and that threshold µ is a value of X in the
right tail of the distribution; let y denote the value of the exceedance over the threshold µ. Therefore,
the probability that X lies between µ and µ+ y (y > 0) is F(µ+ y) � F(µ) and the probability for X
greater than µ is 1� F(µ). Writing the exceedances (over a threshold µ) distribution function Fµ(y)
as the probability that X lies between µ and µ+ y conditional on X > µ, and taking into account the
identity linking the extreme and the exceedance: X = Y + µ, it follows that:

Fµ(y) = P(Y  y
���X > µ) = P(µ < X  µ+ y

���X > µ) =
F(x) � F(µ)

1� F(µ)
(6)

and that

1� Fµ(y) = 1� F(x) � F(µ)
1� F(µ)

=
1� F(x)
1� F(µ)

(7)

In the case that the parent distribution F is known, the distribution of threshold exceedances also
would be known. However, this is not the practical situation, and approximations that are broadly
applicable for high values of the threshold are sough. Here is where Pickands–Balkema–de Haan
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theorem ([25,26]) comes into play. Once the threshold has been estimated, the conditional distribution
Fµ(y) converges to the GP distribution. It is known that Fµ(y)! G⇠,�(y) as µ!1 , with

G⇠,�(y) =

8>><>>:
1�

⇣
1 + ⇠ y

�

⌘� 1
⇠ if ⇠ , 0

1� e�
y
� if ⇠ = 0

(8)

where � > 0 and y � 0 if ⇠ � 0 and 0  y  ��/⇠ if ⇠ < 0. ⇠ is a shape parameter that determines the
heaviness of the tail of the distribution, and � is a scale parameter. When ⇠ = 0, G⇠,�(y) reduces to the
exponential distribution with expectation exp(�); in the case that ⇠ < 0, it becomes a Uniform (0, �);
finally, ⇠ > 0 leads to the Pareto distribution of the second kind [27]. In general, ⇠ has a positive value
between 0.1 and 0.4. The GP distribution parameters are estimated via maximum likelihood.

Once the maximum likelihood estimates are available, a specific GP distribution function is
selected, and an analytical expression for VaR with a confidence level q can be defined as a function of
the GP distribution parameters:

VaRq̂ = µ+
�̂(µ)

⇠̂

 
N
Nµ

(1� q)�⇠̂ � 1
!

(9)

where N is the number of observations in the left tail and Nµ is the number of excesses beyond the
threshold µ.

VaRq̂ = µ+
�̂(µ)

⇠̂

 
N
Nµ

(1� q)�⇠̂ � 1
!

(10)

3. Results

3.1. Descriptive Statistics

Data for 3 years were extracted from the Bloomberg platform for the three selected stock market
indices and were manipulated to derive the return from the closing prices corresponding to each
index. For the in-sample period, 458 daily observations were studied compared to 315 for the
out-of-sample forecast period. It is important to note that in November 2017, the name of the MICEX
index (composed of Russian stocks of the top 50 largest issues in the Moscow Exchange) was o�cially
changed to the MOEX Russia Index, representing the “Russian stock market benchmark” [28]. Table 2
lists the descriptive statistics of S&P 500, SSEC, and MICEX for the in- and out-of-sample periods.
Surprisingly, S&P 500 and the MICEX behaved similarly in terms of return during the in-sample and
out-of-sample periods.

Table 2. Descriptive Statistics of S&P 500, SSEC, and MICEX: 5 January 2015–30 December 2016 and 3
January 2017–31 May 2018.

Stock Markets S&P 500
(In-Sample)

SSEC
(In-Sample)

MICEX
(In-Sample)

S&P 500
(Out-of-
Sample)

SSEC
(Out-of-
Sample)

MICEX
(Out-of-
Sample)

Mean 0.022% �0.017% 0.017% 0.060% �0.001% 0.054%
Standard Deviation 1.0% 2.10% 1.2% 0.711% 0.774% 1.025%

Skewness 1.0% 2.10% 1.2% 0.711% 0.774% 1.025%
Kurtosis 3.33 4.62 0.97 7.93 4.83 12.45
Median 0.01% 0.10% 0.04% 0.06% 0.08% �0.05%

Minimum �4.0% �10.8% �4.4% �4.18% �4.14% �8.03%
Maximum 4.7% 6.0% 4.4% 2.76% 2.15% 3.89%

1st Quartile �0.41% �0.66% �0.65% �0.18% �0.35% �0.51%
3rd Quartile 0.49% 0.87% 0.85% 0.34% 0.40% 0.54%
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In reference to the two chosen time periods, the skewness of the returns of the three indices is
close to 0 and the returns display excess in kurtosis. This implies that the distributions of returns are
not normal as confirmed by Jarque-Bera normality tests (Table 3). The distributions of returns are
stationary according to the augmented Dicky–Fuller (ADF) test applied to the three indices (Table 4).

Table 3. Jarque-Bera Normality Test of S&P 500, SSEC, and MICEX.

Stock Markets In-Sample Out-of-Sample

Score p-Value Score p-Value

S&P 500 198.66 0.000 865.78 0.000
SSEC 483.75 0.000 352.63 0.000

MICEX 18.12 0.000 2027.03 0.000

Note: p-value refers to Jarque–Bera normality test, Ho: the index return is normally distributed.

Table 4. ADF Stationarity Test.

Critical Values
at 5% STAT p-Value STAT p-Value STAT p-Value

S&P 500 SSEC MICEX

No Constant �1.9 �28.4 0.001 �12.8 0.001 �26.9 0.001
Constant Only �2.9 �28.4 0.001 �12.8 0.001 �11.6 0.001

Constant and Trend �1.6 �28.4 0.000 �12.7 0.000 �11.6 0.000
Constant, Trend, and Trend2 �1.6 �28.4 0.000 �12.7 0.000 �11.6 0.000

Note: ADF p-value refers to the augmented Dickey–Fuller unit root test, Ho: the index return has a unit root.

3.2. GARCH (1, 1) and EGARCH (1, 1) Results

GARCH (1, 1) and EGARCH (1, 1) parameters were estimated using the daily returns of each
index. Results from the normal distribution, the student’s t-distribution and the Generalized Error
Distribution (GED) were derived. The goodness of fit test and residual analysis were then performed
to ensure that the assumptions of the applied models were all met. The model parameters were
estimated by maximum likelihood. Table 5 presents a summary of such estimates for GARCH (1, 1)
and EGARCH (1,1).

Table 5. Estimates of the Parameters of GARCH (1,1) and EGARCH (1,1) (with GED).

S&P 500 SSEC MICEX

GARCH (1, 1)

Long-run mean (µ) 0.000249 �0.00009 0.00080
Omega (!) 8.5218 ⇥ 10�6 1.1035 ⇥ 10�6 2.9655 ⇥ 10�6

ARCH component (↵) 0.1972 0.0569 0.0653
GARCH component (�) 0.7105 0.9331 0.9065

EGARCH (1, 1)

Long-run mean (µ) 0.00030 �0.00009 0.00142
Omega (!) �0.72879 �0.08598 �0.87318

ARCH component (↵) 0.04766 0.20530 0.30477
Leverage coe�cient (�) �0.29149 �0.01362 0.05345
GARCH component (�) 0.92471 0.98689 0.90237

Note: The GED was selected after checking the average, standard deviation, skewness, kurtosis, the noise, and
ARCH tests corresponding to the three distributions.
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3.3. Best Volatility Model Selection for the In- and Out-of-Sample Periods

The root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute
percentage error (MAPE) are implemented to choose the best volatility model. For S&P 500,
we compared the estimated volatility to the implied volatility. However, this was not possible
for SSEC and MICEX due the absence of data. Results depicted in Table 6 reveal the superiority of
GARCH (1, 1) in estimating the volatility of the three countries in the in-sample period, which coincides
with the peak period of the Syrian war. As for the out-of-sample period, while GARCH (1, 1) ranks
first for S&P 500, EGARCH (1, 1) ranks first for the SSEC and MICEX with a di↵erence in RMSE of
around 0.002 and 0.01 units respectively as compared to GARCH (1, 1). Volatilities estimated with the
superior volatility models in comparison to the realized volatilities for the out-of-sample period are
depicted in Figure 2.

Table 6. In-Sample Period Error Statistics.

S&P 500 during In-Sample Period (from 5 January 2015 till 30 December 2016)

RMSE Rating MAE Rating MAPE Rating

Implied Vol. 0.047694 2 0.039028 2 0.00377 3
GARCH (1, 1) 0.040995 1 0.028954 1 0.002376 1

EGARCH (1, 1) 0.049947 3 0.039066 3 0.003261 2

SSEC during In-Sample Period (from 5 January 2015 till 30 December 2016)

GARCH (1, 1) 0.09567 1 0.080424 1 0.002879 1
EGARCH (1, 1) 0.11588 2 0.090075 2 0.003134 2

MICEX during In-Sample Period (from 5 January 2015 till 30 December 2016)

GARCH (1, 1) 0.184631 1 0.173261 1 0.004775 1
EGARCH (1, 1) 0.188566 2 0.179723 2 0.004997 2

S&P 500 during Out-of-Sample (from 3 January 2017 till 31 May 2018)

Implied Vol. 0.04809 3 0.04325 3 0.006092 3
GARCH (1, 1) 0.040024 1 0.035135 1 0.004896 1

EGARCH (1, 1) 0.047078 2 0.041034 2 0.005689 2

SSEC during Out-of-Sample (from 3 January 2017 till 31 May 2018)

GARCH (1, 1) 0.08478 2 0.080437 2 0.004033 2
EGARCH (1, 1) 0.07113 1 0.063535 1 0.00322 1

MICEX during Out-of-Sample (from 3 January 2017 till 31 May 2018)

GARCH (1, 1) 0.071894 2 0.064616 2 0.002909 2
EGARCH (1, 1) 0.069381 1 0.061135 1 0.00271 1

Note: RME =

r
nP

t=1
( f �Y)2/n ; MAE =

nP
t=1

��� f �Y
���/n ; MAPE = 100

nP
t=1

����
f�Y
Y

����/n , where n is the number of periods,

Y is the true value and f is the prediction value. The best model is the one that has a minimum value of RMSE, MAE
and MAPE.
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3.4. VaR Output

Based on the superior model corresponding to each index, a portfolio of volatility updates
was established for each sample period. First, the historical simulation approach was implemented.
It involved incorporating volatility in updating the historical return. Because the volatility of a market
variable may vary over time, we modified the historical data to reflect the variation in volatility.
This approach uses the variation in volatility in a spontaneous way to estimate VaR by including more
recent information. Second, a Monte Carlo simulation method including student t-copula and EVT was
applied to the created portfolio composed of the three markets to estimate VaR with di↵erent confidence
levels. The filtered residuals of each return series were extracted using EGARCH. The Gaussian kernel
estimate was used for the interior marginal cumulative distribution function (CDF) and the generalized
Pareto distribution (GP) was applied to estimate the upper and lower tails. The student t-copula was
also applied to the portfolio’s data in order to reveal the correlation among the residuals of each index.
This process led to the estimation of the portfolio’s VaR over a horizon of one month and confidence
levels of 90%, 95%, and 99%. Table 7 summarizes all the VaR estimates calculated for the in-sample
and out-of-sample periods using HS and EVT compared to the Real VaR. The visual illustrations of the
relevant outcomes related to the logarithmic returns of the selected stock indices, the auto-correlation
function (ACF) of returns and of the squared returns, the filtered residuals and the filtered conditional
standard deviation, the ACF of standardized residuals, and the upper tail of standardized residuals for
both periods, are presented in Appendix A (Figures A1 and A2).
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Table 7. VaR Summary Results.

Outcome HS (Volatility Weighted) EVT Real VaR

In-Sample

90% VaR 0.68% 2.93% 1.31%
95% VaR 1.03% 4.83% 1.68%
99% VaR 2.31% 8.39% 2.38%

Out-of-Sample

90% VaR 0.48% 3.76% 0.73%
95% VaR 0.71% 5.47% 0.94%
99% VaR 1.65% 9.60% 1.33%

It is apparent that VaR with a confidence level of 99%, using HS and EVT, overrates the risk for
the three countries during both periods. Furthermore, the HS VaR results are closer to the Real VaR
results compared to those of the EVT VaR. This is not altogether surprising since the EVT method is
concerned with studying the behavior of extremes within these markets rather than simply fitting the
curve. Therefore, the above output represents a benchmark that can be extrapolated beyond the data
during stress periods.

4. Discussion

This paper revealed original common points among the most powerful military countries in the
world regarding the behavior of their financial markets during the period 2015–2018, which corresponds
to their intervention in the Syrian war. First, the returns of S&P 500 and MICEX were quite similar
during the in-sample and out-of-sample periods. Second, the GARCH (1, 1) was found to be the best
volatility model for the in-sample period for S&P 500, MICEX, and SSEC, outperforming EGARCH
(1, 1). The incorporation of the GARCH (1, 1) specification to the HS produced an accurate VaR for a
period of one month, at the three confidence levels, compared to the real VaR.

EVT VaR results are consistent with those found by Furio and Climent [15] and Wang et al. [9],
who highlighted the accuracy of studying the tails of loss severity distribution of several stock markets.
Furthermore, part of our results corroborates the work of Peng et al. [29], who showed that EVT GP
distribution is superior to certain GARCH models implemented on the Shanghai Stock Exchange Index.

The GP distribution highlighted the behavior of “extremes” for the U.S., Russian, and Chinese
financial markets, which is of great importance since it emphasizes the risks and opportunities
inherent to the dynamics of their markets and also underlines the uncertainty corresponding to their
worldwide exposure.

Expected EVT VaR values of 3.76%, 5.47%, and 9.60%, at 90%, 95%, and 99% confidence levels,
respectively (for the out-of-sample period), might appear overstated. However, uncertainty layers are
all the way inherent and our results are, naturally, subject to standard error. For comparison purposes,
and in order to make a relevant interpretation of the tail distribution of returns corresponding to these
markets, we opted to derive the EVT VaR of a portfolio of stock indices pertaining to non-military
countries, namely Finland, Sweden, and Ecuador, for the same out-of-sample period of study (January
2017 to May 2018). These countries were chosen randomly based on the similarities in income groups
when compared to the selected military countries. While Finland and Sweden are both classified as
high income like the U.S., Ecuador is classified as upper middle income like Russia and China [30].
Also, the selection of these non-military countries follows the same structure of the capital market
development found at the military countries which, when combined, find their average ratio of stock
market capitalization to GDP is 77.23%, compared to 76.46% for Finland, Sweden, and Ecuador [30,31].
Finally, when comparing the ratio of private credit ratio to the stock market capitalization ratio
corresponding to each country, we notice that the former is higher than the latter for Ecuador, Sweden,
Finland, Russia, and China [32]. Only the U.S. depends mostly on its stock market to finance its
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economy. The portfolio is composed of the OMX Helsinki index, the ECU Ecuador General index,
and the OMX 30 Sweden index. The GP distribution was used to estimate the upper and lower tails.
Remarkably, EVT VaR results were 2.23%, 3.49%, and 6.45% at the 90%, 95%, and 99% confidence
levels, respectively, well below the estimates found for the U.S., Russian, and Chinese stock markets.
Consequently, it can be concluded that the intervention in the Syrian war may have been one of the
latent and relevant factors that a↵ected the volatility of the stock markets of the selected military
countries. This conclusion is reinforced by the fact that the EVT VaR was higher by 40%, 26%, and
32%, at the 90%, 95%, and 99% confidence levels, respectively, compared to the VaR of the portfolio
constituted of the selected non-military countries. However, it can neither be deduced nor confirmed
that the intervention in the Syrian war is the sole source, and more specifically, the trigger of the
significant increase in the volatility of the American, Russian, and Chinese stock markets. Answering
this question requires further lines of future research that involves incorporating a number of control
covariates and using a di↵erent modeling methodology.

Although we covered a significant number of observations, our results are subject to errors; it is
never possible to have enough data when implementing the extreme value analysis, since the tail
distribution inference remains less certain. Introducing hypothetical losses to our historical data to
generate stress scenarios is of no interest to this study and falls outside its main objective. It would
be interesting to repeat the same study with the same selected three military countries during the
period 2018–2020, which is expected to be the last phase of the Syrian war given that the Syrian
army reached back to the border frontier with Turkey and that the Syrian Constitutional Committee
Delegates launched meetings in Geneva to hold talks on the amendment of Syria’s constitution.
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Abstract: The spread of epidemics has always threatened humanity. In the present circumstance of
the Coronavirus pandemic, a mathematical model is considered. It is formulated via a compartmental
dynamical system. Its equilibria are investigated for local stability. Global stability is established
for the disease-free point. The allowed steady states are an unlikely symptomatic-infected-free
point, which must still be considered endemic due to the presence of asymptomatic individuals;
and the disease-free and the full endemic equilibria. A transcritical bifurcation is shown to exist
among them, preventing bistability. The disease basic reproduction number is calculated. Simulations
show that contact restrictive measures are able to delay the epidemic’s outbreak, if taken at a very
early stage. However, if lifted too early, they could become ineffective. In particular, an intermittent
lock-down policy could be implemented, with the advantage of spreading the epidemics over a
longer timespan, thereby reducing the sudden burden on hospitals.

Keywords: dynamical systems; compartment model; epidemics; basic reproduction number; stability

MSC: 92D30; 92D25

1. Introduction

The coronavirus infection has been spreading for a few months. Authorities in several countries
have relied on scientific tools for fighting the epidemics. With the lack of a vaccine, distancing
methods have been forced on populations to avoid the transmission by direct contact. In laboratories,
possible vaccines are being developed, but at the moment they are still at the experimental stage [1].
Meanwhile several models, mathematical, statistical and computer-science-based, are being developed
to study the disease and contribute to fighting it.

Models for the spread of epidemics are classic, and an excellent presentation is [2]. In general,
the total population is partitioned into at least two classes, susceptibles and infectives, with migrations
from the former to the latter by disease propagation through direct or indirect contact, if the
disease is transmissible. Additionally, if it can be overcome but causes relapses, the infected can
become susceptible again, after maybe going through an intermediate class of being recovered.
More sophisticated versions include quarantined and exposed individuals. Some of these classes will
be considered also in the present study and illustrated in detail before the model formulation process.

In [3] the disease evolution forecast in several of the most affected countries is attempted, using
for that purpose, parameter estimation techniques to calibrate the model. The involved compartments
are susceptibles, asymptomatic individuals and symptomatic ones, which in turn are partitioned into
reported and unreported cases. In [4] a simple SIRI model is considered, in which the recovered could
still contribute to the disease spreading. The model is then extended to account for a possible vaccine,

Mathematics 2020, 8, 820; doi:10.3390/math8050820 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-7215-5114
http://www.mdpi.com/2227-7390/8/5/820?type=check_update&version=1
http://dx.doi.org/10.3390/math8050820
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 820 2 of 30

which, unfortunately, at present is not yet available, although several laboratories worldwide are trying
to develop and test it, as mentioned above. In [5] a dynamic model for the diffusion of Covid-19 has
been proposed. The transmission network is made by the bats–hosts–reservoir–people compartments;
compare also [1]. As it amounts to about 14 differential equations and 25 parameters, it is rather
complex. From it, the authors have obtained a simplified version, consisting of six compartments and
13 parameters. Then, the disease basic reproduction number has been calculated.

Our aim here is the mathematical analysis of a slightly modified version of the simpler model in [5].
The most important change accounts for the fact that asymptomatic people may indeed turn into fully
symptomatic and infectious individuals. This feature also distinguishes the system introduced here
from the one studied in [6], which, however, contains more compartments. The main aim of that study
is the forecast of the epidemic spread in various cities in China, considering, additionally, weather
data, which finally indicate that higher humidity favors the containment of a coronavirus epidemic.
Our focus in the first part of this investigation is the theoretical analysis of the proposed system,
and then we perform some preliminary simulations with realistic parameter values. More extended
simulations will be devoted to a subsequent study.

The analysis of dynamical systems usually considers the possible equilibria that can be attained,
assessing their feasibility and stability, and possible connections between them. For more details on
these issues we refer the reader to classical texts, such as [7–9].

The paper is organized as follows. The main findings are outlined in the next section, which also
discusses the results of numerical simulations. Section 3 contains an evaluation of their implications
under various distancing policies. We formulate the model in Section 4, where we also analyze it
mathematically, showing boundedness of the trajectories, establishing an expression for the disease
basic reproduction number, finding its equilibria and assessing their local stability, and global
stability is established just for the disease-free equilibrium. The section ends with the details on
the numerical simulations.

2. Results

2.1. Theoretical Findings

The main analytical findings of this investigation are summarized in Tables 1 and 2. The expressions
of BT, CT,HT, DT and R0 are given by Equations (3) and (6).

The model (1) allows only three possible equilibria; the disease-free state C0, where only susceptibles
thrive; an equilibrium without symptomatic infected, which occurs only for a very particular case,
when the exposed individuals become all asymptomatic infected; and finally, the endemic equilibrium
C⇤. All these equilibria are locally asymptotically stable, if suitable, rather complicated conditions, hold.
Among the endemic and the disease-free equilibrium bistability is impossible, since they are related via
a transcritical bifurcation.

Table 1. Equilibria of the model (1) and their feasibility conditions.

Equilibrium Populations Feasibility

C0 = (S0, 0, 0, 0, 0, 0) S0 =
L
dp

–

CI = (SI , EI , 0, AI , RI) SI =
L � BT EI

dp

EI =
1

BT

 
L �

dpBTCT HT
b Iw0

pDT

!
L >

dpBTCT HT
b Iw0

pDT

AI =

 
w0

p

HT

!
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g0

p

dp

 
w0

p

HT

!
EI a = 1 and x = 0
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Table 1. Cont.

Equilibrium Populations Feasibility

C⇤ = (S⇤, E⇤, I⇤, A⇤, R⇤) S⇤ =
L � BT E⇤

dp
L >

dpBTCT HT

b I
⇥
(1 � a)wp HT + aw0

pDT
⇤

E⇤ =
1

BT

 
L �

dpBTCT HT

b I
⇥
(1 � a)wp HT + aw0

pDT
⇤
!

(resp. R0 > 1)

I⇤ =

 
(1 � a)wp HT + aw0

px

CT HT

!
E⇤ a 6= 1 or x 6= 0

A⇤ =

 
aw0

p

HT

!
E⇤

R⇤ =

"
gp

dp

 
(1 � a)wp HT + aw0

px

CT HT

!
+

g0
p

dp

 
aw0

p

HT

!#
E⇤

Table 2. Stability conditions of the equilibria of the model (1).

Point Coefficients Stability

C0 a2 = BT + CT + HT

a1 = HT [BT + CT ] + BTCT � b IS0((1 � a)wp + kaw0
p) L <

dpBTCT HT

b I
⇥
(1 � a)wp HT + aw0

pDT
⇤

a0 = BTCT HT � b IS0

⇣
(1 � a)wp HT + aw0

pDT

⌘
(resp. R0 < 1)

CI b3 = b I kAI + dp + HT + BT + CT ,

b2 = [b I kAI + dp](HT + BT + CT) L >
dpBTCT HT

b Iw0
pDT

+BTCT + HT(BT + CT)� w0
pkb ISI

b1 = [b I kAI + dp][BTCT + HT(BT + CT)] (resp. R0 > 1)
+HT BTCT � w0

p(kdp + DT)b ISI
b0 = [b I kAI + dp]HT BTCT � dpw0

pDT b IS⇤ a = 1 and x = 0

C⇤ c3 = b I(I⇤ + kA⇤) + dp + HT + BT + CT ,

c2 = [b I(I⇤ + kA⇤) + dp](HT + BT + CT) L >
dpBTCT HT

b I
⇥
(1 � a)wp HT + aw0

pDT
⇤

+BTCT + HT(BT + CT)� [aw0
pk + (1 � a)wp]b IS⇤ (resp. R0 > 1)

c1 = [b I(I⇤ + kA⇤) + dp][BTCT + HT(BT + CT)] + HT BTCT a 6= 1 or x 6= 0
�[aw0

p(kdp + DT) + (1 � a)wp(dp + HT)]b IS⇤

c0 = [b I(I⇤ + kA⇤) + dp]HT BTCT
�dp[aw0

pDT + (1 � a)wp HT ]b IS⇤

2.2. Simulations Results

We have performed some simulations with the parameter values listed in Table 3, to simulate
various implementations of the distancing policy, which actually is in current use in several countries.
The simulations may not be fully realistic, but our point is to investigate their qualitative behavior,
not to give quantitative forecasts.

Table 3. Parameters values.

Parameter Value Parameter Value

L 500 dp 8.2 ⇥ 10�6

gp 1.764 g0
p 0.6024

x 0.1 k 0.1 2 [0:005; 0:2]
µ 0.001 a 0.15 2 [0.01, 0.3]

wp 0.1 w0
p 0.1

n 0
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We look at the influence that the time of starting the restrictive measures has on the disease spread,
while keeping fixed the time of their lifting. We next investigate the effect of the time at which the
restricting measures are lifted.

Now comparing the results for the start of implementation at t1 = 1 and t1 = 10, and ending them
at the same time, it is seen that the earlier the measures are taken, the better it is, because the epidemic’s
outbreak is kept in check. In Figure 1 the epidemic outbreak starts around time 30, immediately after
lifting the restrictions, while in Figure 2 the initial surge before the measures are implemented is
damped by their implementation, and after their lifting the outbreak occurs. Both figures use t2 = 30.
The same result is seen using t2 = 90 as the time for removing the restrictions; compare Figures 3 and 4.
In Figure 3 nothing apparently happens until time 100 because of the restrictions. When they are lifted,
the epidemic spreads. In Figure 4 there is a small peak at the onset of the contagion, immediately curbed
by the containment measures, lasting as long as they are in use. In spite of their longer implementation,
the outbreak occurs nevertheless with the peak at the same time as in Figure 3.

The investigation of different timings for introducing and relaxing the distancing measures shows
that a late implementation has no effect, as the peak of the epidemic occurs and then these measures
are ineffective, independently of how long they are implemented. An earlier implementation followed
by their subsequent lifting leads to a secondary peak at some time later, the occurrence of which seems
to be related to the time for which the measures are implemented; the longer the latter, the longer the
delay in the secondary outbreak. However, the number of affected people remains the same.

Unfortunately, the result of the simulations indicates that essentially the whole population gets
affected by the disease. Only the timings differ, if distancing measures are taken.
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Figure 1. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 1, using b I = 10�10 and lifting them at time t2 = 30, returning to b I = 10�7

one month later, over a one year timespan for the model with demographics (1). Left to right and top
to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 2. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 10, using b I = 10�10 and lifting them at time t2 = 30, returning to b I = 10�7

one month later, over a one year timespan for the model with demographics (1). Left to right and top
to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 3. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 1, using b I = 10�10 and lifting them at time t2 = 90, returning to b I = 10�7

three months later, over a one year timespan for the model with demographics (1). Left to right and top
to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.

Thus, if the measures are implemented too late, independently of the time at which they are
removed, the outbreak occurs and their subsequent application becomes, therefore, irrelevant, as it
cannot be kept in check any longer; compare Figures 2 and 4. On the other hand, by implementing them
at the early stages of the contagion process, the outbreak can be delayed, as long as these measures are
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implemented, as can be seen from Figures 1 and 3. If they are lifted, the final results of the epidemic’s
outbreak are essentially the same as if they were not at all implemented, in terms of the number of
people being affected by the disease and with possible ultimate fatal consequences; compare the peaks
of all the infected classes in Figures 1–5 also with the results in Figure 6 where no measures are taken
to prevent the epidemic from spreading.
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Figure 4. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 10, using b I = 10�10 and lifting them at time t2 = 90, returning to b I = 10�7

three months later, over a one year timespan for the model with demographics (1). Left to right and top
to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 5. Using a semilogarithmic scale for the vertical axis, we show the results of absolute isolation,
starting at time t1 = 1 setting b I = 0 and lifting it at time t2 = 30, returning to b I = 10�7 one month
later, over a one year timespan for the model with demographics (1). Left to right and top to bottom,
the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 6. The epidemic’s effect on the population in the absence of measures for b I = 10�7, on a
semilogarithmic scale, over a period of one year. Left to right and top to bottom: S, E, I, A, R and D,
the disease-related deceased class.

An intermittent lock-down policy, simulated as an alternative way of coping with the outbreak,
might be important to render the burden on hospitalizations smaller, as it tends to spread the epidemic
over a longer timespan.

For the particular situation in Italy, note that patient number 1 was diagnosed on 21 February,
and the distancing measures in the area were in place starting the following days up to about two
weeks later, and then extended to the whole country. Incidentally, patient number 0, the initial carrier
of the disease, has never been identified, although there are some speculations. However, in the current
news, it is reported that the virus was already circulating yet not known of in Northern Italy in January,
which means that additional time had elapsed before the restrictions were applied.

Thus, apparently, these results are negative as for the possibility of containing the spread in the long
run, in line with what is hinted in [10], with the exception of the intermittent distancing measures policy,
which may spread the epidemic’s effects over longer timespans. However, there are some assumptions
in the model that make it too crude, so that we plan a deeper subsequent study. In particular, here the
results depend on homogeneous mixing, which for a large country is hardly the case. Secondly, this is a
continuous model, for which the compartments are depleted only asymptotically. Thus it is not possible
to prevent the class of infectives from vanishing in finite time, so that even a small residual in it would
start the epidemic’s outbreak again. Therefore the somewhat negative results obtained might hopefully
be better off in practice. Suitable modifications of the model along these lines will be the subject of a
further investigation.

3. Discussion

We have investigated a simple model for the coronavirus pandemic. The steady states, apart from
a symptomatic-infected-free point, which is unlikely to exist, are the disease-free equilibrium and the
endemic state. The model differs from other current models that are being studied for a few features.
From the simplified model that appears in [5], because our formulation contains less equations,
it does not consider the viruses compartment, and above all, we allow disease-related mortality,
which apparently is missing in the cited paper. Furthermore, we allow the progression of asymptomatic
individuals to the class of fully symptomatic. This feature certainly distinguishes it also from [6],
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where asymptomatics recover or become diagnosed with the disease, but do not spread it any longer.
In the present situation in Italy our assumption is very realistic.

There is no possibility of bistability in our situation, as the two fully meaningful equilibria are
related to each other via a transcritical bifurcation. The disease-free equilibrium is also globally
asymptotically stable, if it is locally asymptotically stable. An expression for the basic reproduction
number is established, with a possibly realistic numerical value [11,12].

The simulations show that containment measures could be effective in delaying the epidemic’s
outbreaks if taken at a very early stage, but when lifted the outbreaks would occur anyway and affect
almost the whole population. However, this last statement should be mitigated by the drawbacks
inherent in the model’s assumptions, as mentioned in the previous section, thereby leaving hope that
in practice it will not occur, if the measures are properly implemented.

We next discuss in detail the various different restriction policies that we have simulated.

3.1. Epidemic with a Lock-Down

In this case, in particular, assuming for the disease transmission coefficient the reference value
b I = 10�7, we reduce it to b I = 10�10 during the interval [t1, t1 + t2] and reinstate the standard value
afterwards; we monitor the epidemic’s evolution over six months. Figures 1–5 show the results of
different choices for t1 and t2. Containment measures are effective as long as they are implemented,
if they are taken early enough, before the epidemic attains its peak.

Since reducing the transmission by one order of magnitude means that to infect a susceptible with
rate b I , it is necessary for only one infected; with b I/10, 10 infected would be necessary. Thus since
the lock-down is not perfect, as for instance, some essential activities like food production are still
going on, a hypothetical reasonable estimate for the contact reduction is three orders of magnitude.
A comparison with a different, milder reduction, b I = 10�8 is made, showing essentially no difference
in the results, see Figure 7.
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Figure 7. On a semilogarithmic scale, the total populations with the lock-down policy, implemented
from time 1 up to time 30, with the milder reduced contact rate b I = 10�8, after which b I = 10�7

resumes. The simulation runs over a one year timespan for the simplified model (1). Left to right and
top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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3.2. Epidemic with Total Isolation

We changed also the policy to an improbable absolute confinement of every individual in the
population, reducing the transmission to exactly zero. The results show no change with respect to
those of the lock-down policy. We report only Figure 5, which is identical to Figure 1. The same occurs
in the cases contemplated by Figures 2–4.

3.3. The Simplified No-Demographics Model

We repeated the simulations for the model (1) in which we set L = dp = 0. In the simulations we
observed some small changes in the susceptibles behavior, with respect to the full model with vital
dynamics. Figures 8 and 9 are the counterparts of the Figures 1 and 2. The ultimate impact of the
epidemic is essentially the same; compare in particular, the curves of recovered and deceased. For the
total isolation case, Figure 10 shows the same features; compare it with Figure 5. Similar considerations
hold for the various remaining cases, and therefore, the pictures are not reported.
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Figure 8. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 1, setting b I = 10�10 and lifting them at time t2 = 30, returning to b I = 10�7

one month later, over a one year timespan for the simplified model with no demographics (1) where
we take L = 0, dp = 0. Left to right and top to bottom, the subpopulations are: S, E, I, A, R and D,
the disease-related deceased class.
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Figure 9. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 10, setting b I = 10�10 and lifting them at time t2 = 30, returning to b I = 10�7

one months later, over a one year timespan for the simplified model with no demographics (1) where
we take L = 0, dp = 0. Left to right and top to bottom, the subpopulations are: S, E, I, A, R and D,
the disease-related deceased class.
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Figure 10. Using a semilogarithmic scale for the vertical axis, we show the results of absolute isolation,
b I = 0 starting at time t1 = 10, setting b I = 0 and lifting it at time t2 = 90, returning to b I = 10�7 three
months later, over a one year timespan for the model with no demographics (1) where L = dp = 0.
Left to right and top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related
deceased class.
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3.4. Investigation of Different Timings for Restrictions’ Introduction and Lifting

A further study has been carried out to assess the impact of the time until taking action on the
containment measures. All the possible different combinations of simple restriction or total isolation as
well as the presence or the absence of demographic effects give essentially the same results. Therefore
we present only the results for some selected alternatives, giving the plots in semilogarithmic or total
population values, but stressing that for the options not considered, the figures would be the same.

In case the first restriction measure is taken too late, specifically at time t = 120, and followed by
lifting it either one month or three months later, the epidemic occurs and the measures have no effect
whatsoever; see Figure 11, where measures are kept for three months.
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Figure 11. The total populations with the lock-down policy, implemented from time 120 up to time 210,
with the reduced contact rate b I = 10�10, after which b I = 10�7 resumes. The simulation runs over a
one year timespan for the model (1). Left to right and top to bottom, the subpopulations are: S, E, I, A,
R and D, the disease-related deceased class.

Beginning the restrictions after three months from the start of the epidemic and removing them
one month afterwards, causes a second peak about two months later; i.e., six months after the onset
of the disease spreading (Figure 12), with a higher number of affected individuals. If instead the
lock-down is implemented for three months, the second peak is delayed further, occurring about three
months later, Figure 13. Although the pictures are shown on different population scales, absolute
values and semilogarithmic, a comparison of the heights of the peaks for the various types of infected
subpopulations indicates no difference. Hence, these policies cannot significantly influence the number
of people ultimately affected by the disease.
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Figure 12. The total populations with the lock-down policy, implemented from time 90 up to time 120,
with the total isolation policy b I = 0, after which b I = 10�7 resumes. The simulation runs over a one
year timespan for the simplified model (1) with no demographics, L = dp = 0. Left to right and top to
bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 13. The semilogarithmic plot of the epidemic’s spread with the lock-down policy, implemented
from time 90 up to time 180, with the reduced contact rate b I = 10�10, after which b I = 10�7 resumes.
The simulation runs over a one year timespan for the model (1) with demographics. Left to right and
top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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3.5. The Intermittent Lock-Down Policy

We finally simulated a policy that attempts to assess the number of infectives at regular times,
with a of period one week. If they exceed a threshold, taken to be 10, the lock-down is implemented
for a week, and then lifted. Figures 14 and 15 show the results for the case with vital dynamics and in
the case of L = dp = 0. Note that susceptibles in both cases are at a constant value, the vertical scale
being extremely small. The infected are kept below the threshold, and the periodic recurrences of the
epidemic somewhat change its final impact, as the curves of recovered are reduced by about two orders
of magnitude, and above all, the ones of the deceased decrease by about four orders, with respect
to the ones found with the one-time lock-down policy. The other relevant change is that here the
phenomenon is observed over a longer timespan. Thus the cumulative effects are spread out over a
much longer time. This will have some importance to lessening the burden on hospitals. Figure 16
shows the results if the check policy starts immediately at time 1 rather than after a week.

Comparing the population values with the intermittent policy with the one time lock-down,
done early enough and implemented for one month, the final outcomes are milder than the latter.
Thus the intermittency allows the control of the outbreaks. Susceptibles are almost depleted in the
one-time policy; with the intermittent one, however, they are essentially spared from getting the
disease; compare Figures 17 and 18.

The intermittency has also been checked with different time intervals. Comparing Figures 19–22,
it is seen that the more frequent the checks are implemented, the lower are the peaks in the exposed
class, which in turn leads to a smaller cumulative number of recovered and fatalities, at least comparing
the policies for the one- and two-weeks alternatives, Figures 19 and 20. For the longer intervals between
the checks, again the peaks are higher, the longer the timespan, but it is observed that as time elapses,
their heights tend to decrease; see Figures 21 and 22.
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Figure 14. Using a semilogarithmic scale for the vertical axis, we show the results of the intermittent
lock-down policy. Here the population is checked every week, starting after a week. If the number of
infected is above a small threshold (here taken to be 10) the reduced contact rate b I = 10�10 is resumed
for a week. The simulation runs over two years timespan for the model with demographics (1). Left to
right and top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 15. Using a semilogarithmic scale for the vertical axis, we show the results of the intermittent
lock-down policy. Here the population is checked every week, starting after a week. If the number
of infected is above a small threshold (here taken to be 10) the reduced contact rate b I = 10�10 is
resumed for a week. The simulation runs over two years timespan for the simplified model with no
demographics (1) where we take L = 0, dp = 0. Left to right and top to bottom, the subpopulations
are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 16. Using a semilogarithmic scale for the vertical axis, we show the results of the intermittent
lock-down policy, implemented from time 1. Here the population is checked every week. If the number
of infected is above a small threshold (here taken to be 10) the reduced contact rate b I = 10�10 is
resumed for a week. The simulation runs over two years timespan for the simplified model with no
demographics (1) where we take L = 0, dp = 0. Left to right and top to bottom, the subpopulations
are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 17. The total populations with the intermittent lock-down policy, implemented from time 1.
Here the population is checked every week. If the number of infected is above a small threshold
(here taken to be 10) the reduced contact rate b I = 10�10 is resumed for a week. The simulation runs
over two years timespan for the simplified model with no demographics (1) where we take L = 0,
dp = 0. Left to right and top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related
deceased class.
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Figure 18. The total populations with the lock-down policy, implemented from time 1 up to time
30, with the reduced contact rate b I = 10�10, after which b I = 10�7 resumes. The simulation runs
over a one year timespan for the simplified model with no demographics (1) where we take L = 0,
dp = 0. Left to right and top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related
deceased class.
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Figure 19. The population values with the lock-down policy, implemented after the first week
with the reduced contact rate b I = 10�10, after which b I = 10�7 resumes. The check for possible
repeated implementation is implemented every week afterwards. The simulation runs over a two year
timespan for the model (1) with no demographics, i.e., L = dp = 0. Left to right and top to bottom,
the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 20. The population values with the lock-down policy, implemented after the first two weeks
with the reduced contact rate b I = 10�10, after which b I = 10�7 resumes. The check for possible
repeated implementation is implemented every two weeks afterwards. The simulation runs over a
two year timespan for the model (1) with no demographics, i.e., L = dp = 0. Left to right and top to
bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 21. The population values with the lock-down policy, implemented after the first thee weeks
with the reduced contact rate b I = 10�10, after which b I = 10�7 resumes. The check for possible
repeated implementation is implemented every three weeks afterwards. The simulation runs over a
two year timespan for the model (1) with no demographics, i.e., L = dp = 0. Left to right and top to
bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 22. The population values with the lock-down policy, implemented after the first month with
the reduced contact rate b I = 10�10, after which b I = 10�7 resumes. The check for possible repeated
implementation is implemented every month afterwards. The simulation runs over a two years
timespan for the model (1) with no demographics, i.e., L = dp = 0. Left to right and top to bottom, the
subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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4. Materials and Methods

Here we develop a mathematical model of coronavirus, which is a zoonotic disease. Its biological
characteristics indicate that the virus transmission occurred first from infected animals to humans [5],
and then spread among populations worldwide by contact with infected individuals, to make it
a pandemic.

Let N(t) denote the total population. It is partitioned into the following five disjoint classes of
individuals:

S(t): The susceptible class, the individuals who have not yet been exposed to the virus.
E(t): The exposed class, describing people who have become in contact with the virus, but are

in incubation period and not yet able to spread the disease; possible presymptomatic individuals
that can transmit the infection [13–15] are assumed to have already moved to the asymptomatic class
defined below.

I(t): The symptomatic infectious class, individuals that manifest symptoms and can spread
the disease.

A(t): The asymptomatic infectious class; those persons that can spread the disease even without
having explicit symptoms.

R(t): The removed class, that includes the people that recovered from the disease.
Thus, N(t) = S(t) + E(t) + I(t) + A(t) + R(t).
The basic mechanisms underlying the model are shown in Figure 23. The model is formulated

taking into account all the possible interactions among the compartments that were described above.

Figure 23. The basic interactions among the compartments.

Under the quasi-steady-state assumption of the total human population, we impose that
susceptible individuals are recruited at the constant rate L, become infected by direct contact with an
infectious individual at rate b I , which is scaled by a factor k to account for the possibility that the latter is
asymptomatic. Finally, all human individuals are subject to natural mortality dp. These considerations
are incorporated in the first equation of the system (1).

Individuals that contract the disease are accounted for in the second equation of (1). They become
exposed, i.e., they cannot yet spread the virus, which needs an incubation period within the body of its
hosts. In this class enter the susceptibles that were contaminated in the two ways described earlier.
People leave it by becoming infectious, and either showing symptoms, thereby migrating into class
I, or not, therefore, finding themselves in class A. The progression rates into these two classes are
wp and w0

p. Furthermore, we assume that a fraction a becomes asymptomatic and 1 � a instead will
manifest symptoms.

The third equation models the symptomatic infectious, recruited from the exposed class at rate
(1 � a)w as described above. Furthermore, there could be asymptomatic individuals that become
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symptomatic at rate x. They leave this class by either progressing to the recovered class at rate gp,
or dying, naturally or by causes related to the disease at rate µ.

The asymptomatic individuals modeled in the fourth equation appear from the exposed ones,
and leave the class by overcoming the disease at rate g0

p, dying naturally or by disease-related causes
at rate n, or eventually showing the symptoms, for which they migrate into class I.

Recovered individuals are those that have healed from the disease. They are subject only to
natural mortality. We assume that they have also become immune so that they are unaffected if become
in contact with the infectious.

Note that in the simulations also the cumulative class of disease-related deceased people is shown,
although the dead are not explicitly accounted for in the model. They indeed represent a sink, and thus
do not contribute to the disease propagation. Incidentally, instead, in cultures where the deceased
are kept for a while before burial and become in contact with the relatives, it may be necessary to
introduce this class in the model, as another potential source of infection.

Taking into account the above considerations, the model dynamics is regulated by the following
system of nonlinear ordinary differential equations:

dS
dt

= L � b IS(I + kA)� dpS, (1)

dE
dt

= b IS(I + kA)� (1 � a)wpE � aw0
pE � dpE,

dI
dt

= (1 � a)wpE � (gp + dp + µ)I + x A,

dA
dt

= aw0
pE � (g0

p + dp + n)A � x A,

dR
dt

= gp I + g0
p A � dpR,

or alternatively, excluding completely the demographic features, by setting L = 0 and dp = 0 in (1).
All the parameters are nonnegative and their meaning is summarized in Table 4. Note that in view of
the definitions,

1
wp

,
1

w0
p

1
gp

,
1

g0
p

,

represent respectively the incubation period before manifesting symptoms, the latent period before
becoming asymptomatic infectious, the infectious period for symptomatic infection and the infectious
period for asymptomatic infection.

Table 4. Model parameters and their meaning.

L susceptibles recruitment rate
dp natural mortality
b I disease transmission rate
k transmissibility ratio between asymptomatics and symptomatics
µ disease-related mortality for infected
n disease-related mortality for asymptomatics

wp progression rate from exposed to symptomatic
w0

p progression rate from exposed to asymptomatic
a fraction of exposed that turn asymptomatic
x progression rate from asymptomatic to symptomatic

gp recovery rate from symptomatic infection
g0

p recovery rate from asymptomatic infection



Mathematics 2020, 8, 820 20 of 30

Theorem 1. The system trajectories are bounded. Letting

M = max
⇢

N(0),
L
dp

�

the set

G = {(S, E, I, A, R) : S + E + I + A + R  M, S > 0, E � 0, I � 0, A � 0, R � 0}. (2)

represents their ultimate attractor. In particular, if N(0) < Ld�1
p , M = Ld�1

p .

Proof. From the system (1) it follows that the total population evolves as follows:

dN
dt

+ dpN = L � nA � µI  L.

Solving the differential inequality easily gives

N(t)  N(0) exp(�dpt) +
L
dp

[1 � exp(�dpt)]  M,

so that all subpopulations, being nonnegative, are bounded as well.

Note that G is positively invariant since all solutions of system (1) originating in G remain there
for all t > 0, in view of the existence and uniqueness of its solutions.

4.1. System’s Equilibria Assessment

The equilibrium points of the model are obtained by equating the right hand side of
system (1) to zero. The solution of the so-obtained algebraic system gives three equilibrium points:
the coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0, ), the coronavirus-symptomatic-infected-free
equilibrium CI = (SI , EI , 0, AI , RI) with conditions a = 1 and x = 0, and the fully coronavirus
endemic equilibrium C⇤ = (S⇤, E⇤, I⇤, A⇤, R⇤) when either a 6= 1 or x 6= 0. Specifically, for the former
two we have:

S0 =
L
dp

, EI =
1

BT

 
L �

dpBTCT HT

b Iw0
pDT

!
, SI =

L � BTE⇤

dp
, AI =

 
w0

p

HT

!
EI , RI =

 
g0

p

dp

w0
p

HT

!
EI ,

where

BT = (1 � a)wp + aw0
p + dp, CT = gp + µ + dp, DT = x + k(gp + µ + dp), HT = g0

p + n + x + dp. (3)

The feasibility conditions for CI are

L >
dpBTCT HT

b Iw0
pDT

, a = 1 and x = 0. (4)

For the fully endemic equilibrium we find
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E⇤ =
1

BT

0

@L �
dpBTCT HT

b I

h
(1 � a)wp HT + aw0

pDT

i

1

A , S⇤ =
L � BTE⇤

dp
,

I⇤ =

 
(1 � a)wpHT + aw0

px

CT HT

!
E⇤, A⇤ =

 
aw0

p

HT

!
E⇤

and R⇤ =

 
gp

dp

 
(1 � a)wp HT + aw0

px

CT HT

!
+

g0
p

dp

 
aw0

p

HT

!!
E⇤,

with feasibility condition

L >
dpBTCT HT

b I

h
(1 � a)wp HT + aw0

pDT

i , and either a 6= 1 or x 6= 0. (5)

4.2. The Basic Reproduction Number

The basic reproduction number R0 for system (1) is found using the next generation matrix
method [16]. The reduced system of (1) may be written in compact form as: X0 = F(X)� V(X) where
X = (E, I, A)

F(E, I, A) =

0

B@
b IS(I + kA)
0
0

1

CA , V(E, I, A) =

0

B@
�(1 � a)wpE � aw0

pE � dpE
(1 � a)wpE � (gp + dp + µ)I + xA
aw0

pE � (g0
p + dp + n)A � x A

1

CA .

The Jacobian matrices of F(X) and V(X) at the disease-free equilibrium point C0 are

JF(C0) =

0

B@
0 b IS0 b IS0k
0 0 0
0 0 0

1

CA

and

JV(C0) =

0

B@
�BT 0 0

(1 � a)wp �CT x

aw0
p 0 �HT

1

CA .

We find that

J�1
V (C0) =

0

BBBBBB@

�1
BT

0 0

�[(1 � a)wpHT + aw0
px]

CT BT HT

�1
CT

�x

CT HT
�aw0

p

BT HT
0

�1
HT

1

CCCCCCA
.

The next generation matrix is

�JF(C0)J�1
V (C0) =

0

BB@
b IS0

(1 � a)wp HT + aw0
pDT

CT BT HT

b IS0
CT

b IS0DT
CT HT

0 0 0
0 0 0

1

CCA .

Thus

R0 = r(�JF(C0)J�1
V (C0)) = b IS0

(1 � a)wpHT + aw0
pDT

CT BT HT
. (6)
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The conditions (4) (resp. (5)) are equivalent to R0 > 1 for a = 1 and x = 0 (resp.R0 > 1 for either
a 6= 1 or x 6= 0).

We have the following theorem

Theorem 2. System (1) has the following equilibria:

1. The coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0) =
⇣

L
dp

, 0, 0, 0, 0
⌘

which exists always.

2. In addition, if R0 > 0 then system (1) admits another nontrivial equilibrium, in fact:
When a = 1 and x = 0, it is the coronavirus-symptomatic-infected-free equilibrium CI = (SI, EI, II, AI, RI).
When either a 6= 1 or x 6= 0, it is the fully coronavirus endemic equilibrium C⇤ = (S⇤, E⇤, I⇤, A⇤, R⇤).

4.3. System’s Equilibria Stability

4.3.1. Local Stability

In this subsection we investigate the local stability of the system’s equilibria.

Theorem 3. Letting

a2 = BT + CT + HT , (7)

a1 = HT [BT + CT ] + BTCT � b IS0((1 � a)wp + kaw0
p)

a0 = BTCT HT � b IS0

⇣
(1 � a)wpHT + aw0

pDT

⌘
.

1. The coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0) of the system (1) is locally asymptotically stable if

L <
dp

b I

BTCT HT
(1 � a)wp HT + aw0

pDT
, ( resp. R0 < 1). (8)

2. If L >
dp

b I

BTCT HT
(1 � a)wpHT + aw0

pDT
, ( resp. R0 > 1), then the coronavirus-free equilibrium C0 of the

system (1) is unstable.

Proof. The Jacobian matrix of system (1) at the coronavirus-free equilibrium C0 is:

J(C0) =

0

BBBBBBBBB@

�dp 0 � b IL
dp

� kb IL
dp

0

0 �BT
b IL
dp

kb IL
dp

0

0 (1 � a)wp �CT x 0
0 aw0

p 0 �HT 0
0 0 gp g0

p �dp

1

CCCCCCCCCA

.

At point C0, the eigenvalues of J are �dp of multiplicity order two and the roots of the following
characteristic polynomial of a three by three submatrix of J whose coefficients ai, i = 0, . . . , 2 are given
in (7):

l3 + a2l2 + a1l + a0 = 0. (9)

It is evident that a2 > 0. From condition (8) the following inequalities are also satisfied

a0 = BTCT HT � b IS0

h
(1 � a)wpHT + aw0

pDT

i

=
b I
dp

h
(1 � a)wpHT + aw0

pDT

i
0

@dp

b I

BTCT HTh
(1 � a)wp HT + aw0

pDT

i � L

1

A > 0,
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h
(1 � a)wp HT + aw0

pDT

i
a1 = [HT(BT + CT) + BTCT ]

h
(1 � a)wpHT + aw0

pDT

i

�b IS0

h
(1 � a)wp HT + aw0

pDT

i
[(1 � a)wp + kaw0

p]

= [HT(BT + CT) + BTCT ]
h
(1 � a)wpHT + aw0

pDT

i

+[a0 � BTCT HT ][(1 � a)wp + kaw0
p]

= HT(BT + CT)(1 � a)wp HT + (HTCT + BTCT)aw0
px

+a0[(1 � a)wp + kaw0
p] > 0

and
h
(1 � a)wp HT + aw0

pDT

i
a1a2 = HT(BT + CT)(1 � a)wp HTa2 + (HTCT + BTCT)aw0

px a2

+a0[(1 � a)wp + kaw0
p]a2

= HT(BT + CT)(1 � a)wp HTa2 + (HTCT + BTCT)aw0
px a2

+a0(1 � a)wp(BT + CT + HT) + a0kaw0
p(BT + CT + HT)

> BTCTaw0
pxa2 + a0(1 � a)wpHT + a0aw0

p(kCT + x)� a0aw0
px

> BTCT HTaw0
px + a0[(1 � a)wp HT + aw0

pDT ]� BTCT HTaw0
px

= a0[(1 � a)wp HT + aw0
pDT ].

Thus, ai > 0, i = 0, . . . , 2 and a2a1 > a0.
Then, according to the Routh–Hurwitz criterion, all the roots of the characteristic Equation (9)

have negative real parts. Therefore, the coronavirus-free equilibrium point C0 is locally asymptotically
stable under condition (8).

Since we can deduce the stability of the coronavirus symptomatic infected-free equilibrium CI
from the stability of the coronavirus endemic equilibrium C⇤ simply by taking a = 1 and x = 0 in the
latter, we now just analyze the coronavirus endemic equilibrium C⇤.

Theorem 4. Let
8
>>>>>>><

>>>>>>>:

c3 = b I(I⇤ + kA⇤) + dp + HT + BT + CT > 0,
c2 = [b I(I⇤ + kA⇤) + dp](HT + BT + CT) + BTCT + HT(BT + CT)

�[aw0
pk + (1 � a)wp]b IS⇤,

c1 = [b I(I⇤ + kA⇤) + dp][BTCT + HT(BT + CT)] + HT BTCT
�[aw0

p(kdp + DT) + (1 � a)wp(dp + HT)]b IS⇤,
c0 = [b I(I⇤ + kA⇤) + dp]HT BTCT � dp[aw0

pDT + (1 � a)wp HT ]b IS⇤.

(10)

The coronavirus endemic equilibrium C⇤ is locally asymptotically stable if

L >
dp

b I

BTCT HT
(1 � a)wpHT + aw0

pDT
, ( resp. R0 > 1). (11)

Proof. The Jacobian matrix of system (1) at the coronavirus endemic equilibrium C⇤ is:

J(C⇤) =

0

BBBBB@

�b I(I⇤ + kA⇤)� dp 0 �b IS⇤ �b IS⇤k 0
b I(I⇤ + kA⇤) �BT b IS⇤ b IS⇤k 0

0 (1 � a)wp �CT x 0
0 aw0

p 0 �HT 0
0 0 gp g0

p �dp

1

CCCCCA
.
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At point C⇤, the eigenvalues of J are �dp and the roots of the characteristic polynomial of a three
by three submatrix of J. The characteristic equation, in which the coefficients ci, i = 0, . . . , 3 are given
in (10), is:

l4 + c3l3 + c2l2 + c1l + c0 = 0. (12)

It is evident that c3 > 0. From condition (11) the following inequalities are also satisfied.

c0 = [b I(I⇤ + kA⇤) + dp]HT BTCT � b I [(1 � a)wp HT + aw0
pDT ]dpS⇤

= b I

h
(1 � a)wp HT + aw0

p(x + kCT)
i

BTE⇤ + dpHTCT BT

�b I [(1 � a)wp HT + aw0
pDT ](L � BTE⇤)

= b I

h
(1 � a)wp HT + aw0

pDT

i  
2BTE⇤ +

dpHTCT BT

b I [(1 � a)wpHT + aw0
pDT ]

� L

!

= b I

h
(1 � a)wp HT + aw0

pDT

i
BTE⇤ > 0,

c1 = [b I(I⇤ + kA⇤) + dp][BTCT + HT(BT + CT)] + HT BTCT

�[(1 � a)wp(dp + HT) + aw0
p(kdp + DT)]b IS⇤

=

"
b I

 
(1 � a)wpHT + aw0

pDT

CT HT

!
E⇤ + dp

#
[BTCT + HT(BT + CT)]

�b I [(1 � a)wp + aw0
pk](L � BTE⇤)

= b I

 
(1 � a)wp HT(BT + CT)

CT
+

aw0
pxBT

CT
+

aw0
pDT(BT + HT)

HT

!
E⇤

+dp[BTCT + HT(BT + CT)]� b I [(1 � a)wp + aw0
pk](L � 2BTE⇤)

= b I

 
(1 � a)wp HT(BT + CT)

CT
+

aw0
pxBT

CT
+

aw0
pDT(BT + HT)

HT

!
E⇤

+dp[BTCT + HT(BT + CT)]� b I [(1 � a)wp + aw0
pk]

0

@ 2dpBTCT HT

b I

h
(1 � a)wp HT + aw0

pDT

i � L

1

A

= b I [(1 � a)wp HT + aw0
pDT ]

✓
CT HT + BT(CT + HT)

CT HT

◆
E⇤

+dp

0

@ (BT + CT)H2
T(1 � a)wp + HT BTaw0

px + CT(BT + HT)aw0
pDTh

(1 � a)wp HT + aw0
pDT

i

1

A > 0,
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c2 = [b I(I⇤ + kA⇤) + dp](HT + BT + CT) + BTCT + HT(BT + CT)

�[aw0
pk + (1 � a)wp]b IS⇤

=

"
b I

 
(1 � a)wp HT + aw0

pDT

CT HT

!
E⇤ + dp

#
(HT + BT + CT) + BTCT + HT(BT + CT)

�[aw0
pk + (1 � a)wp]b I

L � BTE⇤

dp

= b I

 
(1 � a)wp(HT + BT)

CT
+

aw0
px(HT + BT + CT)

CT HT
+

aw0
pk(BT + CT)

HT

!
E⇤

+dp(HT + BT + CT) + BTCT + HT(BT + CT)
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Thus, ci > 0, i = 0, . . . , 3 and c1(c3c2 � c1) > c0c2
3. Then, according to the Routh–Hurwitz criterion,

all the roots of the characteristic Equation (12) have negative real parts. Therefore, the coronavirus
endemic equilibrium point C⇤ is locally asymptotically stable under condition (11).

From Theorem 4 the following result is reached.

Theorem 5. Let
8
>>>>>>><

>>>>>>>:

b3 = b IkAI + dp + HT + BT + CT > 0,
b2 = [b IkAI + dp](HT + BT + CT) + BTCT + HT(BT + CT)

�w0
pkb ISI ,

b1 = [b IkAI + dp][BTCT + HT(BT + CT)] + HT BTCT
�w0

p(kdp + DT)b ISI ,
b0 = [b IkAI + dp]HT BTCT � dpw0

pDT b IS⇤.

(13)

The coronavirus symptomatic-infected-free equilibrium CI of the system (1) is locally asymptotically
stable if

L >
dp

b I

BTCT HT
w0

pDT
, ( resp. R0 > 1). (14)

Proof. The result can easily obtained from Theorem 4 by taking a = 1 and x = 0.

Additionally, from the previous discussion, we can claim the following result:

Theorem 6. There is a transcritical bifurcation between C0 and C⇤.

4.3.2. Global Stability

Next, we address the issue of global stability of the coronavirus–free equilibrium, employing as a
tool a suitably constructed Lyapunov function and La Salle’s Invariance Principle.

Theorem 7. The coronavirus-free equilibrium C0 of model (1) is globally asymptotically stable if

L <
dpBTCT HT

b I [(1 � a)wpHT + DTaw0
p]

, ( resp. R0 < 1). (15)

Proof. First, the four equations of (1) are independent of R, therefore, the last equation of (1) can be
omitted without loss of generality. Hence, let us consider the following function:

P =
1

2S0
(S � S0)

2 + E +
BT

[(1 � a)wp HT + DTaw0
p]
(HT I + DT A) (16)

It is easily seen that the above function is nonnegative and also P = 0 if and only if S = S0, E = 0,
I = 0 and A = 0. Further, calculating the time derivative of P along the positive solutions of (1),
we find:
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dP
dt

=
1
S0

(S � S0)(�b IS(I + kA)� dp(S � S0)) + b IS(I + kA)� BTE

+
BT HT((1 � a)wpE � CT I + xA)

[(1 � a)wp HT + DTaw0
p]

+
BT DT(aw0

pE � HT A)

[(1 � a)wp HT + DTaw0
p]

= �
dp

S0
(S � S0)

2 + b I [2S � S2

S0
� S0](I + kA) + b IS0(I + kA)

� BTCT HT I
[(1 � a)wpHT + DTaw0

p]
� BT(�x + DT)HT A

[(1 � a)wpHT + DTaw0
p]

= �
dp

S0
(S � S0)

2 + b I [2S � S2

S0
� S0](I + kA)

+

 
b IS0 �

BTCT HT
[(1 � a)wp HT + DTaw0

p]

!
(I + kA)

= �
dp

S0
(S � S0)

2 + b I [2S � S2

S0
� S0](I + kA)

+
b I
dp

 
L �

dpBTCT HT

b I [(1 � a)wpHT + DTaw0
p]

!
(I + kA).

From condition (15) we can show that the coefficients of the term I + kA in the last equality are

negative. Further, we have 2S � S2

S0
� S0 = � S2�2SS0+S2

0
S0

= � (S�S0)
2

S0
 0 for all S � 0. Thus, we have

dP
dt  0 for all (S, E, I, A) 2 R4

+ and dP
dt = 0 if and only if (S, E, I, A) = (S0, 0, 0, 0). Thus, the only

invariant set contained in R4
+ is {(S0, 0, 0, 0)}. Hence, La Salle’s theorem implies convergence of the

solutions (S, E, I, A) to (S0, 0, 0, 0). From the last equation if (1) we can show obviously that R converge
also to 0. Therefore C0 is globally asymptotically stable if R0 < 1.

4.4. Numerical Simulations

The calculation of the value of R0 according to (6) with the parameter values used in the numerical
simulations gives R0 = 3.1402, in line with the current estimates [11,12].

4.4.1. Simulations Methodology

We use a simple own-developed driver code calling the Matlab intrinsic routine ode45,
implementing the classical Runge–Kutta 45 integration method for ordinary differential equations.

At first, we consider only the demographic simulation and show that the population is essentially
at the same level during a year. This fact is substantiated also by the simulation results, for which there
is scant difference between those of the model (1) and the ones obtained by using its no-demographic
counterpart, where L and dp are both set to zero.

We then perform three sets of simulations describing different possible scenarios. The first
one considers lock-down, i.e., decreasing the contact rate significantly, but not to zero, as some
essential activities are still open. Then the total isolation policy, for which the contact rate is set to
zero. Finally an intermittent closure policy, for which when infectives reappear in a significant way,
temporary lock-down measures resume again.

4.4.2. Data Acquisition

We use data published on official websites about the epidemic’s spread in Italy collected
between 29 January and 28 March 2020, a period that spans 61 days, incremented by more recent
information [17].
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Using the day as the base time unit, we assume that the average incubation period lies in the
interval between two and 14 days, with a mean of 8 days. Based on the percentage of the reported
symptomatic infected patients, the proportion of symptomatic in the infected class a is estimated to
be in the interval [0.01, 0.3]. The correction k for asymptomatics to diffuse the disease is set in the
range k 2 [0 : 005; 0 : 2]. There have been 27,359 deaths between 15 February and 29 April [17],
with changes in the number of fatalities every day. Dividing the fatal cases by the timespan, one gets
370 daily fatalities, which gives a rate 0.0027. Using this value in the simulation, puts the total losses to
about 105. But we observed that apparently children hardly get the disease, the younger and adult
people have it generally in a mild form and fatalities occur mainly for the elderly people, compare
with Figure 3 of [18]. In view of the fact that there is no age structure in this model, we corrected this
value by taking a third of the above result to set the disease mortality rate at the final value µ = 0.001,
which gives a reasonable estimate for the losses in the timespan, in rough agreement with the actual
tallies. We neglect altogether mortality for the asymptomatics, setting n = 0. Based on the officially
published data we estimate gp = 0.1764, g0

p = 0.6024. For the initial values, the total population is
obtained from the report published by the official cite of worldometers [19], S = 60461826. To avoid
demographic effects, we set the susceptible recruitment rate L in order that on the timespan of the
simulation the total population N does not change much.

4.4.3. The Pure Demographic Case

We simulate first the population model without disease. In so doing, we varied the parameter
L until a satisfactory behavior of N, the total population was found. With L = 500 there is little
variation of N during a whole year, the population remains roughly stable around the level 60, 400, 000,
see Figure 24. In this way the demographic effects are sort of removed, and we can concentrate mainly
on the epidemics. Actually, the number of newborns per day in Italy would be about four times higher,
but as mentioned, we just would like here to hide the demographics from the simulations and not
have a picture more adherent to reality.

0 20 40 60 80 100 120 140 160 180
6.0461

6.0461

6.0462

6.0462

6.0463

6.0464

6.0464
x 10

7

Figure 24. The susceptible population behavior over a year, without disease. It does not vary much
as the vertical scale is rather small, the range of variation being around 3000, over a population of
60 ⇥ 106.

4.4.4. Epidemics Spread in the Absence of Measures

Here we introduced the disease, with incidence b I = 10�7. The result is shown in Figure 25 for
absolute numbers, and in Figure 6 in semilogarithmic scale. In this case no measures are assumed
to be taken to counteract the epidemics. These results are reported in order be able to compare the
simulations with restrictions to what would happen if the containment measures were not taken.
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Figure 25. The epidemic’s effect on the population in the absence of measures for b I = 10�7, over
a period of one year. Left to right and top to bottom, the total population sizes: S, E, I, A, R and D,
the disease-related deceased class.

4.4.5. Containment Measures for the Epidemics

Finally, we considered the introduction of the distancing policy. It is assumed to start at time t1
and end at time t1 + t2. Two forms of containment measures are considered, substantially reducing the
contact rate, or even setting it equal to zero, meaning the extreme measure of total individuals isolation.

In particular, we present the experience of using the reference value of the contact rate b I = 10�7,
then reducing it to b I = 10�10 during the interval [t1, t1 + t2]. We then reset it to its previous reference
value after time t1 + t2. We monitored the epidemics evolution over six months.

The alternative, milder choice b I = 10�8 is also used, for comparison.
The simulations are then repeated with total isolation, setting b I = 0 during the implementation

of the restrictions.
A comparison of the results with the model obtained by disregarding the demographic parameters,

i.e., setting L = dp = 0 is also performed in the same way as done for the model (1).
Different timings for taking both the first restriction measure and for lifting it are then investigated,

using all the above alternatives.
Finally an intermittent restrictive policy is examined, for which when the infected are observed to

trespass a threshold, distancing measures are taken. Here again lock-down or total isolation produce
essentially the same results. The use of different timings for the introduction of the restrictions is
also scrutinized.
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Abstract: Military operations research and combat modeling apply mathematical models to analyze a
variety of military conflicts and obtain insights about these phenomena. One of the earliest and most
important set of models used for combat modeling is the Lanchester equations. Legacy Lanchester
equations model the mutual attritional dynamics of two opposing military forces and provide some
insights regarding the fate of such engagements. In this paper, we review recent developments in
Lanchester modeling, focusing on contemporary conflicts in the world. Specifically, we present
models that capture irregular warfare, such as insurgencies, highlight the role of target information in
such conflicts, and capture multilateral situations where several players are involved in the conflict
(such as the current war in Syria).

Keywords: Lanchester models; irregular warfare; target information; multilateral conflicts

1. Introduction

Military operations research and combat modeling apply mathematical models to analyze a
variety of military conflicts and combat situations, and obtain insights about these phenomena [1,2].
One of the earliest and most important set of models used for combat modeling is the Lanchester
equations [3]. While there are two major manifestations of Lanchester equations—deterministic and
stochastic—we focus in this paper only on the deterministic equations.

Lanchester equations are systems of ordinary di↵erential equations describing the mutual attrition
that occurs continuously in time between two opposing forces engaged in violent confrontation.
The equations involve state variables that represent the number of live combatants (or weapons) at
any given time during the battle. Each equation expresses the rate of change in one state variable as a
function of other state variables. There are several Lanchester models that di↵er in their underlying
assumptions regarding the operational posture and/or the tactical situation. We describe the two most
common models in Section 2.

Lanchester equations, and variations thereof, have been implemented in large-scale combat
models [4,5] and used by military analysts and combat planners for studying force structure and
combat courses of action.

The recent literature on Lanchester equations is quite wide in scope and ranges from fitting
Lanchester models to data from historical battles [6–8], to using partial di↵erential equations to capture
spatial and interaction e↵ects [9], and to developing approximate solutions to stochastic versions of
Lanchester equations [10]. Lanchester models have also been used in biology [11], evolution [12],
and even in the advertisement world [13] and video-gaming [14].

A particular body of research on Lanchester models, notable in the past ten years or so, focuses on
irregular warfare, which is manifested in asymmetric conflicts such as insurgencies and multilateral
engagements. Irregular warfare is also characterized by asymmetry in the mechanism that provides
information, intelligence and situational awareness to the two sides. These types of irregular warfare
represent most recent conflicts, such as those in Afghanistan and Syria.
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In this paper, we review recent applications of Lanchester theory to irregular warfare. One type of
application includes Lanchester models in which the situational awareness capabilities on both sides
are asymmetric; one side can target better than the other and therefore gains an advantage. A second
type of model relates to cases where the two sides of the conflict are profoundly di↵erent in terms of
their force structures and their associated attritional dynamics. Such models describe many-on-one
situations or scenarios where civilians have a significant e↵ect on the way the conflict evolves. A third
type of irregular conflict is when there are more than two sides competing for dominance. We call such
conflicts multilateral conflicts. Consider a situation where several sides, Blue, Red, Brown, Green, etc.,
seek dominance in a region by fighting (or cooperating with) others. Such multilateral conflicts lend
themselves to game-theoretic situation, which we discuss in this paper. A striking result characterizes
the fate of such conflicts (see Section 6).

The paper is organized as follows: in Section 2, we present a brief introduction to Lanchester
models, describing the legacy aimed-fire and un-aimed (area) fire models [3], as well as the ancient
battle. Section 3 presents models that capture asymmetric battles such as insurgencies and one-on-many
combat situations. In particular, we present the classical guerrilla model of Deitchman [15]. Section 4
focuses on the role of information and combat intelligence in Lanchester modeling. Section 5 describes
Lanchester models that incorporate the presence of civilians during insurgencies and show their impact
on tactics and battlefield outcomes. Section 6 presents two models of a multilateral conflict such as the
one that has been going on for the past nine years in Syria. Section 7 summarizes the paper and points
at some future research directions in Lanchester theory.

2. Legacy Lanchester Models

Frederick William Lanchester proposed in 1916 to model mutual attrition of two fighting forces by
a set of ordinary di↵erential equations (ODE) [3]. The state variables of the ODE represent fighting
entities in the battlefield, and each of the ODEs capture the rate of decrease in a certain state variable as a
function of the other state variables. These models were inspired by air-combat scenarios in World War
I and are named after Lanchester, even though it appears that a Russian mathematician, named Osipov,
developed similar models at about the same time [16]. While, in general, each side may have several
types of fighting combatant, each with di↵erent attrition rates, we assume here, for simplifying the
initial exposition, that each of the two sides comprises a homogeneous force. We relax this assumption
later on.

Let B = B(t) and R = R(t) be state variables denoting the sizes of the surviving combatants at
time t of the Blue force and the Red force, respectively. The aimed-fire model represents a combat
situation where each combatant on the Blue (Red) side e↵ectively reduces the force on the Red (Blue)
side at a certain fixed attrition rate �(⇢). Formally, the aimed-fire model is:

.
B = �⇢R
.
R = ��B (1)

By the separation of variables, one can obtain the state-equation

�(B2
0 � B2) = ⇢(R2

0 �R2) (2)

where B0 and R0 are the force sizes of Blue and Red, respectively, at the beginning of the battle.
In particular, we obtain that the parity condition—the values of B0, R0, � and ⇢ such that the battle
ends with mutual annihilation—is �B2

0 = ⇢R2
0. The side with the larger product of attrition rate and the

square of the initial force size wins the battle. We observe that while the attrition rate has a linear e↵ect,
the e↵ect of size is quadratic; doubling the attrition rate doubles the e↵ective attrition, but doubling the
number of combatants has a quadratic e↵ect. This is the reason the aimed-fire model is also called the
Square Law. The Square Law underscores the importance of concentration of forces—a well-known
principle in military tactics.
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While there is a single Square Law Lanchester model, there are two Linear Law models. The first
Linear Law model, also called the Ancient Battle, assumes that the battle comprises a collection
of one-on-one duels, typical to battles in early history. In such a battle, there is no meaning for
concentration of forces and the attrition is fixed. Thus, the pair of equations describing the ancient
battle is simply

.
B = �⇢
.
R = �� (3)

and the state-equation is �(B0 � B) = ⇢(R0 �R). In this case the e↵ect of force size is linear, hence the
name Linear Law.

The second Linear Law describes un-aimed fire, where the e↵ect of one’s fire does not only depend
on the size of its own surviving force but also on the density of the targets at the opposing force. As the
fire is not aimed, the probability of acquiring a target on the other side depends on the number of such
targets in a given area. This is the reason that this model is also called the Area Fire model. The pair of
di↵erential equations in this case is:

.
B = �⇢BR
.
R = ��BR

(4)

with the same state equations �(B0 � B) = ⇢(R0 �R) as in the ancient battle.
The classical literature on Lanchester models has other variations of the basic two laws: Square

and Linear [17]. Also, there are stochastic versions of the deterministic Lanchester models described
above, which are essentially continuous-time Markov processes. While they capture the inherent
stochasticity embedded in a battlefield, they are, in general, less common because of their computational
complexity and their relatively limited capability to represent non-homogeneous combat situations
such as irregular warfare.

3. Asymmetric Engagements

In all three battles described in Section 2—aimed fire, area fire and ancient battle—both sides apply
the same type of tactics and firing techniques; the battles are symmetric. Asymmetric engagements
occur when the two sides apply di↵erent tactics. One such asymmetric combat situation occurs when
regular forces of a state fight guerrillas or insurgents who apply irregular warfare tactics. The first
to capture this situation in a Lanchester setting was Deitchman, who developed a mixture of the
direct-fire and area-fire models called the Guerrilla Warfare model [15]. On the one hand, the guerrillas,
who are well hidden in an ambush, or mixed in the civilian population, use aimed fire at the regular
forces, who are fully exposed to the guerrillas. On the other hand, the regular forces are “shooting
in the brown” and thus can only apply area fire on the guerrillas; the e↵ectiveness of the regular
force depends on the density of the guerrillas’ live combatants. As the number of guerrillas decreases
with attrition, it is harder to acquire a live target and therefore the probability of hitting a live target
decreases with this number. If B is the regular force and R represents the guerrillas, then the attrition
equations are:

.
B = �⇢R

.
R = ��B R

R0

(5)

and the state equation is
�

2
(B2

0 � B2) = ⇢(R2
0 �R0R) (6)

—a mixture of the two Lanchester laws: the Square Law and the Linear Law.
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The guerrillas, who are essentially hidden, have an advantage over the regular force, which is
fully exposed. This advantage is manifested in the parity condition derived from (6):

⇢R2
0

�B2
0
=

1
2

(7)

That is, ceteris paribus, Blue (the regular force) will need to double its per-capita e↵ectiveness (kill
rate) or increase its initial force size by

p
2 to achieve parity with Red (the guerrillas). Deitchman model

was extended by Scha↵er [18] who used the model for analyzing new combat hardware. We further
expand on this model in Section 4.

Another asymmetric combat situation is manifested in attacks typically conducted in narrow
passages such as in mountainous regions or bridges [19]. The defending Red force is e↵ectively
deployed in an area dominating the mouth of the passage so that it can concentrate its fire on the
approaching attacking Blue force, which moves in a single column because of the topographical
constraints. Thus, Red can apply direct fire from all its units, while Blue can only fire from its front
moving weapon. The Lanchester equations in this scenario are:

.
B = �⇢R

.
R = ��. (8)

The state equation is �(B0 � B) = ⇢
2 (R

2
0 �R2) and the parity condition is:

⇢R2
0

�B0
= 2 (9)

To achieve parity, the attacking and disadvantageous Blue force will need an initial force size in
the order of the square of the Red initial force to achieve parity.

A di↵erent manifestation of asymmetry in Lanchester models is when the two sides employ
profoundly di↵erent tactics. Consider an aimed-fire situation where a homogeneous Blue force is
engaged in battle with a heterogeneous Red force comprising n units R1, . . . , Rn. The n Red units are
di↵erent in terms of fire-e↵ectiveness and vulnerability. Let �i(⇢i) denote the kill rate of Blue (Ri)
against Ri (Blue), i = 1, . . . , n. While Red employs all its n units against Blue, the latter has a dilemma:
how to dynamically allocate its fire among its n rivals? In other words, at any given time t in the battle,
what fraction ↵i(t) of its force to allocate for engaging Ri(t)? The Lanchester equations in this case are:

.
B(t) = �

nP
i=1
⇢iRi(t)

.
Ri(t) = �↵i(t)�iB(t), i = 1, . . . , n,

(10)

where for all t
nP

i=1
↵i(t) = 1.

Unlike the models presented before, which are purely descriptive, the model in (10) is prescriptive;
Blue has a decision problem of how to dynamically allocate its attacking e↵ort. In other words,
the question is, for any point in time t, what are the optimal values of ↵i(t). Lin and MacKay [20]
showed that the optimal tactics for Blue is such that for any point in time t during the engagement
↵it(t) = 1 for a certain Red unit it. That is, Blue should not spread out its e↵ort but rather concentrate all
its fire on one Red adversary at a time. Moreover, Blue should engage the Red units in the descending
order of the products �i⇢i. At any given time, Blue should concentrate its fire on the adversary for
which the “product” of its vulnerability and threat is the highest.
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4. Target Information

As mentioned earlier, Lanchester’s aimed fire model assumes perfect visibility of targets on
both sides, while the area fire model assumes none—both sides shoot “in the brown”, such that their
e↵ectiveness depends on the density of live targets in the area. But what happens if the situation is
somewhere in between? What happens if some portion of the force is visible to the other side while
the rest of the force remains concealed? How does the level of situational awareness regarding the
opponent’s targets a↵ect the outcome of the battle? Kress and MacKay [21] addressed this question
by introducing a parameter representing the level of situational awareness present at each of the two
sides. These parameters are traded o↵with the firepower of each side. Formally, the target information
available to Blue regarding the Red force is parameterized by µ, 0  µ  1, where µ = 0 implies
no target information, and µ = 1 implies full visibility, which means perfect information about the
location and state of Red’s targets. Similarly, we define the target information available to Red about
Blue’s targets by �, 0  �  1. The pair of ODEs in this case is:

.
B = �⇢R�B0+(1��)B

B0.
R = ��BµR0+(1�µ)R

R0
.

(11)

When µ = � = 0 (no situational awareness on both side), the model in (11) becomes the
Lanchester area fire model in Equation (4), and when µ = � = 1 (perfect visibility), the model in
(11) becomes the Lanchester aimed fire model in Equation (1). When µ = 0 (1), � = 1 (0) we
obtain Deitchman’s guerrilla warfare model in Equation (5). A special case of (11) is when � = 1,
and 0  µ  1, which is called the generalized Deitchman model [21]. This model represents a
contemporary counter-insurgency operations where the state forces (Blue), which are controlling the
area, are fully exposed to the insurgents (Red), while the visibility of the insurgents, who adopt a
“strike-and-hide” tactics, depends on the e↵ort µ the state invests in surveillance, reconnaissance and
human informants. The insurgents can partially be detected by the advanced sensors and surveillance
systems of the state, and by the aid of local collaborators. In this case

dB
dR

=
⇢R

�B(µ+ (1� µ)R/R0)
(12)

and the parity condition becomes

⇢R2
0

�B2
0
=

1� µ
2

 
1 +
µ logµ
1� µ

!�1

(13)

Indeed, when µ = 0, Equation (13) becomes Equation (7), and when µ = 1, by Taylor expansion,

Equation (13) is the parity condition of the Square Law
⇢R2

0
�B2

0
= 1. For example, if Blue’s investment in

information gathering capabilities is such that µ = 0.5 (50% of the insurgents’ targets are exposed) then
⇢R2

0
�B2

0
is slightly higher than 4/5 at parity; ceteris paribus, Blue needs to increase its kill-rate by less than

25% to achieve parity. If target information is poor, say µ = 0.1, then Blue needs to enhance its kill-rate
by more than 65% to achieve parity. However, the required kill-rate enhancement for Blue is less than
8% if µ = 0.8. In general, information is less “valuable” than kill-rate; a small increase in kill-rate is
more valuable than an equivalent proportional increase in target information. The dilemma between
investing in information “bits” or lethal “shots” boils down to the relative costs of these capabilities.
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If the per-capita cost of bits and shots are c1 and c2, respectively, and Blue has a budget C for these
capabilities, then its optimization problem is

Max �B2
0

1�µ
2

✓
1 + µ logµ

1�µ

◆�1

st
c1µ+ c2�  C

0  µ  1, � � 0.

(14)

Kaplan et al. [22] generalized the Deitchman original model even further and replaced the
linear “intelligence function” µ + (1 � µ)R/R0 with a monotone non-decreasing function p(R),
which represents the per-shot probability of successfully acquiring and engaging a Red target.
The parity condition in this case becomes:

�B2
0 = 2⇢

R0Z

0

x
p(x)

dx. (15)

In other words, the state force (Blue) wins over the insurgents (Red) if and only if the initial state
force B0 satisfies

B0 >

vuuuut
2⇢
�

R0Z

0

x
p(x)

dx ⌘ B̂. (16)

It is shown in [22] that in the case Equation (15) holds, the size of the surviving Blue force soldiers,

after Red is annihilated, is
q

B2
0 � B̂2.

5. Civilian Population During Conflict

The asymmetric models described in Section 4 apply to irregular warfare where well-organized,
military forces of the state confront low-signature guerrilla fighters. These models focus on the
asymmetry in information and its impact on battlefield outcome. Another crucial component in
irregular-warfare scenarios is the civilian population who, on the one hand, are subject to violent
actions by the guerrillas, and on the other hand, may be a source of support and provider of hiding
places for the guerrillas’ fighters.

Consider guerrillas (Red) who persistently attack civilians on the Blue side. The objective of the
state forces (Blue), in attacking the guerrillas, is to prevent this killing from happening [22]. In other
words, if Blue does not win over Red, that is, the inequality in Equation (16) is reversed, or if Blue
decides against engaging Red in the first place, then Red causes k civilian casualties to Blue. Now,
the decision of Blue to attack Red not only depends on whether Blue can win the battle (i.e., (16) holds)
but it also depends on the total number of casualties. Obviously, if k = 0 then Blue has no incentive
to attack. With equivalent valuation of civilian and Blue combatants, the total number (civilians and
combatants) of Blue casualties d(B0), given an initial Blue force size of B0, is

d(B0) =

8>><>>:
k + B0, B0  B̂

B0 �
q

B2
0 � B̂2, B0 > B̂,

(17)

where
q

B2
0 � B̂2 is the number of Blue combatants that survive the battle. The Blue force will attack

the Red insurgents if and only if the total number of casualties following an attack is smaller than that
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number absent an attack, that is, d(B0) < k. In order for this to happen, the Blue initial force needs to
be su�ciently large. Specifically,

B0 >

8><>:
k
2 + B̂2

2k , k  B̂
B̂, k > B̂.

(18)

From Equation (18), we see that the minimum size of Blue that justifies an attack is a decreasing
function of k for k  B̂ and constant thereafter. This means that if the benefits of the successful attack
are small (k is small), it may not be worthwhile for Blue to engage Red, even if Blue has su�cient
troops to successfully do it (B0 > B̂). Without a significantly larger force, the number of Blue soldiers
lost may exceed the number of civilian casualties averted by defeating Red.

In the spirit of the model in Equation (10), suppose that Red is spread out in n strongholds
in di↵erent and mutually distant geographical regions, and Blue has to decide how to allocate its
forces among the strongholds [22]. However, unlike the case in Equation (10) where the Blue force is
dynamically allocated, here, because of tactical and operational considerations, Blue has to decide, ab
initio, how to allocate its force; the surviving Blue force from a defeat of one Red stronghold cannot
reinforce attacks on other strongholds. Let B̂i denote the threshold in Equation (16) for stronghold

i, and suppose ki > B̂i, i = 1, . . . , n. If B0 >
nP

i=1
B̂i, then Blue should engage and win all n battles

and its only concern is to maximize the total number of Blue survivors. This leads to the following
optimization problem:

Max
nP

i=1

q
x2

i � B̂2
i

st
nP

i=1
xi = B0.

(19)

Using a standard optimization technique, we obtain the optimal solution for Equation (19) [22]:

x⇤i =
B̂i

nP
j=1

B̂j

B0, i = 1, . . . , n. (20)

If B0 
nP

i=1
B̂i, the Blue force cannot engage (and win) all n strongholds and the problem for

Blue boils down to selecting the strongholds to engage. This problem can be framed as a non-linear
knapsack-type model where the objective is to maximize the number of casualties averted [22]:

Max
nP

i=1
kiyi +

s

B2
0 �

 
nP

i=1
B̂iyi

!2

st
nP

i=1
B̂iyi  B0, yi 2 {0, 1}.

(21)

Here, yi is 1 if stronghold i is selected to be attacked and 0 otherwise.
In the special case where all the n regions are homogeneous, that is, ki = k, B̂i = B̂, i = 1, . . . , n,

then it can be shown that the optimal number of strongholds (regions) n⇤ < n to be attacked is

n⇤ =
s

k2

B̂2 + k2
B0

B̂
(22)
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which is clearly smaller than the number of battles
j
B0/B̂

k
that can be fought [22]. The optimal number

of Blue soldiers allocated to each battle is

x⇤ = B0
n⇤ =

r
B̂2 + k2

k2 B̂. (23)

A di↵erent situation where civilians may be involved in counterinsurgency scenarios was described
in [23]. In this paper, the authors studied how incomplete target information (see Section 4) not
only a↵ects the ability of the state forces (Blue) to acquire and target guerrilla insurgents (Red),
but also causes collateral casualties among civilians, which, in turn, increase resentment towards
the government forces among civilians and thus may generate recruits that reinforce the guerrillas.
As before, let B and R denote the sizes of the state forces and guerrillas, respectively. Let P denote
the size of the civilian population, which is very large compared to B and R and thus is assumed to
remain constant throughout. Absent any target information, the signature of the guerrillas, who are
part of the civilian population, as targets is measured by R/P, which is interpreted as the probability
that a randomly selected target in the population is indeed a guerrilla. If µ 2 [0, 1] is the level of target
information available to Blue (see Section 4), then

.
R = ��B(µ+ (1 � µ)(R/P)) (see Equation (11)).

Let ✓(C) denote the recruitment rate to the guerrillas from the civilian population, where C is the rate
at which collateral casualties in the population are generated. That is,

C = �B(1� µ)(1�R/P) (24)

where (1�µ)(1�R/P) is the fraction of Blue’s fire that is mistakenly directed against innocent civilians.
✓(C) is monotone increasing in C, and we assume, without loss of generality, that ✓(0) = 0. With a
reinforcement rate ↵ to the state forces, the Lanchester model capturing this scenario is:

.
B = �⇢R + ↵

.
R = ��B(µ+ (1� µ)(R/P) + ✓(�B(1� µ)(1� (R/P))).

(25)

If target information µ is constant throughout and the recruiting rate is proportional to the
collateral casualties, that is, ✓(C) = ✓C, then it can be shown [23] that if µ  ✓/(1 + ✓) then
the insurgency cannot be eradicated, regardless of the initial force sizes and the attrition rates.
If ↵/⇢ < P(1� ((1� µ)(1 + ✓))�1), then the state loses to the insurgents, and if the opposite is true,
then the state forces can only contain the insurgency at a constant level P(1� ((1� µ)(1 + ✓))�1).

If µ > ✓/(1 + ✓), then the insurgency wins if R0 exceeds a threshold which depends on all the
other parameters in Equation (25), and the state forces (Blue) win otherwise.

Although a constant value of target information µ is somewhat reasonable, in reality it is more
likely that it is dynamically changing as a function µ(B, R) of the two forces, which is monotone
non-decreasing in R and B. Assuming that both µ and ✓ are continuously di↵erentiable, considering
the second equation in Equation (25) and using the implicit function theorem, there is a continuously
di↵erentiable function r(B) satisfying

�B(µ(B, r(B)) + (1� µ(B, r(B)))(r(B)/P))
�✓(�B(1� µ(B, r(B)))(1� r(B)/P)) = 0.

(26)

Figure 1 plots a possible shape of the function r(B). This function separates between the bottom
region where the insurgency grows (

.
R > 0) and the upper region where it gets smaller. Also, the line

R = ↵
⇢ separates between the upper region where the state forces decrease in strength and the lower

region where their forces increase. If for some range of C the recruitment to the insurgency accelerates
with the number of per-unit-time collateral casualties, and the growth more than makes up the increase
in attrition of the insurgents, then r(B) may increase, as shown in Figure 1. However, as the number
of collateral casualties increases, the number of recruits ebbs down due to the bounded size of the
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population. It is shown [23] that r(B) > 0 for all B. That is, the insurgency can never be physically
eradicated. Any trajectory in the B ⇥ R space that crosses the r(B) curve from above is destined
to bounce back. The best the state forces can do is contain the insurgency at a certain low level.
The operational explanation for this is that when the insurgency R is small, the target information
available to the state forces is poor, which leads to inadvertent collateral casualties among the civilian
population when the state forces attack the insurgents. These innocent casualties cause anger among
civilians, which generates new recruits to the insurgents. The increased attrition generated by more
state forces is o↵set by the new recruits.
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One possible extension of the model in Equation (25) is to assume that the state forces (B) determine
their rate of reinforcement by observing and responding to the size of the guerrillas (R). Thus ↵ in
Equation (25) is replaced by ↵(R). Suppose this function is linear; that is, ↵(R) = aR+ b, (b � 0). In that
case, if ⇢ > a, then we are back to the situation in (25) where ⇢ is simply replaced by ⇢ � a. If ⇢  a,
then the state forces keep growing and the guerrillas are led to their demise at a huge collateral cost to
the civilian population in which the guerrillas are embedded. We conjecture that if ↵(R) is non-linear,
then multiple equilibria may exist, depending on the shape of that function.

6. Multilateral Conflicts

As described thus far, legacy Lanchester equations essentially model the attrition between two
opposing forces. They capture a duel, force-on-force, situation. However, recent, as well as some
historical, conflicts involve more than two opposing forces. The Bosnian Civil War (Croatia, Bosnia
Herzegovina, Serbia, NATO), the Iraq Civil War (Coalition Forces, Sunni Militia, Shia Militia), and most
recently, the war in Syria (Assad Regime Forces, Free Syrian Army, Hezbollah, Kurds, Russia, Turkey)
are just a few examples of such multilateral violent conflicts. Two recent papers extend the classical
Lanchester theory to the case where the attritional conflict comprises more than two players. It is
important to note a profound di↵erence between two- and multiple-player Lanchester models. In
a two-player (force-on-force) conflict, the legacy Lanchester models (i.e., Equations (1), (3) and (4)
above) are purely descriptive; they simply capture the attrition on both sides as a function of the
initial strengths (B0, R0) and the attrition rates (�,⇢) of the two players: Blue and Red. No decision
is required, by either player, during the engagement. However, in a multiple-player conflict, each
player has to decide how to allocate its strength among the other adversaries so as to maximize its
own chances to be the victor. This decision, common to all other players, leads to a prescriptive model
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where each one of n players (n > 2) has to dynamically allocate its existing strength among its n� 1
adversaries. While the results are general, the rest of this section mostly focuses on the case n = 3.

The three-player (Blue, Red and Green) Lanchester direct-fire model is:

.
B(t) = �↵RB(t)⇢BR(t) � ↵GB(t)�BG(t)
.
R(t) = �↵BR(t)�RB(t) � ↵GR(t)�RG(t)
.

G(t) = �↵BG(t)�GB(t) � ↵RG(t)⇢GR(t)
(27)

where ↵BR(t) + ↵BG(t) = ↵RB(t) + ↵RG(t) = ↵GR(t) + ↵GB(t) = 1, ↵i j(t) � 0, i, j = B, R, G for all t.
Here ⇢B (⇢G) is the e↵ectiveness (attrition rate) of Red against Blue (Green). Similar notation

applies to the other attrition rates of Blue (�) and Green (�). The coe�cients ↵i j(t) are control variables
indicating the fraction of the standing force of player i that should be directed against player j at time t,
i, j = B, R, G.

Kress et. al. [24] considered the case where, due to tactical and geographical constraints, the three
players have to determine their respective force allocations at the beginning of the battle, and they
cannot change their allocations after the battle begins. That is, ↵i j(t) = ↵i j for all t. The battle comprises
two stages. The first stage is when all three players are alive and each engages the forces of the other
two players according to its pre-determined force-allocation. There are three possible outcomes to this
stage: (a) mutual annihilation (b) two of the three players are annihilated and a clear victor emerges,
or (c) one player is annihilated and the battle transitions to the second stage where the two remaining
players engage in a force-on-force battle as in Equation (1).

Without loss of generality, we assume that the initial forces of the three players are normalized;
that is, B0 + R0 + G0 = 1. Thus, the initial force sizes lie in the unit 2-simplex denoted by S.

We note that a simple characterization like the Square Law of the aimed-fire model (see the
discussion following Equation (2)) does not exist for the multilateral case. However, for a given set of
parameters ↵, �,⇢ and �, we can plot the regions of the initial forces that lead to victory, as shown in
Figure 2. The starred point at the center is the point of mutual annihilation; the initial forces of Blue,
Red and Green that are represented by this point lead to the demise of all. This is case (a) described
above as a possible outcome of the first stage of the battle. This point is the three-player equivalent of
the parity condition described in Section 2 regarding the force-on-force aimed-fire model. In that case,
the equivalent annihilation point is the solution B0 of �B2

0 = ⇢(1� B0)
2 where R0 = 1� B0. The bold

lines separate among the regions in which a player is the ultimate victor of the battle. The lower right
region is where Blue is the victor, the upper region is where Red wins and the area close to the origin is
where Green wins. Within a “win region”, the dotted line separates between the two defeated players
of the first stage. For example, the B region in which Blue is the final winner, the bottom sub-region,
denoted R 1st, is where Red is defeated at the first stage. Initial force sizes located on a bold line lead
to mutual annihilation, at the second stage, by the two adjacent players, after the third player was
defeated at the first stage. Similarly, a point on a dotted line corresponds to mutual annihilation of the
two adjacent players at the first stage. For example, a point on the dotted line in region R corresponds
to the scenario in which Red defeated both Blue and Green at the first stage.

Suppose that Blue and Green are fierce opponents and both of them allocate an equal and large
share of their force one against the other. Only a small fraction of their force is deployed against
Red. Red is flexible to select how to balance its allocation of force against its two opponents. Figure 3
presents the winning regions of the three forces. In region i, i = B, R, G, player i wins regardless of
the force allocation by the other players. In region R*, Red can win if it optimizes its force allocation
(↵RB, ↵RG). In region X, Red loses but it is the “victor maker”; it can determine the winner between
Blue and Green.

Perhaps a more interesting question is what happens when each player can dynamically and
continuously decide its force allocation between its two opponents. Kress et al. [25] studied this
question as a di↵erential game where each player wishes to maximize its own surviving force minus
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that of its enemies. The outcome of the analysis is surprising: either a player is strong enough to win
over the other players combined in a coalition against itself, or all players are locked in a stalemate
that leads to their mutual demise. In the case of three players, this conclusion stands in contrast to
sequential-engagement scenarios in which the weakest player can achieve an advantage [26].
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We specialize now the notion of “win region”, described above for the static fire-allocation case,
and say that a player is dominant if it can defeat the alliance of all other players, regardless of the
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fire-allocation of the members of the alliance. According to Lemma 1 in [25], in the special case of
n = 3, if, without loss of generality, �R⇢B  �G�B then Blue is dominant if and only if

B2
0 >
⇢B

�R
R2

0 +
�B

�G
G2

0 + 2
⇢B

�G
R0G0 (28)

Blue is pseudo-dominant if Equation (28) is changed to equality.
The condition in Equation (28), when applied to each player, divides the non-negative quadrant

into four disjoint regions DB, DR, DG, N such that player i is dominant in region Di, i = Blue, Red,
Green, and the complement region N is the non-dominant region in which no player is dominant (see
Figure 4). For example, OAQR marks the region DG where Green is dominant. The surface OQR
separates Green’s dominant region from N. Similarly, OQP and ORP separate DB and DR from N,
respectively. The initial states on the line OQ are where R0 = 0 and B0, G0 are such that the duel
between Blue and Green heads for mutual annihilation.
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If a state belongs to a dominant region, then the corresponding dominant player will use the
optimal strategy, described at the end of Section 3 for the battle formalized in Equation (10), to guarantee
a win. As for an initial state in region N, it is shown in [25] that for each such state there exists
a fire-allocation ↵ that leads to mutual annihilation. It is always possible, and fairly easy, to find
fire strategies ↵(B(t), R(t), G(t)) that do not shift the current balance of power, by keeping the ratios
B(t)/R(t), B(t)/G(t)) and R(t)/G(t) fixed throughout. If all players adopt such a strategy, then the
resulting force trajectory is a straight line from x in Figure 4 toward (0,0,0). If some player tries to outwit
the other players and divert from the status quo, then the relative force sizes may change over time,
but such attempts are futile. Defining an appropriate n-person nonzero-sum game and using Nash
equilibria, it is shown that such a curve must end up at the origin (see the dotted curve in Figure 4).

In conclusion, the insight from multilateral Lanchester conflicts is clear: either a single player
is strong enough to beat all other opponents combined, or all players are destined to a prolonged
attritional stalemate that culminates in mutual annihilation. The prolonged war in Syria is an example
of such dynamics. Only the appearance of a dominant player (e.g., Russia) can end it with a victory.

7. Summary

Lanchester models of warfare have been around for over a century. They have played a major
role in modeling and analyzing regular force-on-force engagements, in particular battles during
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WWII. Recent conflict situations are not regular in the sense that they are profoundly asymmetric,
they increasingly rely on data and information, they are a↵ected by the behavior of civilians and they
may involve more than two adversaries.

In this paper, we reviewed recent advances in modeling the aforementioned features of modern
combat situations in the context of Lanchester theory. We described some important insights regarding
the fate of these situations, as obtained from implementing such models. The main takeaways are:
(a) guerrilla forces have an inherent advantage over state forces because the latter su↵er from reduced
level of situational awareness and are reluctant to massively hurt civilians among which guerrillas
hide, (b) as a consequence of (a), the state forces cannot eradicate an insurgency unless it completely
ignores civilian casualties, (c) in a situation of multiple adversaries, the state forces have an optimal
target allocation plan that depends on the e↵ectiveness of the state forces and the vulnerability of
the adversaries, (d) in multilateral conflicts, either there exists a clear victorious player who wins the
conflict even if all other sides collaborate in a coalition, or all players are dragged into a prolonged
conflict with no victor.

Future conflicts and combat situations may include several characteristics that lend themselves
to new Lanchester-type modeling. First, “soft kills”, such as electronic and information warfare,
will become more prevalent in future conflicts. This type of attrition is profoundly di↵erent than the
legacy “hard kills” in which attrition is irreversible. Lanchester models accounting for a mix of soft
and hard kills can help design policies and analyze the tradeo↵ between the two ways of projecting
and enduring military force. Second, future combat will rely on the increased use of unmanned
systems, which may change the battlefield landscape in the absence of human fear of death. “Attrition”
will have a somewhat di↵erent meaning, and modeling it within a Lanchester framework would be
challenging. Finally, the possible use of biological weapons of mass destruction may trigger an epidemic
with significant e↵ect on conflict outcomes. Combinations of two dynamic models—Lanchester and
epidemic spread models such as SIR—will be needed to study such complex attritional situations.
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Background: The first case of COVID-19 was reported in Wuhan, China in De-
cember 2019. The disease has spread to 210 countries and has been labelled as a 
pandemic by the World Health Organization (WHO). Modelling, evaluating, and 
predicting the rate of disease transmission is crucial in understanding optimal meth-
ods for prevention and control. Our aim is to assess the impact of interstate and 
foreign travel and public health interventions implemented by the United States 
government in response to the COVID-19 pandemic. Methods: A disjoint mutually 
exclusive compartmental model was developed to study transmission dynamics of 
the novel coronavirus. A system of nonlinear differential equations was formulated 
and the basic reproduction number R0 was computed. Stability of the model was 
evaluated at the equilibrium points. Optimal controls were applied in the form of 
travel restrictions and quarantine. Numerical simulations were conducted. Results: 
Analysis shows that the model is locally asymptomatically stable, at endemic and 
foreigners free equilibrium points. Without any mitigation measures, infectivity and 
subsequent hospitalization of the population increased. When interstate and foreign 
travel was restricted and the population placed under quarantine, the probability of 
exposure and subsequent infection decreased significantly; furthermore, the recovery 
rate increased substantially. Conclusion: Interstate and foreign travel restrictions, in 
addition to quarantine, are necessary in effectively controlling the pandemic. The 
United States has controlled COVID-19 spread by implementing quarantine and 
restricting foreign travel. The government can further strengthen restrictions and 
reduce spread within the nation more effectively by implementing restrictions on 
interstate travel.
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Table 1
Timeline of public health intervention implemented by the United States 
government.

Date Action
17th Jan Public health entry screening at 3 U.S. Airport.
31st Jan Coronavirus declared Public health emergency, Chinese 

travel restrictions, restricted entry into U.S.A for foreign 
nationals who pose a risk of transmission, Funnel all 
flights from China to just 7 U.S. domestic airports.

29th Feb Barred all travel to Iran, level 4 travel advisory to areas 
of Italy and South Korea.

11th March Travel restriction for foreigners who visited Europe in 
the last 14 days.

14th March Europe travel ban extended to UK and Ireland. Imple-
ment Social Distancing and Closure of teaching insti-
tutes in many states.

18th March Temporary closure of U.S. Canada border for non-
essential traffic.

19th March Americans to avoid all international travel.
20th March The U.S. and Mexico agreed to restrict non-essential 

cross border traffic. Closure of non-essential businesses 
and shelter in place order in NY.

24th March Self-quarantine for 14 days for individuals who recently 
visited New York.

28th March For residents in NY, NJ, CT, Avoid non-essential do-
mestic travel for 2 weeks.

29th March Social distancing extended through 30th April.
3rd April All American wear non-medical, fabric or cloth masks 

to prevent asymptomatic spread of coronavirus.

1. Introduction

In December 2019, an unidentified pneumonia was found in Wuhan, Hubei province, China. The respon-
sible virus was later identified as the novel coronavirus 2019, and the disease as coronavirus disease 2019 
(COVID-19) [4]. COVID-19 is transmitted via direct contact with an infected person through respiratory 
droplets when a person coughs or sneezes, or by indirect contact with contaminated surfaces with respira-
tory droplets from infected person and then touching their eyes, nose or mouth [6]. Furthermore, the virus 
remains on surfaces from a few hours to several days and has an incubation period between 1-14 days. 
Consequently, the disease spread rapidly from Wuhan to all parts of the country and overseas.

Introduction and spread of COVID-19 within the United States is a direct result of transmission through 
foreign and interstate travel. The first known case of COVID-19 in the U.S.A. was confirmed on 20th 
January 2020 in a 35-year-old individual who had travelled from Wuhan to Washington state [6]. Soon, cases 
started appearing and rising in many other states of the U.S.A. including New York, New Jersey, Illinois, 
Florida, Georgia, Texas, Pennsylvania due to interstate travel. The CDC alarmed that hospitals may get 
overwhelmed by a large number of people seeking care at the same time due to widespread transmission of 
disease which may lead to otherwise preventable deaths (2020) [2]. In response to the oncoming epidemic 
the US government implemented the following regulations (Table 1).

While the United States has implemented numerous public health interventions, it has not implemented a 
ban on interstate travel. According to the World Health Organization (WHO) [12]. New cases of COVID-19 
have emerged in 210 countries with 1,733, 945 confirmed cases and 106, 518 confirmed deaths globally as of 
10th April 2020. The United States has implemented quarantine measures, close contact tracing, early testing 
for individuals with symptoms, hospitalization if needed, and closing of teaching institutes and non-essential 
businesses. Studies have shown that in other countries, the complete lockdown of travel has decreased the 
spread of the disease in the surrounding states ([1]; [10]). In order to prevent the transmission of COVID-19 
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Table 2
Model parameters and their interpretation.

Notation Parameter description Parametric values
B Birth rate 0.0181
β1 Rate at which U.S. population gets exposed to 

COVID-19 via interstate travel
0.0011

β2 Rate at which U.S. population gets exposed to 
COVID-19 through contact with foreigners

0.0003

β3 Rate of COVID-19 exposure through foreigners en-
gaged in interstate travel

0.0012

β4 Rate at which Interstate population goes for quar-
antine

0.0018

β5 Rate at interstate population gets infected 0.0035
β6 Rate at which foreigner quarantine themselves 0.000015
β7 Rate at which foreigner gets infected 0.000001
β8 Rate at which quarantine humans gets infected by 

COVID-19
0.0025

β9 Rate at which infected humans gets hospitalized 0.0037
β10 Rate at which exposed humans gets hospitalized 0.000002
β11 Rate at which hospitalized humans gets recovered 0.0000003
µ Death rate 0.000119
µc Death rate due to COVID-19 0.0027

within the US, the mode of transmission must first be modelled and understood. Mathematical modelling
is ideal for evaluating and predicting the rate of disease transmission. Data-driven mathematical modelling 
plays an important role in epidemic mitigation, in preparedness for future epidemic and in the evaluation 
of control effectiveness [13]. In this study, we adopted a disjoint mutually exclusive compartmental model 
to shed light on the transmission dynamics from foreign and interstate travel of the novel coronavirus and 
our aim is to assess the impact of public health interventions on infection by measuring basic reproduction 
number, contact rate, newly confirmed cases, total confirmed cases, total death. Our estimated parameters 
are largely in line with World Health Organization estimates and previous studies (2019).

2. Mathematical modelling

Mathematical modelling plays a vital role in determining dynamics of diseases. In this paper we consider 
a disjoint mutually exclusive compartmental model with compartments as follows: Exposed to COVID-
19 E i.e. this compartment consists of individuals (Both foreign population and interstate population) 
who are exposed to COVID-19, next compartment is IS i.e. transmission of COVID-19 through interstate 
travel, COVID-19 transmission through foreigners F - this compartment includes U.S. population which is 
exposed to COVID-19, Quarantined class Q, COVID-19 Infected I - this class includes infected population 
as well infectious population, hospitalized H - this class includes hospitalization of both COVID-19 infectives 
and also those who are exposed to COVID-19 and last compartment includes recovered population from 
hospitalized population denoted by R. Notations and parametric values used in the formulation of dynamical 
system model are given in the following Table 2.

This model considers new recruitment in the exposed class at the rate B and all the compartments have 
mortality rate µ. Here β1 is the US population exposed to COVID-19 via interstate travel, and β2 is the 
rate at which the US population gets exposed to COVID-19 through contact with foreigners. Next, β3 is the 
rate of COVID-19 exposure through foreigners engaged in interstate travel. The US population engaging 
in interstate travel and foreigners quarantine themselves at the rate β4 and β6 respectively. Similarly, after 
getting exposed to COVID-19, US population engaging in interstate travel and foreigner population gets 
the infection joining infectious class I with the rate β5 and β7 respectively. Quarantined humans also get 
the infection at the rate β8. Next, we assume infected population gets hospitalized at the rate β9 joining H. 
We also assume population gets admitted to the hospital at the initial exposure of the disease at the rate 
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Fig. 1. Compartmental diagram showing movement of individuals from one compartment to another compartment.

β10. Hospitalized patients after undergoing treatment gets recover joining R at the rate β11. We take into 
consideration death due to COVID-19 µc, when the individual is hospitalized.

The Fig. 1 gives rise to the following set of non-linear ordinary differential equations

dE

dt
= B − β1EIS − β2EF − β10E − µE

dIS
dt

= β1EIS + β3F − (β4 + β5 + µ)IS
dF

dt
= β2EF − (β3 + β6 + β7 + µ)F

dQ

dt
= β4IS + β6F − (β8 + µ)Q

dI

dt
= β5IS + β7F + β8Q− (β9 + µ)IM

dH

dt
= β9I + β10E − (β11 + µC + µ)IM

dR

dt
= β11H − µR

(1)

where, N(t) = E(t) + IS(t) + F (t) + Q(t) + I(t) + H(t) + R(t).
Adding all the differential equations of model, we get,

dN

dt
≤ B − µ(E + IS + F + Q + I + H + R) ≥ 0

Hence, dNdt ≤ B − µN .
So that lim

t→∞
supN ≤ B

µ .
Then, Feasible Region for the system is defined as

Λ =
{

(E, IS , F,Q, I,H,R);E + IS + F + Q + I + H + R ≤ B

µ
,

}
(2)

with E > 0, IS > 0, F > 0, Q > 0, I > 0, H > 0, R > 0.
This system has following equilibrium points
i. Foreigner free equilibrium point
ii. Endemic equilibrium point

3. Reproduction number

Basic reproduction number is defined as the total number of secondary infections in a total susceptible 
population. Here, we calculate the reproduction number using Diekmann et al., when the disease in its 
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endemic stage i.e. for this model it is defined as percentage of population infected by a single infection in 
a totally exposure situation [5]. We also compute the value of reproduction number RF when there are no 
foreigners present in the total population.

F1 =





β1E 0 0 0 0 0 β1IS
0 β2E 0 0 0 0 β2F
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





V1 =





β4 + β5 + µ −β3 0 0 0 0 0
0 l1 0 0 0 0 0

−β4 −β6 β8 + µ 0 0 0 0
−β5 −β7 −β8 β9 + µ 0 0 0
0 0 0 −β9 β11 + µ + µC 0 −β10
0 0 0 0 −β11 µ 0

β1E β2E 0 0 0 0 l2





where, l1 = β3 + β6 + β7 + µ, l2 = β1IS + β2F + β10 + µ.
The reproduction number RE∗ , RF is the spectral radius of F1V1

−1(E∗) and F1V1
−1(EF ) respectively. 

The value of RE∗ = 81% and RF = 1.10.

4. Stability analysis

In this section we study the stability analysis of the model. Here we study Local stability of all the 
equilibrium points using Routh-Hurwitz criterion by Routh 1877 [9].

Theorem 1. The foreigner free equilibrium point is locally asymptotically stable if (β4 + β5 + µ) <

max
{

Bβ1
β10+µ ,

β1(β3+β6+β7+µ)
β2

}
.

Proof. The Jacobian of system (1) at Foreigner free equilibrium is as follows

JF =





−t1 − β10 − µ −(β4 + β5 + µ) −β2(β4+β5+µ)
β1

0 0 0 0
t1 0 β3 0 0 0 0
0 0 t2 0 0 0 0
0 β4 β6 −t3 0 0 0
0 β5 β7 β8 −t4 0 0
β10 0 0 0 β9 −t5 0
0 0 0 0 0 β11 −µ





t1 = Bβ1 − (β10 + µ)(β4 + β5 + µ)
(β4 + β5 + µ) , t2 = β2(β4 + β5 + µ)

β1
− (β3 + β6 + β7 + µ),

t3 = (β8 + µ), t5 = (β11 + µ + µC).

The eigen values of the Jacobian JF are

λ1 = t2, λ2 = −(β8 + µ), λ3 = −(β9 + µ), λ4 = −µ, λ5 = −(β11 + µ + µC),

λ6,7 = −1
2
(
t1 + β10 + µ±

√
ξ
)
, ξ = (β10 + µ)2 + 2β10t1 − 4t1(β4 + β5) − 2µt1 + t21

If it has imaginary roots i.e. ξ < 0. Then we have negative real part. Hence the theorem. But if ξ ≥ 0, 
then eigen values are negative if (β4 + β5 + µ) < max

{
Bβ1

β10+µ ,
β1(β3+β6+β7+µ)

β2

}
. Hence the Foreigner free 

equilibrium point is locally asymptotically stable.
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Theorem 2. The endemic equilibrium point is locally asymptotically stable if E∗<max
{β4+β5+µ

β1
, β3+β6+β7+µ

β2

}
.

Proof. The Jacobian matrix of system (1) for endemic equilibrium is given by

J∗ =





−a11 −β1E∗ −β2E∗ 0 0 0 0
β1I∗S −a22 β3 0 0 0 0
β2F ∗ 0 −a33 0 0 0 0

0 β4 β6 −a44 0 0 0
0 β5 β7 β8 −a55 0 0
β10 0 0 0 β9 −a66 0
0 0 0 0 0 β11 −µ





where, a11 = β1I∗S +β2F ∗+β10+µ, a22 = −β1E∗+β4+β5+µ, a33 = −β2E∗+β3+β6+β7+µ, a44 = β8+µ, 
a55 = β9 + µ, a66 = β11 + µC + µ.

The characteristic polynomial for Jacobian J∗ is

λ7 + b6λ
6 + b5λ

5 + b4λ
4 + b3λ

3 + b2λ
2 + b1λ + b0

where,

b0 = a44a55a66µ(E∗(F ∗β2(a22β2 + β1β3)+) + a11a22a33)
b1 = E∗F ∗β2

2a66µ(a22a44 + (a22 + a44)a55)
+ E∗F ∗β1β2β3µ(a44a55a66 + a44a55 + a44a66 + a55a66)
+ E∗I∗Sβ

2
1µ(a33(a44 + a55) + a44a55) + a11a22((a33a44a55(a66 + µ))

+ a66µ(a33(a44 + a55) + a44a55)) + a33a44a55a66µ(a11 + a22)
+ (a66 + µ)E∗a44a55(F ∗β2

2a22 + ISβ
2
1a33)

b2 = E∗F ∗β2
2((a66 + µ)(a22(a44 + a55) + a44a55) + a66µ(a22 + a44 + a55) + a22a44a55)

+ E∗F ∗β1β2β3((a66 + µ)(a44 + a55) + a66µ + a44a55)
+ E∗I∗Sβ

2
1((a66 + µ)(a33(a44 + a55) + a44a55) + a66µ(a33 + a44 + a55) + a33a44a55)

+ (a66 + µ)(a11a22(a44 + a33(a44 + a55)) + a33a44a55(a11 + a22))
+ (a44 + a55)(a11a66µ(a22 + a33) + a22a33a66µ) + a44a55a66µ(a22 + a33)
+ a11a66µ(a44a55 + a22a33) + a11a22a33a44a55)

b3 = E∗F ∗β2
2((a66 + µ)(a22 + a44 + a55) + a66µ + a22(a44 + a55))

+ E∗F ∗β1β2β3(a44 + a55 + a66 + µ) + E∗I∗Sβ
2
1((a66 + µ)(a33 + a44 + a55)

+ a33(a44 + a55) + a66µ) + (a66 + µ)((a44 + a55)(a11(a22 + a33) + a22a33)
+ a44a55(a11 + a22 + a33) + a11a22a33) + (a44 + a55)(a66µ(a11 + a22 + a33) + a11a22a33)
+ (a44a55 + a66µ)(a11(a22 + a33) + a22a33) + a44a55a66µ

b4 = E∗(F ∗β2
2a22 + I∗Sβ

2
1a33) + E∗F ∗β1β2β3 + a11a22a33) + a66µ(a22 + a33 + a44 + a55)

+ a55(a66 + µ)(a11 + a22 + a33 + a44) + a44(a55 + a66 + µ)(a11 + a22 + a33)
+ (a44 + a55 + a66 + µ)(E∗(F ∗β2

2 + I∗Sβ
2
1) + a11(a22 + a33) + a22a33)

b5 = E∗(F ∗β2
2 + I∗Sβ

2
1) + (a11 + µ)(a22 + a33 + a44 + a55 + a66)

+ a55a66 + (a55 + a66)(a22 + a33 + a44) + a44(a22 + a33) + a22a33

b6 = a11 + a22 + a33 + a44 + a55 + a66 + µ
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Here, all the eigen values are negative if a11 > 0, a22 > 0, a33 > 0, a44 > 0, a55 > 0, a66 > 0 i.e. E∗ <

max
{

β4+β5+µ
β1

, β3+β6+β7+µ
β2

}
. Then by Routh-Hurwitz criterion we say the endemic equilibrium point is 

locally asymptotically stable.

5. Optimal control

The novel corona virus is spread through human contact with infected individuals. Therefore, one can 
put control on respective situation to prevent its spreading.

Control description:
u1: To prevent exposed foreign individuals in the interstate
u2: Exposed interstate individuals should be quarantined
u3: Exposed foreign individuals should be quarantined
u4: Infected individuals should be quarantined
The objective function is,

J(ci,Λ)=
T∫

0

(A1E
2+A2IS

2 + A3F
2 + A4Q

2 + A5I
2 + A6H

2 + A7R
2 + w1u1

2 + w2u2
2 + w3u3

2 + w4u4
2)dt

where, Λ denotes set of all compartmental variables, A1, A2, A3, A4, A5, A6, A7 denote non-negative weight 
constants for compartments E, IS, F, Q, I, H, R respectively. w1, w2, w3 and w4 are the weight constants for 
each control ui where i = 1, 2, 3, 4 respectively.

Now, calculate every values of control variables from t = 0 to t = T such that, J(ui(t)) =
min{J(ui

∗, Λ)/(ui) ∈ φ}, i = 1, 2, 3, 4 where, φ is a smooth function on the interval [0, 1].
Related Langrangian function is given by,

L(Λ, Ai) = A1E
2 + A2IS

2 + A3F
2 + A4Q

2 + A5I
2 + A6H

2 + A7R
2 + w1u1

2 + w2u2
2 + w3u3

2 + w4u4
2

+ λ1(B − β1ISE − β2EF − β10E − µE) + λ2(β1ISE − β4IS − β5IS + β3F − µS − (u1 + u2)IS)

+ λ3(β2EF − (β3 + β6 + β7 + µ)F − µF + u1IS − u3F ) + λ4(β4IS + β6F − β8Q− µQ + u2IS

+ u4I + u3F ) + λ5(β7F + β5Is + β8Q− β9I − µI − u4I) + λ6(β9I + β10E − β11H

− (µ + µC)H) + λ7(β11H − µR)

The adjoint equation variables, λi = (λ1, λ2, λ3, λ4, λ5, λ6, λ7) for the system is calculated by taking partial 
derivatives of the Langrangian function with respect to each compartment variable.

•
λ1 = − ∂L

∂E
= −2A1E + (λ1 − λ2)β1IS + (λ1 − λ3)β2F + (λ1 − λ6)β10 + λ1µ,

•
λ2 = − ∂L

∂IS
= −2A2IS + (λ1 − λ2)β1E + (λ2 − λ4)(β4 + u2) + (λ2 − λ3)u1 + (λ1 − λ2)β5 + λ2µ,

•
λ3 = − ∂L

∂F
= −2A3F + (λ1 − λ3)β2E + (λ3 − λ4)(β6 + u3) + (λ3 − λ2)β3 + (λ3 − λ5)β7 + λ3µ,

•
λ4 = − ∂L

∂Q
= −2A4Q + (λ4 − λ5)β8 + λ4µ,

•
λ5 = −∂L

∂I
= −2A5I + (λ5 − λ4)u4 + (λ5 − λ6)β9 + λ5µ,

•
λ6 = − ∂L

∂H
= −2A6H + (λ6 − λ7)β11 + (µ + µC)λ6,
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Fig. 2. Trajectories of each compartment showing flow of individuals in respective compartment.

•
λ7 = − ∂L

∂R
= −2A7R + λ7µ.

This calculation leads with resulting conditions as (Pontryagin, 1986) [8],

u1
∗ = max

(
a1,min

(
b1,

IS(λ2 − λ3)
2w1

))
,

u2
∗ = max

(
a2,min

(
b2,

IS(λ2 − λ4)
2w2

))
,

u3
∗ = max

(
a3,min

(
b3,

F (λ3 − λ4)
2w3

))
,

and

u4
∗ = max

(
a4,min

(
b4,

I(λ5 − λ4)
2w4

))
.

Based on analytical results, numerical simulation is given in next section.

6. Numerical simulation

In this section we discuss the simulation performed for the system (1)
From Fig. 2, we observe 30% of interstate population is exposed to COVID-19 in 17.2 days. Whereas 

24.55% of foreigner’s population is exposed to COVID-19 in 21.8 days. 21% of foreigners come in contact 
with Interstate individuals in 7.1 days which increases the infectives of interstate to 22.78% in 9.2 days. 
Also 27.59% of interstate population gets hospitalized in 14.5 days.

Scatter plotting is shown in Fig. 3. Combined effect of group of three compartments is revealed in each 
plot. Fig. 3(a) depicts that; more infected interstate and foreign individuals will be hospitalised at higher 
rate of level. Fig. 3(b) shows that, individuals who travelled more will be quarantined. From Fig. 3(c), one 
can say that infected foreigner would be quarantined at higher rate. Infectedness in quarantined individuals 
increases which leads to the hospitalization of individuals as observed in Fig. 3(d). Fig. 3(e) describes that 
how interstate infected individuals are quarantined.

Fig. 4 shows the periodic nature of the interstate class exposed to the virus COVID-19. It indicates 
that interstate population is exposed again and again to the disease. It happens if the lockdown, social 
distancing is not followed as per government system. Which shows the importance of the government action 
taken against COVID-19 to protect the population. Fig. 5 shows the stability of the respective compartments 
at endemic equilibrium point. Since the government has decided to quarantine foreigners as soon as they 
arrive in their countries this makes the system stable as they are not exposed much to the COVID-19.
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Fig. 3. Scatter plotting between different compartment combination is observed showing the behaviour of respective combinations.

Fig. 6a, 6b shows the trajectory at the endemic equilibrium point for the system (1). Here we observe 
the importance of quarantine as the system is stable when interstate and foreigners are quarantined.

From Fig. 7, we observe foreigner are moving towards interstate population.
Fig. 8 and Fig. 9 illustrates the flow of interstate population and foreigners with the COVDI-19 infection. 

It shows that the interstate population gets the infection at a slower rate as compared to foreigners.
Fig. 10 shows the flow of interstate and foreigners towards hospitalization. Foreigners gets hospitalized 

at faster rate than interstate population.
Fig. 11 (a)-(g) show the oscillating behaviour of each compartment. As the epidemic nature of disease 

increases, this can oscillate the whole situation. In some intervals of data, exposed individuals increase 
(Fig. 11(a)) who are either interstate (Fig. 11(b)) or foreigner (Fig. 11(c)). If quarantined individuals do 
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Fig. 4. We plot phase diagram of interstate class when exposed to COVID-19 observing again and again exposure of interstate 
population to COVID-19.

Fig. 5. This indicates phase plot of foreigner class when exposed to COVID-19. Here we observe convergent behaviour of respective
classes making it stable.

Fig. 6. Behaviour of interstate class with quarantine class (a) and Phase plot of quarantine with foreigners (b).

not follow quarantines rules which have been observed in Fig. 11(d). This leads to a greater number of 
infected individuals (Fig. 11(e)) hence they should be hospitalised (Fig. 11(f)) which effects on recovery rate 
(Fig. 11(f)).
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Fig. 7. Transition diagram of interstate and foreigner population. Here the movement of individuals between respective classes is 
observed.

Fig. 8. Shows directional plot of Interstate population infected with COVID-19 indicating the infectiousness of interstate population.

Fig. 9. Depicts behaviour of Foreigner population infected with COVID-19. Here we observe that foreign travellers are getting 
infection at large.

Fig. 10. Directional plot of hospitalization of interstate population (a) and foreigner (b).
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Fig. 11. Here we observe continuous fluctuation in all the compartments which very well depicts the scenario of COVID-19 among 
interstate and foreign travellers.



JID:YJMAA AID:124896 /FLA Doctopic: Optimization and Control [m3L; v1.297] P.13 (1-16)
N.H. Shah et al. / J. Math. Anal. Appl. ••• (••••) •••••• 13

Fig. 12. Effect of controls applied to the system (1) is observed on each compartment. Here it can be seen that after control is 
applied, population of each compartment decreases.

The above oscillating nature of the model is controlled by the Fig. 12(a)-(g). All the four controls are 
effective to our system (1). In the presence of all the controls we observe decrease in the number of exposed 
individuals. Quarantining interstate and foreign individuals also reduce the infection when controls are 
applied.
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Fig. 13. Represents chaotic diagram showing mortality rate of 2019-nCoV.

Fig. 14. Percentage wise distribution of interstate (a) and foreigner population in COVID-19 scenario (b). In Fig. 14 a, we observe 
out of 26% of interstate population 17% is infected and from Fig. 14 b, among 19% of foreigners we have 18% infected population.

Fig. 15. Figure indicates percentage wise distribution of all the compartments of the system (1). Here we have 21% of interstate 
population, 14% of foreign population out of which 13% gets the infection with 15% getting hospitalised.

The Fig. 13, shows intensity of mortality due to COVID-19 among interstate and foreign travellers.
The Fig. 14 clearly shows the infected population of foreigner is more than that of interstate population 

which shows the importance of complete ban on air arrivals.
From the Fig. 15 it can be observed that 7% of population is exposed to COVID-19. Interstate popula-

tion share the largest percentage. 14% of the population is quarantined including foreigners and interstate 
population. Similarly, the infection is 13%. The hospitalization is done at 15%. Of the total population 
recovery is 16%.

7. Discussion

Our model indicates that foreigners exhibit a larger infected population, hospitalization rate, and infec-
tion rate when compared to the interstate population. Moreover, as foreign individuals contact interstate 
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individuals, the rate of infection within the interstate population increases significantly. To the best of our 
knowledge, our study is the first to create a disjoint mutually exclusive compartmental model. Our model 
suggests that both foreign and interstate travel lead to increased risk of infection within the United States 
population. Consequently, we validate the effectiveness of quarantine as a public health intervention model 
by the US government and encourage implementation of efforts to mitigate interstate travel.

There are multiple reasons that foreigners have increased risk of obtaining COVID-19 when compared 
to interstate population. First, as people travel, they risk exposing themselves to a greater number of 
other individuals. The WHO indicates that transmission of COVID-19 occurs primarily through droplet 
transmission (2019). Most methods of international travel, including airways, railways, and waterways, 
crowd individuals in compact and enclosed spaces. Being in close contact with individuals with respiratory 
symptoms in an enclosed environment increases the risk of being exposed to infected mucosae [11]. Second, 
the guidelines and strategies for addressing the epidemic differ among countries. For example, while India has 
enforced total lockdown, the US government has not mandated enforced lockdown [3]. Consequently, when 
individuals from countries with different regulations arrive, they may be infected and increase the incidence 
of COVID-19. Finally, the vaccination standards differ among countries. In particular, BCG vaccine, believed 
to confer protective effects against COVID-19 is recommended in some countries, but not the US [7]. As a 
result, future research and modelling is necessary to determine the protective effects of the BCG vaccine, 
and its potential to reduce the incidence of COVID-19 within the United States.

Given that 2019-nCoV is no longer contained within Wuhan, we recommend the United States gov-
ernment close their borders to both foreign and interstate travel. We recommend significant public health 
interventions at both international and interstate levels otherwise large cities with close inter-transport 
systems could become outbreak epicentres. Finally, we recommend preparedness plans and mitigation inter-
ventions be readied for quick deployment on both a state and federal level. Based on our model, compliance 
with these recommendations will effectively reduce the transmission of COVID-19 as a result of foreign and 
interstate travel.
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Abstract: Let T : H ! H be a bounded linear operator on a separable Hilbert space H. In this paper,
we construct an isomorphism Fxx⇤ : L2(s(|T � a|), µ|T�a|,x) ! L2(s(|(T � a)⇤|), µ|(T�a)⇤ |,FH

xx⇤x) such
that (Fxx⇤)2 = identity and FH

xx⇤ is a unitary operator on H associated with Fxx⇤ . With this construction,
we obtain a noncommutative functional calculus for the operator T and Fxx⇤ = identity is the
special case for normal operators, such that S = R|(S�a)|,x(Mzf(z) + a)R�1

|S�a|,x is the noncommutative
functional calculus of a normal operator S, where a 2 r(T), R|T�a|,x : L2(s(|T � a|), µ|T�a|,x) ! H

is an isomorphism and Mzf(z) + a is a multiplication operator on L2(s(|S � a|), µ|S�a|,x). Moreover,
by Fxx⇤ we give a sufficient condition to the invariant subspace problem and we present the Lebesgue
class BLeb(H) ⇢ B(H) such that T is Li-Yorke chaotic if and only if T⇤�1 is for a Lebesgue operator T.

Keywords: chaos; invariant subspace; Lebesgue operator; noncommutative functional calculus

MSC: Primary 47A15, 47A16, 47A60, 47A65; Secondary 37D45

1. Introduction

1.1. Invariant Subspace

The invariant subspace problem has been stated by Beurling and von Neumann [1]. It can be
formulated as follows.

Problem 1. Does every bounded linear operator on a given linear space have a non-trivial invariant subspace?

In 1966, Bernstein et al. [2] showed that if T is a bounded linear operator on a complex Hilbert
space H and p is a nonzero polynomial such that p(T) is compact, then T has non-trivial invariant
subspace. Especially, when p(t) = t, which is, T itself is compact, the result was proved independently
by von Neumann and N. Aronszajn, and in [3], this result was extended to compact operators on a
Banach space.

Let T be a bounded linear operator on a Banach space. In 1973, Lomonosov [4] proved that if T
is not a scalar multiple of the identity and commutes with a nonzero compact operator, then T has a
non-trivial hyperinvariant subspace, which is, any bounded linear operator commuting with T has a
non-trivial invariant subspace (other results see [5–7]).

In 1976, Enflo [8] was the first to construct an operator on a Banach space having no non-trivial
invariant subspace and Nordgren et al. [9] proved that every operator has an invariant subspace if and
only if every pair of idempotents has a common invariant subspace.
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In 1983, Atzmon [10] constructed a nuclear Fréchet space F and a bounded linear operator, which
has no non-trivial invariant subspace. Especially, in 1984, C. J. Read made an example, such that there
is a bounded linear operator without non-trivial invariant subspace on `1 [11].

In 2011, Argyros et al. [12] constructed the first example of a Banach space for which every
bounded linear operator on the space has the form l + K where l is a real scalar and K is a compact
operator, such that every bounded linear operator on the space has a non-trivial invariant subspace.

In 2013, Marcoux et al. [13] showed that, if a closed algebra of operators on a Hilbert space has
a non-trivial almost-invariant subspace, then it has a non-trivial invariant subspace (more results
see [14–18]).

In 2019, Tcaciuc [19] proved that, for any bounded operator T acting on an infinite-dimensional
Banach space, there exists an operator F of rank at most one such that T + F has an invariant subspace
of infinite dimension and codimension.

For finite-dimensional vector spaces or nonseparable Hilbert spaces, the result is trivial.
However, for infinite-dimensional separable Hilbert spaces, the problem is, after a long period of
time, not yet completely solved.

1.2. Linear Dynamics

With the development of operator theory and dynamics progress, there are many papers
about C*-algebras and dynamics. Additionally, “the fundamental theorem of C*-algebras [20]” is
Gelfand-Naimark theorem [21]. Subsequently, in [22], Fujimoto said that this theorem eventually
opened the gate to the subject of C*-algebras. Hence, there are various attempts to generalize this
theorem [23–27].

For the research on Problem 1 and with the development of chaos, Operator Dynamics or Linear
Dynamics has aroused extensive attention as an important branch of functional analysis, which was
probably born in 1982 with the Toronto Ph. D. thesis of C. Kitai [28]. More details of this subject can be
found in [29–33].

If X is a metric space and T is a continuous self-map on X, then the pair (X, T) is called a
topological dynamic systems, which is induced by the iteration

Tn = T � · · · � T| {z }
n

, n 2 N, where 0 2 N.

Moreover, if T is a continuous invertible self-map on X, then (X, T) is called an invertible dynamic
and if the metric space X and the continuous self-map T are both linear, then the topological dynamic
systems (X, T) is called a linear dynamic.

For invertible dynamics, the relationship of Li-Yorke chaos between (X, f ) and (X, f�1) was
raised by Stockman as an open question [34]. Additionally, in [35,36] and [37], the authors give
counterexamples for this question in noncompact spaces and compact spaces, respectively. For an
invertible bounded linear operator T 2 B(H), the chaotic relationship between (H, T) and (H, T⇤�1) is
also interesting.

Next, we give the following definition

Definition 1 (Li-Yorke chaos). Let T 2 B(H). If there exists x 2 H, such that satisfies:

(a) lim
n!•

|Tn(x)k > 0 and

(b) lim
n!•

kTn(x)k = 0,

then the operator T is said to be Li-Yorke chaotic, and x is called a Li-Yorke chaotic point of T.
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An example of an operator T that is Li-Yorke chaotic but T⇤�1 is not can be found in [38]. However,
presently there is no general method to do this research. In fact, the C*-algebra A(T) generated by T
cannot be used for that.

1.3. Motivation and Main Results

For an n-tuple T of not necessarily commuting operators, Colombo et al. [39] put to use the
notion of slice monogenic functions [40] to define a new functional calculus, which is consistent with
the Riesz–Dunford calculus in the case of a single operator and that allows the explicit construction
of the eigenvalue equation for the n-tuple T based on a new notion of spectrum for T (more results,
see [41–44]).

In 2010, for bounded operators defined on quaternionic Banach spaces, Colombo et al. [45]
developed a noncommutative functional calculus that is based on the new notion of slice-regularity
and that is based on the key tools of a new resolvent operator and a new eigenvalue problem, also,
they extended this calculus to the unbounded case [46] (more results, see [47]).

In 2018, Monguzzi et al. [48] characterized the closed invariant subspaces for the (*�) multiplier
operator of the quaternionic space of slice L2 functions, obtained the inner-outer factorization theorem
for the quaternionic Hardy space on the unit ball and provided a characterization of quaternionic outer
functions in terms of cyclicity.

In this paper, we give a noncommutative functional calculus for T 2 B(H). Additionally, by this
construction, we give some applications, such as its applications on the invariant subspace problem and
chaos. The precise meaning of the multiplication operator Mzy(z) = Mz My(z) = My(z)Mz = My(z)z
will become clear in Theorem 3.

Let H be a separable Hilbert space over C, B(H) be the set of all bounded linear operator on H.
For any given T 2 B(H), we obtain a C*-algebra A(|T � a|) associated with the polar decomposition
T � a = U|T � a|, where a 2 r(T) and x is a A(|T � a|)-cyclic vector, such that H = A(|T � a|)x.
In this paper, we construct an isomorphism Fxx⇤ , such that the following diagram is valid.

L2(s(|T � a|), µ|T�a|,x) R|T�a|,x���������������!
H

Fxx⇤ # # FH
xx⇤

L2(s(|(T � a)⇤|), µ|(T�a)⇤ |,FH
xx⇤x)

���������������!
R|(T�a)⇤ |,FH

xx⇤x H

where FH
xx⇤ is the corresponding unitary operator associated with the isomorphism Fxx⇤ and

Fix(FH
xx⇤) 6= ∆, (FH

xx⇤)
2 = identity and (Fxx⇤)2 = identity. With this construction, we get a

noncommutative functional calculus for the operator T such that

T � a = R|(T�a)⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T�a|,x .

Especially, Fxx⇤ = identity, which is the special case for normal operators, will become clear
in Corollary 3, and, in this special case, we get that the noncommutative functional calculus of
a normal operator S is just only S = R|(S�a)|,x(Mzf(z) + a)R�1

|S�a|,x , which is compatible with the
classical normal operator functional calculus of [49]. Where y(z) 2 L•(s(|T � a|), µ|T�a|,x) and
f(z) 2 L•(s(|S � a|), µ|S�a|,x).

Moreover, from Fxx⇤, we deduce a sufficient condition to Problem 1 on infinite-dimensional
separable Hilbert spaces and present the Lebesgue class BLeb(H) ⇢ B(H), such that, if T is a Lebesgue
operator, then T is Li-Yorke chaotic if and only if T⇤�1 is.

In fact, we get that
BLeb(H) \ BNor(H) 6= ∆

and
BLeb(H) \ (B(H) \ BNor(H)) 6= ∆,
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where BNor(H) is the set of all normal operator on H.

2. Decomposition and Isomorphic Representation

In this paper, f̄ (·) means the conjugate of the complex function f (·). Let X be a compact subset of
C, C(X) be the set of all continuous function on X, and P(x) be the set of all polynomial on X. For any
given T 2 B(H), let s(T) be its spectrum.

Following the polar decomposition theorem [50] (p. 15), we get that

T = U|T| and |T|2 = T⇤T.

Let A(|T|) be the complex C⇤-algebra generated by |T| and 1. Obviously, if T is invertible, then U
is a unitary operator.

Lemma 1. Let X ✓ C be a compact subset not containing zero. If P(x) is dense in C(X), then P( 1
x ) is also

dense in C(X).

Proof. By the properties of complex polynomials, we get that P( 1
x ) is a subalgebra of C(X), which is

closed under the standard algebraic operations. In addition, we have:
(1) 1 2 P( 1

x );
(2) P( 1

x ) separate the points of X;
(3) If p( 1

x ) 2 P( 1
x ), then p̄( 1

x ) 2 P( 1
x ).

We get the conclusion from the Stone–Weierstrass theorem [49] (p. 145).

For X ✓ R+, there is x 6= y () x2 6= y2. With Lemma 1, we get the following result.

Lemma 2. Let X ✓ R+ . If P(|x|) is dense in C(X), then P(|x|2) is also dense in C(X).

Using the GNS construction [49] (p. 250), for the C⇤-algebra A(|T|), we have the following
decomposition.

Lemma 3. Let T be an invertible bounded linear operator on H. Then there exists a sequence of nonzero
A(|T|)-invariant subspaces H1,H2, · · · ,Hi, · · · , such that:

(1) H = H1 �H2 � · · ·�Hi � · · · ;
(2) For every Hi, there is a A(|T|)-cyclic vector x i such that

Hi = A(|T|)x i = A(|T|�1)x i

and
|T|Hi = Hi = |T|�1

Hi .

Proof. The decomposition of (1) is obvious [51] (p. 54), Therefore,

|T|Hi ✓ Hi ,

that is,
Hi ✓ |T|�1

Hi .

From Lemma 1, we get that

Hi = A(|T|)x i = A(|T|�1)x i

and
|T|�1

Hi ✓ Hi .
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Hence,
|T|Hi = Hi = |T|�1

Hi .

Let x 2 H be a A(|T|)-cyclic vector, such that A(|T|)x is dense in H . Because the spectrum is
closed and s(|T|) 6= ∆ , on C(s(|T|)), we can define the nonzero linear functional

r|T|,x : r|T|,x( f ) = h f (|T|)x, xi , 8 f 2 C(s(|T|)) .

It is easy to get that r|T|,x is a positive linear functional. By [51] (p. 54), and the Riesz–Markov
theorem, on C(s(|T|)), we get that there is a uniquely finite positive Borel measure µ|T|,x , such that

R

s(|T|)
f (z)dµ|T|,x(z) = h f (|T|)x, xi , 8 f 2 C(s(|T|)) .

Theorem 1. Let T be an invertible bounded linear operator on H, A(|Tn|) be the complex C⇤-algebra generated
by |Tn| and 1 and let xn be a A(|Tn|)-cyclic vector, such that A(|Tn|)xn = H , where n 2 N. Subsequently:

(1) there is a uniquely positive linear functional
R

s(|Tn |)
f (z)dµ|Tn |,xn(z) = h f (|Tn|)xn, xni , 8 f 2 L1(s(|Tn|), µ|Tn |,xn) .

(2) there is a uniquely isomorphic representation R|Tn |,xn : L2(s(|Tn|), µ|Tn |,xn) ! H associated with the
uniquely finite positive Borel measure µ|Tn |,xn , which is complete.

Proof. (1) For A(|Tn|)-cyclic vector xn, we define the linear functional

r|Tn |,xn( f ) = h f (|Tn|)xn, xni , 8 f 2 C(s(|T|)).

We get that, on C(s(|Tn|)), there is a uniquely finite positive Borel measure µ|Tn |,xn , such that
R

s(|Tn |)
f (z)dµ|Tn |,xn(z) = h f (|Tn|)xn, xni , 8 f 2 C(s(|Tn|)).

Moreover, we can complete this Borel measure µ|Tn |,xn on s(|Tn|). For this completion, we keep
the notation µ|Tn |,xn . We know that this Borel measure is unique [52] .

For any f 2 L2(s(|Tn|), µ|Tn |,xn), because of

r|Tn |,xn(| f |2) = r|Tn |,xn( f̄ f ) = h f (|Tn|)⇤ f (|Tn|)xn, xni = k f (|Tn|)xnk2
H
� 0,

we get that r|Tn |,xn is a positive linear functional.
(2) We know that C(s(|Tn|)) is dense in L2(s(|Tn|), µ|Tn |,xn). For any f , g 2 C(s(|Tn|)), we get

h f (|Tn|)xn, g(|Tn|)xniH
= hg(|Tn|)⇤ f (|Tn|)xn, xni

= r|Tn |,xn(ḡ f ) =
Z

s(|Tn |)

f (z)ḡ(z)dµ|Tn |,xn(z)

= h f , giL2(s(|Tn |),µ|Tn |,xn )
.

Therefore,
R0,xn : C(s(|Tn|)) ! H, f (z) ! f (|Tn|)xn

is a surjective isometry from C(s(|Tn|)) to A(|Tn|)xn .
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Obviously, C(s(|Tn|)) and A(|Tn|)xn are dense subspaces of L2(s(|Tn|), µ|Tn |,xn) and H ,
respectively. Additionally, its closed extension

R|Tn |,xn : L2(s(|Tn|), µ|Tn |,xn) ! H , f (z) ! f (|Tn|)xn

is an isomorphic operator.
Therefore, we get that R|Tn |,xn is the uniquely isomorphic representation of H associated with the

uniquely finite positive Borel measure µ|Tn |,xn , which is complete.

Let T be an invertible bounded linear operator on H = Hx1 �Hx2 � · · ·�Hx i � · · · and x i be
a A(|T|�1)-cyclic vector such that Hx i = A(|T|�1)x i = A(|T|)x i . If there exists a unitary operator
U0 2 B(H), such that U0P(|T|�1) = P(|T�1|)U0, then HU0x i = A(|T�1|)U0x i = U0Hx i and we get
two series of isomorphic representations

R|T|�1,x i : L2(s(|T|�1|H
xi ), µ|T|�1,x i ) ! Hx i , f (z) ! f (|T|�1)x i

and
R|T�1|,U0x i : L2(s(|T�1||HU0xi ), µ|T�1|,U0x i ) ! HU0x i , g(y) ! g(|T�1|)U0x i .

Let x = x1 � x2 � · · · � x i � · · · . Subsequently, x is a A(|T|�1)-cyclic vector, such that H =
A(|T|�1)x and we get the following equation

R|T|�1,x = R|T|�1,x1 � R|T|�1,x2 � · · ·� R|T|�1,x i � · · · ,

R|T�1|,U0x = R|T�1|,U0x1 � R|T�1|,U0x2 � · · ·� R|T�1|,U0x i � · · · ,

L2(s(|T|�1), µ|T|�1,x) = L2(s(|T|�1|H
x1 ), µ|T|�1,x1)� · · ·� L2(s(|T|�1|H

xi ), µ|T|�1,x i )� · · · ,

and

L2(s(|T�1|), µ|T�1|,U0x) = L2(s(|T�1||HU0x1 ), µ|T�1|,U0x1)� · · ·�L2(s(|T�1||HU0xi ), µ|T�1|,U0x i )� · · · .

3. Noncommutative Functional Calculus

We know that the spectral theory and functional calculus of normal operators [49] is very
important in the study of operator theory and C⇤-algebras [50]. Inspired by the Hua Loo-kang
theorem on the automorphisms of a sfield [53], in this section, we give a useful construction from
L2(s(|T�1|), µ|T�1|,h) to L2(s(|T|�1), µ|T|�1,x) and with this construction, we give a noncommutative
functional calculus for any given T 2 B(H) . However, there is valueless information just only from
R�1
|T|,x � R|T�1|,h or R�1

|T|�1,x � R|T�1|,h .

Lemma 4. Let T be an invertible bounded linear operator on H. Subsequently, we get

s(|T�1|) = s(|T|�1) .

Proof. Because of
l 2 s(T⇤T) () 1

l
2 s(T⇤�1T�1) ,

we get

l 2 s(|T|) () 1
l
2 s(|T�1|) .

That is, s(|T�1|) = s(|T|�1) .
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Let T be an invertible bounded linear operator on H, x be a A(|T|)-cyclic vector, such that
H = A(|T|)x . On P(z), with z 2 s(|T|), we define the mapping

Fz�1 : P(z) ! P(z�1), Fz�1( f (z)) = f (z�1) .

Following Lemma 3 and Theorem 1, P(z) and P( 1
z ) are dense subspaces of L2(s(|T|), µ|T|,x) and

L2(s(|T|�1), µ|T|�1,x) , respectively. Its closed extension

Fz�1 : L2(s(|T|), µ|T|,x) ! L2(s(|T|�1), µ|T|�1,x) , Fz�1( f (z)) = f (z�1)

is linear and for this closed extension we keep the notation Fz�1 .
Subsequently, we obtain that

Z

s(|T|)

f (z�1)dµ|T|,x(z) =
D

f (|T|�1)x, x
E
=

Z

s(|T|�1)

f (z)dµ|T|�1,x(z)

and
dµ|T|�1,x(z) = |z|2dµ|T|,x(z) .

By a simple computation, we get that

kFz�1( f (z))k2
L2(s(|T|�1),µ|T|�1,x )

=
Z

s(|T|�1)

Fz�1( f (z))F̄z�1( f (z))dµ|T|�1,x(z)

=
Z

s(|T|�1)

f (z�1) f̄ (z�1)dµ|T|�1,x(z)

=
Z

s(|T|)

|z|2 f (z) f̄ (z)dµ|T|,x(z)

 sup
m2s(|T|)

m2
Z

s(|T|)

f (z) f̄ (z)dµ|T|,x(z)

 sup
m2s(|T|)

m2k f (z)k2
L2(s(|T|),µ|T|,x )

.

Hence, it follows that
kFz�1k  sup

m2s(|T|)
|m| .

By an application of the Banach inversion theorem [49] (p. 91), we get that Fz�1 is an invertible
bounded linear operator from L2(s(|T|), µ|T|,x) to L2(s(|T|�1), µ|T|�1,x) .

Next, we define the operator

FH

z�1 : A(|T|)x ! A(|T|�1)x, FH

z�1( f (|T|)x) = f (|T|�1)x .

By Lemma 1 and [51] (p. 55), we get that FH

z�1 is an invertible bounded linear operator on the
Hilbert space A(|T|)x = H and

kFH

z�1k  sup sup
m2s(|T|)

|m| .

Moreover, we obtain the following diagram.
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H |T|
�������!

H

FH

z�1 # # FH

z�1

H

�������!
|T|�1

H

By [53] and the isomorphic representations R|T|�1,x and R|T�1|,U0x of H, also, by Lemma 2 and 3,
naturally, we give the following definition.

Definition 2. For invertible T 2 B(H), let the symbol xx⇤ stand for T�1T⇤�1. Subsequently, we get that
there is a linear algebraic isomorphism from P(xx⇤) to P(x⇤x), such that

Fxx⇤ : P(xx⇤) ! P(x⇤x), pn(xx⇤) ! pn(x⇤x) .

Let x be a A(|T|�1)-cyclic vector, such that A(|T|�1)x = H and U0 2 B(H) be a unitary operator such
that U0P(|T|�1) = P(|T�1|)U0. Subsequently, on s(|T|�1) we define

Fxx⇤ : R�1
|T|�1 pn(xx⇤)x ! R�1

|T�1|pn(x⇤x)U0x .

Obviously, P(|y|2) is dense in L2(s(|T|�1), µ|T|�1,x) and P(|z|2) is dense in L2(s(|T�1|), µ|T�1|,U0x) .
Then its closed extension is

Fxx⇤ : L2(s(|T|�1), µ|T|�1,x)| ! L2(s(|T�1|), µ|T�1|,U0x) , R�1
|T|�1 f (xx⇤)x ! R�1

|T�1| f (x⇤x)U0x .

For this closed extension, we keep the notation Fxx⇤ .

With the polar decomposition theorem [50] (p. 15), there is T = U|T|. For invertible T 2 B(H),
we get that

U⇤T⇤TU = TT⇤ and U⇤|T|�2U = |T�2| .

In fact, when T is invertible, we can choose a special unitary operator, which shows that the
operators |T|�1 and |T�1| are unitary equivalent. This is explained in the following theorem.

Theorem 2. Let T be an invertible bounded linear operator on H and U0 2 B(H) be a unitary operator, such
that U0P(|T|�1) = P(|T�1|)U0. Afterwards, there is a unitary operator FH

xx⇤ , such that

FH
xx⇤ |T|�1 = |T�1|FH

xx⇤ .

Moreover, FH
xx⇤ is the corresponding unitary operator associated with the almost everywhere nonzero

function |f|T|(z)|, such that

dµ|T�1|,U0x = |f|T|(
1
z
)|dµ|T|�1,x ,

where |f|T|(z)| 2 L1(s(|T|), µ|T|,x) and x is a A(|T|)-cyclic vector, such that A(|T|)x = H .

Proof. By Lemma 3, let x be a A(|T|)-cyclic vector, such that H = A(|T|)x . By Definition 2, we have
the linear operator Fxx⇤ : L2(s(|T|�1), µ|T|�1,x) ! L2(s(|T�1|), µ|T�1|,U0x) .

This construction yields that Fxx⇤ is an invertible linear operator from L2(s(|T|�1), µ|T|�1,x) to
L2(s(|T�1|), µ|T�1|,U0x) . Hence, Fxx⇤ � Fz�1 is an invertible linear operator from L2(s(|T|), µ|T|,x) to
L2(s(|T�1|), µ|T�1|,U0x) .

By [53], we get that Fxx⇤ is a linear algebraic isomorphism from P(|y|2) on s(|T|�1) to P(|z|2) on
s(|T�1|) . Additionally, by Lemma 2, P(|y|2) is dense in L2(s(|T|�1), µ|T|�1,x) and P(|z|2) is dense in
L2(s(|T�1|), µ|T�1|,U0x) .
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Hence, we obtain
[dµ|T�1|,U0x ] = [dµ|T|�1,x ] ,

that is, dµ|T�1|,U0x and dµ|T|�1,x are mutually absolutely continuous. Following [49], (IX Theorem 3.6)
and the construction Fz�1 , we get that there exists f|T|(z) 2 L1(s(|T|), µ|T|,x), where |f|T|(z)| 6= 0, a.e.,
such that

dµ|T�1|,U0x = |f|T|(
1
z
)|dµ|T|�1,x = |z|2|f|T|(z)|dµ|T|,x .

From Lemma 4, for any pn 2 P(s(|T|�1)) ✓ A(s(|T|�1)) , because of

T⇤�1 pn(|T|�1) = pn(|T�1|)T⇤�1 ,

with [50] (p. 60), we get that there is a unitary operator U0 2 B(H), such that

U0P(|T|�1) = P(|T�1|)U0 .

Hence, we conclude
U0A(|T|�1) = A(|T�1|)U0

and
H = U0A(|T|�1)x = A(|T�1|)U0x .

That is, U0x is a A(|T�1|)-cyclic vector. Additionally, with Theorem 1, we get

Z

s(|T|�1)

f (z)dµ|T|�1,x(z) =
D

f (|T|�1)x, x
E
=

Z

s(|T|)

f (
1
z
)dµ|T|,x(z)

and
Z

s(|T�1|)

f (z)dµ|T�1|,U0x(z) =
D

f (|T�1|)U0x, U0x
E

.

By a simple computation, we obtain that

kFxx⇤ � Fz�1( f (z))k2
L2(s(|T�1|),µ|T�1 |,U0x

)

=
Z

s(|T�1|)

Fxx⇤ � Fz�1( f (z))Fxx⇤ � Fz�1( f (z))dµ|T�1|,U0x(z)

=
Z

s(|T�1|)

Fxx⇤( f (z�1))Fxx⇤( f (z�1))dµ|T�1|,U0x(z)

,
Z

s(|T|�1)

f (y�1) f̄ (y�1)dµ|T|�1,x(y)

=
Z

s(|T|�1)

Fy�1( f (y))Fy�1( f̄ (y))dµ|T|�1,x(y)

= kFy�1( f (y))k2
L2(s(|T|�1),µ|T|�1,x )

and , is introduced by U0.
Hence, Fxx⇤ is an isomorphism from L2(s(|T|�1), µ|T|�1,x) to L2(s(|T�1|), µ|T�1|,U0x).
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With Theorem 1 and Definition 2, we have the operator

FH
xx⇤ : H ! H, FH

xx⇤(R|T|�1,x f (|T|�2)) = R|T�1|,U0x(Fxx⇤ f (|T|�2)).

That is, FH
xx⇤ = R|T�1|,U0x Fxx⇤R�1

|T|�1,x , such that the following diagram is valid.

L2(s(|T|�1), µ|T|�1,x) R|T|�1,x������������!
H

Fxx⇤ # # FH
xx⇤

L2(s(|T�1|), µ|T�1|,U0x)
������������!

R|T�1|,U0x H

Therefore, we said that the linear operator FH
xx⇤ is associated with Fxx⇤ . Subsequently, we see that

FH
xx⇤ is a unitary operator and by Lemma 3, we obtain

A(|T|�1)x = H = A(|T�1|)U0x .

Subsequently, we obtain

H |T|�1
���������!

H

FH
xx⇤ # # FH

xx⇤

H

���������!
|T�1| H

Naturally, there is
FH

xx⇤ |T|�1 = |T�1|FH
xx⇤ .

Afterwards, FH
xx⇤ is the corresponding unitary operator associated with Fxx⇤ , which is, associated

with the almost everywhere nonzero function |f|T|(
1
z )|, such that

dµ|T�1|,U0x = |f|T|(
1
z
)|dµ|T|�1,x = |z|2|f|T|(z)|dµ|T|,x ,

where |f|T|(z)| 2 L1(s(|T|), µ|T|,x) .

We easily deduce (FH
xx⇤)

⇤ = FH
xx⇤ and the next results also readily follows. Let T be an invertible

bounded linear operator on H, x be a A(|T|)-cyclic vector, such that H = A(|T|)x and let U0 2 B(H)
be a unitary operator, such that U0P(|T|�1) = P(|T�1|)U0 . In the proof of Theorem 2, and with the
isomorphic representations R|T|�1,x and R|T�1|,U0x of H , we provide that

Fxx⇤ = R�1
|T�1|,U0x

� FH
xx⇤ � R|T|�1,x .

Especially, let U0 = FH
xx⇤ . Subsequently,

Fxx⇤ = R�1
|T�1|,FH

xx⇤ x
� FH

xx⇤ � R|T|�1,x .

Corollary 1. Let T be an invertible bounded linear operator on H and let x be a A(|T|)-cyclic vector, such that
H = A(|T|)x. Then s(|T|) = s(|T⇤|) and the equality FH

xx⇤ |T| = |T⇤|FH
xx⇤ is valid. Moreover, FH

xx⇤ is the
corresponding unitary operator associated with Fxx⇤ , whih is, associated with the almost everywhere nonzero
function |f|T|(z)|, such that

dµ|T⇤ |,FH

xx⇤ x = |f|T|(z)|dµ|T|,x ,

where |f|T|(z)| 2 L1(s(|T|), µ|T|,x).
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Next, for any given g(z) 2 L•(s(|T|), µ|T|,x), we define

Mg : L2(s(|T|), µ|T|,x) ! L2(s(|T|), µ|T|,x), Mg f (z) = g(z) f (z).

Theorem 3. Let T be an invertible bounded linear operator on H and T = U|T| be its Polar Decomposition.
Let x be a A(|T|)-cyclic vector, such that H = A(|T|)x and |T| = R|T|,x MzR�1

|T|,x . Subsequently, there exists

y(z) 2 L•(s(|T|), µ|T|,x), such that U = R|T⇤ |,FH

xx⇤ x Fxx⇤ My(z)R
�1
|T|,x and T = R|T⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T|,x .

Here Mzy(z) = Mz My(z) = My(z)Mz = My(z)z .

Proof. Let U0 = FH
xx⇤ in the proof of Theorem 2. Afterwards, we get

Fxx⇤ = R�1
|T�1|,FH

xx⇤ x
� FH

xx⇤ � R|T|�1,x and FH
xx⇤ = R|T�1|,FH

xx⇤ x � Fxx⇤ � R�1
|T|�1,x .

By the polar decomposition theorem [50] (p. 15) we have T = U|T|. Hence, we get

T⇤T = |T|2 and TT⇤ = U|T|2U⇤.

By Corollary 1, we get
TT⇤ = FH

xx⇤ |T|2(FH
xx⇤)

⇤,

that is,
FH

xx⇤ |T|2(FH
xx⇤)

⇤ = TT⇤ = U|T|2U⇤ .

We see that
FH

xx⇤U|T|2 = |T|2FH
xx⇤U .

With the fact that {My(z) : y(z) 2 L•(s(|T|), µ|T|,x)} is a maximal abelian von Neumann algebra
in B(L2(s(|T|), µ|T|,x)) and the Fuglede–Putnam theorem [49] (p. 279), we obtain that there exists
y(z) 2 L•(s(|T|), µ|T|,x) such that

FH
xx⇤U = R|T|,x My(z)R

�1
|T|,x = R|T|�1,x My( 1

z )
R�1
|T|�1,x .

Therefore, we get that

U = FH
xx⇤R|T|�1,x My( 1

z )
R�1
|T|�1,x = R|T�1|,FH

xx⇤ x � Fxx⇤ � R�1
|T|�1,x R|T|�1,x My( 1

z )
R�1
|T|�1,x .

That is,
U = R|T�1|,FH

xx⇤ x Fxx⇤ My( 1
z )

R�1
|T|�1,x = R|T⇤ |,FH

xx⇤ x Fxx⇤ My(z)R
�1
|T|,x

and
T = U|T| = R|T⇤ |,FH

xx⇤ x Fxx⇤ My(z)R
�1
|T|,x R|T|,x MzR�1

|T|,x = R|T⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T|,x .

Corollary 2. Let T 2 B(H). Suppose a 2 r(T) = C \ s(T) and let x be a A(|T � a|)-cyclic vector, such that
H = A(|T � a|)x . Subsequently, there exists a function y(z) 2 L•(s(|T � a|), µ|T�a|,x), such that

T = R|(T�a)⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T�a|,x + a.

Proof. For a 2 r(T), T � a is an invertible bounded linear operator on H. By the proof of Theorem 3,
we get that T � a = R|(T�a)⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T�a|,x , that is,

T = R|(T�a)⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T�a|,x + a .
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The following definition is quite natural.

Definition 3. For any given T 2 B(H), we say that R|(T�a)⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T�a|,x + a is the

noncommutative functional calculus of T on Fxx⇤ : L2(s(|T|), µ|T|,x)| ! L2(s(|T⇤|), µ|T⇤ |,FH

xx⇤ x) ,, where x

is a A(|T � a|)-cyclic vector, such that H = A(|T � a|)x , y(z) 2 L•(s(|T � a|), µ|T�a|,x) and a 2 r(T) .

In the final part of this section, we give some properties of normal operator through the
noncommutative functional calculus.

Corollary 3. For T 2 B(H), if TT⇤ = T⇤T, then there exists y(z) 2 L•(s(|T � a|), µ|T�a|,x) such that
R|(T�a)|,x(Mzy(z) + a)R�1

|T�a|,x is the noncommutative functional calculus of T on L2(s(|T � a|), µ|T�a|,x) .

and we get T 2 A0
(|T � a|). Where a 2 r(T) , x is a A(|T � a|)-cyclic vector, such that H = A(|T � a|)x and

A0
(|T � a|) = {A 2 B(H) : AB = BA for every B 2 A(|T � a|)}.

Proof. For TT⇤ = T⇤T and a 2 r(T) , we get that

FH
xx⇤ = identity and |T � a| = [(T � a)⇤(T � a)]

1
2 = [(T � a)(T � a)⇤]

1
2 = |(T � a)⇤|.

Therefore, we see that
R�1
|(T�a)⇤ |,FH

xx⇤ x
= R�1

|T�a|,x

and there exists y(z) 2 L•(s(|T � a|), µ|T�a|,x) such that

T � a = R|(T�a)|,x Mzy(z)R
�1
|T�a|,x .

That is,
T = R|(T�a)|,x(Mzy(z) + a)R�1

|T�a|,x .

With the proof of Theorem 3, we get T � a 2 A0
(|T � a|), which is, T 2 A0

(|T � a|) .

Corollary 4. Let T 2 B(H). Subsequently, the operator T is normal if and only if T is unitary equivalent to
My(z) + a on L2(s(|T � a|), µ|T�a|,x), and if and only if T 2 A0

(|T � a|), where x is a A(|T � a|)-cyclic
vector, such that H = A(|T � a|)x, y(z) 2 L•(s(|T � a|), µ|T�a|,x), and a 2 r(|T|).

4. A Sufficient Condition

In this section, we study Problem 1 on infinite-dimensional separable Hilbert spaces. With the
fact that the exist of non-trivial invariant subspace is unchanged by the similarity of bounded linear
operators on Banach spaces [1], which is, for R 2 B(B1) and S 2 B(B2), if T : B1 ! B2 is an invertible
bounded linear operator and S = TRT�1, then R has non-trivial invariant subspace if and only if S
has, where B1 and B2 are Banach spaces. Therefore, for any given T 2 B(H), using the construction of
Fxx⇤ , we give a sufficient condition to Problem 1 on infinite-dimensional separable Hilbert spaces.

For convenience, we define Fix(FH
xx⇤) = {FH

xx⇤( f ) = f ; f 2 H}. Obviously, Fix(FH
xx⇤) is a closed

subspace of H.

Theorem 4. Let dimH > 1, T 2 B(H) and R|(T�a)⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T�a|,x be the noncommutative

functional calculus of T � a on Fxx⇤ : L2(s(|T � a|), µ|T�a|,x)| ! L2(s(|(T � a)⇤|), µ|(T�a)⇤ |,FH

xx⇤ x) ,

where a 2 r(|T|), x is a A(|T � a|)-cyclic vector, such that H = A(|T � a|)x and y(z) 2 L•(s(|T �
a|), µ|T�a|,x) . If R|T�a|,x Mzy(z)R

�1
|T�a|,x Fix(FH

xx⇤) ✓ Fix(FH
xx⇤), then T has a non-trivial invariant subspace.
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Proof. It is enough to prove the result for infinite-dimensional separable complex Hilbert space H.
Obviously, if A ⇢ H is a non-trivial invariant subspace of T if and only if A is a non-trivial invariant
subspace of T � a, where a 2 C.

Let a 2 r(T) and let x be a A(|T � a|)-cyclic vector such that H = A(|T � a|)x . Subsequently,
following Corollary 2, we get that there exists y(z) 2 L•(s(|T � a|), µ|T�a|,x), such that
R|(T�a)⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T�a|,x is the noncommutative functional calculus of T � a on

Fxx⇤ : L2(s(|T � a|), µ|T�a|,x)| ! L2(s(|(T � a)⇤|), µ|(T�a)⇤ |,FH

xx⇤ x) .

By the construction of FH
xx⇤ in Theorem 2, we get (FH

xx⇤)
2 = identity and Fix(FH

xx⇤) 6= ∆.
(1) If Fix(FH

xx⇤) = H, that is FH
xx⇤ = identity, by the proof of Corollary 3, then T is unitary

equivalent to Mzy(z) + a. Because Mzy(z) + a is a normal operator, it possesses a non-trivial invariant
subspace and, hence, the same is true for T. For details, see, e.g., [49].

(2) If Fix(FH
xx⇤) 6= H and R|T�a|,x Mzy(z)R

�1
|T�a|,x Fix(FH

xx⇤) ✓ Fix(FH
xx⇤), then Fix(FH

xx⇤) is a

non-trivial invariant subspace of FH
xx⇤ and we get

FH
xx⇤R|T|,x Mzy(z)R

�1
|T|,x Fix(FH

xx⇤) ✓ Fix(FH
xx⇤).

Hence, Fix(FH
xx⇤) is a non-trivial invariant subspace of FH

xx⇤R|T|,x Mzy(z)R
�1
|T|,x . With the proof of

Theorem 3, we get that

FH
xx⇤R|T|,x Mzy(z)R

�1
|T|,x = R|(T�a)⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T�a|,x = T � a.

That is,
(T � a)Fix(FH

xx⇤) ✓ Fix(FH
xx⇤).

5. Lebesgue Operator

In this section, we study chaos of an invertible bounded linear operator on an infinite-dimensional
separable Hilbert space. For the example of integral calculus in mathematical analysis, we know
that the convergence or the divergence of the weighted integral calculus of x and x�1 should be
independent of each other; however, sometimes it happens that this indeed depends on a special
choice of the weight function.

In the view of integral calculus, we define the Lebesgue class and prove that if T is a Lebesgue
operator, then T is Li-Yorke chaotic if and only if T⇤�1 is. With the idea of the noncommutative
functional calculus R|(T�a)⇤ |,FH

xx⇤ x Fxx⇤ Mzy(z)R
�1
|T�a|,x , we give an example of a Lebesgue operator that is

not a normal operator.
Let dx be the Lebesgue measure on L2(R+). By Theorem 1, there exists a Borel measure dµ|Tn |,xn ,

which is complete, such that L2(s(|Tn|), dµ|Tn |,xn) is a Hilbert space. If there exists N > 0, such
that, for all n � N, the measure dµ|Tn |,xn is absolutely continuity with respect to dx, then using the
Radon–Nikodym theorem [49] (p. 380), there exists fn 2 L1(R+), such that dµ|Tn |,xn = fn(x)dx, where
n 2 N, n � N and H = A(|Tn|)xn.

Definition 4. Let T be an invertible bounded linear operator on the separable Hilbert space H over C. Suppose
that the operator T satisfies the following conditions:



Mathematics 2020, 8, 1544 14 of 18

(1) There exists N 2 N, such that, for all n � N
8
><

>:

dµ|Tn |,xn = fn(x)dx, fn 2 L1(R+)

x2 fn(x) = fn(x�1), 0 < x < 1

(2) There exists N 2 N, such that for all n � N and for any given nonzero x 2 H, there exists a nonzero
function gn(t) 2 L2(s(|Tn|), dµ|Tn |,xn) and a nonzero vector y 2 H, such that y = gn(|Tn|�1)xn whenever
x = gn(|Tn|)xn .

Subsequently, the operator T is said to be a Lebesgue operator, and the family of all Lebesgue operators on
H is denoted by BLeb(H).

Theorem 5. Let T be a Lebesgue operator on the separable Hilbert space H over C. Subsequently, T is Li-Yorke
chaotic if and only if T⇤�1 is.

Proof. Let xn be a A(|Tn|)-cyclic vector such that

A(|Tn|)xn = H.

If x0 is a Li-Yorke chaotic point of T, then by Definition 4, we see that, for n 2 N large enough,
there exist gn(x) 2 L2(s(|Tn|), dµ|Tn |,xn), fn(x) 2 L1(R+) and y0 2 H, such that x0 = gn(|Tn|)xn,
y0 = gn(|Tn|�1)xn, and

dµ|Tn |,xn = fn(x)dx.

Therefore, we get the following

kTnx0k2
H

= hTn⇤Tnx0, x0i =
⌦
|Tn|2gn(|Tn|)xn, gn(|Tn|)xn

↵
=

⌦
gn(|Tn|)⇤|Tn|2gn(|Tn|)xn, xn

↵

=
Z

s(|Tn |)

x2gn(x)ḡ(x)dµ|Tn |,xn(x) =
Z +•

0
x2|gn(x)|2 fn(x)dx

=
Z 1

0
x2|gn(x)|2 fn(x)dx +

Z +•

1
x2|gn(x)|2 fn(x)dx

=
Z 1

0
x2|gn(x)|2 fn(x)dx +

Z 1

0
x�4|gn(x�1)|2 fn(x�1)dx

,
Z 1

0
|gn(x)|2 fn(x�1)dx +

Z 1

0
x�2|gn(x�1)|2 fn(x)dx

=
Z +•

1
x�2|gn(x�1)|2 fn(x)dx +

Z 1

0
x�2|gn(x�1)|2 fn(x)dx

=
Z +•

0
x�2|gn(x�1)|2 fn(x)dx =

Z

s(|Tn |)

x�2gn(x�1)ḡn(x�1)dµ|Tn |,xn(x)

=
⌦

gn(|Tn|�1)⇤|Tn|�2gn(|Tn|�1)xn, xn
↵
=

⌦
|Tn|�2gn(|Tn|�1)xn, gn(|Tn|�1)xn

↵

=
⌦
|Tn|�2y0, y0

↵
= hT�nT�n⇤y0, y0i

= kT⇤�ny0k2
H

where , is following Definition 4. By Definition 1, we get that T is Li-Yorke chaotic if and only if T⇤�1

is.

Following [54], for T 2 B(H), x 2 H and n 2 N, we introduce the distributional function

Fn
x (t) =

1
n
]{0  i  n : kTn(x)k < t}.

In addition, we denote

Fx(t) = lim inf
n!•

Fn
x (t), F⇤

x (t) = lim sup
n!•

Fn
x (t),
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and introduce the following definition.

Definition 5. Let T 2 B(H). If there exists x 2 H and
(1) If Fx(t) = 0, for some t > 0 and F⇤

x (e) = 1 for 8e > 0, then we say that T is distributionally chaotic
or I-distributionally chaotic.

(2) If F⇤
x (e) > Fx(t) for 8t > 0 and F⇤

x (e) = 1 for 8e > 0, then we say that T is
I I-distributionally chaotic.

(3) If F⇤
x (e) > Fx(t) for 8t > 0, then we say that T is I I I-distributionally chaotic.

Corollary 5. Let T be a Lebesgue operator on the separable Hilbert space H over C. Then T is I-distributionally
chaotic (or I I-distributionally chaotic or I I I-distributionally chaotic) if and only if T⇤�1 is I-distributionally
chaotic (or I I-distributionally chaotic or I I I-distributionally chaotic).

Theorem 6. There exists an invertible bounded linear operator T on the separable Hilbert space H over C, such
that T is Lebesgue operator that is not a normal operator.

Proof. Let 0 < a < b < +•. Subsequently, L2([a, b]) is a separable Hilbert space over C. Any
separable Hilbert space over R can be expanded to a separable Hilbert space over C. Without loss of
generality, let L2([a, b]) be the separable Hilbert space over R. We prove the conclusion by six parts:

(1) Let 0 < a < 1 < b = 1
a < +•. We construct a measure preserving transformation on [a, b]. Let

M = {[a, b�a
2 ], [ b�a

2 , b]}. We get a Borel algebra x(M) generated by M . We define F : [a, b] ! [a, b],

F([a,
b � a

2
]) = [

b � a
2

, b], F([
b � a

2
, b]) = [a,

b � a
2

].

Subsequently, F is an invertible measure preserving transformation on the Borel algebra x(M).
With [55] (p. 63), UF 6= 1 and UF is a unitary operator associated with F, where UF is the operation
of composition

UFh = h � F, 8h 2 L2([a, b]).

(2) Define Mxh = xh on L2([a, b]). Subsequently, Mx is an invertible positive operator.

(3) For f (x) =
| ln x|

x
, x > 0, we define dµ = f (x)dx. Afterwards, f (x) is continuous and

f (x) > 0, a.e., x 2 [a, b]. Hence, dµ that is absolutely continuous with respect to dx is a finite positive
Borel measure that is complete. That is, L2([a, b], dµ) is a separable Hilbert space over R. Moreover,
L2([a, b]) and L2([a, b], dµ) are unitary equivalence.

(4) Let T = UF Mx. We get

T⇤T = UFTT⇤U⇤
F and UF 6= 1.

Because of
UF Mx 6= MxUF and UF Mx2 6= UF Mx2 ,

we get that T is not a normal operator and s(|T|) = [a, b].
(5) Let the operator T = UF Mx on L2([a, b]) be corresponding to the operator T0 on L2([a, b], dµ).

Subsequently, T0 is an invertible bounded linear operator that is not a normal operator and s(|T0|) =
[a, b].

(6) From Z b

a
xn f (x)dx =

Z bn

an
t f (t

1
n )

1

nt
n�1

n
dt .

Let
fn(t) =

1
n

I[an ,bn ] f (t
1
n )

1

t
n�1

n
.
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We get that fn(t) is continuous and almost everywhere positive. Hence, fn(t)dt is a finite positive
Borel measure that is complete.

For any E ✓ R+, we define IE = 1 when x 2 E else IE = 0. Subsequently, IE is the identity
function on E. With a simple computing, we get that

fn(t�1) = 1
n I[an ,bn ] f (t�

1
n ) 1

t�
n�1

n
= 1

n I[an ,bn ]
| ln t�

1
n |

t�
1
n

1

t�
n�1

n

= 1
n I[an ,bn ]t| ln t

1
n |

and

t2 fn(t) = 1
n I[an ,bn ] f (t

1
n ) t2

t
n�1

n
= 1

n I[an ,bn ]
| ln t

1
n |

t
1
n

t2

t
n�1

n

= 1
n I[an ,bn ]t| ln t

1
n | .

We see that x2 fn(x) = fn(x�1) . From s(|T0n|) = [an, bn] and

Z bn

an
t2 f (t

1
n )

1

nt
n�1

n
dt =

Z +•

0
t2 fn(t)dt ,

let dµ|T0n | = fn(t)dt .
Afterwards, dµ|T0n | is a finite positive Borel measure that is complete. For any given nonzero

h(x) 2 L2([a, b]), we get the nonzero function h(x�1) 2 L2([a, b]).
Easily, we get that I[a,b] is a A(|Mn

x |)-cyclic vector of the multiplication Mn
x = Mxn and I[an ,bn ] is a

A(|T0n|)-cyclic vector of |T0n|. By Definition 4, we get that T0 is Lebesgus operator, but is not a normal
operator.

Corollary 6. There exists an invertible bounded linear operator T on the separable Hilbert space H over C, such
that T is a Lebesgue operator that is a positive operator.

Corollary 7. Let BNor(H) be the subspace of all normal bounded linear operator on an infinite-dimensional
separable Hilbert space H. Subsequently, the following families of linear operators are non-empty:

BLeb(H) \ BNor(H) and BLeb(H) \ (B(H) \ BNor(H)).

In fact, both these families contain non-trivial members.

6. Conclusions

By the idea of the isomorphism construction Fxx⇤ of this paper, we could study the operator using
the integral calculus on R. This way maybe neither change the properties of chaos nor the difficulty of
computing, but with this we should find some operator class and study its properties, as we give the
Lebesgue class in this section. Hence, if some properties of operators on H only depending the norm
that is compatible with the inner product, then these properties only depend on the corresponding
properties of elements in

{Myn(z) + an : yn(z) 2 L•(s(|Tn � an|), µ|Tn�an |,xn), an 2 r(Tn), n 2 N,H = A(|Tn � an|)xn},

just keeping the noncommutative functional calculus in mind.
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Abstract. The region of singular values of the commutator XY � Y X for 2 ⇥ 2 rank one complex matrices X and Y
is determined. This answers in a�rmative a conjecture raised in [D. Wenzel. A strange phenomenon for the singular values
of commutators with rank one matrices. Electron. J. Linear Algebra, 30:649–669, 2015.] when 2 ⇥ 2 matrices are concerned.
The approach and proofs also lead to a complete relation between the singular values, eigenvalues and diagonal elements of the
commutator under consideration.
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1. Introduction.

1.1. Background and main results. Let F denote the set of real numbers R or the set of complex
numbers C, and let i =

p
�1. We use column vectors for vectors in Fn, and use row n-tuples for points in

Fn. The Euclidean inner product and norm on Fn are denoted by h·, ·i and k · k, respectively. Let Mn(F)
denote the set of n⇥n matrices with entries in F. We use also k · k to denote the Frobenius norm on Mn(F).
For X 2 Mn(F), let s1(X) � · · · � sn(X) denote the singular values of X arranged in non-increasing order,
and let s(X) = (s1(X), . . . , sn(X))T . Let kXk1 = s1(X) + · · · + sn(X) denote the trace norm (also known
as Schatten 1-norm and Ky-Fan n-norm) of X. Be aware that two norms are used in this paper. By a norm
one matrix X it is always meant kXk = 1 unless otherwise stated. For X,Y 2 Mn(F), the commutator of
X and Y is defined and denoted by

[X,Y ] = XY � Y X.

We assume n > 1 throughout the paper to avoid trivial situations.

Let

⌃n(F) = {X : X 2 Mn(F), s(X) = (1, 0, . . . , 0)T },

which is the set of rank one norm one matrices in Mn(F). When X,Y 2 ⌃n(F), the rank of the commutator
[X,Y ] is at most two. Let

(1.1) SF
n
= {(s1([X,Y ]), s2([X,Y ])) : X,Y 2 ⌃n(F)} ⇢ R2

.
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It is proved in [7] that the set SR
n
is the region R (see Figure 2.1) bounded by the segment joining (0, 0) and

(1, 1), the segment joining (0, 0) and (1, 0), the segment joining (1, 0) and
⇣p

2+1
2 ,

p
2�1
2

⌘
, and the curve

(1.2)
4
p
cos� sin�

1 + 2 cos� sin�
(cos�, sin�), � 2

h
tan�1

⇣p
2�1p
2+1

⌘
,
⇡

4

i
.

For an alternative characterization of SR
n
, see Theorem 1.5 below. It is also conjectured in [7, Conjecture

3.6] that SC
n
= R. Numerical experiments highly suggest that this is true. Sadly, the approach used in [7]

relies heavily on real numbers (in the form of angles) and cannot directly be adopted to the complex case.

When X,Y 2 ⌃n(F), we may assume X = ab⇤ and Y = cd⇤ where a,b, c,d 2 Fn are unit vectors. It
is shown in [7, Theorem 4.1] that s1([X,Y ]) and s2([X,Y ]) depend solely on

A = ha, ci, B = hb,di, C = hc,bi, D = hd,ai.

Based on these inner products, the result is proved. The main purpose of this paper is to prove in a�rmative
that the conjecture is true for 2⇥ 2 matrices. During our investigation, we found that there is a point in the
proof in [7] that is not clear when 2⇥ 2 matrices are concerned. Let us first point out the di↵erence between
the cases n = 2 and n � 3.

It is trivial that SF
2 ✓ SF

3 ✓ SF
4 ✓ · · · . When n > 4 and X,Y 2 ⌃n(F), there exists a unitary (orthogonal

if F = R) matrix U 2 Mn(F) such that U⇤
XU , U⇤

Y U 2 M4(F)�0n�4. Consequently we know that SF
k
= SF

4

for all k > 4. Using the following proposition, we can extend the result to 3 ⇥ 3 matrices to have SF
k
= SF

3

for all k > 3.

Proposition 1.1. Suppose a,b, c,d 2 F4
are unit vectors. Then there are unit vectors v1,v2,v3,v4 2

F3
such that

hv1,v3i = ha, ci, hv2,v4i = hb,di, hv3,v2i = hc,bi, hv4,v1i = hd,ai.

Proof. By choosing a suitable unitary (orthogonal if F = R) matrix U 2 M4(F) and considering Ux for
x 2 {a,b, c,d}, we may assume

a = (a1, 0, 0, 0)
T
, b = (b1, b2, 0, 0)

T
, c = (c1, c2, c3, 0)

T
, d = (d1, d2, d3, d4)

T
.

The vectors

v1 = (a1, 0, 0)
T
, v2 = (b1, b2, 0)

T
, v3 = (c1, c2, c3)

T
, v4 = (d1, d2,

p
|d3|2 + |d4|2)T .

serve our purpose.

The situation is di↵erent when n = 2. Suppose we choose

a = (1, 0, 0, 0)T , b = (0, 1, 0, 0)T , c = (0, 0, 1, 0)T , d = (1/
p
2, 0, 0, 1/

p
2)T .

Then
A = ha, ci = 0, B = hb,di = 0, C = hc,bi = 0, D = hd,ai = 1/

p
2.

However, for unit vectors a,b, c,d 2 F2,

A = ha, ci = 0, B = hb,di = 0, C = hc,bi = 0
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3 Singular Values of Commutator

imply D = hd,ai = 0. Thus, we know that not all inner products (A,B,C,D) that can be achieved by
vectors in F4 can be achieved by vectors in F2. It is then not clear that SR

2 is not a proper subset of SR
4

(= R), although numerical experiments strongly suggest SR
2 = R and the boundary of R can be achieved

by 2⇥ 2 real matrices (see the proof of [7, Proposition 3.3]).

We will first show in Section 3 that the smaller freedom in order 2 does not change the result.

Theorem 1.2. SR
2 = R.

This is not merely to give an alternative proof for 2⇥2 real matrices. The proof here also reveals that all
the possible combinations of the singular values can be achieved by commutators having real eigenvalues and
hence are orthogonally upper triangularizable. This fact is used in Section 4 for proving our main theorem.

Theorem 1.3. SC
2 = R.

Our approach and proofs also give immediately interesting results relating the singular values, eigenvalues
and diagonal elements of the commutators under consideration. Before going to the lengthy proofs of
Theorems 1.2 and 1.3, we include below a discussion on the results.

1.2. Singular values, eigenvalues and diagonal elements. Suppose X,Y 2 ⌃2(F) and [X,Y ] =⇥
� �

0 ��

⇤
has singular values s1 and s2, and eigenvalues ±�. It follows readily from the Böttcher-Wenzel

inequality (e.g. [2, 6]) that |�|  1 because

2|�|2  k[X,Y ]k2  2kXk2kY k2 = 2.

A simple proof of the inequality for 2 ⇥ 2 real matrix can be found in [1]. The proof there can easily be
modified for 2⇥ 2 complex matrices. Our formulation leads us to consider the possible values of |�| with |�|
being fixed. The key result is that, for both the cases F = R and F = C, |�| can assume every value between
0 and a common maximum value �|�| where �

2
|�| is given by

(1.3) �
2
|�| =

⇢
1 if 0  |�|  1/2,
4|�|� 4|�|2 if 1/2 < |�|  1.

The graph of �2|�| is given below.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5
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0.7

0.8

0.9

1.0

Figure 1.1. The graph of �2|�|.

It is obvious that �
2
|�|, and hence, �|�| is non-increasing. This plain-looking fact will play a critical role in

our later proof in Section 4.

When X,Y 2 ⌃2(C), [X,Y ] is unitarily triangularizable. Our key result asserts that when the complex
commutator in triangular form has real eigenvalues and real �, it can also be achieved by X,Y 2 ⌃2(R). On
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the other hand, it is easy to deduce that

(1.4) |�| = s1 � s2.

Consequently, together with the obvious condition |�|2 = s1s2, we can easily deduce the following two
theorems. The first one gives the relation between the eigenvalues and singular values of the commutators,
and the second one gives a simple characterization on the singular values of the commutators.

Theorem 1.4. There exist X,Y 2 ⌃2(C) such that [X,Y ] has eigenvalues ±� and singular values

s1 � s2 if and only if |�|  1, |�|2 = s1s2 and

⇢
s1 � s2  1 if 0  |�|  1/2,

s1 + s2  2
p
|�| if 1/2 < |�|  1.

Moreover, X and Y can be taken to be real if � is real.

Theorem 1.5. There exist X,Y 2 ⌃2(C) such that [X,Y ] has singular values s1 � s2 if and only if

s1s2  1 and ⇢
s1 � s2  1 if 0  p

s1s2  1/2,
s1 + s2  2(s1s2)1/4 if 1/2 <

p
s1s2  1.

Moreover, the singular values can always be attained by real matrices.

For A 2 Mn(C), the numerical range and numerical radius of A are defined respectively by

W (A) = {x⇤
Ax : x 2 Cn

, kxk = 1} and w(A) = max{|z| : z 2 W (A)}.

The study of the numerical range and numerical radius has a long history and is extensive. One may refer to
[5, Chapter 1] for more information. For [X,Y ] =

⇥
� �

0 ��

⇤
, the Elliptical Range Theorem (e.g., [5, Theorem

1.3.6]) tells us that W ([X,Y ]) is an elliptical disk with foci ±� and minor axis |�|. Thus, from the above
discussion, we have the following theorem.

Theorem 1.6. There exist X,Y 2 ⌃2(C) such that W ([X,Y ]) is an ellipse with foci ±� (� 2 C) and

minor axis � � 0 if and only if

0  � 
⇢

1 if 0  |�|  1/2,

2
p
|�|� |�|2 if 1/2 < |�|  1.

Moreover, X and Y can be taken to be real if � is real.

From Theorem 1.6, we have

Corollary 1.7. There exist X,Y 2 ⌃2(C) such that [X,Y ] has eigenvalues ±� and w([X,Y ]) = r if

and only if 0  |�|  1 and

|�|  r 
⇢ p

|�|2 + 1/4 if 0  |�|  1/2,p
|�| if 1/2 < |�|  1.

Moreover, X and Y can be taken to be real if � is real.

The set W (A) can be regarded as the collection of all values for the first diagonal entry of U⇤
AU when U

varies over all unitary matrices. From Corollary 1.7, and replacing |�| there by p
s1s2, we have the following

relation between the singular values and diagonal elements.
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Corollary 1.8. There exist X,Y 2 ⌃2(C) such that [X,Y ] has singular values s1 � s2 and a diagonal

element d if and only if s1s2  1 and

|d| 
⇢ p

s1s2 + 1/4 if 0  p
s1s2  1/2,

(s1s2)1/4 if 1/2 <
p
s1s2  1.

Moreover, X and Y can be taken to be real if d is real.

The elliptical disk with foci ±� and minor axis |�| is
n
z : |z � �|+ |z + �|  2

p
|�|2 + |�|2/4

o
. From

Theorem 1.4 and using (1.4), we can now have our ultimate result relating the singular values, eigenvalues
and diagonal elements of the commutators under consideration.

Theorem 1.9. There exist X,Y 2 ⌃2(C) such that [X,Y ] has singular values s1 � s2, eigenvalues ±�

and diagonal elements ±d if and only if, in addition to the necessary conditions in Theorem 1.4,

|d+ �|+ |d� �|  s1 + s2.

Moreover, X and Y can be taken to be real if � and d are real.

Finally, we mention here another consequence of our study. There is a close relation between the region
SC
n
and the determination of the best (smallest) constant Cp,1,1 such that

kXY � Y Xkp  Cp,1,1kXk1kY k1, X, Y are n⇥ n complex matrices,

where k · kp denotes the Schatten p-norm, 1  p  1. When 2 < p < 1, this is an unsolved situation of the
general problem (see [8, 3]) of finding the best constant Cp,q,r such that

kXY � Y Xkp  Cp,q,rkXkqkY kr, X, Y are n⇥ n complex matrices.

For more information on commutator norm inequalities, see the surveys [2, 6]. In fact, we have Cp,1,1 =
max{kxkp : x 2 SC

n
} in which we also use k · kp to denote the vector p-norm. In [4], the constant C

R
p,1,1 =

max{kxkp : x 2 SR
n
} for real matrices is found via the determination of CR

1,q,1 for real matrices. Theorem
1.3 tells us that SC

2 = SR
2 and consequently we can conclude that all the results obtained in [4] for real

matrices are also true for 2⇥ 2 complex matrices.

2. Transforming the problem geometrically. Our approach is to consider, instead of the singular
values s1([X,Y ]) and s2([X,Y ]) of the commutator [X,Y ], the characteristic polynomial of [X,Y ]⇤[X,Y ],
i.e., the monic quadratic polynomial having s

2
1([X,Y ]) and s

2
2([X,Y ]) as roots. To this, we first consider

{x2 � (s21 + s
2
2)x+ s

2
1s

2
2 : (s1, s2) 2 R},

the set of monic quadratic polynomials having s
2
1 and s

2
2 as roots when (s1, s2) varies over R. To describe

the set, it is equivalent to consider the set of the varying coe�cients given by

Q = {(s21 + s
2
2, s

2
1s

2
2) : (s1, s2) 2 R} ⇢ R2

and we have the following characterization.

Proposition 2.1. The set Q (see Figure 2.2) is the region bounded by the segment joining (0, 0) and

(1, 0), the curve x = 2
p
y for 0  y  1, the curve x = 1 + 2y1/2 for 0  y  1/16, and the curve

x = 4y1/4 � 2y1/2 for 1/16  y  1.
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Proof. Let F : R ! R2 be defined by F (s1, s2) = (s21 + s
2
2, s

2
1s

2
2) which clearly is injective. Then

Q = F (R). For 0  �  1, let C� = {(s1, s2) : (s1, s2) 2 R, s
2
1s

2
2 = �}. When � = 0, C0 is the line segment

joining (0, 0) and (1, 0); when 0 < �  1, C� is the intersection of R and the hyperbola s1s2 =
p
�, see

Figure 2.1. 1

Figure 2.1. The region R (green) and the
curve s1s2 =

p
� (blue).

Figure 2.2. The region Q (green) and the seg-
ment F (C�) (blue).

Then
[

0�1

C� = R, and hence, Q = F (R) =
[

0�1

F (C�).

For each �, as C� is closed and connected, F (C�) is a horizontal segment in Q with height � above the
x-axis, see Figure 2.2. When � increases from 0 to 1, the curve C� and the segment F (C�) sweep over the
regions R and Q, respectively. By clicking Figure 2.1 or 2.2, one can see the demonstration of the movement
of the corresponding C� and F (C�) when � increases.

Let F (C�) = {(x,�) : x 2 L�} where L� = {s21 + s
2
2 : (s1, s2) 2 C�} is a closed interval. The result

follows if we can show that

(2.1) L� =

⇢ ⇥
2
p
�, 1 + 2

p
�
⇤

if 0  �  1/16,⇥
2
p
�, 4�1/4 � 2

p
�
⇤

if 1/16 < �  1.

It remains to determine the two endpoints of L� , i.e., to find the maximum and minimum of L� .

When � = 0, L0 = [0, 1] obviously. We now suppose � > 0. When � is fixed and s
2
1s

2
2 = �, as s1 � s2,

we see that the bigger is s1, the bigger is s21+s
2
2. Hence, the minimum of s21+s

2
2 occurs when s1 = s2 = �

1/4,
and thus, the minimum of L� is 2

p
�. Similarly, the maximum of s21 + s

2
2 occurs at a point (s⇤1, s

⇤
2) which is

on the right-hand boundary of the region R, i.e., on the segment joining (1, 0) and
⇣p

2+1
2 ,

p
2�1
2

⌘
, or on the

curve (1.2).

When 0 < �  1/16, the point (s⇤1, s
⇤
2) is on the line segment joining (1, 0) and

⇣p
2+1
2 ,

p
2�1
2

⌘
, i.e.,

s
⇤
1 � s

⇤
2 = 1, s⇤1 2 (1, (

p
2 + 1)/2]. Hence, we know that (s⇤1)

2 + (s⇤2)
2 = (s⇤1 � s

⇤
2)

2 + 2s⇤1s
⇤
2 = 1 + 2

p
�.

When 1/16  �  1, the point (s⇤1, s
⇤
2) is on the curve (1.2), say with � = �

⇤. Let ↵ = (s⇤1)
2 + (s⇤2)

2 be

1A sketch of the region R is given in [4].
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the required maximum, and write z = cos�⇤ sin�⇤. Easily,

(2.2)
p
↵ =

q
(s⇤1)

2 + (s⇤2)
2 =

4
p
cos�⇤ sin�⇤

1 + 2 cos�⇤ sin�⇤ =
4
p
z

1 + 2z

and

(2.3)
p
� = s

⇤
1s

⇤
2 =

16 cos�⇤ sin�⇤

(1 + 2 cos�⇤ sin�⇤)2
cos�⇤ sin�⇤ = ↵z.

Multiplying (2.2) by
p
↵, we get 2↵z � 4

p
↵z + ↵ = 0 and hence, by (2.3), ↵ = 4�1/4 � 2

p
� as required.

3. The real case. In this section, we give a proof of Theorem 1.2.

Proof of Theorem 1.2. For X,Y 2 ⌃2(R), k[X,Y ]k2 = s
2
1([X,Y ]) + s

2
2([X,Y ]) and (det[X,Y ])2 =

s
2
1([X,Y ])s22([X,Y ]). The set of characteristic polynomials of [X,Y ]⇤[X,Y ] is

{x2 � k[X,Y ]k2x+ (det[X,Y ])2 : X,Y 2 ⌃2(R)}

and, as before, we consider the set of varying coe�cients

T (R) = {
�
k[X,Y ]k2, (det[X,Y ])2

�
: X,Y 2 ⌃2(R)} ⇢ R2

.

It is then clear that SR
2 = R if and only if T (R) = Q (defined in Section 2), and we now show that the latter

is true. We note that for X,Y 2 ⌃2(R), one has 0  | det[X,Y ]|  1. To prove the result, it su�ces to show
that for each 0  �  1,

(3.1)
�
k[X,Y ]k2 : X,Y 2 ⌃2(R), (det[X,Y ])2 = �

 
is as in the right-hand side of (2.1).

The proof is divided into two parts, depending on whether the eigenvalues of [X,Y ] are real or not.

3.1. Eigenvalues of [X,Y] are real. Suppose the eigenvalues of [X,Y ] are real (and opposite), i.e.,
det[X,Y ] = �

p
�  0. Under suitable simultaneous orthogonal similarity on X and Y , we may assume

(3.2) [X,Y ] =


� �

0 ��

�
,

where � � 0 and � � 0. Of course �
2 = � det[X,Y ] =

p
�, and

k[X,Y ]k2 = 2�2 + �
2 = 2

p
� + �

2
.

Thus, to prove (3.1), we need to find the range of �2. For each 0  �  1, suppose the maximum value of �
is �� � 0. We have to show that �2

�
is as given in (1.3) (note that as � � 0 here, we drop the absolute value

sign in �|�|) and that � can attain every value between 0 and ��. The proof is divided into several steps.

Step 1. We give an alternative form of (3.2). As X and Y are of rank one, suppose

(3.3) X =


cos a
sin a

� ⇥
cos b sin b

⇤
=


cos a cos b cos a sin b
sin a cos b sin a sin b

�

and

Y =


cosh
sinh

� ⇥
cos k sin k

⇤
=


cosh cos k cosh sin k
sinh cos k sinh sin k

�
,
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where a, b, h, k 2 R. From (3.2), we have

cos a sin b sinh cos k � cosh sin k sin a cos b = �,

cos a cos b cosh sin k + cos a sin b sinh sin k � cosh cos k cos a sin b� cosh sin k sin a sin b = �,

sin a cos b cosh cos k + sin a sin b sinh cos k � sinh cos k cos a cos b� sinh sin k sin a cos b = 0.

The first equation can be rewritten as

sin(a+ b) sin(h� k)� sin(a� b) sin(h+ k) = 2�,

while the second and third equations can be replaced by their sum and di↵erence given by

sin(a� b) cos(h+ k)� sin(h� k) cos(a+ b) = �,

� sin(a+ b) cos(h+ k) + sin(h+ k) cos(a+ b) = �.

Note that a+ b and a� b can achieve any values independently, and so do h+ k and h� k. Thus, writing

(3.4) a+ b = A, a� b = B, h+ k = H, h� k = K,

the above three equations become, with independent variables A, B, H and K,

sinA sinK � sinB sinH = 2�,(3.5)

sinB cosH � sinK cosA = �,(3.6)

� sinA cosH + sinH cosA = �,(3.7)

respectively.

We first show that � can be 0. Take A = H = ⇡/2, and B and K satisfy sinB = �� and sinK = �.
Then (3.5)–(3.7) are satisfied with � = 0.

Step 2. We further transform the problem. We now assume � > 0. Equation (3.7) gives

(3.8) � = sin(H �A).

Equations (3.5) and (3.6) give


� sinH sinA
cosH � cosA

� 
sinB
sinK

�
=


2�
�

�
,

and hence, with (3.8) and using Cramer’s rule, we obtain

sinB =
�2� cosA� � sinA

sinH cosA� sinA cosH
= �2�

�
cosA� sinA

and

sinK =
�2� cosH � � sinH

sinH cosA� sinA cosH
= �2�

�
cosH � sinH.

Thus, equivalently, we need to find the range of � subject to (3.8),

(3.9)

����
2�

�
cosA+ sinA

����  1 and

����
2�

�
cosH + sinH

����  1.
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Step 3. Suppose 0  2�  1 (i.e., 0  �  1/16). For any 0 < �  1, choose H = ⇡/2 and A such that
cosA = � and sinA = �

p
1� �2. Then sin(H � A) = cosA = � and both inequalities in (3.9) are satisfied.

Hence, � can assume any value in [0, 1] as required.

Step 4. We suppose 1  2�  2 (i.e., 1/16  �  1) and find the maximum value of �. Geometrically,
(3.9) means that the inner products of the vector (2�/�, 1)T with the two unit vectors (cosA, sinA)T and
(cosH, sinH)T have absolute values not bigger than one.

Suppose the maximum value of � is �� = sin(H0�A0) > 0 where 0 < H0�A0 < ⇡. If sin(H0�A0) = 1,�
(cosA0, sinA0)T , (cosH0, sinH0)T

 
is an orthonormal basis of R2. Then, (3.9) implies k(2�/��, 1)T k 

p
2.

This gives a contradiction as 2�/�� > 1. So sin(H0�A0) < 1. We claim that for � = ��, both inequalities in
(3.9) must hold in equality. If both of them are strict inequalities, we can purturb H0 and A0 a bit to have
a bigger value of � without violating (3.9), and this gives a contradiction. If exactly one of them is equality,
we may consider replacing H0 and A0 by H0 + ✏ and A0 + ✏ for small suitable ✏, resulting in both of them
are strict inequalities and with � = sin((H0 + ✏)� (A0 + ✏)) = ��. Thus, as in the previous case, we have a
contradiction.

Now suppose both inequalities in (3.9) hold in equality. Geometrically, it is clear that there are 4
unit vectors x 2 R2 such that |hx, (2�/��, 1)T i| = 1, namely, u = (0, 1)T , v and their negatives, where
v = (cos ✓, sin ✓)T , �⇡/2 < ✓ < 0, is the reflection of u across the vector (2�/��, 1)T . See Figure 3.1 below.

𝜃 

1 

1 2𝜆
𝛿𝜆

 

u 

v 

Figure 3.1. The vectors u and v.

In other words, when restricting�⇡ < H0, A0  ⇡, we haveH0, A0 2 {±⇡/2, ✓, ✓+⇡}. Since sin(H0�A0) > 0,
the possible choices for (H0, A0) are (⇡/2, ✓), (✓,�⇡/2), (�⇡/2, ✓ + ⇡) and (✓ + ⇡,⇡/2).

We may take (H0, A0) = (⇡/2, ✓). The other choices of (H0, A0) will always lead to this case. For
example, if (H0, A0) = (✓,�⇡/2), (3.9) becomes

����
2�

sin(✓ � (�⇡/2))
cos

⇣
�⇡

2

⌘
+ sin

⇣
�⇡

2

⌘���� = 1 and

����
2�

sin(✓ � (�⇡/2))
cos ✓ + sin ✓

���� = 1,

which is equivalent to
����

2�

sin(⇡/2� ✓)
cos

⇣
⇡

2

⌘
+ sin

⇣
⇡

2

⌘���� = 1 and

����
2�

sin(⇡/2� ✓)
cos ✓ + sin ✓

���� = 1,
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and these two new conditions exactly mean taking (H0, A0) = (⇡/2, ✓).

So, fix now (H0, A0) = (⇡/2, ✓). It is easy to check that the triangle with vertices (0, 0), (0, 1) and
(2�/��, 1) and the triangle with vertices (0, 0), (cos ✓, sin ✓) and (2�/��, 1) are congruent (see Figure 3.1).
Consequently, in the triangle with vertices (0, 0), (0, 1) and (2�/��, 1), the angle at (0, 0) is

⇡/2�✓

2 (remember
✓ < 0). Hence, s

1 +

✓
2�

��

◆2

cos

✓
⇡/2� ✓

2

◆
= 1,

which gives, with �� = sin(⇡/2� ✓),
✓
1 +

�
2

sin2((⇡/2� ✓)/2) cos2((⇡/2� ✓)/2)

◆
cos2

✓
⇡/2� ✓

2

◆
= 1.

Thus,

� = sin2
✓
⇡/2� ✓

2

◆
,

and hence,

�
2
�
= sin2(⇡/2� ✓) = 4 sin2

✓
⇡/2� ✓

2

◆
cos2

✓
⇡/2� ✓

2

◆
= 4�(1� �).

Step 5. Finally, we show that any value between 0 and �� can be achieved by �. For any 0 < � < ��,
take H = ⇡/2 and A such that

(cosA, sinA) =
�
�,�

p
1� �2

�
.(3.10)

Then � = cosA = sin(H �A) and the second part of (3.9) is satisfied. It remains to show that the first part
of (3.9) is also satisfied. With (3.10), it su�ces to show

��2��
p
1� �2

��  1 for all � where 0 < � < ��. Note
that ��2��

p
1� �2

��  1 , 4�2 � �
2  4�

p
1� �2.

If 4�2 � �
2  0, we are done. Now suppose 4�2 � �

2
> 0. Then

4�2 � �
2  4�

p
1� �2 , 16�4 + 8�2

�
2 + �

4 � 16�2  0.

Since 0 < � < ��, it su�ces to show that 16�4 + 8�2
�
2
�
+ �

4
�
� 16�2  0. With �

2
�
= 4� � 4�2, the result

follows from 16�4 + 8�2
�
2
�
+ �

4
�
� 16�2 = 0.

3.2. Eigenvalues of [X,Y] are purely imaginary. We now suppose the two eigenvalues of [X,Y ]
are purely imaginary, i.e., det[X,Y ] =

p
� > 0. We claim that

(3.11)
p
�  1/4.

We don’t have the upper triangular form as in (3.2). Under suitable simultaneous orthogonal similarity on
X and Y we may assume

X =


p q

0 0

�
where p

2 + q
2 = 1, Y =


y11 y12

y21 y22

�
.

Then

[X,Y ] =


qy21 py12 + q(y22 � y11)
�py21 �qy21

�
.
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Taking the determinant on both sides,

(3.12)
p
� = �q

2
y
2
21 + py21[py12 + q(y22 � y11)].

As y11y22 = y21y12 (i.e., detY = 0), we get

(qy21)
2 � p(y22 � y11)(qy21) + (

p
� � p

2
y11y22) = 0.

Regarding this as a quadratic equation in qy21 with real coe�cients, it has (one and hence) two real roots.
Its discriminant must be non-negative, i.e.,

0  [p(y22 � y11)]
2 � 4(

p
� � p

2
y11y22) = [p(y22 + y11)]

2 � 4
p
�.

Thus,
p
�  p

2(y22 + y11)2/4  1/4 as claimed.

To complete the proof, as 0 < �  1/16, it su�ces to show that k[X,Y ]k2  1 + 2
p
�. Note that, using

(3.12),

k[X,Y ]k2  1 + 2
p
�

, 2q2y221 + 2
p
� + p

2
y
2
21 + [py12 + q(y22 � y11)]

2  1 + 2
p

� + 2
p
�

, 2{py21[py12 + q(y22 � y11)]}+ p
2
y
2
21 + [py12 + q(y22 � y11)]

2  1 + 4
p

�

, {py21 + [py12 + q(y22 � y11)]}2  1 + 4
p
�.

That is, subject to (3.12), we have to show that

[p(y21 + y12) + q(y22 � y11)]
2  1 + 4

p
�.

From y
2
11 + y

2
22 + y

2
12 + y

2
21 = 1 and y11y22 � y12y21 = 0, we get (y21 + y12)2 + (y22 � y11)2 = 1. The result is

now clear as both (y21 + y12, y22 � y11)T and (p, q)T are unit vectors.

4. The complex case.

4.1. Complex vs. real. There are fundamental di↵erences between the real and complex problems
and we tried in vain to modify the proof of Theorem 1.2 to prove the complex case. As an illustration,
suppose

X =


a1

a2

� ⇥
b̄1 b̄2

⇤
=


a1b̄1 a1b̄2

a2b̄1 a2b̄2

�

where (a1, a2)T and (b1, b2)T are unit vectors in C2. When the two vectors are real, in the proof of Theorem
1.2, we have

a1b̄1 � a2b̄2 = cos a cos b� sin a sin b = cos(a+ b) = cosA

and
a2b̄1 + a1b̄2 = sin a cos b+ cos a sin b = sin(a+ b) = sinA.

In the real case, | cosA|  1, | sinA|  1 and k(cosA, sinA)T k = 1. In the complex case, though we have

|a1b̄1 � a2b̄2|  1 and |a2b̄1 + a1b̄2|  1,

the norm of (a1b̄1 � a2b̄2, a2b̄1 + a1b̄2)T ranges from 0 to 2. For example, the matrices 1
2

⇥
1 i
�i 1

⇤
and 1

2

⇥
1 i
i �1

⇤

give the norms of the corresponding vectors 0 and 2, respectively. Consequently, there are several places in
the proof of Theorem 1.2 where the geometric argument cannot be adopted directly to prove the complex
problem.
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4.2. Some lemmas. When [X,Y ] is not in triangular form, we may use k[X,Y ]k2 � 2| det[X,Y ]| to
represent �2 in our formulation. The following proposition tells us that if we can reduce one of the matrices
X and Y to have zero trace then we are done.

Proposition 4.1. For 0  |�|  1 and �
2
|�| as given in (1.3),

max{k[X,Y ]k2 � 2| det[X,Y ]| : X,Y 2 ⌃2(C), | det[X,Y ]| = |�|2, trX = 0}  �
2
|�|.

Proof. Under suitable unitary similarity, we may assume X =


0 1
0 0

�
. With Y = (yij),

XY � Y X =


y21 y22 � y11

0 �y21

�

and so |y21| =
p

| det[X,Y ]| = |�|. Hence,

k[X,Y ]k2 = 2|�|2 + |y22 � y11|2  2|�|2 + (|y22|+ |y11|)2(4.1)

 2|�|2 + (s1(Y ) + s2(Y ))2(4.2)

= 2|�|2 + 1.

Inequality (4.2) follows from the relation between the singular values and diagonal elements of a matrix,
e.g. see [5, (3.1.10a)]. Consequently, for 0  |�|  1/2, we get as desired the maximum to be bounded by
�
2
|�| = 1.

When 1/2 < |�|  1, we can have a smaller upper bound for (|y22|+ |y11|)2 instead of 1. The conditions
|y11|2 + |y22|2 + |�|2 + |y12|2 = 1 (i.e., kY k2 = 1) and |y11||y22| = |�||y12| (i.e., detY = 0) give

(|y11|+ |y22|)2 + (|�|� |y12|)2 = 1.

Replacing |y12| by |y11||y22|/|�|, and using |y11||y22| 
⇣

|y11|+|y22|
2

⌘2
 1/4 < |�|2, we get

(|y11|+ |y22|)2 +

✓
|�|2 �

⇣
|y11|+|y22|

2

⌘2
◆2

|�|2  1

which, by direct calculation, gives 0

B@|�|+

⇣
|y11|+|y22|

2

⌘2

|�|

1

CA

2

 1.

Consequently, after taking square root on both sides, we easily get

(|y11|+ |y22|)2  4|�|� 4|�|2.

Thus, from (4.1), the result follows.

In the following lemma, we modify the proof of Theorem 1.2 to handle a particular case of the complex
problem.
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Lemma 4.2. Suppose X 2 ⌃2(R) and

Y =


c+ di y12

y21 �c+ di

�
2 ⌃2(C), c, d, y12, y21 2 R, d 6= 0,

such that XY � Y X =


� �

0 ��

�
. Then, with �|�| as given in (1.3),

(i) |�|  �|�| ; or

(ii) there exist X̃, Ỹ 2 ⌃2(C) such that X̃Ỹ � Ỹ X̃ =


� �̃

0 ��

�
with |�̃| > |�|.

Proof. We remark that kY k = 1 and detY = 0 read 2(c2+d
2)+y

2
12+y

2
21 = 1 and �(c2+d

2)�y12y21 = 0,

respectively. So,

 p
c2 + d2 y12

y21 �
p
c2 + d2

�
2 ⌃2(R). Let

 p
c2 + d2 y12

y21 �
p
c2 + d2

�
=


cosh
sinh

� ⇥
cos k sin k

⇤
=


cosh cos k cosh sin k
sinh cos k sinh sin k

�
.

The matrix on the left has zero trace and so the condition

0 = cosh cos k + sinh sin k = cos(h� k)

grants h� k 2 {⇡/2 + l⇡ : l is an integer}. Set t = c/
p
c2 + d2, so that we can rewrite Y as

(4.3) Y =


t cosh cos k cosh sin k
sinh cos k t sinh sin k

�
+ dI2i, �1 < t < 1.

Suppose X is as in (3.3). We divide the proof into several steps.

Step 1. Parallel to Step 1 in Section 3.1, by replacing the terms cosh cos k and sinh sin k there by
t cosh cos k and t sinh sin k, we obtain (parallel to (3.5)–(3.7))

sinK sinA� sinB sinH = 2�,(4.4)

t sinB cosH � sinK cosA = �,(4.5)

�t sinA cosH + sinH cosA = �,(4.6)

where A, B, H and K (defined in (3.4)) are independent variables with K 2 {⇡/2 + l⇡ : l is an integer}.
From (4.6), in which the left-hand side can be regarded as the inner product of (� sinA, cosA)T and
(t cosH, sinH)T , we know that |�|  1. Thus, we have (i) if |�|  1/2.

Step 2. Suppose |�| > 1/2. Following the calculation in Step 2 in Section 3.1, we see that the solvability
of (4.4)–(4.6) is equivalent to the solvability of (4.6),

(4.7)

����
2�

�
cosA+ sinA

���� = | sinB|  1 and

����
2�

�
t cosH + sinH

���� = | sinK| = 1.

Note that as B and K are independent of the other variables, we may focus on t, � A and H. If we want to
show that there are matrices satisfying the assertion in (ii), it su�ces to show that there are t1, �1, A1 and
H1 such that, with the terms | sinB| and | sinK| dropped, (4.6) and (4.7) are satisfied and |�1| > |�|. The
values of B and K can then be chosen suitably.

We use a perturbation argument, assuming that there are t, �, A and H satisfying (4.6) and (4.7). Let
us outline our steps first.
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Step 2.1. Perturb t in (4.6) to t1 to have �1 such that |�1| > |�|. With the values t1, �1 and H, the
second part of (4.7) will probably be violated.
Step 2.2. Adjust H to H1 so that t1, �1 and H1 satisfy the second part of (4.7). With the values t1,
�1 and H1, (4.6) will probably be violated.
Step 2.3. Adjust A to A1 so that t1, �1, H1 and A1 satisfy (4.6) .

During the steps, we also have to ensure that the first part of (4.7) is always satisfied. Before we carry out
our plan, we first note the following points.

Point 1. We now eliminate the situation that sinA cosH = 0, so that we can perturb t in (4.6) to have
a bigger value of |�|. If sinA = 0, we have � sinB sinH = 2� from (4.4) and this contradicts 2� > 1. If
cosH = 0, then (4.5) and (4.6) are independent of t. Take t = 1 in (4.3) to have

Ŷ =


cosh cos k cosh sin k
sinh cos k sinh sin k

�
2 ⌃2(R).

Readily, the pair X, Ŷ 2 ⌃2(R) satisfies (4.4)–(4.6). Thus, |�|  �|�| and we are done.

Point 2. We refer to the first part of (4.7). If equality holds, then | sinB| = 1, and hence, trX = cosB =
0. By Proposition 4.1, we have (i) and we are done. We now assume

����
2�

�
cosA+ sinA

���� < 1.

With this assumption, we know that the first part of (4.7) will not be violated if we perturb t, �, H and A

small enough. This ensures the first part of (4.7) will be satisfied throughout the perturbations.

Point 3. We show that

(4.8) |�| <
p
t2 cosH2 + sin2 H.

The main purpose of showing this is to guarantee that after we perturb t, � and H to t1, �1 and H1,
respectively, we still have

(4.9) |�1| <
q

t
2
1 cosH

2
1 + sin2 H1.

Consequently, we can perturb A to A1 as required in Step 2.3. (Note: Geometrically, the left-hand side of
(4.6) is the inner product of the vectors (t cosH, sinH)T and (� sinA, cosA)T . To have A1 in Step 2.3, we
need |�1| < k(t1 cosH1, sinH1)T k.)

We now prove (4.8). By the Cauchy-Schwarz inequality, we know from (4.6) that (4.8) is true when
“” is written. If equality holds, then the two vectors (� sinA, cosA)T and (t cosH, sinH)T are linearly
dependent and k(t cosH, sinH)T k = |�|. So, we can rewrite the second part of (4.7) as

����
2�

�
(� sinA) + cosA

���� =
1

|�| .(4.10)

The two vectors (� sinA, cosA)T and (cosA, sinA)T form an orthonormal basis of R2. Using (4.10) and the
first part of (4.7) we get

✓
2�

|�|

◆2

+ 1 =

�����

✓
2�

�
, 1

◆T
�����

2

=

����
2�

�
(� sinA) + cosA

����
2

+

����
2�

�
cosA+ sinA

����
2

 1

|�|2 + 1,
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and this contradicts the assumption 2� > 1. Hence, we have (4.8).

We are ready to carry out the Steps 2.1–2.3.

• For Step 2.1, by Point 1, we may assume sinA cosH 6= 0. By a small perturbation of t to t1 in (4.6),
we get

�t1 sinA cosH + sinH cosA = �1, where |�1| > |�|.

• For Step 2.2, with t1 and �1 obtained, we adjust H to H1 (with |H �H1| small) so that the second
part of (4.7) is satisfied with t1, �1 and H1. This is possible because of the second part of (4.7),���
�
2�t1
�1

, 1
�T��� > 1, and that t1 and �1 are small perturbations of t and �, respectively.

• For Step 2.3, with (4.9), we can adjust A suitably to A1 (again with |A1 �A| small) so that t1, �1,
H1 and A1 satisfy (4.6).

Summing up, with reference to Point 2, we have found t1, �1, H1 and A1 such that (4.6) and (4.7) are
satisfied and |�1| > |�|. Assertion (ii) follows.

4.3. The main proof. We now give the proof of Theorem 1.3.

Proof of Theorem 1.3. Similar to T (R) in the proof of Theorem 1.2, let

T (C) = {(k[X,Y ]k2, | det[X,Y ]|2) : X,Y 2 ⌃2(C)} ⇢ R2
.

To prove the theorem, it su�ces to show that T (C) = Q. As Q = T (R) ✓ T (C), it su�ces to consider the
right boundary of T (C) and show that

max
�
k[X,Y ]k2 : X,Y 2 ⌃2(C), | det[X,Y ]|2 = �

 
= max

�
k[X,Y ]k2 : X,Y 2 ⌃2(R), | det[X,Y ]|2 = �

 
.

The left boundary (which corresponds to diagonal [X,Y ]) and the bottom boundary of T (R) and T (C) are
obviously the same.

4.3.1. A transformation of the problem. Suppose

X = X̃ +
trX

2
I2

in which tr X̃ = 0, and similarily for Ỹ . Then XY � Y X = X̃Ỹ � Ỹ X̃ which allows us to work with zero
trace matrices. As X is of rank one, its non-trivial eigenvalue is trX. On the other hand, suppose the
eigenvalues of X̃ (which has zero trace) are ±µ. Then X̃ + trX

2 I2 is of rank one if and only if 1
2 trX = ±µ.

When F = R, the latter is possible only if X̃ has real eigenvalues, equivalently, det X̃  0. Note that

kXk2 = kX̃k2 + 2

����
1

2
trX

����
2

= kX̃k2 + 2|µ|2 = kX̃k2 + 2| det X̃|.

Thus, instead of matrices from ⌃2(F), we may assume, if F = R, the matrices are chosen from

�(R) = {H : H 2 M2(R), trH = 0, kHk2 + 2| detH| = 1, detH  0}

that and, if F = C, the matrices are chosen from

�(C) = {H : H 2 M2(C), trH = 0, kHk2 + 2| detH| = 1}.
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We also note that

kHk2 + 2| detH| = s
2
1(H) + s

2
2(H) + 2s1(H)s2(H) =

�
s1(H) + s2(H)

�2
= kHk21.

The condition kHk2 + 2| detH| = 1 in the definitions of �(F) above is equivalent to kHk1 = 1.

We now work with matrices in �(F). We see from the proof of Theorem 1.2 that the region T (R) (i.e., Q)
can be fully filled by commutators that are orthogonally upper triangularizable. Thus, under simultaneous
unitary (orthogonal if F = R) similarity, we may assume

H =


h11 h12

h21 �h11

�
, K =


k11 k12

k21 �k11

�
2 �(F)

are chosen such that

(4.11)


� �

0 ��

�
= HK �KH =


h12k21 � k12h21 2h11k12 � 2h12k11

2h21k11 � 2h11k21 h21k12 � k21h12

�
.

Though we may assume �, � � 0 under diagonal unitary (orthogonal if F = R) similarity and multiplication
with a unit scalar, we do not do so here. Such actions will be used later.

Without assuming �,� � 0, we need to amend our problem. Our original formulation has | det([X,Y ])|2 =
� with � being fixed and so |�| is fixed, and we need to determine the maximum of |�|. Thus, referring to
(4.11), the equivalent problem is to find, for 0  |�|  1,

(4.12) �
F
|�| = max{2|h11k12 � k11h12| : |h12k21 � k12h21| = |�|, h11k21 � k11h21 = 0, H,K 2 �(F)}.

The value of �R|�| is exactly the �|�| as given in (1.3). Here, we need to prove �
R
|�| = �

C
|�|.

For F = R, C and 0  |�|  1, we consider the following problem which has the constraint |h12k21 �
k12h21| = |�| in (4.12) relaxed:

max F (H,K) = 2|h11k12 � k11h12|
subject to |h12k21 � k12h21| � |�|(4.13)

h11k21 � k11h21 = 0(4.14)

H,K 2 �(F).(4.15)

Let us denote the maximum value of the above problem by �F
|�|. Obviously we have

�
R
|�| 

8
<

:

�R
|�|

�
C
|�|

9
=

;  �C
|�|.

It is easy to see that �F
|�| = max{�F

t
: |�|  t  1}. From (1.3), we know that �

R
|�| is non-increasing in |�|

(see Figure 1.1 for
�
�
R
|�|
�2
), and so

�
R
|�| = �R

|�|.

Hence, if we can show �R
|�| = �C

|�|, we get �R|�| = �
C
|�| as required.
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4.3.2. Proof of �R
|�| = �C

|�|. We now regard F = C. Suppose the maximum is attained with matrices
H and K, i.e.,

0 < �C
|�| = F (H,K) = 2|h11k12 � k11h12|.

We will show that, under di↵erent assumptions, either �C
|�|  �

R
|�| or else there is a contradiction.

Step 1. Firstly, we handle the situations that H or K has a zero entry. Note that if |h12| = 1, then
H 2 ⌃2(C) and has zero trace. By Proposition 4.1, we get �C

|�|  �
R
|�| and we are done. The same is true

for K. We have the following three situations:

(I) h11 = 0. Then (4.14) implies k11h21 = 0. If k11 = 0 then �C
|�| = 0 and we have a contradiction. If

h21 = 0 then |h12| = 1 and we are done.

(II) h21 = 0. Then h11k21 = 0 by (4.14). If h11 = 0 we are back to (I). If k21 = 0 then � = 0 by (4.13).
Moreover, kHk1 = kKk1 = 1 implies (2h11,�h12)T and (k12, 2k11)T are unit vectors. Thus, �C

0  1 = �
R
0

and we are done.

(III) h12 = 0. If k12 = 0 then �C
|�| = 0 and hence a contradiction. If |k12| = 1, again, we are done.

Suppose 0 < |k12| < 1. Then

|h21| � |�|/|k12| and 2|h11| = �C
|�|/|k12|.

With 4|h11|2+ |h21|2 = kHk21 = 1, we get back to
�
�C

|�|
�2

+ |�|2  |k12|2 < 1, which implies (as 1+ |�| < 4|�|
for |�| > 1/3)

�
�C

|�|
�2

< 1� |�|2 
⇢

1 if 0  |�|  1/2
4|�|(1� |�|) if 1/2 < |�|  1

�
=
⇣
�
R
|�|

⌘2
,

which gives a contradiction.

Step 2. We derive some necessary conditions on H and K. From now on, we can assume all the entries
of H and K nonzero. If detH = 0, then H 2 ⌃2(C) with zero trace. By Proposition 4.1, we have �C

|�|  �
R
|�|

and we are done. The same is true for K. We now further assume

(4.16) detH 6= 0 and detK 6= 0.

Via multiplication by suitable unit scalars on H and K, we assume h11 > 0 and k11 > 0.

Write

H =


h11 |h12|ei✓12

|h21|ei✓21 �h11

�
and K =


k11 |k12|eiµ12

|k21|eiµ21 �k11

�
,

where ✓12, ✓21, µ12, µ21 2 [0, 2⇡). Define

H1(✓) =


h11 h12e

i✓

h21 �h11

�
and K1(✓) =


k11 k12e

i✓

k21 �k11

�
, ✓ 2 J,

where J is an open interval containing 0 such that detH1(✓) and detK1(✓) are nonzero on J . Such an interval
exists because H1(0) = H, K1(0) = K and (4.16). We see that for any ✓ 2 J , H1(✓) and K1(✓) satisfy (4.13)
and (4.14), though they may not belong to �(C) because their trace norms may not be 1. If there exists
a ✓0 2 J such that kH1(✓0)k21 · kK1(✓0)k21 < 1, then for ↵ = 1/kH1(✓0)k1 and � = 1/kK1(✓0)k1, ↵� > 1,
k↵H1(✓0)k1 = 1 and k�K1(✓0)k1 = 1. It is easy to check that ↵H1(✓0) and �K1(✓0) satisfy (4.13)–(4.15)
and

F (↵H1(✓0),�K1(✓0)) =
��↵�ei✓0(2h11k12 � 2k11h12)

�� = ↵��C
|�| > �C

|�|.
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This gives a contradiction. Thus, the function G(✓) = kH1(✓)k21 · kK1(✓)k21 has a global minimum value 1
attained at ✓ = 0 and, consequently, G0(0) = 0 and G

00(0) � 0. As kH1(0)k1 = kK1(0)k1 = 1, we get

(4.17)
�
kH1(✓)k21

�0 ��
✓=0

+
�
kK1(✓)k21

�0 ��
✓=0

= G
0(0) = 0,

and

(4.18)
�
kH1(✓)k21

�00 ��
✓=0

+ 2
�
kH1(✓)k21

�0 ��
✓=0

·
�
kK1(✓)k21

�0 ��
✓=0

+
�
kK1(✓)k21

�00 ��
✓=0

= G
00(0) � 0.

From (4.17), we have
�
kH1(✓)k21

�0 ��
✓=0

·
�
kK1(✓)k21

�0 ��
✓=0

 0, and thus, (4.18) implies

(4.19)
�
kH1(✓)k21

�00 ��
✓=0

+
�
kK1(✓)k21

�00 ��
✓=0

� 0.

We now obtain the explicit expressions for (4.17) and (4.19). From (4.14), since h11k21 6= 0, we have

✓21 = µ21.(4.20)

Then

kH1(✓)k21 = 2h2
11 + |h12|2 + |h21|2 + 2

���h2
11 + |h12||h21|ei(✓12+✓21+✓)

���

= 2h2
11 + |h12|2 + |h21|2 + 2

q
h
4
11 + 2h2

11|h12||h21| cos(✓12 + ✓21 + ✓) + |h12|2|h21|2.

Thus,

�
kH1(✓)k21

�0
=

�2h2
11|h12||h21| sin(✓12 + ✓21 + ✓)p

h
4
11 + 2h2

11|h12||h21| cos(✓12 + ✓21 + ✓) + |h12|2|h21|2
,

and hence,

(4.21)
�
kH1(✓)k21

�0 ��
✓=0

=
�2h2

11|h12||h21| sin(✓12 + ✓21)

| detH| .

With a similar expression for (kK1(✓)k1)0
��
✓=0

, condition (4.17) implies

(4.22)
h
2
11|h12||h21| sin(✓12 + ✓21)

| detH| +
k
2
11|k12||k21| sin(µ12 + µ21)

| detK| = 0.

Also, by direct calculation,

(kH1(✓)k21)00
��
✓=0

=
�2|h11|2|h12||h21| cos(✓12 + ✓21)

| detH| � 2|h11|4|h12|2|h21|2 sin2(✓12 + ✓21)

| detH|3 .

Thus, with a similar expression for (kK1(✓)k1)00
��
✓=0

, (4.19) implies

h
2
11|h12||h21| cos(✓12 + ✓21)

| detH| +
h
4
11|h12|2|h21|2 sin2(✓12 + ✓21)

| detH|3

+
k
2
11|k12||k21| cos(µ12 + µ21)

| detK| +
k
4
11|k12|2|k21|2 sin2(µ12 + µ21)

| detK|3  0(4.23)

Step 3. We now come to the final argument. We refer to (4.22) and divide the proof into two cases,
depending on whether sin(✓12 + ✓21) is zero or not.
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Case 1. sin(✓12+✓21) = 0. By (4.22), sin(µ12+µ21) = 0 and so both ✓12+✓21 and µ12+µ21 are multiples
of ⇡. With (4.20), we can easily deduce that H and K are of the form

H =


h11 ⌧H |h12|e�✓21i

|h21|e✓21i �h11

�
and K =


k11 ⌧K |k12|e�✓21i

|k21|e✓21i �k11

�
,

where ⌧H , ⌧K 2 {1,�1}. Let D = diag(1, ei✓21), which is unitary. Then D
⇤
HD and D

⇤
KD are real matrices.

For notation simplicity, instead of using D
⇤
HD and D

⇤
KD, we now just assume H and K are real. We

have three subcases.

Subcase 1.1. detH < 0 and detK < 0. Here, both H and K belong to �(R). Consequently, we have
�R

|�| � �C
|�| and the result follows.

Subcase 1.2. detH > 0 and detK > 0. The condition detH > 0 implies h
2
11 + h12h21 < 0 and

consequently the condition kHk21 = 1 becomes (h12 � h21)2 = 1, which is independent of h11. It means that
as long as the condition h

2
11 + h12h21 < 0 is satisfied, we may vary h11 freely. The same is true for k11 when

detK > 0. Thus, for ✏ > 0 but small enough, the pair

Ĥ =


(1 + ✏)h11 h12

h21 �(1 + ✏)h11

�
and K̂ =


(1 + ✏)k11 h12

k21 �(1 + ✏)k11

�

satisfies (4.13)–(4.15) and F (Ĥ, K̂) = (1 + ✏)F (H,K) > F (H,K) = �C
|�|. This gives a contradiction.

Subcase 1.3. detH < 0 and detK > 0 (the other case detH > 0 and detK < 0 is the same). We
check that X = H +

p
| detH|I2 2 ⌃2(R) and Y = K +

p
| detK|I2i 2 ⌃2(C). By Lemma 4.2, we conclude

that either �C
|�|  �

R
|�| or there is another pair that gives a larger value of F . The latter contradicts the

maximality of F (H,K). The result follows.

Case 2. sin(✓12 + ✓21) 6= 0. Suppose sin(✓12 + ✓21) > 0 (the case sin(✓12 + ✓21) < 0 is similar). Then
sin(µ12 + µ21) < 0 by (4.22) and we have from (4.21)

�
kH1(✓)k21

�0 ��
✓=0

< 0 and
�
kK1(✓)k21

�0 ��
✓=0

> 0.

Subcase 2.1. cos((✓12 + ✓21) � (µ12 + µ21)) 6= �1. We can find an ✏ 2 J (with |✏| small enough, to be
determined later) such that

cos((✓12 + ✓21)� (µ12 + µ21)) > cos((✓12 + ✓21)� (µ12 + µ21) + ✏).

Then, using (4.20),

�C
|�| = 2

���h11|k12|� k11|h12|ei((✓12+✓21)�(µ12+µ21))
���

< 2
q
h
2
11|k12|2 � 2h11k11|h12||k12| cos((✓12 + ✓21)� (µ12 + µ21) + ✏) + k

2
11|h12|2 := p

and at the same time, again using (4.20),

|�|  |h12k21 � k12h21| =
���|h12||k21|ei(✓12+µ21�µ12�✓21) � |k12||h21|

���

<

p
|h12|2|k21|2 � 2|h12||k21||h21||k12| cos((✓12 + ✓21)� (µ12 + µ21) + ✏) + |k12|2|h21|2 := q.
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Suppose ✏ > 0. Since
�
kH1(✓)k21

�0 ��
✓=0

< 0, we know that
�
kH1(✓)k21

�0
, being continuous on J , is

negative on a neighborhood N of 0. Thus, kH1(✓)k21 is decreasing on N . We can assume ✏ small enough so
that kH1(✏)k21 < kH1(0)k21 = 1. Note that

H1(✏)K �KH1(✏) =


h12e

i✏
k21 � k12h21 2h11k12 � 2k11h12e

i✏

0 �(h12e
i✏
k21 � k12h21)

�

with |2h11k12 � 2k11h12e
i✏| = p > �C

|�| and |h12e
i✏
k21 � k12h21| = q > |�|. We now have a contradiction

because H1(✏)/kH1(✏)k1 and K satisfy (4.13)–(4.15) and

F (H1(✏)/kH1(✏)k1,K) = p/kH1(✏)k1 > �C
|�|/kH1(✏)k1 > �C

|�|.

If ✏ < 0, we use
�
kK1(✓)k21

�0 ��
✓=0

> 0, and we have a contradiction similarly.

Subcase 2.2. cos((✓12 + ✓21)� (µ12 + µ21)) = �1. We have

(✓12 + ✓21) = (µ12 + µ21) + (2k + 1)⇡ for some integer k.

This implies

(4.24) (0 6=) sin(✓12 + ✓21) = � sin(µ12 + µ21) and cos(✓12 + ✓21) = � cos(µ12 + µ21).

Then, (4.22) and the first part of (4.24) give

(4.25)
h
2
11|h12||h21|
| detH| =

k
2
11|k12||k21|
| detK| .

We now refer to (4.23). Using (4.24), (4.25) and the assumption that all the entries of H and K are nonzero,
we get a contradiction.
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Abstract: Bone remodelling consists of cycles of bone resorption and formation executed mainly
by osteoclasts and osteoblasts. Healthy bone remodelling is disrupted by diseases such as Multiple
Myeloma and bone metastatic diseases. In this paper, a simple mathematical model with differential
equations, which takes into account the evolution of osteoclasts, osteoblasts, bone mass and bone
metastasis growth, is improved with a pharmacokinetic and pharmacodynamic (PK/PD) scheme of
the drugs denosumab, bisphosphonates, proteasome inhibitors and paclitaxel. The major novelty
is the inclusion of drug resistance phenomena, which resulted in two variations of the model,
corresponding to different paradigms of the origin and development of the tumourous cell resistance
condition. These models are then used as basis for an optimization of the drug dose applied, paving
the way for personalized medicine. A Nonlinear Model Predictive Control scheme is used, which
takes advantage of the convenient properties of a suggested adaptive and democratic variant of
Particle Swarm Optimization. Drug prescriptions obtained in this way provide useful insights into
dose administration strategies. They also show how results may change depending on which of the
two very different paradigms of drug resistance is used to model the behaviour of the tumour.

Keywords: bone remodelling; PK/PD; bone metastasis; model predictive control; particle swarm optimization

1. Introduction

Bone remodelling is a dynamic process that remains active throughout the entire life cycle. This
mechanism depends on a complex control system which depends on innumerous hormones, cells,
cytokines, among other endless variables. Cancer can be viewed as a loss of tissue homeostasis and it
defines the diseases in which abnormal cells divide without control and can invade nearby tissues.
Tumour presence provokes severe alterations in the bone remodelling regulation. Multiple myeloma
(MM) is the most common cancer to involve bone.

The ongoing constant battle against cancer has been strengthened with groundbreaking
discoveries over the years regarding experimental findings and mathematical modelling advances,
fundamental for a better understanding of the relationship between experimental and theoretical
approaches. Mathematical modelling efforts are crucial to identify the treatment schedules that
maximally extend patient survival, perform qualitative and quantitative conclusions regarding
certain physiological and biochemical counter-intuitive mechanisms or controlling drug-resistant
sub populations within the tumour [1,2].

This paper develops models found in the literature of bone remodelling in the presence of tumours
and cancer treatments, in the form of non-linear systems of differential equations, so as to include
pharmacokinetic and pharmacodynamic (PK/PD) effects and the resistance to treatment that tumours
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develop; such models are then used in simulations to find optimal treatment schedules and strategies,
using Nonlinear Model Predictive Control.

The structure of the paper is as follows: Section 2 shortly reviews the mechanisms of bone
remodelling and tumour growth; Section 3 presents the improved mathematical models; Section 4
presents the mathematical tools to optimise treatment schedules and Section 5 addresses their
implementation; Section 6 shows and discusses simulation results, and Section 7 sums up conclusions.

2. Background—Bone Remodelling and Tumours

Bone remodelling is a coordinated, spatially heterogeneous and adaptive process. The tissue is
continuous in a process of removal of old and damaged tissue by osteoclasts (OC) and subsequent
reconstruction of the resorptive cavities with new material by osteoblasts (OB). This mechanism
maintains the skeleton size, its structure and the mineral homoeostasis [3]. It serves to repair
microdefects in the bone matrix and readjust the bone strength to meet new mechanical needs. In a
healthy adult bone, the amount of bone that is absorbed is the same as the one formed afterwards,
so that the bone mass remains approximately constant. The resorption and formation processes are
strongly coupled through anatomic structures termed basic multicellular units (BMU).

OB, the bone forming cells, result from a differentiation pathway under the control of a defined
series of transcription factors. It starts with mesenchymal stem cells (MSC), which differentiate
into osteoprogenitors, which in turn give rise to preosteoblasts and finally transform into mature
osteoblasts [4,5]. OC are multinucleated cells formed by the fusion of mononuclear progenitors of the
monocyte/macrophage haematopoietic lineage [6]. Disturbances in osteoclasts and osteoblasts activity
and coupling give rise to diseases such as osteoporosis or osteopetrosis.

2.1. Bone Remodelling Regulation

Osteoblastogenesis and osteoclastogenesis are tightly linked and regulated by several autocrine
and paracrine signalling factors: proteins and hormones secreted by hemopoietic bone marrow cells or
bone cells. Bone remodelling regulation is both systemic and local [7].

Osteoclast precursors express Receptor Activator of Nuclear Factor kB (RANK) and Macrophage
Colony-stimulating Factor Receptor (c-fms). Osteoblasts produce and release Macrophage
colony-stimulating factor (M-CSF) and express the receptor for activation of nuclear factor kappa
B (NF-kB) ligand (RANKL), which are key regulators in osteoclasts differentiation and growth.
As the protein RANKL and M-CFS bind to the preosteoclastic cells’ receptors, RANK and c-fms
respectively, signaling pathways are triggered, which promote the survival and differentiation into
mature osteoclasts, leading to an increase of the resorption of the bone. Cells of the osteoblast lineage
also segregate osteoprotegerin (OPG). This protein acts like a decoy receptor and binds with RANKL,
keeping the latter to connect and activate its receptor in the surface of osteoclasts. OPG ihnibits their
final differentiation and induces osteoclast apoptosis [6]. The RANKL/OPG ratio determines the
degree of osteoclast differentiation, function and apoptosis.

Other factors responsible for bone remodelling regulation are within the following five groups [8]:
Systemic hormones, Local cytokines and signals, vitamins and minerals, genetic factors and mechanical
loading. Among innumerable agents, the parathyroid hormone (PTH), Insulin and Transforming Growth
Factors (IGF and TGF), interleukins (IL) and Tumour Necrosis Factors (TNF) are highlighted for
their relevance.

2.2. The Process of Bone Remodelling

Activation Phase: The cycle starts with the identification of a triggering signal, which can be a
loss in mechanical loading, a disturbance in calcium homeostasis or a change in hormones/citokines
concentrations. Osteocytes are cells that are trapped inside the bone matrix. These produce TGF-b,
which inhibits osteoclastogenesis. Once osteocyte local apoptosis happen due to mechanical loading,
the factor’s local concentration decreases, allowing resorption to increase and the remodelling cycle to
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begin [3]. Another concept suggests that osteoblastic cells receive the osteocytes signalling and activate
the BMU [9]. When there is an hormone disturbance, such as a PTH increase, the cycle is also induced,
since this hormone binds directly to OB and promotes OC differentiation and activation [4].

Reversal Phase: PTH interaction with the OB leads the latter to segregate monocyte
chemoattractant protein-1 (MCP-1), which recruits the OC to the site. In response to the endocrine and
mechanical activation signalling, osteoblasts also express matrix metalloproteinases (MMP). The bone
surface is degraded by these proteins in order to facilitate osteoclast adhesion to the tissue. Osteoclasts
attach to the bone, and after releasing acids, it absorbs th mineralized matrix. The remaining bone is
degraded and removed by the enzyme cathepsin K. In this phase, osteoclast apoptosis occurs [10].

Formation Phase: The degradation of the bone matrix unleashes factors that attract the MSC.
Termination Phase: At this point, OC suffer apoptosis. Besides apoptosis, OB may also

differentiate into bone lining cells or into osteocytes [5].

2.3. Tumour and Its Influence on Bone Remodelling

The origin and propagation of cancer appears to be caused by heritable changes in the genetic
material of healthy cells—mutations. Cancer is commonly divided into categories according to its origin
in the body (primary site). Cells from this primary site may spread to other parts of the host body
through the bloodstream or lymphatic system, a process called metastasization. A bone metastasis is a
part of the bone containing cancer cells and are the result of complex interactions between tumour
cells, bone cells and their microenvironment [11]. They are responsible for deregulating the normal
functioning of bone remodelling and are commonly classified in two extreme phenotypes according
to the distortion of the coupling: osteoblastic, when bone formation is enhanced and osteolytic, when
resorption is promoted [12]. This work is solely focused on the latter.

Tumour cells release several factors such as parathyroid hormone-related protein (PTHrP) and
interleukins IL-6, IL-8 and IL-11 which promote osteolysis by stimulating osteoclast activity. A vicious
cycle is established: factors that are trapped in the bone matrix and expressed during resorption, such
as TGF-b, vascular endothelial growth factor (VEGF) and IGFs stimulate tumour cells’ survival and
proliferation and subsequently PTHrP production. [11,13–15].

These interactions are graphically depicted in Figure 1. For more details about bone remodelling
see, e.g., [16–18]; as to the effects of of tumours and their treatments, see, e.g., [19–21].

Figure 1. Tumour influence on bone remodelling.
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3. Proposed Models

3.1. Pharmacodynamics and Pharmacokinetics

The proposed bone remodelling and tumour growth model is based on Ayati’s [22] work.
From that formulation, the therapy effects of four drugs were added: Denosumab (T1), bisphosphonates
or BP (T2), Paclitaxel (T3) and proteasome inhibitors or PI (T4). The Pharmacokinectics, or PK
(this designates the study of the time evolution of drug absorption, distribution, metabolism and
excretion [23]), of each drug j is modelled as the two-compartmental model (1).

d
dt

Cgj
(t) = �kaj

Cgj
(t) (1a)

d
dt

Cpj
(t) = kaj

Cgj
(t)� kej

Cpj
(t) (1b)

The variable Cg(t) is the concentration of the drug in a peripheral compartment, Cp(t) is the
effective concentration in plasma, ka is the absorption rate and ke, the elimination rate [24].

The Pharmacodynamics, or PD (this refers to the relationship between drug concentration at the
site of action and the resulting effect [25]), may be modelled with a Hill function (Equation (2)), whose
output dj(t) is the drug effect in the system and lies within the interval [0, 1]. The variable C50(t) is the
concentration that achieves 50% of the drug’s maximum effect.

dj(t) =
Cpj

(t)

C50j
(t) + Cpj

(t)
(2)

3.2. Finding the Bone Mass

The model equations relative to the OC number C(t), OB number B(t), bone mass z(t) in
percentage of its steady-state value, and tumour burden T(t) in percentage of bone mass at time
t [days] are represented by (3). The tumour growth is described with a gompertzian curve. Behind this
equation lies the idea that the per capita growth of the population decreases exponentially with time.
Its sigmoidal shape is qualitatively conceivable; the growth rate derivative of small sized tumours
should be increasing, since they easily adapt to the environment obstacles. As the tumour increases in
size, it the proliferation becomes more difficult, considering that the host physiology is more degraded,
and the resources start to lack.

d
dt

C(t) = a1C(t)G11 B(t)G21 � (b1 + Kd2 d2(t))C(t) (3a)

d
dt

B(t) = a2C(t)G12 B(t)G22 � (b2 � Kd4 d4(t))B(t) (3b)

G11 = g11(1 + r11
T(t)
LT

) (3c)

G21 = g21(1 + r21
T(t)
LT

)� Kd1 d1(t) (3d)

G12 = g12/(1 + r12
T(t)
LT

) (3e)

G22 = g22(1 � r22
T(t)
LT

) (3f)

d
dt

z(t) = �k1 max[0, C(t)� C̄] + k2 max[0, B(t)� B̄] (3g)
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d
dt

T(t) = (gtot)T(t) log
✓

LT

T(t)

◆
(3h)

gtot = gT � Kd3 d3(t) + KTh(t) (3i)

h(t) = max[0, C(t)� C̄] (3j)

The parameters ai and bi are activities of cell production and removal, respectively. The index 1
refers to the OC population, and the index 2 to the OB. The autocrine and paracrine effects between
OC and OB are not treated separately, their contributions are summed and expressed as the parameters
gij, the net effectiveness of osteoclast or osteoblast-derived autocrine or paracrine factors. These can be
positive (stimulatory) or negative (inhibitory).

The bone mass variation is attributed to the cell proliferation above the respective non-trivial
steady-state levels, C̄ (OC) and B̄ (OB). The cells under this value are considered to be unable to
resorpt or form bone, but they still participate in autocrine and paracrine signalling. The rates of
bone formation and resorption are proportional to the number of osteoclasts and osteoblasts that
exceed steady-state values, and ki represents the normalized activity of bone resorption (i = 1) and
formation (i = 2). The parameter LT is an arbitrary value for the maximum size of T(t) and gT is the
respective growth constant. The values r translate the effect of the metastasis size in the autocrine and
paracrine factors. The term h(t), given by (3j), is introduced in this work and represents the influence
of an excessive osteoclastic activity in tumour proliferation. The parameter KT measures the effect of
this influence.

0 10 20 30 40 50 60 70 80
time [days]

0
20
40

C
on

ce
nt

ra
tio

n

0
0.5
1

d 1

Denosumab
Cp

j
 (PK)

Cg
j
 (PK)

Effect dj (PD)

0 10 20 30 40 50 60 70 80
time [days]

0
0.005
0.01

C
on

ce
nt

ra
tio

n

0.6
0.8
1

d 2
BP

0 10 20 30 40 50 60 70 80
time [days]

0
1
2

C
on

ce
nt

ra
tio

n

0
0.5
1

 d
3

Paclitaxel

0 10 20 30 40 50 60 70 80
time [days]

0
0.02
0.04

C
on

ce
nt

ra
tio

n

0
0.5
1

 d
3

PI

Figure 2. Pharmacokinetic/pharmacodynamic (PK/PD) behaviour of T1, T2, T3 and T4; concentrations
in mg/L.
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Table 1. PK/PD parameters.

Parameter Units T1 T2 T3 T4

C50 mg/L 1.2 0.0001 0.002 0.00005
Kd 0.09 0.005 0.015 0.002
t day 4 4 1 1

D0 mg 120 4 176 2.5
F 0.62 - - -

Vd L 3.15 536.4 160.25 68.18
ka day�1 0.2568 0 0 0
ke day�1 0.0248 0.1139 1.2797 1.40

Kdj
is the maximum effect of the drug Tj. The system (3) is a general representation that comprises

the four drugs. In reality, these drugs are grouped in three combined therapies: T1 + T3, T2 + T3
and T4 + T3. This means that there are only two inputs: the anti-cancer drug effect d3(t) and one of
the three bone therapies effects, d1(t), d2(t) or d4(t). The PK/PD response is illustrated in Figure 2.
The parameters of this simulation can be found in Table 1, including the periodicity of administration
t. The PK/PD initial conditions for a single administration are obtained with C

0
g = D0F/Vd, for T1

and C
0
p = D0/Vd, for the remaining drugs. The parameters D0, Vd and F correspond to the initial dose,

volume distribution and bioavailability, respectively.
The PK/PD models and respective parameters regarding T1, T2 and T3 were suggested by

Coelho et al. [4]. The parameters regarding the PI model were estimated from a non-compartmental
analysis in plasma of patients with advanced solid tumours, specifically the half life t1/2 and estimated
C

0
p [26]. The remaining parameters of the model are fixed as: a1 = 3 day�1, a2 = 4 day�1,

b1 = 0.2 day�1, b2 = 0.02 day�1, k1 = 7.48�2 day�1, k2 = 5.52�4 day�1, g11 = 1.1, g12 = 1, g21 = �0.5,
g22 = 0, LT = 100%, KT = 4 ⇥ 10�4, gT = 5 ⇥ 10�3 day�1, r11 = 5 ⇥ 10�3, r12 = 0.0, r21 = 0.0,
r22 = 0.2, Kr = 0.8, C50base = 2 ⇥ 10�3 mg/L, l1 = 10�6, l2 = 10�6, C(0) = 15, B(0) = 316,
z(0) = 100%, T(0) = 0.001%, C̄ = 5 and B̄ = 316.

3.3. Inclusion of Drug Resistance

Model (3) diverges into two variations that approach the resistance to paclitaxel in two different
manners, the models MDR1 and MDR2, each of them corresponding to a possible model of drug
resistance found in the literature [24].

Model MDR1 considers that the resistance accumulation is caused by Cp levels of the drug below
a certain threshold C

th
p [27]. The C503 is affected according to

C503(t) = f (t)Cbase

50

f (t) = 1 + Kr

Z
t

0
max[0, C

th
p � Cp(t)]dt,

(4)

where parameter Kr translates the capacity of the tumour cells to develop resistance and C
base

50 is a
constant which represents the initial value of C503 .

Model MDR2 is based on the Random Mutation Model (RMM) [28], a Darwinian theory that
proposes the existence of two proliferative tumour cell populations: S(t) is composed completely
sensitive cells, and R(t) by completely resistant ones. The combination between the RMM and the
proposed model (3) results in the following tumour growth description:

T(t) = R(t) + S(t) (5a)

d
dt

S(t) = gSS(t) log
✓

LT

T(t)

◆
+ l2R(t) log

✓
LT

T(t)

◆
(5b)

gS = gT � Kd3 d3(t)� l1 + KT1h(t); (5c)
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d
dt

R(t) = gRR(t) log
✓

LT

T(t)

◆
+ l1S(t) log

✓
LT

T(t)

◆
(5d)

gR = gT � l2 + KT1h(t), (5e)

where l1 and l2 are the mutation and back-mutation rates between the S and R [29].

4. MPC–PSO scheme

4.1. Nonlinear Model Predictive Control

Model predictive control (MPC) refers to a class of control methods that make use of an an explicit
process model to predict the future response of a system and obtain the control sequence over a certain
horizon that minimizes a cost function. MPC performance is therefore highly dependent on the model
performance. This also called receding horizon control does not allow the current time slot to be
optimized, while keeping future time slots in account, which represents a major advantage; see Figure 3.
The input is optimized for a finite prediction horizon Np and subsequently the first entries of the
optimized input sequence (control horizon Nc) are fed back. It represents an advantage over classical
control since it has the ability to explicitly account for systems constraints, the constrained nonlinear
optimization problem is easy to formulate, multivariable processes can be handled in a straightforward
manner, and reference tracking can be improved if the references are known in advance. Besides,
it easily handles nonlinear and time-varying plant dynamics, since the controller is a function of the
system and can be modified in real time [30,31]. The proposed implementation of NMPC in this work
will count on metaheuristics, specifically Particle Swarm Optimization, to solve the nonlinear problem
at each step. Combining metaheuristics with MPC brings flexibility to design any type of cost function.

Figure 3. Flowchart of model predictive control (MPC) (left) and illustration of prediction
horizon (right).

4.2. Proposed PSO Algorithm

Particle Swarm Optimization (PSO) is a collective, anarchic, nature-inspired population-based
search algorithm [32,33]. It is inspired in the social behaviour of a bird flock. PSO algorithms are a
common choice to solve the optimization problem involved in model predictive control schemes [34,35].

The swarm is composed by S particles wandering in a D-dimensional space. The position
coordinates of each particle i are equivalent to a candidate solution. The particles’ position and velocity
are updated taking into account advantageous positions of the surrounding partners. This position
adjustment depends on the difference between the particles’ current position xi and two others: pi
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(the best position visited by particle i, and pg (the best position visited by any particle of the swarm).
At each iteration k, the particles’ position and velocity vector vi are updated according to

vij(k) = c
⇥
wijvij(k � 1) + c1(k)rand1(pij � xij(k � 1)) + c2(k)rand2(pgj

� xij(k � 1)) + c3(k)rand3dij

⇤
(6)

xij(k) = xij(k � 1) + vij(k). (7)

The acceleration/confidence parameters c1, c2 and c3 are the cognitive, social and democratic
coefficient, respectively. The particle’s inertia is measured by the inertia weight w and rand is
a random number in the interval [0,1]. The last term is not present in the traditional PSO. This
democratic approach brings to the velocity update the opinion of all eligible particles of the swarm [36].
The vector de contains this swarm contribution and is obtained with

de i =
n

Â
k=1

Qik(xkj � xij) (8a)

Qik =
Eik

cost(xbest)
cost(xk)

Ân

j=1 Eij

cost(xbest)
cost(xj)

(8b)

Eik =

8
>>><

>>>:

1 if
cost(xk)� cost(xi)

cost(xworst)� cost(xbest)
> rand

^cost(xk) < cost(xi)

0 otherwise

, (8c)

where dij is the jth entry of vector de for each particle i, c3 is the confidence coefficient which controls
the weight of the the democratic quantities, and cost(x) is the cost function chosen for the particular
problem evaluated at x. This vector represents the democratic effect of the other particles in the
movement of particle i. The weight of the kth particle is represented by Qik, which depends on the
eligibility parameter Eik. The best and worst particles of the swarm at each iteration are denoted xbest

and xworst, respectively.
The adaptive profile of the proposed algorithm, AD-PSO is translated in the inertia weight

evolution with the iterations [37]. The inertia weight value regarding the jth variable of the particle i is
updated with the Equations (9) and (10).

Value w0 is a constant that defines the initial inertia weight. Parameter e is a non-critical small
and positive value that ensures a proper variation of the inertia weight. Value L is obtained with (10),
where e is a non-critical small and positive value that ensures a proper variation of the inertia weight.

wij(k + 1) =

8
>>>>>>>><

>>>>>>>>:

min

 
1, wij(k) + (1 � w0)e

L + e

!
if di(k) > 0 ^ di(k � 1) > 0

max

 
0.1, wij(k)� w0

✓✓
1 � e

L
◆
� e

!
if di(k) < 0 ^ di(k � 1) < 0

wij(k) otherwise

(9)

L =
(xij(k + 1)� pij(k))

2

�2s2 (10)

The values di measure the success of particle i in the following manner:

di =

(
1 if cost(x1) < cost(pi)

�1 otherwise
(11)
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The TVAC algorithm (Time Varying Acceleration Coefficients) [38] dictates the dynamic behaviour
of both c1 and c2 according to Equations (12).

c1(k) = (c1 f
� c1i

)
k

niter

+ c1i
(12a)

c2(k) = (c2 f
� c2i

)
k

niter

+ c2i
(12b)

The values ci1 and c f 1 are the initial and final values of the coefficient c1 while ci2 and c f 2 represent
the initial and final values of c2. These linearly increasing and decreasing behaviours are defined until
the maximum number of iterations niter.

The minimum number of niter is set to niter = 100, however the algorithm stops when a state
of convergence is achieved. The stopping criterion uses a counter q which records the number of
consecutive iterations with no improvement, after k > niter, according to (13). The algorithm stops
when q reaches a maximum value qmax.

q(k) =

(
0, if cost(pg(k)) < cost(pg(k � 1)) _ k < niter

q(k � 1) + 1, otherwise
(13)

The dynamic parameters are maintained constant at c1(k) = 1.5 and c2(k) = 2.5 for k > niter.
The PSO parameters were fixed for this problem as: S = 50, w0 = 0.9, e = 0.005, c1i

= c2 f
= 2.5,

c2i
= c1 f

= 1.5, qmax = 15. The algorithm is depicted in Figure 4.

Figure 4. Particle Swarm Optimization (PSO).

5. Implementation

In this section, the NMPC-PSO scheme described in Section 4 is implemented with the objective
of optimizing the prescription doses of the proposed therapies, when the drugs are administered with
the fixed periodicity t.

Only the therapies T1 + T3 and T4 + T3 are considered for this optimization. The BP therapy,
although it results in a qualitatively viable therapy model, is not suitable for optimization. The rise of
OC apoptosis due to BP decreases, although very slightly, the lower bound of the OC time response.
The tumour T(t) causes the opposite reaction: an increase of the mean value of C(t), as well as its lower
bound. When the tumour is proliferating, or has a substantial size, this lower bound increase cancels
out the decrease caused by BP. When the tumour starts to be extinguished, the anti-resorptive effect
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pushes the OC number to fall below zero. Although the negative values of OC are smaller orders than
C̄, it is enough to severely interfere with the dynamics, due to the appearance of complex numbers.

The standard regimen is defined as the prescription schedule which administrates constant values
of C

0
p and C

0
g. The decision variables are C

0
p, for the initial concentration of paclitaxel and PI and C

0
g

for the initial concentration for denosumab. These values for the initial concentration are fixed at
C

0
g1 = 23.62, C

0
p4 = 0.0367 and C

0
p3 = 1.0983 (denosumab, PI and paclitaxel, respectively). The lower

bound of the concentration is equal to zero for all drugs and the upper bound is considered to be
three times the standard regimen doses, and therefore C

0
p1max

= 70.86, C
0
p4max

= 0.11 and C
0
p3max

= 3.29.
The maximum velocity of the particles, vmax is calculated offline as vmax = 0.2(xmax � xmin) and the
minimum as vmin = �vmax. The time of the diagnosis and therefore the beginning of the optimization
is considered to be tstart = 800 days. The optimization is single-objective and the goal is to minimize
the tumour size, the drug dosage and approximate the bone mass to a healthy level as much as possible.
The objective function is defined as

J = w1D
�1
t

(1 � z(t)
L1

)2 + w2D
�0.8
t

T(t)
L2

+w3D
�1
t

Cpbr
(t)

L3
+ w4D

�1
t

Cp3(t)

L4
,

(14)

where Cp3 and Cpbr
are the plasma concentration evolutions of paclitaxel and one of the two bone

remodelling pharmaceuticals, Cp1 or Cp4 . The quantities L1, L2, L3 and L4 are maximum values of z,
T, Cpbr

and Cp3, respectively and can be found in Table 2, as well as the weights w1, w2, w3 and w4.
The functional operator D

�1 is a Riemann integral, and D
a is a fractional derivative, defined here

(according to Grünwald and Letnikoff) as [39]

cD
a
t f (t) = lim

h!0+

Â
[ t�c

h
]

k=0 (�1)k(a
k
) f (t � kh)

ha , (15)

where (a

b
), the combinations of a things, b at a time can be obtained with [40]

✓
a

b

◆
=

8
>>>>>><

>>>>>>:

G(a + 1)
G(b + 1)G(a � b + 1)

if a, b, a � b /2 Z�

(�1)bG(b � a)
G(b + 1)G(�a)

if a 2 Z
� ^ b 2 Z+

0

0 if [(b 2 Z� _ b � a 2 N) ^ a /2 Z�] _ (a, b 2 Z� ^ a > b).

(16)

G is the gamma function, an extension of the factorial function.
A fractional derivative was used here because we are interested in attributing a weight to tumour

level that increases with time; therefore, the functional order is set to n = �0.8, instead of order
n = �1, which corresponds to a classical integrator and weights all past moments equally [40].

Table 2. Parameters of the objective function.

i 1 2 3 4

Den. PI

Li 100 100 3.29 0.11 70.86
wi 4 15 0.5 1 1

6. Results

Figures 5 and 6 plot the system behaviour of models MDR1 and MDR2, respectively, when each
of the therapies are administrated. At first glance, both models under the therapies T1 + T3 an
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T4 + T3 appear to have a similar qualitative behaviour. Comparing the bone resorption therapies
(PI or denosumab), there are clear differences specially when it comes to the OC and OB oscillatory
behaviour. The different type of action of both drugs justifies these discrepancies. One should not make
comparison assumptions of these pharmaceuticals solely based on these simulations: the fact that z(t)
stabilization is more effective under a certain model may be due to the chosen system parameter values.

Regarding the different drug resistance models, the tumour growth behaviour is different
depending on whether the phenomenon is modelled under the random mutation or the varying
C50 model. Both models predict a decrease of T immediately after the therapy starts, more or less
symmetric to the precedent increase for a few weeks. The tumour achieves then a low value that
never reaches 0. In model MDR2, the drug resistance effects arise when the resistant population
uncontrollable proliferation continues with the same strength as the initial cancer, after an apparent
remission. As soon as the gradient turns positive, it is certain that the metastasis will grow abruptly to
high values until death. On the other hand, model MDR1 allows a smoother accumulation of resistance.
Even if the tumour does not reach values as low as with the last model, the cancer is maintained at a
more constant value after the point when drug resistance is evident.
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0 500 1000 1500 2000 2500
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500B

0 500 1000 1500 2000 2500
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0
50
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50T

No treatment
T1+T3
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Figure 5. Model MDR1 behaviour when the tumour arises at t = 0 and the treatment begins at
tstart = 980 days.
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Figure 6. Model MDR2 behaviour when the tumour arises at t = 0 and the treatment begins at
tstart = 980 days.
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Figure 7. Effects in the system dynamics (treatment phase) when different Np values are used
(Model MDR1).
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Figure 8. Best obtained prescriptions in mg with the model MDR1 (SIC).

6.1. Model MDR1—Therapy T1 + T3

While the control horizon Nc was maintained constant, the prediction horizon Np was varied
between 10, 20, 30 and 40 weeks. The Nc is fixed to 4 weeks. The global best position pg is initialized
with the dose values of standard regimen, a strategy that from now on will be termed SIC (standard
initial condition). Figure 7 is a comparison of the system reaction to the best obtained prescription
when Np = 10, Np = 20, Np = 30, Np = 40 and when the prescription is standard. The cost decreases
with the increase of Np, when handling the model MDR1. Nevertheless, all of the four prescriptions are
more successful than the standard regimen.

Figure 8 contains the resultant prescription of denosumab and paclitaxel with the model MDR1,
when Np = 10 and Np = 40. The C

0
p and C

0
g mean values tend to coincide with a value higher than

the respective standard dose, yet lower than the maximum values defined for this problem. Note that
when Np = 10, MPC obtains several null entries (22 out of 45 administrations), suggesting a higher t

for the denosumab. The increase in Np tends to produce a drug concentration distribution less variant.
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6.2. Model MDR2 — Therapy T1 + T3

The two populations model, MDR2, was subject to the same sensitivity analysis. The system
dynamics when Np is fixed to different values is compared in Figure 9. The almost indistinguishable
curves translate the insensitivity of the model to Np. This model allows a decrease of the tumour size
to almost null values; however, when the resistance effects arise, the regrowth is extremely aggressive.
The impossibility of tumour annihilation is associated with a resistant and proliferative population.
Therefore, the resistance can never be defeated with a unique anti-cancer drug.
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Figure 9. Effects in the system dynamics (treatment phase) when different Np values are used
(Model MDR2).
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Figure 10. Best obtained prescriptions in mg with the model MDR2.

The denosumab and paclitaxel prescription results are shown in Figure 10. From these plots
it is verified that the paclitaxel is administrated even after the sensitive population is supposedly
extinguished. One might suspect that this administration would be interrupted at some point, since it
has no effect on the resistant population. In fact, the doses diminish over time, but they never reach 0.
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This is due to the nature of the Gompertz equation: the sensitive population never actually reaches
full extinction, just residual values. Besides, the S population keeps acquiring part of the resistance
cells that suffer back-mutation. Therefore, there is a necessity of a paclitaxel continuity to keep the S

population from regrowth. The outcome from the optimization when Np = 10 suggests a higher t1 of
denosumab, as it happened with MDR1.

Although the algorithm accounts for one single cost, the proportions of each term of the objective
function throughout the 45 months of treatment is displayed in Figure 11 (Model MDR1) and Figure 12
(Model MDR2). The left plots correspond to a patient who received the maximum dose allowed for this
problem, while the right plots correspond to prescription resultant from optimization. As expected,
the administration of the maximum allowable doses retrieve slightly better values for the tumour
and bone mass associated cost; however, the inherent high administration cost does not allow this
prescription to be a good option. Nevertheless, the optimization prescription outputs extremely
close tumour and bone mass costs (in fact, almost indistinguishable) to those obtained with the most
aggressive therapy. This represents a major advantage, since the patient is safeguarded from a therapy
with higher drug exposure, but still obtaining very similar results.
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Figure 11. Proportions of the four cost contributions/terms in the objective function: Tumour, Bone
Mass, Paclitaxel and Denosumab (Model MDR1, Therapy T1 + T3). The right plot represents the cost
resultant from optimization, while the left represents the cost if the maximum dose was administrated.
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Figure 12. Proportions of the four cost contributions/terms in the objective function: Tumour, Bone
Mass, Paclitaxel and denosumab (Model MDR2, Therapy T1 + T3). The right plot represents the cost
resultant from optimization, while the left represents the cost if the maximum dose was administrated.

6.3. Therapy T4 + T3

When handling the therapy T4 + T3, the PSO deals with problems with higher dimensions,
because T4 has a more frequent administration than T1. To avoid excessive computational effort,
the optimization of this therapy was performed only once for each model, with Np = 40 weeks.
Figure 13 presents the best obtained prescriptions of PI and paclitaxel, for both models. As expected,
the C

0
p evolutions follow a similar pattern to that of the last therapy. When handling model MDR1,

a mobile mean value of both drugs is maintained almost constant, as well as the standard deviation.
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When facing a two populations model, a decreasing tendency is evident for both dose value and
standard deviation. In both therapies, C

0
p3

converge to similar values.
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Figure 13. Best obtained PI prescription with both models (Np = 40).

The system dynamics when the optimized regimen is applied is shown in Figure 14 for both
models. The amplitude of oscillation of OC and OB is significantly higher when PI is used instead of
denosumab, as the respective period.
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Figure 14. Dynamics of the systems MDR1 and MDR2 when gien an optimized prescription of paclitaxel and PI.

The cost proportions are once again represented, in Figures 15 and 16, for the models MDR1
and MDR2, respectively. As before, the left plots refer to a patient who took maximum doses of both
drugs and the right plots to a patient whose regimen was optimized. Figure 15 shows a similar
increasing evolution to Figure 11, although the costs are considerably higher and there is a bigger
discrepancy between the proportion of the weight related to the bone mass to the rest of the terms of J.
Figures 14 and 16 reinforce the impossibility of avoiding a U-shaped tumour curve when dealing with
MDR2. The oscillating appearance of the curves of Figure 16 is due to the extremely high period and
amplitudes that PIs provoke in the bone remodelling process.

6.4. Sensitivity to the Initial Global Best Position

The dependency of the optimization regarding the initial global best position is here analysed.
The strategy SIC is replaced by the strategy LIC (low initial condition), which initializes pg with
concentration values that are ten times smaller than the standard regimen’s. This section compares
both strategies.
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Figure 15. Proportions of the four cost contributions/terms in the objective function: Tumour, Bone
Mass, Paclitaxel and PI (Model MDR1, Therapy T4 + T3). The right plot represents the cost resultant
from optimization, while the left represents the cost if the maximum dose was administrated.
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Figure 16. Proportions of the four cost contributions/terms in the objective function: Tumour, Bone
Mass, Paclitaxel and PI (Model MDR2, Therapy T4 + T3). The right plot represents the cost resultant
from optimization, while the left represents the cost if the maximum dose was administrated.
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Figure 17. Best obtained prescriptions in mg with the model MDR1 (LIC).
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Figure 18. Comparison between the system behaviour when the initial global best position of the PSO
is the standard regimen (dashed lines) and a tenth of these values (solid lines). Legend: LIC—Low
initial condition of the PSO, SIC—Standard initial condition of the PSO.

The prescription doses with LIC (Figure 17) appear not to have changed significantly, when
compared with SIC (Figure 8). The only significant difference between these results is the paclitaxel
administration when Np = 10. The considerably lower doses resulted in poorer performance treating
the tumour burden when compared to a standard initial condition, as one can verify in Figure 18a.

When handling MDR2, the resultant prescriptions differences are much more pronounced
(Figure 19). All of the dose values decrease with time, and this variation is significantly more
accentuated with a low initial global best position, of both denosumab and paclitaxel. In fact,
approximately in the last two thirds of the treatment period, almost all of the doses are far below the
standard values. The input sequences obtained with SIC and LIC, although very disparate, produced
quite similar results on the system behaviour (Figure 18b). The PSO fitness values evaluated when
LIC is used are about 10% lower than those obtained with SIC when Np = 40 but are almost equal
when Np = 10. The tumour decrease with the LIC prescription when Np = 10 is not so fast, however
the regrowth due to resistance is slightly postponed. Although this result translated in a higher cost
associated to the tumour, the interpretation would be different if one attributed more importance
to the late regrowth. In fact, this particular result supports the paradigm that says that the resistant
population is delayed if the sensitive is not immediately eradicated.

One concludes that the optimization resultant input sequence with the model MDR2 is very
sensitive to the initial global best position, contrarily to MDR1. It seems more favourable to start the
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global best to lower values, since the significant lower prescription doses are still enough to produce
the same results as the SIC strategy. This analysis was not performed with the therapy T4 + T3 due to
the excessive computational effort, but it is fair to generalize this conclusion.
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Figure 19. Best obtained prescriptions in mg with the model MDR2.

7. Conclusions

The proposed model contains two major novelties: (1) the positive influence of the osteoclasts
activity in the tumour proliferation, in order to recreate a vicious cycle between the two mechanisms,
and (2) two drug resistance mechanisms regarding the immunity of tumour cells to paclitaxel, according
to two different paradigms on the topic. The PK/PD of four drugs (Denosumab, BP, paclitaxel and PI)
were included to simulate more accurately the system reaction to the therapy. Several factors regarding
the OC and OB coupling and survival are yet to be considered and included in a more meticulous
description of the system.

An NMPC with a PSO optimizer was the method to handle the problem, due to the severe
nonlinearities of the system. Combining metaheuristics with MPC provided flexibility to design any
type of cost function, ability to straightforwardly take the constraints into account and capability of
solving the nonlinear problem. The developed adaptive algorithm (AD-PSO) is a novelty, and resulted
from the combination of several existent variations of the PSO.

The drug dose optimization was performed on both resistance models and both proposed
therapies. The healthy status was not achieved with any of the cases, due to the existence of drug
resistance to the anti-cancer therapy. It is assumed that the MDR1 would require an impractically high
and frequent dose to extinguish the tumour completely. The random mutation model was destined for
therapy failure, due to the incontrovertible existence of a proliferative population, immune to paclitaxel.
Once the sensitive cells number reduced to an apparent remission state, the administration of the
anti-cancer therapy is decreased, while the resistant proliferates uncontrollably. The administration of
a unique drug is insufficient to defeat the cancer burden.

When handling a two-populations model, it is desirable to initialize the PSO with low doses.
The resultant input sequence tends to decrease to significantly lower values, although enough to keep
the sensitive population from regrowth. When the paclitaxel dosage is too low, the performance of
cancer treatment appears to be poorer based on cost. However, the tumour curve may be interpreted
as favourable, if one attributes more importance to the fact that the regrowth is postponed. It was also
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verified that the best obtained doses for both models safeguarded the patients from a high exposure to
drugs, while outputting extremely close results to a regimen of intense maximal administration.

It is important to remark that the models are rough approximations of the reality. Several principles
and variables are not taken into account, relatively to the type of patient and to the mechanisms involved.
The difficulty of harvesting data for a wide range of conditions, specially regarding the origin of
cancer (pre-diagnosis) and progression of untreated cancer (post-diagnosis), represents a barrier for
the mathematical formulation and validation. Due to this lack of experimental data, the model was
constructed and tuned based solely on the comparison between the qualitative behaviour and theoretical
principles in the literature.

Future work includes adapting these methods of optimising cancer treatments for more accurate
models, including mechanically induced bone remodelling [16], three-dimensional anomalous
diffusion, modelled with fractional [41,42] and variable order derivatives [20,43,44], and additional
biochemical interactions [4,17].
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Abstract
The purpose of this research is to introduce a regularized algorithm based on the viscosity
method for solving the proximal split feasibility problem and the fixed point problem in
Hilbert spaces. A strong convergence result of our proposed algorithm for finding a common
solution of the proximal split feasibility problemand thefixed point problem for nonexpansive
mappings is established. We also apply our main result to the split feasibility problem, and
the fixed point problem of nonexpansive semigroups, respectively. Finally, we give numerical
examples for supporting our main result.

Keywords Fixed point problems · Proximal split feasibility problems · Nonexpansive
mappings

Mathematics Subject Classification 47H09 · 47H10

1 Introduction

Throughout this article, let H1 and H2 be two real Hilbert spaces. Let f : H1 → R ∪ {+∞}
and g : H2 → R ∪ {+∞} be two proper and lower semicontinuous convex functions and
A : H1 → H2 be a bounded linear operator.
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In this paper, we focus our attention on the following proximal split feasibility problem
(PSFP): find a minimizer x∗ of f , such that Ax∗ minimizes g, namely

x∗ ∈ argmin f such that Ax∗ ∈ argmin g, (1.1)

where argmin f := {x̄ ∈ H1 : f (x̄) ≤ f (x) for all x ∈ H1} and argmin g := {ȳ ∈ H2 :
g(ȳ) ≤ g(y) for all y ∈ H2}. We assume that the problem (1.1) has a nonempty solution set
! := argmin f ∩ A−1(argmin g).

Censor andElfving (1994) introduced the split feasibility problem (in short, SFP). The split
feasibility problem (SFP) has been used for many applications in various fields of science and
technology, such as in signal processing and image reconstruction, and especially applied in
medical fields such as intensity-modulated radiation therapy (IMRT) (for details, see Censor
et al. (2006) and the references therein). Let C and Q be nonempty, closed, and convex
subsets of H1 and H2, respectively, and then, the SFP is to find a point:

x ∈ C such that Ax ∈ Q, (1.2)

where A : H1 → H2 is a bounded linear operator. For solving the problem (1.2), Byrne
(2002) introduced a popular algorithm which is called the CQ algorithm as follows:

xn+1 = PC (xn − µn A∗(I − PQ)Axn), ∀n ≥ 1,

where PC and PQ denote the metric projection onto the closed convex subsets C and Q,
respectively, and A∗ is the adjoint operator of A and µn ∈ (0, 2/‖A‖2). Many research
papers have increasingly investigated split feasibility problem [see, for instance (Lopez et al.
2012; Chang et al. 2014; Qu and Xiu 2005), and the references therein]. If f = iC [defined
as iC (x) = 0 if x ∈ C and iC (x) = +∞ if x /∈ C] and g = iQ are indicator functions of
nonempty, closed, and convex sets C and Q of H1 and H2, respectively. Then, the proximal
split feasibility problem (1.1) becomes the split feasibility problem (1.2).

Moudafi andThakur (2014) introduced the split proximal algorithmwith away of selecting
the step-sizes, such that its implementation does not need any prior information about the
operator norm. Given an initial point x1 ∈ H1, assume that xn has been constructed and
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2 ,= 0, and then compute xn+1 by the following
iterative scheme:

xn+1 = proxλµn f (xn − µn A∗(I − proxλg)Axn), ∀n ≥ 1, (1.3)

where the stepsize µn := ρn
h(xn)+ l(xn)

θ2(xn)
with 0 < ρn < 4, h(x) := 1

2‖(I −proxλg)Ax‖2,
l(x) := 1

2‖(I − proxλµn f )x‖2 and θ2(x) := ‖A∗(I − proxλg)Ax‖2 + ‖(I − proxλµn f )x‖2.
If θ2(xn) = 0, then xn is a solution of (1.1) and the iterative process stops; otherwise, we
set n := n + 1 and compute xn+1 using (1.3). They also proved the weak convergence of
the sequence generated by Algorithm (1.3) to a solution of (1.1) under suitable conditions of

parameter ρn where ε ≤ ρn ≤ 4h(xn)
h(xn)+ l(xn)

− ε for some ε > 0.

Yao et al. (2014) gave the regularized algorithm for solving the proximal split feasibility
problem (1.1) and proposed a strong convergence theorem under suitable conditions:

xn+1 = proxλµn f (αnu + (1 − αn)xn − µn A∗(I − proxλg)Axn), ∀n ≥ 1, (1.4)

where the stepsize µn := ρn
h(xn)+ l(xn)

θ2(xn)
with 0 < ρn < 4.

123



An iterative method for solving proximal split feasibility… Page 3 of 18 177

Shehu et al. (2015) introduced a viscosity-type algorithm for solving proximal split fea-
sibility problems as follows:

{
yn = xn − µn A∗(I − proxλg)Axn,

xn+1 = αnψ(xn)+ (1 − αn) proxλµn f yn, ∀n ≥ 1,
(1.5)

where ψ : H1 → H1 is a contraction mapping. They also proved a strong convergence of
the sequences generated by iterative schemes (1.5) in Hilbert spaces.

Recently, Shehu and Iyiola (2015) introduced the following algorithm for solving split
proximal algorithms and fixed point problems for k-strictly pseudocontractive mappings in
Hilbert spaces:






un = (1 − αn)xn,

yn = proxλγn f (un − γn A∗(I − proxλg)Aun),
xn+1 = (1 − βn)yn + βnT yn, ∀n ∈ N,

(1.6)

where the stepsize γn := ρn
h(xn)+ l(xn)

θ2(xn)
with 0 < ρn < 4. They also showed that,

under certain assumptions imposed on the parameters, the sequence {xn} generated by (1.6)
converges strongly to x∗ ∈ F(S) ∩ !. Many researchers have proposed some methods to
solve the proximal split feasibility problem [see, for instance (Shehu et al. 2015; Shehu and
Iyiola 2017a, b, 2018; Abbas et al. 2018;Witthayarat et al. 2018), and the references therein].

We note that Algorithm (1.6) is the Halpern-type algorithm with u ≡ 0 fixed. However,
a viscosity-type algorithm is more general and desirable than a Halpern-type algorithm,
because a contractionwhich is used in the viscosity-type algorithm influences the convergence
behavior of the algorithm.

In this paper, inspired and motivated by these studies, we are interested to study the
proximal split feasibility problem and the fixed point problem in Hilbert spaces. In Sect. 3,
we introduce a regularized algorithm based on the viscosity method for finding a common
solution of the proximal split feasibility problem and the fixed point problem of nonexpansive
mappings, and prove a strong convergence theoremunder some suitable conditions. In Sects. 4
and 5, we apply our main result to the split feasibility problem, and the fixed point problem of
nonexpansive semigroups, respectively. In the last section, we first give a numerical result in
Euclidean spaces to demonstrate the convergence of our algorithm.We also show the number
of iterations of our algorithm by choosing different contractions ψ . In this case, if we take
ψ = 0 in our algorithm, then we obtain Algorithm (1.6) (Shehu and Iyiola 2015, Algorithm
1). Moreover, we give an example in the infinite-dimensional spaces for supporting our main
theorem.

2 Preliminaries

Throughout this article, let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
Let C be a nonempty closed convex subset of H . Let T : C → C be a nonlinear mapping.
A point x ∈ C is called a fixed point of T if T x = x . The set of fixed points of T is the set
F(T ) := {x ∈ C : T x = x}.

Recall that A mapping T of C into itself is said to be

(i) nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖ , ∀x, y ∈ C .
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(ii) contraction if there exists a constant δ ∈ [0, 1), such that

‖T x − T y‖ ≤ δ‖x − y‖, ∀x, y ∈ C .

Recall that the proximal operator proxλg : H → H is defined by:

proxλg x := argmin
u∈H

{
g(u)+ 1

2λ
‖u − x‖2

}
. (2.1)

Moreover, the proximity operator of f is firmly nonexpansive, namely:
〈
proxλg(x) − proxλg(y), x − y

〉
≥ ‖ proxλg(x) − proxλg(y)‖2; (2.2)

for all x, y ∈ H , which is equivalent to

‖ proxλg(x) − proxλg(y)‖2 ≤ ‖x − y‖2 − ‖(I − proxλg)(x) − (I − proxλg)(y)‖2.
(2.3)

for all x, y ∈ H . For general information on proximal operator, see Combettes and Pesquet
(2011a).

In a real Hilbert space H , it is well known that:

(i) ‖αx + (1 − α)y‖2 = α ‖x‖2 + (1 − α) ‖y‖2 − α(1 − α) ‖x − y‖2 , for all x, y ∈ H
and α ∈ [0, 1];

(ii) ‖x − y‖2 = ‖x‖2 − 2〈x, y〉 + ‖y‖2 for all x, y ∈ H ;
(iii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 for all x, y ∈ H .

Recall that the (nearest-point) projection PC from H onto C assigns to each x ∈ H the
unique point PCx ∈ C satisfying the property:

‖x − PCx‖ = min
y∈C

‖x − y‖.

Lemma 2.1 (Takahashi 2000) Given x ∈ H and y ∈ C. Then, PC x = y if and only if there
holds the inequality:

〈x − y, y − z〉 ≥ 0, ∀z ∈ C .

Lemma 2.2 (Xu 2003) Let {sn} be a sequence of nonnegative real numbers satisfying:

sn+1 = (1 − αn)sn + δn, ∀n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence, such that

1.
∞∑

n=1

αn = ∞;

2. lim sup
n→∞

δn

αn
≤ 0 or

∞∑

n=1

|δn | < ∞.

Then, limn→∞ sn = 0.

Definition 2.3 Let C be a nonempty closed convex subset of a real Hilbert space H . A
mapping S : C → C is called demi-closed at zero if for any sequence {xn} which converges
weakly to x , and if the sequence {T xn} converges strongly to 0, then T x = 0.

Lemma 2.4 (Browder 1976) Let C be a nonempty closed convex subset of a real Hilbert
space H. If S : C → C is a nonexpansive mapping, then I−S is demi-closed at zero.
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Lemma 2.5 (Mainge 2008) Let {!n} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {!ni } of {!n} which satisfies !ni < !ni+1
for all i ∈ N. Define the sequence {τ (n)}n≥n0 of integers as follows:

τ (n) = max {k ≤ n : !k < !k+1} ,
where n0 ∈ N, such that {k ≤ n0 : !k < !k+1} ,= ∅. Then, the following hold:

(i) τ (n0) ≤ τ (n0 + 1) ≤ · · · and τ (n) −→ ∞;
(ii) !τn ≤ !τ (n)+1 and !n ≤ !τ (n)+1, ∀n ≥ n0.

3 Main results

In this section, we introduce an algorithm and prove a strong convergence for solving a
common element of the set of fixed points of a nonexpansive mapping and the set of solutions
of proximal split feasibility problems (1.1). Let H1 and H2 be two real Hilbert spaces. Let
f : H1 → R ∪ {+∞} and g : H2 → R ∪ {+∞} be two proper and lower semicontinuous
convex functions and A : H1 → H2 be a bounded linear operator. Let S : H1 → H1 be a
nonexpansive mapping and Let ψ : H1 → H1 be a contraction mapping with δ ∈ (0, 1).

We introduce the modified split proximal algorithm as follows:

Algorithm 3.1 Given an initial point x1 ∈ H1. Assume that xn has been constructed and
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2 ,= 0, then compute xn+1 by the following
iterative scheme:

{
yn = proxλµn f (αnψ(xn)+ (1 − αn)xn − µn A∗(I − proxλg)Axn)
xn+1 = βn yn + (1 − βn)Syn, ∀n ∈ N,

(3.1)

where the stepsize µn := ρn

( 1
2‖(I − proxλg)Axn‖2

)
+

( 1
2‖(I − proxλ f )xn‖2

)

‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2
with 0 <

ρn < 4 and {αn}, {βn} ⊂ (0, 1).

We now prove our main theorem.

Theorem 3.2 Let H1 and H2 be two real Hilbert spaces. Let f : H1 → R ∪ {+∞} and
g : H2 → R ∪ {+∞}be two proper and lower semicontinuous convex functions, and A :
H1 → H2 be a bounded linear operator. Let ψ : H1 → H1 be a contraction mapping with
δ ∈ [0, 1) and let S : H1 → H1 be a nonexpansive mapping, such that , := F(S)∩ ! ,= 0.
If the control sequences {αn}, {βn} and {ρn} satisfy the following conditions:

(C1) lim
n→∞ αn = 0 and

∞∑

n=1

αn = ∞;

(C2) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1;

(C3) ε ≤ ρn ≤
4(1 − αn)

(
‖(I − proxλg)Axn‖2

)
(
‖(I − proxλg)Axn‖2

)
+

(
‖(I − proxλ f )xn‖2

) − ε for some ε > 0.

Then, the sequence {xn} defined by Algorithm 3.1 converges strongly to a point x∗ ∈ ,which
also solves the variational inequality:

〈(ψ − I )x∗, x − x∗〉 ≤ 0, ∀x ∈ ,.
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Proof Given any λ > 0 and x ∈ H1, we define h(x) := 1
2‖(I − proxλg)Ax‖2, l(x) :=

1
2‖(I − proxλ f )x‖2, θ2(x) := ‖A∗(I − proxλg)Ax‖2 + ‖(I − proxλ f )x‖2, and hence,

µn = ρn
h(xn)+ l(xn)

θ2(xn)
where 0 < ρn < 4.

By Banach fixed point theorem, there exists x∗ ∈ , such that x∗ = P,ψ(x∗). Then,
x∗ = proxλµn f x

∗ and Ax∗ = proxλg Ax∗. Since proxλg is firmly nonexpansive, we have
I − proxλg is also firmly nonexpansive. Hence

〈A∗(I − proxλg)Axn, xn − x∗〉 = 〈(I − proxλg)Axn, Axn − Ax∗〉
=

〈
(I − proxλg)Axn − (I − proxλg)Ax

∗, Axn − Ax∗〉

≥ ‖(I − proxλg)Axn‖2 = 2h(xn). (3.2)

From the definition of yn and the nonexpansivity of proxλµn f , we have:

‖yn − x∗‖ = ‖ proxλµn f (αnψ(xn)+ (1 − αn)xn − µn A∗(I − proxλg)Axn) − x∗‖
≤ ‖αnψ(xn)+ (1 − αn)xn − µn A∗(I − proxλg)Axn − x∗‖

≤ αn‖ψ(xn) − x∗‖ + (1 − αn)

∥∥∥∥xn − µn

(1 − αn)
A∗(I − proxλg)Axn − x∗

∥∥∥∥ .

(3.3)

From (3.2), we have:
∥∥∥∥xn − µn

(1 − αn)
A∗(I − proxλg)Axn − x∗

∥∥∥∥
2

= ‖xn − x∗‖2 + µ2
n

(1 − αn)2
‖A∗(I − proxλg)Axn‖2

− 2
µn

(1 − αn)
〈A∗(I − proxλg)Axn, xn − x∗〉

≤ ‖xn − x∗‖2 + µ2
n

(1 − αn)2
‖A∗(I − proxλg)Axn‖2 − 4

µn

(1 − αn)
h(xn)

= ‖xn − x∗‖2 + ρ2
n
(h(xn)+ l(xn))2

(1 − αn)2θ4(xn)
‖A∗(I − proxλg)Axn‖2 − 4ρn

(h(xn)+ l(xn))
(1 − αn)θ2(xn)

h(xn)

≤ ‖xn − x∗‖2 + ρ2
n
(h(xn)+ l(xn))2

(1 − αn)2θ2(xn)
− 4ρn

(h(xn)+ l(xn))2

(1 − αn)θ2(xn)
h(xn)

(h(xn)+ l(xn))

= ‖xn − x∗‖2 − ρn

(
4h(xn)

(h(xn)+ l(xn))
− ρn

1 − αn

) (
(h(xn)+ l(xn))2

(1 − αn)θ2(xn)

)
. (3.4)

By the condition (C3), we have
4h(xn)

(h(xn)+ l(xn))
− ρn

1 − αn
≥ 0 for all n ≥ 1. From (3.3)

and (3.4), we have:

‖yn − x∗‖ ≤ αn‖ψ(xn) − x∗‖ + (1 − αn)

∥∥∥∥xn − µn

(1 − αn)
A∗(I − proxλg)Axn − x∗

∥∥∥∥

≤ αn‖ψ(xn) − ψ(x∗)‖ + αn‖ψ(x∗) − x∗‖ + (1 − αn)
∥∥xn − x∗∥∥

≤ αnδ‖xn − x∗‖ + αn‖ψ(x∗) − x∗‖ + (1 − αn)
∥∥xn − x∗∥∥

= (1 − αn(1 − δ))‖xn − x∗‖ + αn‖ψ(x∗) − x∗‖. (3.5)
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Since S is nonexpansive, by (3.1) and (3.5), we obtain:

‖xn+1 − x∗‖ = ‖βn yn + (1 − βn)Syn − x∗‖
≤ βn‖yn − x∗‖ + (1 − βn)‖Syn − x∗‖
≤ βn‖yn − x∗‖ + (1 − βn)‖yn − x∗‖
= ‖yn − x∗‖
≤ (1 − αn(1 − δ))‖xn − x∗‖ + αn‖ψ(x∗) − x∗‖

≤ max
{
‖xn − x∗‖, ‖ψ(x∗) − x∗‖

1 − δ

}
.

By mathematical induction, we have:

‖xn − x∗‖ ≤ max
{
‖x1 − x∗‖, ‖ψ(x∗) − x∗‖

1 − δ

}
, ∀n ∈ N.

Hence, {xn} is bounded and so are {ψ(xn)}, {Syn}.
From the definition of yn and (3.4), we have:

‖yn − x∗‖2 = ‖ proxλµn f (αnψ(xn)+ (1 − αn)xn − µn A∗(I − proxλg)Axn) − x∗‖2

≤ ‖αnψ(xn)+ (1 − αn)xn − µn A∗(I − proxλg)Axn − x∗‖2,

≤ αn‖ψ(xn) − x∗‖2 + (1 − αn)

∥∥∥∥xn − µn

(1 − αn)
A∗(I − proxλg)Axn − x∗

∥∥∥∥
2

≤ αn‖ψ(xn) − x∗‖2 + (1 − αn)

×
(

‖xn − x∗‖2 − ρn

(
4h(xn)

(h(xn)+ l(xn))
− ρn

1 − αn

) (
(h(xn)+ l(xn))2

(1 − αn)θ2(xn)

))

= αn‖ψ(xn) − x∗‖2 + (1 − αn)‖xn − x∗‖2

− ρn

(
4h(xn)

(h(xn)+ l(xn))
− ρn

1 − αn

) (
(h(xn)+ l(xn))2

θ2(xn)

)
. (3.6)

From the definition of xn and (3.6), we obtain:

‖xn+1 − x∗‖2 = ‖βn yn + (1 − βn)Syn − x∗‖2

≤ βn‖yn − x∗‖2 + (1 − βn)‖Syn − x∗‖2

≤ ‖yn − x∗‖2

≤ αn‖ψ(xn) − x∗‖2 + (1 − αn)‖xn − x∗‖2

− ρn

(
4h(xn)

(h(xn)+ l(xn))
− ρn

1 − αn

) (
(h(xn)+ l(xn))2

θ2(xn)

)

≤ αn‖ψ(xn) − x∗‖2 + ‖xn − x∗‖2

− ρn

(
4h(xn)

(h(xn)+ l(xn))
− ρn

1 − αn

) (
(h(xn)+ l(xn))2

θ2(xn)

)
.

It implies that

ρn

(
4h(xn)

(h(xn)+ l(xn))
− ρn

1 − αn

) (
(h(xn)+ l(xn))2

θ2(xn)

)
≤ αn‖ψ(xn) − x∗‖2 + ‖xn

− x∗‖2 − ‖xn+1 − x∗‖2. (3.7)
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It follows from (3.6) that

‖xn+1 − x∗‖2 = ‖βn yn + (1 − βn)Syn − x∗‖2

≤ βn‖yn − x∗‖2 + (1 − βn)‖Syn − x∗‖2 − βn(1 − βn)‖yn − Syn‖2

≤ ‖yn − x∗‖2 − βn(1 − βn)‖yn − Syn‖2

≤ αn‖ψ(xn) − x∗‖2 + (1 − αn)‖xn − x∗‖2 − βn(1 − βn)‖yn − Syn‖2

≤ αn‖ψ(xn) − x∗‖2 + ‖xn − x∗‖2 − βn(1 − βn)‖yn − Syn‖2,
which implies that

βn(1 − βn)‖yn − Syn‖2 ≤ αn‖ψ(xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (3.8)

Now, we divide our proof into two cases.
Case 1 Suppose that there exists n0 ∈ N, such that {‖xn −x∗‖}∞n=1 is nonincreasing. Then,

{‖xn − x∗‖}∞n=1 converges and ‖xn − x∗‖2 −‖xn+1 − x∗‖2 → 0 as n → ∞. From (3.7) and
the condition (C1) and (C3), we obtain:

ρn

(
4h(xn)

(h(xn)+ l(xn))
− ρn

1 − αn

) (
(h(xn)+ l(xn))2

θ2(xn)

)
→ 0 as n → ∞.

Hence, we have:

(h(xn)+ l(xn))2

θ2(xn)
→ 0 as n → ∞. (3.9)

By the linearity and boundedness of A and the nonexpansivity of proxλg , we obtain that
{θ2(xn)} is bounded.

It follows that

lim
n→∞

(
(h(xn)+ l(xn))2

)
= 0,

which implies that

lim
n→∞ h(xn) = lim

n→∞ l(xn) = 0.

Next, we show that lim supn→∞ 〈ψ(x∗) − x∗, xn − x∗〉 ≤ 0, where x∗ = P,ψ(x∗). Since
{xn} is bounded, there exists a subsequence

{
xn j

}
of {xn} satisfying xn j ⇀ω and

lim sup
n→∞

〈
ψ(x∗) − x∗, xn − x∗〉 = lim

j→∞
〈
ψ(x∗) − x∗, xn j − x∗〉 . (3.10)

By the lower semicontinuity of h, we have:

0 ≤ h(ω) ≤ lim inf
j→∞

h(xn j ) = lim
n→∞ h(xn) = 0.

Therefore, h(ω) = 1
2‖(I −proxλg)Aω‖2 = 0. Therefore, Aω is a fixed point of the proximal

mapping of g or equivalently, Aω is aminimizer of g. Similarly, from the lower semicontinuity
of l, we obtain:

0 ≤ l(ω) ≤ lim inf
j→∞

l(xn j ) = lim
n→∞ l(xn) = 0.

Therefore, l(ω) = 1
2‖(I − proxλµn f )ω‖2 = 0. That is ω ∈ F(proxλµn f ). Then ω is a

minimizer of f . Thus, ω ∈ !.We observe that

0 < µn < 4
h(xn)+ l(xn)

θ2(xn)
→ 0 as n → ∞,
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and hence, µn → 0 as n → ∞.
Next, we show that ω ∈ F(S). From (3.8) and the condition (C1), (C2), we have:

‖yn − Syn‖ → 0 as n → ∞. (3.11)

For each n ≥ 1, let un := αnψ(xn)+ (1 − αn)xn . Then

‖un − xn‖ = ‖αnψ(xn)+ (1 − αn)xn − xn‖
= αn‖ψ(xn) − xn‖.

From the condition (C1), we have:

lim
n→∞ ‖un − xn‖ = 0. (3.12)

Observe that

‖un − proxλµn f xn‖ ≤ ‖un − xn‖ + ‖(I − proxλµn f )xn‖.

From limn→∞ l(xn) = limn→∞ 1
2‖(I − proxλµn f )xn‖2 = 0 and (3.12), we have:

lim
n→∞ ‖un − proxλµn f xn‖ = 0. (3.13)

By the nonexpansiveness of proxλµn f , we have:

‖yn − proxλµn f xn‖ =
∥∥proxλµn f

(
un − µn A∗ (

I − proxλg
)
Axn

)
− proxλµn f xn

∥∥

≤ ‖un − µn A∗(I − proxλg)Axn − xn‖
≤ ‖un − xn‖ + µn‖A∗(I − proxλg)Axn‖.

From (3.13) and µn → 0 as n → ∞, we have:

lim
n→∞ ‖yn − proxλµn f xn‖ = 0. (3.14)

Since

‖yn − un‖ ≤ ‖yn − proxλµn f xn‖ + ‖un − proxλµn f xn‖,
from (3.13) and (3.14), we obtain:

lim
n→∞ ‖yn − un‖ = 0. (3.15)

From (3.12) and (3.15), we obtain

lim
n→∞ ‖yn − xn‖ = 0. (3.16)

From

‖Syn − xn‖ ≤ ‖Syn − yn‖ + ‖yn − xn‖,
by (3.11), (3.16), we get:

lim
n→∞ ‖Syn − xn‖ = 0. (3.17)

From the definition of xn , we have:

‖xn+1 − xn‖ ≤ βn‖yn − xn‖ + (1 − βn)‖Syn − xn‖.
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This implies from (3.16), and (3.17) that

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.18)

Using xn j ⇀ω ∈ H1 and (3.16), we obtain yn j ⇀ω ∈ H1. Since yn j ⇀ω ∈ H1, ‖yn−Syn‖ →
0 as n → ∞, by Lemma 2.4, we have ω ∈ F(S). Hence, ω ∈ F = F(S)∩ !. Since xn j ⇀ω

as j → ∞ and ω ∈ F , by Lemma 2.1, we have:

lim sup
n→∞

〈
ψ(x∗) − x∗, xn − x∗〉 = lim

j→∞
〈
ψ(x∗) − x∗, xn j − x∗〉

=
〈
(ψ − I )x∗,ω − x∗〉

≤ 0. (3.19)

Now, by the nonexpansiveness of S and proxλµn f , and from (3.1) and (3.4), we have:

‖xn+1 − x∗‖2 ≤ βn‖yn − x∗‖2 + (1 − βn)‖Syn − x∗‖2 ≤ ‖yn − x∗‖2

≤ ‖αnψ(xn)+ (1 − αn)xn − µn A∗(I − proxλg)Axn − x∗‖2

= (1 − αn)
2‖xn − µn

(1 − αn)
A∗(I − proxλg)Axn − x∗‖2 + α2

n‖ψ(xn) − x∗‖2

+ 2αn(1 − αn)

〈
ψ(xn) − x∗, xn − µn

(1 − αn)
A∗(I − proxλg)Axn − x∗

〉

≤ (1 − αn)
2‖xn − x∗‖2 + α2

n‖ψ(xn) − x∗‖2
+ 2αn(1 − αn)〈ψ(xn) − x∗, xn − x∗〉
− 2αnµn〈ψ(xn) − x∗, A∗(I − proxλg)Axn〉

= (1 − αn)
2‖xn − x∗‖2 + α2

n‖ψ(xn) − x∗‖2
+ 2αn(1 − αn)〈ψ(xn) − ψ(x∗), xn − x∗〉
+ 2αn(1 − αn)〈ψ(x∗) − x∗, xn − x∗〉
+ 2αnµn

〈
x∗ − ψ(xn), A∗(I − proxλg)Axn

〉

≤ (1 − 2αn + α2
n)‖xn − x∗‖2 + α2

n‖ψ(xn) − x∗‖2

+ 2αn(1 − αn)δ‖xn − x∗‖2
+ 2αn(1 − αn)〈ψ(x∗) − x∗, xn − x∗〉
+ 2αnµn‖ψ(xn) − x∗‖‖A∗(I − proxλg)Axn‖

= (1 − 2αn + α2
n + 2αn(1 − αn)δ)‖xn − x∗‖2 + α2

n‖ψ(xn) − x∗‖2
+ 2αn(1 − αn)〈ψ(x∗) − x∗, xn − x∗〉
+ 2αnµn‖ψ(xn) − x∗‖‖A∗(I − proxλg)Axn‖

= (1 − εn)‖xn − x∗‖2 + εnξn, (3.20)

where εn = αn(2 − αn − 2(1 − αn)δ) and

ξn =
[

αn‖ψ(xn) − x∗‖2 + 2(1 − αn)〈ψ(x∗) − x∗, xn − x∗〉 + 2µn‖A∗(I − proxλg)Axn‖‖ψ(xn) − x∗‖
2 − αn − 2(1 − αn)δ

]

.

Note that µn‖A∗(I − proxλg)Axn‖ = ρn
h(xn)+ l(xn)

θ2(xn)
‖A∗(I − proxλg)Axn‖. Thus,

µn‖A∗(I − proxλg)Axn‖ → 0 as n → ∞. From the condition (C1), (3.19), (3.20) and
Lemma 2.2, we can conclude that the sequence {xn} converges strongly to x∗.
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Case 2 Assume that {‖xn − x∗‖} is not monotonically decreasing sequence. Then, there
exists a subsequence nl of n, such that ‖xnl − x∗‖ < ‖xnl+1 − x∗‖ for all l ∈ N. Now, we
define a positive integer sequence τ (n) by:

τ (n) := max
{
k ∈ N : k ≤ n, ‖xnl − x∗‖ < ‖xnl+1 − x∗‖

}
.

for alln ≥ n0 (for somen0 large enough).ByLemma2.5,wehave τ which is a non-decreasing
sequence, such that τ (n) → ∞ as n → ∞ and

‖xτ (n) − x∗‖2 − ‖xτ (n)+1 − x∗‖2 ≤ 0, ∀n ≥ n0.

By a similar argument as that of case 1, we can show that

ρτ (n)

(
4h(xτ (n))

(h(xτ (n))+ l(xτ (n)))
− ρτ (n)

1 − ατ (n)

) (
(h(xτ (n))+ l(xτ (n)))

2

θ2(xτ (n))

)
→ 0 as n → ∞.

Then, we have:

(h(xτ (n))+ l(xτ (n)))
2

θ2(xτ (n))
→ 0 as n → ∞. (3.21)

It follows that

lim
n→∞

(
(h(xτ (n))+ l(xτ (n)))

2) = 0,

which implies that

lim
n→∞ h(xτ (n)) = lim

n→∞ l(xτ (n)) = 0.

Moreover, we have

lim sup
n→∞

〈
ψ(x∗) − x∗, xτ (n) − x∗〉 ≤ 0.

By the same computation as in Case 1, we have:

‖xτ (n)+1 − x∗‖2 ≤ (1 − ετ (n))‖xτ (n) − x∗‖2 + ετ (n)ξτ (n), (3.22)

where ετ (n) = ατ (n)(2 − ατ (n) − 2(1 − ατ (n))δ) and
ξτ (n)

=
[

ατ (n)‖ψ(xτ (n)) − x∗‖2 + 2(1 − ατ (n))〈ψ(x∗) − x∗, xτ (n) − x∗〉 + 2µτ (n)‖A∗(I − proxλg)Axτ (n)‖‖ψ(xτ (n)) − x∗‖
2 − ατ (n) − 2(1 − ατ (n))δ

]

.

Since ‖xτ (n) − x∗‖2 ≤ ‖xτ (n)+1 − x∗‖2, then by (3.22), we have:
‖xτ (n) − x∗‖2 ≤ ξτ (n).

We note that lim supn→∞ ξτ (n) ≤ 0. Thus, it follows from above inequality that

lim
n→∞ ‖xτ (n) − x∗‖ = 0.

From (3.22), we also have:

lim
n→∞ ‖xτ (n)+1 − x∗‖ = 0.

It follows from Lemma 2.5 that

0 ≤ ‖xn − x∗‖ ≤ ‖xτ (n)+1 − x∗‖ → 0

as n → ∞. Therefore, {xn} converges strongly to x∗. This completes the proof.
34
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Taking ψ(x) = u in Algorithm 3.1, we have the following Halpern-type algorithm.

Algorithm 3.3 Given an initial point x1 ∈ H1. Assume that xn has been constructed and
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2 ,= 0, and then compute xn+1 by the following
iterative scheme:

{
yn = proxλµn f (αnu + (1 − αn)xn − µn A∗(I − proxλg)Axn)

xn+1 = βn yn + (1 − βn)Syn, ∀n ∈ N,
(3.23)

where the stepsize µn := ρn

( 1
2‖(I − proxλg)Axn‖2

)
+

( 1
2‖(I − proxλ f )xn‖2

)

‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2
with 0 <

ρn < 4 and {αn}, {βn} ⊂ [0, 1].
The following result is obtained directly by Theorem 3.2.

Corollary 3.4 Let H1 and H2 be two real Hilbert spaces. Let f : H1 → R ∪ {+∞} and
g : H2 → R ∪ {+∞}be two proper and lower semicontinuous convex functions and A :
H1 → H2 be a bounded linear operator. Let S : H1 → H1 be a nonexpansive mapping, such
that , := F(S) ∩ ! ,= 0. If the control sequences {αn}, {βn} and {ρn} satisfy the following
conditions:

(C1) lim
n→∞ αn = 0 and

∞∑

n=1

αn = ∞;

(C2) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1;

(C3) ε ≤ ρn ≤
4(1 − αn)

(
‖(I − proxλg)Axn‖2

)
(
‖(I − proxλg)Axn‖2

)
+

(
‖(I − proxλ f )xn‖2

) − ε for some ε > 0.

Then, the sequence {xn} defined by Algorithm 3.3 converges strongly to z = P,u.

4 Convergence theorem for split feasibility problems

In this section, we give an application of Theorem 3.2 to the split feasibility problem.

Algorithm 4.1 Given an initial point x1 ∈ H1. Assume that xn has been constructed and
‖A∗(I − PQ)Axn‖2+‖(I − PC )xn‖2 ,= 0, and then compute xn+1 by the following iterative
scheme:

{
yn = PC (αnψ(xn)+ (1 − αn)xn − µn A∗(I − PQ)Axn)

xn+1 = βn yn + (1 − βn)Syn, ∀n ∈ N,
(4.1)

where the stepsize µn := ρn

( 1
2‖(I − PQ)Axn‖2

)
+

( 1
2‖(I − PC )xn‖2

)

‖A∗(I − PQ)Axn‖2 + ‖(I − PC )xn‖2
with 0 < ρn < 4

and {αn}, {βn} ⊂ (0, 1).

We now obtain a strong convergence theorem of Algorithm 4.1 for solving the split
feasibility problem and the fixed point problem of nonexpansive mappings as follows:

Theorem 4.2 Let H1 and H2 be two real Hilbert spaces, and let C and Q be nonempty,
closed and convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear
operator. Let ψ : H1 → H1 be a contraction mapping with δ ∈ [0, 1) and let S : H1 → H1
be a nonexpansive mapping. Assume that , := F(S) ∩ C ∩ A−1(Q) ,= ∅. If the control
sequences {αn}, {βn} and {ρn} satisfy the following conditions:
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(C1) lim
n→∞ αn = 0 and

∞∑

n=1

αn = ∞,

(C2) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1;

(C3) ε ≤ ρn ≤ 4(1 − αn)
(
‖(I − PQ)Axn‖2

)
(
‖(I − PQ)Axn‖2

)
+

(
‖(I − PC )xn‖2

) − ε for some ε > 0.

Then, the sequence {xn} generated by Algorithm 4.1 converges strongly to z = P,ψ(z).

Proof Taking f = iC and g = iQ in Theorem 3.2 (iC and iQ are indicator functions of
C and Q, respectively), we have proxλ f = PC and proxλg = PQ for all λ. We also have
argmin f = C and argmin g = Q. Therefore, from Theorem 3.2, we obtain the desired
result. 34

5 Convergence theorem for nonexpansive semigroups

In this section, we prove a strong convergence theorem for finding a common solution of the
proximal split feasibility problem and the fixed point problem of nonexpansive semigroups
in Hilbert spaces.

LetC be a nonempty, closed, and convex subset of a real Banach space X . A one-parameter
family S = S(t) : t ≥ 0 : C → C is said to be a nonexpansive semigroup on C if it satisfies
the following conditions:

(i) S(0)x = x for all x ∈ C ;
(ii) S(s + t)x = S(s)S(t)x for all t, s > 0 and x ∈ C ;
(iii) for each x ∈ C the mapping t 5−→ S(t)x is continuous;
(iv) ‖S(t)x − S(t)y‖ ≤ ‖x − y‖ for all x, y ∈ C and t > 0.

We use F(S) to denote the common fixed point set of the semigroup S, i.e., F(S) =⋂
t>0 F(S(t)) = {x ∈ C : x = S(t)x}. It is well known that F(S) is closed and con-

vex (see Browder 1956).

Definition 5.1 (Aleyner and Censor 2005) Let C be a nonempty, closed, and convex subset
of a real Hilbert space H , S = S(t) : t > 0 be a continuous operator semigroup on C . Then,
S is said to be uniformly asymptotically regular (in short, u.a.r.) on C if for all h ≥ 0 and
any bounded subset K of C , such that

lim
t→∞ sup

x∈K
‖S(h)(S(t)x) − S(t)x‖ = 0.

Lemma 5.2 (Shimizu and Takahashi 1997) Let C be a nonempty, closed, and convex subset of
a real Hilbert space H, and let K be a bounded, closed, and convex subset of C. If we denote
S = S(t) : t > 0 is a nonexpansive semigroup on C, such that F(S) = ⋂

t>0 F(S(t)) ,= ∅.
For all h > 0, the set σt (x) = 1

t

∫ t
0 S(s)xds, then

lim
t→∞ sup

x∈K
‖σt (x) − S(h)σt (x)‖ = 0.

Let H1 and H2 be two real Hilbert spaces. Let f : H1 → R ∪ {+∞} and g : H2 →
R ∪ {+∞} be two proper and lower semicontinuous convex functions and A : H1 → H2 be
a bounded linear operator and let ψ : H1 → H1 be a contraction mapping with δ ∈ [0, 1).
Let S := {S(t) : t > 0} be a u.a.r nonexpansive semigroup on H1.
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Algorithm 5.3 Given an initial point x1 ∈ H1. Assume that xn has been constructed and
‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2 ,= 0, and then compute xn+1 by the following
iterative scheme:

{
yn = proxλµn f (αnψ(xn)+ (1 − αn)xn − µn A∗(I − proxλg)Axn)

xn+1 = βn yn + (1 − βn)S(tn)yn, ∀n ∈ N,
(5.1)

where the stepsize µn := ρn

( 1
2‖(I − proxλg)Axn‖2

)
+

( 1
2‖(I − proxλ f )xn‖2

)

‖A∗(I − proxλg)Axn‖2 + ‖(I − proxλ f )xn‖2
with 0 <

ρn < 4, {αn}, {βn} ⊂ (0, 1) and {tn} is a positive real divergent sequence.

Wenowprove a strong convergence result for the problem (1.1) and the fixed point problem
of nonexpansive semigroups as follows:

Theorem 5.4 Suppose that
⋂

t>0 F(S(t)) ∩ ! ,= 0. If the control sequences {αn}, {βn} and
{ρn} satisfy the following conditions:

(C1) lim
n→∞ αn = 0 and

∞∑

n=1

αn = ∞;

(C2) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1;

(C3) ε ≤ ρn ≤
4(1 − αn)

(
‖(I − proxλg)Axn‖2

)
(
‖(I − proxλg)Axn‖2

)
+

(
‖(I − proxλ f )xn‖2

) − ε for some ε > 0.

Then, the sequence {xn} generated by Algorithm 5.3 converges strongly to a point x∗ ∈⋂
t>0 F(S(t)) ∩ !.

Proof By continuing in the same direction as in Theorem 3.2, we have that limn→∞ ‖yn −
S(tn)yn‖ = 0. Now, we only show that limn→∞ ‖yn − S(h)yn‖ = 0 for all h ≥ 0. We
observe that

‖yn − S(h)yn‖ ≤ ‖yn − S(tn)yn‖ + ‖S(tn)yn − S(h)S(tn)yn‖ + ‖S(h)S(tn)yn − S(h)yn‖
≤ 2‖yn − S(tn)yn‖ + sup

x∈yn
‖S(tn)x − S(h)S(tn)x‖.

Since {S(t) : t ≥ 0} is a u.a.r. nonexpansive semigroup and tn → ∞ for all h ≥ 0, we have:

lim
n→∞ ‖yn − S(h)yn‖ = 0,

for all h ≥ 0. This completes the proof. 34

6 Numerical examples

We first give a numerical example in Euclidean spaces to demonstrate the convergence of
Algorithm (3.1).

Example 6.1 Let H1 = R2 and H2 = R3 with the usual norms. Define a mapping S : R2 →
R2 by:

S(a, b) :=
√
2
2

(a − b, a + b).
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Table 1 The numerical
experiment of Algorithm (6.1) by
choosing δ = 0.1

n an bn En

1 3.0000000 −2.0000000 –

2 0.1783143 −0.1100519 3.3961470

3 0.0082067 −0.0025830 0.2012117

4 0.0004998 0.0013948 0.0086729

5 0.0001562 0.0010892 0.0004598

6 0.0001076 0.0007884 0.0003047

7 0.0000801 0.0005827 0.0002075

8 0.0000608 0.0004388 0.0001452

9 0.0000467 0.0003353 0.0001045

10 0.0000363 0.0002591 0.0000769

.

.

.
.
.
.

.

.

.
.
.
.

28 0.0000008 0.0000055 0.0000012

29 0.0000007 0.0000046 0.00000098

One can show that S is nonexpansive. Define two functions f :R2 → (−∞,∞] and g :
R3 → (−∞,∞] by f := 0, where 0 is a zero operator and

g(a, b, c) := | − 3a + 7b − 2c|2
2

.

Then, the explicit forms of the proximity operators of f and g can be written by proxλ f = I

and prox1g = B−1, where B =




10 −21 6

−21 50 −14
6 −14 5



 (see Combettes and Pesquet 2011b). Let

A : R2 → R3 be defined by:

A :=




2 1
7 −3

−5 4



 ,

and let , := F(S) ∩ argmin f ∩ A−1(argmin g). Now, we rewrite Algorithm (3.1) in the
form:

{
yn = αnψ(xn)+ (1 − αn)xn − µn AT (I − B−1)Axn
xn+1 = βn yn + (1 − βn)Syn, ∀n ∈ N,

(6.1)

where

µn = ρn

2
‖(I − B−1)Axn‖2

‖AT (I − B−1)Axn‖2
.

Take αn = 1
n+1 , βn = 1

2 , ρn = 2n
n+1 . Consider a contraction ψ : R2 → R2 defined by

ψ(x) = δx for 0 ≤ δ < 1. We first start with the initial point x1 = (3,−2) and the stopping
criterion for our testing process is set as: En := ‖xn − xn−1‖ < 10−6, where xn = (an, bn).
In Table 1, we show the convergence behavior of Algorithm (6.1) by choosing δ = 0.1.
In Table 2, we also show the number of iterations of Algorithm (6.1) by choosing different
constants δ. –
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Table 2 The number of iterations of Algorithm (6.1) by choosing different constants δ

ψ : R2 → R2, ψ(x) = δx

Choices of δ n (no. of iterations) xn En

δ = 0 (Shehu and Iyiola
2015,
Algorithm 1)

42 (−0.0000007,−0.0000048) 0.00000098

δ = 0.05 39 (−0.0000007,−0.0000046) 0.00000095

δ = 0.1 29 (−0.0000007,−0.0000046) 0.00000098

δ = 0.2 46 (0.0000007, 0.0000050) 0.00000099

δ = 0.5 59 (0.0000007, 0.0000052) 0.00000097

δ = 0.9 71 (0.0000007, 0.0000049) 0.00000088

Remark 6.2 In Example 6.1, by testing the convergence behavior of Algorithm (6.1), we
observe that

(i) It converges to a solution, i.e., xn → (0, 0) ∈ ,.
(ii) The selection of a contraction ψ in our algorithm influences the number of iterations of

the algorithm.We also note that ifψ ≡ 0 is zero, then our algorithm becomesAlgorithm
(1.6) (Shehu and Iyiola 2015, Algorithm 1).

Next, we give an example in the infinite-dimensional space L2 as follows.

Example 6.3 Let H1 = L2([0, 1]) = H2. Let x ∈ L2([0, 1]). Define a bounded linear
operator A : L2([0, 1]) → L2([0, 1]) by:

(Ax)(t) := 3t x(t).

Define a mapping S : L2([0, 1]) → L2([0, 1]) by:
(Sx)(t) := sin(x(t)).

Then, S is nonexpansive. Let

C =
{
x ∈ L2([0, 1]) : 〈w, x〉 ≤ 0

}
,

where w ∈ L2([0, 1]), such that w(t) = 2t3, and let

Q =
{
x ∈ L2([0, 1]) : x ≥ 0

}
.

Define two functions f , g : L2([0, 1]) → (−∞,∞] by f := iC and g := iQ , where iC and
iQ are indicator functions of C and Q, respectively. We can write the explicit forms of the
proximity operators of f and g in the following forms:

proxλ f x = PCx =
{
x − 〈w,x〉

‖w‖2 w, if x /∈ C,

x, if x ∈ C,

and proxλg x = PQx = x+, where x+(t) = max{x(t), 0} (see Cegielski 2012). Therefore,
Algorithm (3.1) can be rewritten in the form:

{
yn = PC (αnψ(xn)+ (1 − αn)xn − µn A∗(I − PQ)Axn)

xn+1 = βn yn + (1 − βn)Syn, ∀n ∈ N; (6.2)
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µn = ρn

( 1
2‖(I − PQ)Axn‖2

)
+

( 1
2‖(I − PC )xn‖2

)

‖A∗(I − PQ)Axn‖2 + ‖(I − PC )xn‖2
, for finding a common element in the

set , := F(S) ∩ C ∩ A−1(Q). By choosing the control sequences {αn}, {βn} and {ρn}
satisfying the conditions (C1)–(C3) in Theorem 3.2, it can guarantee that the sequence {xn}
generated by (6.2) converges strongly to x∗ = 0 ∈ ,.
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Abstract
In this paper, we construct an iterative method by a generalized viscosity explicit rule
for a countable family of strictly pseudo-contractive mappings in a q-uniformly
smooth Banach space. We prove strong convergence theorems of proposed
algorithm under some mild assumption on control conditions. We apply our results
to the common fixed point problem of convex combination of family of mappings
and zeros of accretive operator in Banach spaces. Furthermore, we also give some
numerical examples to support our main results.

Keywords: Strict pseudo-contractions; Banach space; Strong convergence; Fixed
point problem; Iterative method

1 Introduction
In this paper, we assume that E is a real Banach space with dual space E∗ and C is a
nonempty subset of E. Let q > 1 be a real number. The generalized duality mapping
Jq : E → 2E∗ is defined by

Jq(x) =
{

x̄ ∈ E∗ : 〈x, x̄〉 = ‖x‖q,‖x̄‖ = ‖x‖q–1},

where 〈·, ·〉 denotes the generalized duality pairing between elements of E and E∗. In par-
ticular, Jq = J2 is called the normalized duality mapping. If E is smooth, then Jq is single-
valued and denoted by jq (see [1]). If E := H is a real Hilbert space, then J = I , where I is
the identity mapping. Further, we have the following properties of the generalized duality
mapping Jq:

• Jq(x) = ‖x‖q–2J2(x) for all x ∈ E with x '= 0.
• J(tx) = tq–1Jq(x) for all x ∈ E and t ≥ 0.
• Jq(–x) = –Jq(x) for all x ∈ E.

Let T be a self-mapping of C. We denote the fixed point set of the mapping T by F(T) =
{x ∈ C : x = Tx}. A mapping f : C → C is said to be a contraction if there exists a constant
ρ ∈ (0, 1) satisfying

∥∥f (x) – f (y)
∥∥ ≤ ρ‖x – y‖, ∀x, y ∈ C.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.



Khuangsatung and Sunthrayuth Journal of Inequalities and Applications  ( 2018)  2018:167 Page 2 of 20

We use "C to denote the collection of all contractions from C into itself. Recall that a
mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

A mapping T : C → C is said to be λ-strict pseudo-contraction if for all x, y ∈ C, there exist
λ > 0 and jq(x – y) ∈ Jq(x – y) such that

〈
Tx – Ty, jq(x – y)

〉
≤ ‖x – y‖q – λ

∥∥(I – T)x – (I – T)y
∥∥q, ∀x, y ∈ C. (1)

It is not hard to show that (1) equivalent to the following inequality:

〈
(I – T)x – (I – T)y, jq(x – y)

〉
≥ λ

∥∥(I – T)x – (I – T)y
∥∥q, ∀x, y ∈ C. (2)

If E := H is a Hilbert space, then (1) (and so (2)) is equivalent to the following inequality:

‖Tx – Ty‖2 ≤ ‖x – y‖2 + k
∥∥(I – T)x – (I – T)y

∥∥2, ∀x, y ∈ C, (3)

where k = 1 – 2λ < 1. We assume that k ≥ 0, so that k ∈ [0, 1). Note that the class of strictly
pseudo-contractive mappings include the class of nonexpansive mappings as a particular
case in Hilbert spaces. Clearly, T is nonexpansive if and only if T is a 0-strict pseudo-
contraction. Strict pseudo-contractions were first introduced by Browder and Petryshyn
[2] in 1967. They have more powerful applications than nonexpansive mappings do in
solving inverse problems (see, e.g., [3]). Therefore it is more interesting to study the theory
of iterative methods for strictly pseudo-contractive mappings. Several researchers studied
the class of strictly pseudo-contractive mappings in Hilbert and Banach spaces (see, e.g.,
[4–9] and the references therein).

Now, we give some examples of λ-strictly pseudo-contractive mappings.

Example 1.1 ([8]) Let E = R with the usual norm, and let C = (0,∞). Let T : C → C be
defined by

Tx = x2

1 + x , x ∈ C.

Then, T is a 1-strict pseudo-contraction.

Example 1.2 ([8]) Let E = R with the usual norm, and let C = [–1, 1]. Let T : C → C be
defined by

Tx =





x, x ∈ [–1, 0],
x – x2, x ∈ [0, 1].

Then, T is a λ-strict pseudo-contraction with constant λ > 0.

Over the last several years, the implicit midpoint rule (IMR) has become a powerful nu-
merical method for numerically solving time-dependent differential equations (in partic-
ular, stiff equations) (see [10–15]) and differential algebraic equations (see [16]). Consider
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the following initial value problem:

x′(t) = f
(
x(t)

)
, x(t0) = x0, (4)

where f : RM → RM is a continuous function. The IMR is an implicit method given by the
following finite difference scheme [17]:





y0 = x0,
yn+1 = yn + hf ( yn+yn+1

2 ), n ≥ 0,
(5)

where h > 0 is a time step. It is known that if f : RM → RM is Lipschitz continuous and
sufficiently smooth, then the sequence {yn} converges to the exact solution of (4) as h → 0
uniformly over t ∈ [t0, t∗] for any fixed t∗ > 0. If the function f is written as f (x) = x – g(x),
then (5) becomes





y0 = x0,
yn+1 = yn + h[ yn+yn+1

2 – g( yn+yn+1
2 )], n ≥ 0,

(6)

and the critical points of (4) are the fixed points of the problem x = g(x).
Based on IMR (5), Alghamdi et al. [18] introduced the following two algorithms for the

solution of the fixed point problem x = Tx, where T is a nonexpansive mapping in a Hilbert
space H :

xn+1 = xn – tn

[xn + xn+1
2 – T

(xn + xn+1
2

)]
, n ≥ 0, (7)

xn+1 = (1 – tn)xn + tnT
(xn + xn+1

2

)
, n ≥ 0, (8)

for x0 ∈ H , with {tn}∞n=1 ⊂ (0, 1). They proved that these two schemes converge weakly to
a point in F(T).

To obtain strong convergence, Xu et al. [19] applied the viscosity approximation method
introduced by Moudafi [20] to the IMR for a nonexpansive mapping T and proposed the
following viscosity implicit midpoint rule in Hilbert spaces H as follows:

xn+1 = αnf (xn) + (1 – αn)T
(xn + xn+1

2

)
, n ≥ 1, (9)

where {αn} is a real control condition in (0, 1). They also proved that the sequence {xn}
generated by (9) converges strongly to a point x∗ ∈ F(T), which solves the variational in-
equality

〈
(f – I)x∗, z – x∗〉 ≤ 0, z ∈ F(T). (10)

Later, Ke and Ma [21] improved the viscosity implicit midpoint rule by replacing the mid-
point by any point of the interval [xn, xn+1]. They introduced the so-called generalized vis-
cosity implicit rules to approximating the fixed point of a nonexpansive mapping T in
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Hilbert spaces H as follows:

xn+1 = αnf (xn) + (1 – αn)T
(
snxn + (1 – sn)xn+1

)
, n ≥ 1. (11)

They also proved that the sequence {xn} generated by (11) converges strongly to a point
x∗ ∈ F(T) that solves the variational inequality (10).

In numerical analysis, it is clear that the computation by the IMR is not an easy work in
practice. Because the IMR need to compute at every time steps, it can be much harder to
implement. To overcome this difficulty, for solving (4), we consider the helpful method, the
so-called explicit midpoint method (EMR), given by the following finite difference scheme
[22, 23]:






y0 = x0,
ȳn+1 = yn + hf (yn),
yn+1 = yn + hf ( yn+ȳn+1

2 ), n ≥ 0.
(12)

Note that the EMR (12) calculates the system status at a future time from the currently
known system status, whereas IMR (5) calculates the system status involving both the
current state of the system and the later one (see [23, 24]).

In 2017, Marino et al. [25] combined the generalized viscosity implicit midpoint rules
(11) with the EMR (12) for a quasi-nonexpansive mapping T and introduced the following
so-called generalized viscosity explicit midpoint rule in Hilbert spaces H as follows:





x̄n+1 = βnxn + (1 – βn)Txn,
xn+1 = αnf (xn) + (1 – αn)T(snxn + (1 – sn)x̄n+1), n ≥ 1.

(13)

They also showed that, under certain assumptions imposed on the parameters, the se-
quence {xn} generated by (13) converges strongly to a point x∗ ∈ F(T), which solves the
variational inequality (10).

The above results naturally bring us to the following questions.

Question 1 Can we extend the generalized viscosity explicit midpoint rule (13) to higher
spaces other than Hilbert spaces? Such as a 2-uniformly smooth Banach space or, more
generally, in a q-uniformly smooth Banach space.

Question 2 Can we obtain a strong convergence result of generalized viscosity explicit
midpoint rule (13) for finding the set of common fixed points of a family of mappings?
Such as a countable family of strict pseudo-contractions.

The purpose of this paper is to give some affirmative answers to the questions raised.
We introduce an iterative algorithm for finding the set of common fixed points of a count-
able family of strict pseudo-contractions by a generalized viscosity explicit rule in a q-
uniformly smooth Banach space. We prove the strong convergence of the proposed al-
gorithm under some mild assumption on control conditions. We apply our results to the
common fixed point problem of a convex combination of a family of mappings and ze-
ros of an accretive operator in Banach spaces. Furthermore, we also give some numerical
examples to support our main results.
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2 Preliminaries
Let E be a real Banach space with norm ‖ · ‖ and dual space E∗ of E. The symbol 〈x, x∗〉
denotes the pairing between E and E∗, that is, 〈x, x∗〉 = x∗(x), the value of x∗ at x. The
modulus of convexity of E is the function δ : (0, 2] → [0, 1] defined by

δ(ε) = inf
{

1 – ‖x + y‖
2 : x, y ∈ E,‖x‖ = ‖y‖ = 1,‖x – y‖ ≥ ε

}
.

A Banach space E is said to be uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2]. For p > 1, we
say that E is said to be p-uniformly convex if there is cp > 0 such that δE(ε) ≥ cpεp for all
ε ∈ (0, 2].

The modulus of smoothness of E is the function ρE : R+ := [0,∞) → R+ defined by

ρE(τ ) = sup
{‖x + τy‖ + ‖x – τy‖

2 – 1 : ‖x‖,‖y‖ ≤ 1
}

.

A Banach space E is said to be uniformly smooth if ρE(τ )
τ

→ 0 as τ → 0. For q > 1, a Banach
space E is said to be q-uniformly smooth if there exists cq > 0 such that ρE(τ ) ≤ cqτ q for
all τ > 0. If E is q-uniformly smooth, then q ≤ 2, and E is also uniformly smooth. Further,
E is p-uniformly convex (q-uniformly smooth) if and only if E∗ is q-uniformly smooth
(p-uniformly convex), where p ≥ 2 and 1 < q ≤ 2 satisfy 1

p + 1
q = 1. It is well known that

Hilbert spaces Lp and lp (p > 1) are uniformly smooth (see [26]). More precisely, the spaces
Lp and lp are min{p, 2}-uniformly smooth for every p > 1.

Definition 2.1 Let C a be nonempty closed convex subsets of E, and let Q be a mapping
of E onto C. Then Q is said to be:

• sunny if Q(Qx + t(x – Qx)) = Qx for all x ∈ C and t ≥ 0.
• retraction if Qx = x for all x ∈ C.
• a sunny nonexpansive retraction if Q is sunny, nonexpansive, and a retraction from E

onto C.

It is known that if E := H is a real Hilbert space, then a sunny nonexpansive retraction Q
coincides with the metric projection from E onto C. Moreover, if E is uniformly smooth
and T is a nonexpansive mapping of C into itself with F(T) '= ∅, then F(T) is a sunny
nonexpansive retraction from E onto C (see [27]). We know that in a uniformly smooth
Banach space, a retraction Q : C → E is sunny and nonexpansive if and only if 〈x–Qx, jq(y–
Qx)〉 ≤ 0 for all x ∈ E and y ∈ C (see [28]).

Lemma 2.2 ([29]) Let C be a nonempty closed convex subset of a uniformly smooth Banach
space E. Let S : C → C be a nonexpansive self-mapping such that F(S) '= ∅ and f ∈ "C . Let
{zt} be the net sequence defined by

zt = tf (zt) + (1 – t)Szt , t ∈ (0, 1).

Then:
(i) {xt} converges strongly as t → 0 to a point Q(f ) ∈ F(S), which solves the variational

inequality
〈
(I – f )Q(f ), jq

(
Q(f ) – z

)〉
≤ 0, z ∈ F(S).
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(ii) Suppose that {xn} is a bounded sequence such that limn→∞ ‖xn – Sxn‖ = 0. If
Q(f ) := limt→0 xt exists, then

lim sup
n→∞

〈
(f – I)Q(f ), jq

(
xn – Q(f )

)〉
≤ 0.

Lemma 2.3 ([30]) Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space E. Let T : C → C be a λ-strict pseudo-contraction. For all x ∈ C, we define
Tθ x := (1 – θ )x + θTx. Then, as θ ∈ (0, δ], δ = min{1, ( qλ

κq )
1

q–1 }, where κq is the q-uniform
smoothness constant, and Tθ : C → C is nonexpansive such that F(Tθ ) = F(T).

Using the concept of subdifferentials, we have the following inequality.

Lemma 2.4 ([31]) Let q > 1, and let E be a real normed space with the generalized duality
mapping Jq. Then, for any x, y ∈ E, we have

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x + y)

〉
, (14)

where jq(x + y) ∈ Jq(x + y).

Lemma 2.5 ([32]) Let p > 1 and r > 0 be two fixed real numbers, and let E be a uniformly
convex Banach space. Then, for all x, y ∈ Br and t ∈ [0, 1],

∥∥tx + (1 – t)y
∥∥p ≤ t‖x‖p + (1 – t)‖y‖p – t(1 – t)c‖x – y‖p,

where c > 0.

Lemma 2.6 ([33]) Suppose that q > 1. Then

ab ≤ 1
q aq +

(q – 1
q

)
b

q
q–1

for positive real numbers a, b.

Lemma 2.7 ([34]) Let {an} be a sequence of nonnegative real numbers, {γn} be a sequence of
(0, 1) with ∑∞

n=1 γn = ∞, {cn} be a sequence of nonnegative real number with ∑∞
n=1 cn < ∞,

and let {bn} be a sequence of real numbers with lim supn→∞ bn ≤ 0. Suppose that

an+1 = (1 – γn)an + γnbn + cn

for all n ∈ N. Then, limn→∞ an = 0.

Lemma 2.8 ([35]) Let {sn} be sequences of real numbers such that there exists a subse-
quence {ni} of {n} such that sni < sni+1 for all i ∈ N. Then there exists an increasing sequence
{mk} ⊂ N such that limk→∞ mk = ∞ and the following properties are satisfied by all suffi-
ciently large numbers k ∈ N:

smk ≤ smk +1 and sk ≤ smk +1.

In fact, mk := max{j ≤ k : sj ≤ sj+1}.
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Definition 2.9 ([34]) Let C be a nonempty closed convex subset of a real Banach space E.
Let {Tn}∞n=1 be a family of mappings of C into itself. We say that {Tn}∞n=1 satisfies the AKTT-
condition if

∞∑

n=1
sup
w∈C

‖Tn+1w – Tnw‖ < ∞. (15)

Lemma 2.10 ([34]) Let C be a nonempty closed convex subset of a real Banach space E.
Suppose that {Tn}∞n=1 satisfies the AKTT-condition. Then, for each x ∈ C, {Tnx} converges
strongly to some point of C. Moreover, let T be the mapping of C into itself defined by Tx =
limn→∞ Tnx for all x ∈ C. Then, limn→∞ supw∈C ‖Tw – Tnw‖ = 0.

In the following, we will write that ({Tn}, T) satisfies the AKTT-condition if {Tn} satisfies
the AKTT-condition and T is defined by Lemma 2.10 with F(T) = ⋂∞

n=1 F(Tn).

3 Main results
Theorem 3.1 Let C be a nonempty closed convex subset of a real uniformly convex and
q-uniformly smooth Banach space E. Let f ∈ "C with coefficient ρ ∈ (0, 1), and let {Tn}∞n=1 :
C → C be a family of λ-strict pseudo-contractions such that , := ⋂∞

n=1 F(Tn) '= ∅. For all
x ∈ C, define the mapping Snx = (1 – θn)x + θnTnx, where 0 < θn ≤ δ, δ = min{1, ( qλ

κq )
1

q–1 }, and
∑∞

n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn} be a sequence generated by




x̄n+1 = βnxn + (1 – βn)Snxn,
xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,

(16)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying the following conditions:
(C1) limn→∞ αn = 0, ∑∞

n=1 αn = ∞;
(C2) lim infn→∞ βn(1 – βn)(1 – tn) > 0.

Suppose in addition that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then, {xn} defined by
(16) converges strongly to x∗ = Q(f ) ∈ ,, which solves the variational inequality

〈
(I – f )Q(f ), jq

(
Q(f ) – z

)〉
≤ 0, z ∈ ,, (17)

where Q is a sunny nonexpansive retraction of C onto ,.

Proof First, we show that {xn} is bounded. From Lemma 2.3 we have that Sn is non-
expansive such that F(Sn) = F(Tn) for all n ≥ 1. Put zn := tnxn + (1 – tn)x̄n+1. For each
z ∈ , := ⋂∞

n=1 F(Tn), we have

‖zn – z‖ =
∥∥tn(xn – z) + (1 – tn)(x̄n+1 – z)

∥∥

≤ tn‖xn – z‖ + (1 – tn)‖x̄n+1 – z‖

≤ tn‖xn – z‖ + (1 – tn)
(
βn‖xn – z‖ + (1 – βn)‖Snxn – z‖

)

≤ tn‖xn – z‖ + (1 – tn)βn‖xn – z‖ + (1 – tn)(1 – βn)‖xn – z‖

= ‖xn – z‖. (18)
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It follows that

‖xn+1 – z‖ =
∥∥αnf (xn) + (1 – αn)Snzn – z

∥∥

=
∥∥αn

(
f (xn) – f (z)

)
+ αn

(
f (z) – z

)
+ (1 – αn)(Snzn – z)

∥∥

≤ αn
∥∥f (xn) – f (z)

∥∥ + αn
∥∥f (z) – z

∥∥ + (1 – αn)‖Snzn – z‖

≤
(
1 – (1 – ρ)αn

)
‖xn – z‖ + (1 – ρ)αn

‖f (z) – z‖
1 – ρ

≤ max
{
‖xn – z‖, ‖f (z) – z‖

1 – ρ

}
.

By induction we have

‖xn – z‖ ≤ max
{
‖x1 – z‖, ‖f (z) – z‖

1 – ρ

}
, n ≥ 1.

Hence {xn} is bounded. Consequently, we deduce immediately that {f (xn)} and {Sn(tnxn +
(1 – tn)x̄n+1)} are bonded. Let x∗ = Q(f ). By the convexity of ‖ · ‖q and Lemma 2.5 we have

∥∥Snzn – x∗∥∥q ≤
∥∥zn – x∗∥∥q

=
∥∥tn

(
xn – x∗) + (1 – tn)

(
x̄n+1 – x∗)∥∥q

≤ tn
∥∥xn – x∗∥∥q + (1 – tn)

∥∥x̄n+1 – x∗∥∥q

= tn
∥∥xn – x∗∥∥q + (1 – tn)

∥∥βn
(
xn – x∗) + (1 – βn)

(
Snxn – x∗)∥∥q

≤ tn
∥∥xn – x∗∥∥q + (1 – tn)

[
βn

∥∥xn – x∗∥∥q + (1 – βn)
∥∥Snxn – x∗∥∥q

– βn(1 – βn)c‖xn – Snxn‖q]

≤
∥∥xn – x∗∥∥q – βn(1 – βn)(1 – tn)c‖xn – Snxn‖q. (19)

It follows from Lemma 2.4 and (19) that

∥∥xn+1 – x∗∥∥q

=
∥∥αn

(
f (xn) – x∗) + (1 – αn)

(
Snzn – x∗)∥∥q

=
∥∥αn

(
f (xn) – f

(
x∗)) + αn

(
f
(
x∗) – x∗) + (1 – αn)

(
Snzn – x∗)∥∥q

≤
∥∥αn

(
f (xn) – f

(
x∗)) + (1 – αn)

(
Snzn – x∗)∥∥q + qαn

〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉

≤ αn
∥∥f (xn) – f

(
x∗)∥∥q + (1 – αn)

∥∥Snzn – x∗∥∥q + qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉

≤ αn
∥∥f (xn) – f

(
x∗)∥∥q + (1 – αn)

[∥∥xn – x∗∥∥q – βn(1 – βn)(1 – tn)c‖xn – Snxn‖q]

+ qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉

≤
(
1 – (1 – ρ)αn

)∥∥xn – x∗∥∥q – (1 – αn)βn(1 – βn)(1 – tn)c‖xn – Snxn‖q

+ qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉. (20)

The rest of the proof will be divided into two cases:
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Case 1. Suppose that there exists n0 ∈ N such that {‖xn – x∗‖}∞n=n0 is nonincreasing. This
implies that {‖xn – x∗‖}∞n=1 is convergent. From (20) we see that

(1 – αn)βn(1 – βn)(1 – sn)c‖xn – Snxn‖q ≤
∥∥xn – x∗∥∥q –

∥∥xn+1 – x∗∥∥q + αnM,

where c > 0 and M = supn≥1{q‖f (x∗) – x∗‖‖xn+1 – x∗‖q–1, (1 – ρ)‖xn – x∗‖q} < ∞. From (C1)
and (C2) we get that

lim
n→∞

‖xn – Snxn‖ = 0. (21)

We observe that

sup
x∈{xn}

‖Sn+1x – Snx‖

= sup
x∈{xn}

∥∥(1 – θn+1)x + θn+1Tn+1x – (1 – θn)x – θnTnx
∥∥

≤ |θn+1 – θn| sup
x∈{xn}

‖x‖ + θn+1 sup
x∈{xn}

‖Tn+1x – Tnx‖ + |θn+1 – θn| sup
x∈{xn}

‖Tnx‖

≤ |θn+1 – θn|
(

sup
x∈{xn}

‖x‖ + sup
x∈{xn}

‖Tnx‖
)

+ sup
x∈{xn}

‖Tn+1x – Tnx‖.

Since {Tn}∞n=1 satisfies the AKTT-condition and ∑∞
n=1 |θn+1 – θn| < ∞, we have

∞∑

n=1
sup

x∈{xn}
‖Sn+1x – Snx‖ < ∞,

that is, {Sn}∞n=1 satisfies the AKTT-condition. From this we can define the nonexpansive
mapping S : C → C by Sx = limn→∞ Snx for all x ∈ C. Since {θn} is bounded, there exists a
subsequence {θni} of {θn} such that θni → θ as i → ∞. It follows that

Sx = lim
i→∞

Sni x = lim
i→∞

[
(1 – θni )x + θni Tni x

]
= (1 – θ )x + θTx, x ∈ C.

This shows that F(S) = F(T) = ⋂∞
n=1 F(Tn) := ,. By (21) and Lemma 2.10 we have

‖xn – Sxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Sxn‖

≤ ‖xn – Snxn‖ + sup
x∈{xn}

‖Snx – Sx‖ → 0 as n → ∞. (22)

Let {zt} be a sequence defined by

zt = f (zt) + (1 – t)Szt , t ∈ (0, 1).

From Lemma 2.2(i) we know that {xt} converges strongly to x∗ = Q(f ), which solves the
variational inequalities

〈
(I – f )Q(f ), jq

(
Q(f ) – z

)〉
≤ 0, z ∈ ,.
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Moreover, we obtain that

lim sup
n→∞

〈
f
(
x∗) – x∗, jq

(
xn – x∗)〉 ≤ 0. (23)

Note that

‖Snzn – xn‖ ≤ ‖Snzn – Snxn‖ + ‖Snxn – xn‖

≤ ‖zn – xn‖ + ‖Snxn – xn‖

= (1 – sn)(1 – βn)‖Snxn – xn‖ + ‖Snxn – xn‖

≤ 2‖xn – Snxn‖.

From (21), we get that

lim
n→∞

‖Snzn – xn‖ = 0. (24)

It follows that

‖xn+1 – xn‖

≤
∥∥αn

(
f (xn) – xn

)
+ (1 – αn)(Snzn – xn)

∥∥

≤ αn
∥∥f (xn) – xn

∥∥ + (1 – αn)‖Snzn – xn‖ → 0 as n → ∞. (25)

We also have

lim sup
n→∞

〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉 ≤ 0. (26)

Again from (20), we have
∥∥xn+1 – x∗∥∥q (27)

≤
(
1 – (1 – ρ)αn

)∥∥xn – x∗∥∥q + qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉. (28)

Apply Lemma 2.7 and (26) to (27), we obtain that xn → x∗ as n → ∞.
Case 2. There exists a subsequence {ni} of {n} such that

∥∥xni – x∗∥∥ ≤
∥∥xni+1 – x∗∥∥

for all i ∈ N. By Lemma 2.8, there exists a nondecreasing sequence {mk} ⊂ N such that
mk → ∞ as k → ∞ and

∥∥xmk – x∗∥∥ ≤
∥∥xmk +1 – x∗∥∥ and

∥∥xk – x∗∥∥ ≤
∥∥xmk+1 – x∗∥∥ (29)

for all k ∈ N. From (20) we have

(1 – αmk )βmk (1 – βmk )(1 – smk )c‖xmk – Smk xmk ‖q

≤
∥∥xmk – x∗∥∥q –

∥∥xmk+1 – x∗∥∥q + αmk M

≤ αmk M,
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where c > 0 and M < ∞. This implies by (C1) and (C2) that

‖xmk – Smk xmk ‖ → 0 as k → ∞. (30)

Since

sup
x∈{xmk }

‖Smk +1x – Smk x‖

= sup
x∈{xmk }

∥∥(1 – θmk +1)x + θmk +1Tmk +1x – (1 – θmk )x – θmk Tmk x
∥∥

≤ |θmk +1 – θmk | sup
x∈{xmk }

‖x‖ + θmk +1 sup
x∈{xmk }

‖Tmk +1x – Tmk x‖

+ |θmk +1 – θmk | sup
x∈{xmk }

‖Tmk x‖

≤ |θmk +1 – θmk |
(

sup
x∈{xmk }

‖x‖ + sup
x∈{xmk }

‖Tmk x‖
)

+ sup
x∈{xmk }

‖Tmk +1x – Tmk x‖ < ∞,

that is, {Smk }∞k=1 satisfies the AKTT-condition. Then, by (30) and Lemma 2.10, we get that

‖xmk – Sxmk ‖

≤ ‖xmk – Smk xmk ‖ + ‖Smk xmk – Sxmk ‖

≤ ‖xmk – Smk xmk ‖ + sup
x∈{xmk }

‖Smk x – Sx‖ → 0 as k → ∞. (31)

By the same argument as in Case 1, we can show that

lim sup
k→∞

〈
f
(
x∗) – x∗, j

(
xmk – x∗)〉 ≤ 0. (32)

It follows from (31) that

‖Smk zmk – xmk ‖ ≤ ‖Smk zmk – Smk xmk ‖ + ‖Smk xmk – xmk ‖

≤ ‖zmk – xmk ‖ + ‖Smk xmk – xmk ‖

= (1 – smk )(1 – βmk )‖Smk xmk – xmk ‖ + ‖Smk xmk – xmk ‖

≤ 2‖xmk – Smk xmk ‖ → 0 as k → ∞,

and hence

‖xmk +1 – xmk ‖ ≤
∥∥αmk

(
f (xmk ) – xmk

)
+ (1 – αmk )(Smk zmk – xmk )

∥∥

≤ αmk
∥∥f (xmk ) – xmk

∥∥ + (1 – αmk )‖Smk zmk – xmk ‖ → 0 as k → ∞.

Then, we also have

lim sup
k→∞

〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉 ≤ 0. (33)
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Again from (27) we have

∥∥xmk +1 – x∗∥∥q

≤
(
1 – (1 – ρ)αmk

)∥∥xmk – x∗∥∥q + qαmk
〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉, (34)

which implies that

(1 – ρ)αmk
∥∥xmk – x∗∥∥q ≤

∥∥xmk – x∗∥∥q –
∥∥xmk +1 – x∗∥∥q

+ qαmk
〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉

≤ qαmk
〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉. (35)

Since αmk > 0, we get limk→∞ ‖xmk – x∗‖ = 0. So, we have

∥∥xk – x∗∥∥ ≤
∥∥xmk +1 – x∗∥∥

=
∥∥xmk – x∗∥∥ +

∥∥xmk+1 – x∗∥∥ –
∥∥xmk – x∗∥∥

≤
∥∥xmk – x∗∥∥ + ‖xmk +1 – xmk ‖ → 0 as k → ∞,

which implies that xk → x∗ as k → ∞. This completes the proof. �

Applying Theorem 3.1 to a 2-uniformly smooth Banach space, we obtain the following
result.

Corollary 3.2 Let C be a nonempty closed convex subset of a real uniformly convex
and 2-uniformly smooth Banach space E. Let f ∈ "C with coefficient ρ ∈ (0, 1), and let
{Tn}∞n=1 : C → C be a family of λ-strict pseudo-contractions such that , := ⋂∞

n=1 F(Tn) '= ∅.
For all x ∈ C, define the mapping Snx = (1 – θ )x + θTnx, where 0 < θ ≤ δ, δ = min{1, λ

K2 },
and ∑∞

n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn} be a sequence generated by




x̄n+1 = βnxn + (1 – βn)Snxn,
xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,

(36)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying the conditions (C1) and (C2)
of Theorem 3.1. Suppose in addition that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then
{xn} converges strongly to x∗ = Q(f ) ∈ ,, which solves the variational inequality

〈
(I – f )Q(f ), j

(
Q(f ) – z

)〉
≤ 0, ∀z ∈ ,, (37)

where Q is a sunny nonexpansive retraction of C onto ,.

Utilizing the fact that a Hilbert space H is uniformly convex and 2-uniformly smooth
with the best smooth constant κ2 = 1, we obtain the following result.

Corollary 3.3 Let C be a nonempty closed convex subset of a Hilbert space H . Let f ∈
"C with coefficient ρ ∈ (0, 1), and let {Tn}∞n=1 : C → C be a family of λ-strict pseudo-
contractions with λ ∈ [0, 1) such that , := ⋂∞

n=1 F(Tn) '= ∅. For all x ∈ C, define the mapping
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Snx = (1 –θn)x +θnTnx, where 0 < θn ≤ δ, δ = min{1, 2λ}, and ∑∞
n=1 |θn+1 –θn| < ∞. For given

x1 ∈ C, let {xn} be a sequence generated by




x̄n+1 = βnxn + (1 – βn)Snxn,
xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,

(38)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying conditions (C1) and (C2) of
Theorem 3.1. Suppose, in addition, that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then
{xn} converges strongly to x∗ = P(f ) ∈ ,, which solves the variational inequality

〈
(I – f )P(f ), P(f ) – z

〉
≤ 0, z ∈ ,, (39)

where P is a metric projection of C onto ,.

4 Application
4.1 The generalized viscosity explicit rules for convex combination of family of

mappings
In this subsection, we apply our main result to convex combination of a countable family
of strict pseudo-contractions. The following lemmas can be found in [36, 37].

Lemma 4.1 ([36, 37]) Let C be a closed convex subset of a smooth Banach space E.
Suppose that {Tn}∞n=1 : C → C is a family of λ-strictly pseudo-contractive mappings with
⋂∞

n=1 F(Tn) '= ∅ and {µn}∞n=1 is a real sequence in (0, 1) such that ∑∞
n=1 µn = 1. Then the

following conclusions hold:
(i) A mapping G : C → E defined by G := ∑∞

n=1 µnTn is a λ-strictly pseudocontractive
mapping.

(ii) F(G) = ⋂∞
n=1 F(Tn).

Lemma 4.2 ([37]) Let C be a closed convex subset of a smooth Banach space E. Suppose
that {Tk}∞k=1 : C → C is a countable family of λ-strictly pseudocontractive mappings with
⋂∞

k=1 F(Sk) '= ∅. For all n ∈ N, define Sn : C → C by Snx := ∑n
k=1 µk

nTkx for all x ∈ C, where
{µk

n} is a family of nonnegative numbers satisfying the following conditions:
(i) ∑n

k=1 µk
n = 1 for all n ∈ N;

(ii) µk := limn→∞ µk
n > 0 for all k ∈ N;

(iii) ∑∞
n=1

∑n
k=1 |µk

n+1 – µk
n| < ∞.

Then:
(1) Each Tn is a λ-strictly pseudocontractive mapping.
(2) {Tn} satisfies the AKTT-condition.
(3) If T : C → C is defined by Tx = ∑∞

k=1 µkSkx for all x ∈ C,
then, Tx = limn→∞ Tnx and F(T) = ⋂∞

n=1 F(Tn) = ⋂∞
k=1 F(Sk).

Using Theorem 3.1 and Lemmas 4.1 and 4.2, we obtain the following result.

Theorem 4.3 Let C be a nonempty closed convex subset of a real uniformly convex and
q-uniformly smooth Banach space E. Let f ∈ "C with coefficient ρ ∈ (0, 1), and let {Tk}∞k=1 :
C → C be a countable family of λk-strict pseudo-contractions with inf{λk : k ∈ N} = λ > 0.
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For all x ∈ C, define a mapping Snx := (1–θn)x+θn
∑n

k=1 µk
nTkx such that , := ⋂∞

k=1 F(Tk) '=
∅, where 0 < θn ≤ δ, δ = min{1, ( qλ

κq )
1

q–1 }, and ∑∞
n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn}

be a sequence generated by




x̄n+1 = βnxn + (1 – βn)Snxn,
xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,

(40)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfy conditions (C1) and (C2) of Theo-
rem 3.1, and {µk

n} is a real sequence satisfying (i)–(iii) of Lemma 4.2. Then {xn} converges
strongly to a x∗ ∈ ,.

4.2 The generalized viscosity explicit rules for zeros of accretive operators
In this subsection, we apply our main result to problem of finding a zero of an accretive
operator. An operator A ⊂ E×E is said to be accretive if for all (x1, y1) and (x2, y2) ∈ A, there
exists jq ∈ Jq(x1 – x2) such that 〈y1 – y2, jq〉 ≥ 0. An operator A is said to satisfy the range
condition if D(A) = R(I + λA) for all λ > 0, where D(A) is the domain of A, R(I + λA) is the
range of I + λA, and D(A) is the closure of D(A). If A is an accretive operator that satisfies
the range condition, then we can defined a single-valued mapping JA

λ : R(I +λA) → D(A) by
Jλ = (I + λA)–1, which is called the resolvent of A. We denote A–10 by the set of zeros of A,
that is, A–10 = {x ∈ D(A) : 0 ∈ Ax}. It is well known that Jλ is nonexpansive and F(Jλ) = A–10
(see [38]). We also know the following [39]: For all λ,µ > 0 and x ∈ R(I + λA) ∩ R(I + µA),
we have

‖Jλx – Jµx‖ ≤ |λ – µ|
λ

‖x – Jλx‖.

Lemma 4.4 ([34]) Let C be a nonempty closed convex subset of a Banach space E. Let
A ⊂ E × E be an accretive operator such that A–10 '= ∅, which satisfies the condition
D(A) ⊂ C ⊂ ⋂

λ>0 R(I + λA). Suppose that {λn} ⊂ (0,∞) such that inf{λn : n ∈ N} > 0 and
∑∞

n=1 |θn+1 – θn| < ∞. Then, {Jλn} satisfies the AKTT-condition. Consequently, for each
x ∈ C, {Jλn x} converges strongly to some point of C. Moreover, let Jλ : C → C be defined
by Jλx = limn→∞ Jλn x for all x ∈ C and F(Jλ) = ⋂∞

n=1 F(Jλn ), where λn → λ as n → ∞. Then,
limn→∞ supx∈C ‖Jλx – Jλn x‖ = 0.

Utilizing Theorem 3.1 and and Lemma 4.4, we obtain the following result.

Theorem 4.5 Let C be a nonempty closed convex subset of a q-uniformly smooth Banach
space E. Let f ∈ "C with coefficient ρ ∈ (0, 1) and let A ⊂ E × E be an accretive operator
such that A–10 '= ∅ which satisfies the condition D(A) ⊂ C ⊂ ⋂

λ>0 R(I + λA). Suppose that
{λn} ⊂ (0,∞) is such that inf{λn : n ∈ N} > 0 and ∑∞

n=1 |λn+1 – λn| < ∞. For given x1 ∈ C,
let {xn} be the sequence generated by





x̄n+1 = βnxn + (1 – βn)Jλn xn,
xn+1 = αnf (xn) + (1 – αn)Jλn (tnxn + (1 – tn)x̄n+1), n ≥ 1,

(41)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying conditions (C1) and (C2) of
Theorem 3.1. Then {xn} converges strongly to x∗ ∈ A–10.
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4.3 The generalized viscosity explicit rules with weak contraction
In this subsection, we apply our main result to the viscosity approximation method with
weak contraction.

Definition 4.6 ([40–42]) Let C be a closed and convex subset of a real Banach space E.
A mapping g : C → C is said to be weakly contractive if there exists a continuous strictly
increasing function ψ : [0,∞) → [0,∞) with ψ(0) = 0 and limt→∞ ψ(t) = ∞ such that

∥∥g(x) – g(y)
∥∥ ≤ ‖x – y‖ – ψ

(
‖x – y‖

)
, x, y ∈ C.

As a particular case, if ψ(t) = (1 – ρ)t for all t ≥ 0, where ρ ∈ (0, 1), then the weakly con-
tractive mapping is contraction with coefficient ρ .

In 2001, Rhoades [42] first proved Banach’s contraction principle for the weakly con-
tractive mapping in complete metric space.

Lemma 4.7 ([42]) Let (E, d) be a complete metric space, and let g be a weakly contractive
mapping on E. Then g has a unique fixed point in E.

Lemma 4.8 ([43]) Assume that {an} and {bn} are sequences of nonnegative real number,
and {λn} is a sequence of a positive real number satisfying the conditions ∑∞

n=1 λn = ∞ and
limn→∞

bn
λn = 0. Suppose that

an+1 ≤ an – λnψ(an) + bn, n ≥ 1,

where ψ(t) is a continuous strictly increasing function on R with ψ(0) = 0. Then,
limn→∞ an = 0.

Utilizing Theorem 3.1, we obtain the following result.

Theorem 4.9 Let C be a nonempty closed convex subset of a real uniformly convex and
q-uniformly smooth Banach space E. Let g : C → C be a weak contraction, and let {Tn}∞n=1 :
C → C be a family of λ-strict pseudo-contractions such that , := ⋂∞

n=1 F(Tn) '= ∅. For all
x ∈ C, define the mapping Snx = (1 – θn)x + θnTnx, where 0 < θn ≤ δ, δ = min{1, ( qλ

κq )
1

q–1 }, and
∑∞

n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn} be the sequence generated by




x̄n+1 = βnxn + (1 – βn)Snxn,
xn+1 = αng(xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,

(42)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfy conditions (C1) and (C2) of The-
orem 3.1. Suppose in addition that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then {xn}
converges strongly to x∗ ∈ ,.

Proof By the smoothness of E there exists a sunny nonexpansive retraction Q from C
onto ,. Moreover, Q(g) is a weakly contractive mapping of C into itself. For all x, y ∈ C,
we have

∥∥Q
(
g(x)

)
– Q

(
g(y)

)∥∥ ≤
∥∥g(x) – g(y)

∥∥ ≤ ‖x – y‖ – ψ
(
‖x – y‖

)
.
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Lemma 4.7 guarantees that Q(g) has a unique fixed point x∗ ∈ C such that x∗ = Q(g). Now,
we define a sequence {yn} and y1 ∈ C as follows:





ȳn+1 = βnyn + (1 – βn)Snyn,
yn+1 = αng(yn) + (1 – αn)Sn(tnyn + (1 – tn)ȳn+1), n ≥ 1.

Then, by Theorem 3.1 with a constant f = g(x∗), we have that {yn} converges strongly to
x∗ = Q(g)) ∈ ,. Next, we show that xn → x∗ as n → ∞. Since

‖x̄n+1 – ȳn+1‖ ≤ βn‖xn – yn‖ + (1 – βn)‖Snxn – Snyn‖ ≤ ‖xn – yn‖,

it follows that

‖xn+1 – yn+1‖

=
∥∥αn

(
g(xn) – g

(
x∗)) + (1 – αn)

(
Sn

(
tnxn + (1 – tn)x̄n+1

)
– Sn

(
tnyn + (1 – tn)ȳn+1

))∥∥

≤ αn
∥∥g(xn) – g

(
x∗)∥∥ + (1 – αn)

∥∥Sn
(
tnxn + (1 – tn)x̄n+1

)
– Sn

(
tnyn + (1 – tn)ȳn+1

)∥∥

≤ αn
∥∥g(xn) – g(yn)

∥∥ + αn
∥∥g(yn) – g

(
x∗)∥∥

+ (1 – αn)
(
tn‖xn – yn‖ + (1 – tn)‖x̄n+1 – ȳn+1‖

)

≤ αn‖xn – yn‖ – αnψ
(
‖xn – yn‖

)
+ αn

∥∥yn – x∗∥∥

– αnψ
(∥∥yn – x∗∥∥)

+ (1 – αn)‖xn – yn‖

≤ ‖xn – yn‖ – αnψ
(
‖xn – yn‖

)
+ αn

∥∥yn – x∗∥∥. (43)

Since {yn} converges strongly to x∗, applying Lemma 4.8 to (43), we obtain that
limn→∞ ‖xn – yn‖ = 0. Therefore xn → x∗. This completes the proof. �

5 Numerical examples
In this section, we present a numerical example of our main result.

Example 5.1 Let E = .4 and C = {x = (x1, x2, x3, x4, . . .) ∈ .4 : xi ∈ R for i = 1, 2, 3, . . .} with
norm ‖x‖.4 = (∑∞

i=1 |xi|4)1/4. Let f : C → C be the contraction defined by f (x) = 1
3 x. Let

{Tn}∞n=1 : C → C be the strictly pseudo-contractive mapping defined by

Tnx =






1
n (1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .) – 2x if x '= 0,
0 if x = 0,

where 0 = (0, 0, 0, 0, 0, 0, 0, . . .) is the null vector on .4.
• We show that Tn is strictly pseudo-contractive. For each n ≥ 1, if x, y '= 0, then

〈
(I – Tn)x – (I – Tn)y, j2(x – y)

〉
=

〈
3x – 3y, j2(x – y)

〉

= 3‖x – y‖2
.4

= 1
3‖3x – 3y‖2

.4

≥ λ
∥∥(I – Tn)x – (I – Tn)y

∥∥2
.4
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for λ ≤ 1
3 . Then, we can choose λ = 1

3 . Thus, Tn is 1
3 -strictly pseudo-contractive with

⋂∞
n=1 F(Tn) = {0}. Further, we observe that Tn is not nonexpansive.

• We show that ({Tn}∞n=1, T) satisfies the AKTT-condition. Since

sup
x∈.4

‖Tn+1x – Tnx‖.4

= sup
x∈.4

∥∥∥∥
1

n + 1

(
1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .
)

– 2x – 1
n

(
1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .
)

+ 2x
∥∥∥∥

.4

=
∥∥∥∥

1
n + 1

(
1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .
)

– 1
n

(
1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .
)∥∥∥∥

.4

=
( 1

n – 1
n + 1

)∥∥∥∥

(
1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .
)∥∥∥∥

.4
.

So we have

∞∑

n=1
sup
x∈.4

‖Tn+1x – Tnx‖.4 = lim
n→∞

n∑

k=1
sup
x∈.4

‖Tk+1x – Tkx‖.4

=
∥∥∥∥

(
1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .
)∥∥∥∥

.4
< ∞,

that is, ({Tn}∞n=1, T) satisfies the AKTT-condition, where T : C → C is defined by

Tx = lim
n→∞

Tnx = –2x, x ∈ C.

Since in .4, q = 2 and κ2 = 3, we can choose θn = 1
9n + 1

9 . Define the mapping {Sn}∞n=1 : C → C
by

Snx =





( 2

3 – 1
3n )x + ( 1

9n2 + 1
9n )(1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .) if x '= 0,
0 if x = 0.

Since ({Tn}∞n=1, T) satisfies the AKTT condition, we also have that ({Sn}∞n=1, S) satisfies the
AKTT condition, where S : C → C is defined by

Sx = lim
n→∞

Snx = 2
3 x, x ∈ C.

Then, we have F(S) = F(T) = ⋂∞
n=1 F(Tn) = {0}. Let αn = 1

32n+1 , βn = 1
100n+3 + 0.32, and tn =

n
2n+1 . So our algorithm (16) has the following form:





x̄n+1 = ( 1

100n+3 + 0.32)xn + (0.68 – 1
100n+3 )Snxn,

xn+1 = 1
32n+2 f (xn) + 32n

32n+1 Sn( n
2n+1 xn + n+1

2n+1 x̄n+1), n ≥ 1.
(44)

Let x1 = (1, –0.25, 1.46, 1.85, 0, 0, 0, . . .) be the initial point. Then, we obtain numerical
results in Table 1 and Fig. 1.



Khuangsatung and Sunthrayuth Journal of Inequalities and Applications  ( 2018)  2018:167 Page 18 of 20

Table 1 The values of the sequences {xn}
n xn ‖xn+1 – xn‖.4

1 (1.000000, –0.250000, 1.460000, 1.850000, 0, 0, 0,. . . ) 1.459e+00
50 (0.007006, 0.003503, 0.002335, 0.001751, 0, 0, 0,. . . ) 1.471e–04

100 (0.003416, 0.001708, 0.001139, 0.000854, 0, 0, 0,. . . ) 3.531e–05
150 (0.002258, 0.001129, 0.000753, 0.000565, 0, 0, 0,. . . ) 1.549e–05
200 (0.001687, 0.000843, 0.000562, 0.000422, 0, 0, 0,. . . ) 8.657e–06
...

...
...

400 (0.000838, 0.000419, 0.000279, 0.000210, 0, 0, 0,. . . ) 2.143e–06
450 (0.000745, 0.000372, 0.000248, 0.000186, 0, 0, 0,. . . ) 1.692e–06
500 (0.000670, 0.000335, 0.000223, 0.000167, 0, 0, 0,. . . ) 1.369e–06

Figure 1 The behavior of errors

6 Conclusion
In this work, we introduce an algorithm by a generalized viscosity explicit rule for finding
a common fixed point of a countable family of strictly pseudo-contractive mappings in a
q-uniformly smooth Banach space. We obtain some strong convergence theorem for the
sequence generated by the proposed algorithm under suitable conditions. However, we
should like remark the following:

(1) We extend the results of Ke and Ma [21] and Marino et al. [25] from a one
nonexpansive mapping in Hilbert spaces to a countable family of strictly
pseudo-contractive mappings in a q-uniformly smooth Banach space.

(2) Our result is proved with a new assumption on the control conditions {βn} and {tn}.
(3) The method of proof of our result is simpler in comparison with the results of [19,

21, 44, 45]). Moreover, we remove the conditions ∑∞
n=1 |αn+1 – αn| < ∞ and

0 < ε ≤ sn ≤ sn+1 < 1 in Theorem 3.1 of [21].
(4) We give a numerical example that shows the efficiency and implementation of our

main result in the space .4, which is a uniformly convex and 2-uniformly smooth
Banach space but not a Hilbert space.



Khuangsatung and Sunthrayuth Journal of Inequalities and Applications  ( 2018)  2018:167 Page 19 of 20

Acknowledgements
The authors would like to thank the Rajamangala University of Technology Thanyaburi for financial support.

Funding
P. Sunthrayuth was supported by RMUTT research foundation scholarship of the Rajamangala University of Technology
Thanyaburi under Grant No. NRF04066005.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed equally to the writing of this paper. Both authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 February 2018 Accepted: 29 May 2018

References
1. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
2. Browder, F.E., Petryshyn, W.V.: Construction of fixed points nonlinear mappings in Hilbert space. J. Math. Anal. Appl.

20, 197–228 (1967)
3. Scherzer, O.: Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems.

J. Math. Anal. Appl. 194, 911–933 (1991)
4. Cai, G.: Viscosity iterative algorithm for variational inequality problems and fixed point problems in a real q-uniformly

smooth Banach space. Fixed Point Theory Appl. 2015, 67 (2015)
5. Zhang, H., Su, Y.: Convergence theorems for strict pseudo-contractions in q-uniformly smooth Banach spaces.

Nonlinear Anal. 71, 4572–4580 (2009)
6. Zhou, H.: Convergence theorems of fixed points for κ -strict pseudo-contractions in Hilbert spaces. Nonlinear Anal.

69, 456–462 (2008)
7. Jung, J.S.: Strong convergence of iterative methods for κ -strictly pseudo-contractive mappings in Hilbert spaces.

Appl. Math. Comput. 215, 3746–3753 (2010)
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Abstract. In this paper, we introduce a hybrid subgradient method for finding an ele-

ment common to both the solution set of a class of pseudomonotone equilibrium problems,

and the set of fixed points of a finite family of -strictly presudononspreading mappings

in a real Hilbert space. We establish some weak and strong convergence theorems of the

sequences generated by our iterative method under some suitable conditions. These con-

vergence theorems are investigated without the Lipschitz condition for bifunctions. Our

results complement many known recent results in the literature.

1. Introduction

Let H be a real Hilbert space in which the inner product and norm are denoted by
h·, ·i and k · k, respectively. Let C be a nonempty closed convex subset of H. Let
T : C ! C be a mapping. A point x 2 C is called a fixed point of T if Tx = x and
we denote the set of fixed points of T by F (T ). Recall that a mapping T : C ! C

is said to be nonexpansive if

kTx � Tyk  kx � yk, for all x, y 2 C,

and it is said to be quasi-nonexpansive if F (T ) 6= ; and

kTx � Tyk  kx � yk, for all x 2 C, and y 2 F (T ).
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A mapping T : C ! C is said to be a strict pseudocontraction if there exists a
constant k 2 [0, 1) such that

kTx � Tyk2  kx � yk2 + kk(I � T )x � (I � T )yk2
, 8x, y 2 C,

where I is the identity mapping on H. If k = 0, then T is nonexpansive on C.
In 2008, Kohsaka and Takahashi [15] defined a mapping T in a in Hilbert spaces

H to be nonspreading if

2kTx � Tyk2  kTx � yk2 + kTy � xk2
, for all x, y 2 C.

Following the terminology of Browder-Petryshyn [10], Osilike and Isiogugu [17]
called a mapping T of C into itself -strictly pseudononspreading if there exists
 2 [0, 1) such that

kTx�Tyk2  kx�yk2 +2hx�Tx, y�Tyi+kx�Tx� (y�Ty)k2
, for all x, y 2 C.

Clearly, every nonspreading mapping is -strictly pseudononspreading but the con-
verse is not true; see [17]. We note that the class of strict pseudocontraction map-
pings and the class of -strictly pseudononspreading mappings are independent.

In 2010, Kurokawa and Takahashi [16] obtained a weak mean ergodic theorem
of Baillon’s type [7] for nonspreading mappings in Hilbert spaces. Furthermore,
using the idea of mean convergence in Hilbert spaces, they also proved a strong
convergence theorem of Halpern’s type [12] for this class of mappings. After that,
in 2011, Osilike and Isiogugu [17] introduced the concept of -strictly pseudonon-
spreading mappings and they proved a weak mean convergence theorem of Baillon’s
type similar to [16]. They further proved a strong convergence theorem using the
idea of mean convergence. This theorem extended and improved the main theorems
of [16] and gave an a�rmative answer to an open problem posed by Kurokawa and
Takahashi [16] for the case when the mapping T is averaged. In 2013 Kangtun-
yakarn [14] proposed a new technique, using the projection method, for -strictly
pseudononspreading mappings. He obtained a strong convergence theorem for find-
ing the common element of the set of solutions of a variational inequality, and the
set of fixed points of -strictly pseudononspreading mappings in a real Hilbert space.

On the other hand, let F be a bifunction of C ⇥ C into R, where R is the set
of real numbers. The equilibrium problem for F : C ⇥ C ! R is to find x 2 C such
that

(1.1) F (x, y) � 0 for all y 2 C.

The set of solutions of (1.1) is denoted by EP (F, C). It is well known that there are
several problems, such as complementarity problems, minimax problems, the Nash
equilibrium problem in noncooperative games, fixed point problems, optimization
problems, that can be written in the form of an EP . In other words, the EP

is a unifying model for several problems arising in physics, engineering, science,
optimization, economics, etc.; see [6, 8, 11] and the references therein.
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In recent years the problem of finding an element common to the set of solutions
of a equilibrium problems, and the set of fixed points of nonlinear mappings, has
become a fascinating subject, and various methods have been developed by many
authors for solving this problem (see [1, 4, 5, 20]). Most of all the existing algorithms
for this problem are based on applying the proximal point method to the equilibrium
problem EP (F, C), and using a Mann’s iteration to the fixed point problems of
nonexpansive mappings. The convergence analysis has been considered when the
bifunction F is monotone. This is because the proximal point method is not valid
when the underlying operator F is pseudomonotone.

Recently, Anh [2] introduced a new hybrid extragradient iteration method for
finding a element common to the set of fixed points of a nonexpansive mapping and
the set of solutions of equilibrium problems for a pseudomonotone bifunctions. In
this algorithm the equilibrium bifunction is not required to satisfy any monotonicity
property, but it must satisfy a Lipschitz-type continuous bifunction i.e. there are
two Lipschitz constants c1 > 0 and c2 > 0 such that

(1.2) f(x, y) + f(y, z) � f(x, z) � c1kx � yk2 � c2ky � zk2
, 8x, y, z 2 C.

They obtained strongly convergent theorems for the sequences generated by these
processes in a real Hilbert space.

Anh and Muu [3] reiterated that the Lipschitz-type condition (1.2) is not in
general satisfied, and if it is, that finding the constants c1 and c2 is not easy. They
further observed that solving strongly convex programs is also di�cult except in
special cases when C has a simple structure. They introduced and studied a new
algorithm, which is called a hybrid subgradient algorithm for finding a common
point in the set of fixed points of nonexpansive mappings and the solution set of a
class of pseudomonotone equilibrium problems in a real Hilbert space. The proposed
algorithm is a combination of the well-known Mann’s iterative scheme for fixed point
and the projection method for equilibrium problems. Furthermore, the proposed
algorithm uses only one projection and does not require any Lipschitz condition for
the bifunctions. To be more precise, they proposed the following iterative method:

(1.3)

8
>>><

>>>:

x0 2 C,

wn 2 @✏nF (xn, ·)xn,

un = PC(xn � �nwn), �n = �n

max{�n,kwnk} ,

xn+1 = ↵nxn + (1 � ↵n)Tun, for each n = 1, 2, 3, ...,

where @✏F (x, ·)(x) stands for ✏-subdi↵erential of the convex function F (x, ·) at x

and {✏n}, {�n}, {�n}, {�n}, and {↵n} were chosen appropriately. Under certain
conditions, they prove that {xn} converges strongly to a common point in the set
of a class of pseudomonotone equilibrium problems and the set of fixed points of
nonexpansive mapping. Using the idea of Anh and Muu [3], Thailert et al. [21]
proposed a new algorithm for finding a common point in the solution set of a class
of pseudomonotone equilibrium problems and the set of common fixed points of a
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family of strict pseudocontraction mappings in a real Hilbert space. Then Thailert
et al. [22] introduced new general iterative methods for finding a common element in
the solution set of pseudomonotone equilibrium problems and the set of fixed points
of nonexpansive mappings which is a solution of a certain optimization problem
related to a strongly positive linear operator. Under suitable control conditions,
They proved the strong convergence theorems of such iterative schemes in a real
Hilbert space.

In this paper, motivated by Anh and Muu [3], Kangtunyakarn [14], and other
research going on in this direction, we proposed a hybrid subgradient method for the
pseudomonotone equilibrium problem and the finite family of -strictly pseudonon-
spreading mapping in a real Hilbert space. The weak and strong convergence of the
proposed methods is investigated under certain assumptions. Our results improve
and extend many recent results in the literature.

2. Preliminaries

Let H be a real Hilbert space with inner product h·, ·i and norm k · k, respec-
tively. It is well-known that for all x, y, z 2 H and ↵, �, � 2 [0, 1], with ↵+�+� = 1
there holds

(2.1) kx � yk2 = kxk2 � kyk2 � 2hx � y, yi,

and

(2.2) k ↵x+�y +�z k2= ↵ k x k2 +� k y k2 +�kzk2 �↵� k x� y k2 ���ky � zk2
.

Let C be a nonempty closed convex subset of H. Then, for any x 2 H, there exists
a unique nearest point of C, denoted by PCx, such that k x � PCx kk x � y k for
all y 2 C. Such a PC is called the metric projection from H into C. We know that
PC is nonexpansive. It is also known that, PCx 2 C and

(2.3) hx � PCx, PCx � zi � 0, for all x 2 H and z 2 C.

It is easy to see that (2.3) equivalent to

(2.4) kx � zk2 � kx � PCxk2 + kz � PCxk2
, for all x 2 H and z 2 C.

Lemma 2.1.([19]) Let H be a real Hilbert space, let C be a nonempty closed convex

subset of H and let A be a mapping of C into H. Let u 2 C. Then for � > 0,

u 2 V I(C, A) , u = PC(I � �A)u,

where PC is the metric projection of H onto C.

Recall that a bifunction F : C ⇥ C ! R is said to be
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(i) ⌘-strongly monotone if there exists a number ⌘ > 0 such that

F (x, y) + F (y, x)  �⌘kx � yk2
, for all x, y 2 C,

(ii) monotone on C if

F (x, y) + F (y, x)  0, for all x, y 2 C,

(iii) pseudomonotone on C with respect to x 2 C if

F (x, y) � 0 implies F (y, x)  0, for all y 2 C.

It is clear that (i) ) (ii) ) (iii), for every x 2 C. Moreover, F is said to be
pseudomonotone on C with respect to A ✓ C, if it is pseudomonotone on C with
respect to every x 2 A. When A ⌘ C, F is called pseudomonotone on C.

The following example, taken from [18], shows that a bifunction may not be
pseudomonotone on C, but yet is pseudomonotone on C with respect to the solution
set of the equilibrium problem defined by F and C:

F (x, y) := 2y|x|(y � x) + xy|y � x|, for all x, y 2 R, C := [�1, 1].

Clearly, EP (F ) = {0}. Since F (y, 0) = 0 for every y 2 C, this bifunction is
pseudomonotone on C with respect to the solution x

⇤ = 0, However, F is not
pseudomonotone on C. In fact, both F (�0.5, 0.5) = 0.25 > 0 and F (0.5, �0.5) =
0.25 > 0.

For solving the equilibrium problem (1.1), let us assume that � is an open
convex set containing C and the bifunction F : � ⇥ � ! R satisfies the following
assumptions:

(A1) F (x, x) = 0 for all x 2 C and F (x, ·) is convex and lower semicontinuous on
C;

(A2) for each y 2 C, F (·, y) is weakly upper semicontinuous on the open set �;

(A3) F is pseudomonotone on C with respect to EP (F, C) and satisfies the strict
paramonotonicity property, i.e., F (y, x) = 0 for x 2 EP (F, C) and y 2 C

implies y 2 EP (F, C);

(A4) if {xn} ✓ C is bounded and ✏n ! 0 as n ! 1, then the sequence {wn}
with wn 2 @nF (xn, ·)xn is bounded, where @✏F (x, ·)x stands for the ✏-
subdi↵erential of the convex function F (x, ·) at x.

The following idea of the ✏-subdierential of convex functions can be found in
the work of Bronsted and Rockafellar [9] but the theory of ✏-subdierential calculus
was given by Hiriart-Urruty [13].

Definition 2.2. Consider a proper convex function � : C ! R. For a given ✏ > 0,
the ✏-subdierential of � at x0 2 Dom� is given by

@✏�(x0) = {x 2 C : �(y) � �(x0) � hx, y � x0i � ✏, 8y 2 C}.
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Remark 2.3. It is known that if the function � is proper lower semicontinuous
convex, then for every x 2 Dom�, the ✏-subdierential @✏�(x) is a nonempty closed
convex set (see [13]).

Next, throughout this paper, weak and strong convergence of a sequence {xn}
in H to x are denoted by xn * x and xn ! x, respectively. In order to prove our
main results, we need the following lemmas.

Lemma 2.4.([17]) Let C be a nonempty closed convex subset of a real Hilbert space

H, and let T : C ! C be a -strictly pseudonospreading mapping. If F (T ) 6= ;,
then it is closed and convex.

Remark 2.5. If T : C ! C is a -strictly pseudononspreading mapping with
F (T ) 6= ;, then from Lemma 2.8 in [14] and Lemma 2.1, we have F (T ) = V I(C, (I�
T )) = F (PC(I � �(I � T ))), for all � > 0.

Lemma 2.6. Let H be a real Hilbert space and C be a nonempty closed convex

subset of H. For every i = 1, 2, ..., N, let Ti : C ! C be a finite family of i-strictly

pseudononspreading mappings with
TN

i=1 F (Ti) 6= ;. Let {a1, a2, ..., an} ⇢ (0, 1)
with ⌃N

i=1ai = 1, let ̄ = max{1, 2, ..., N} and let � 2 (0, 1 � ̄). Then

(i)
TN

i=1 F (Ti) = F (⌃N
i=1aiPC(I � �(I � Ti))).

(ii) k⌃N
i=1aiPC(I��(I�Ti))x�yk2  kx�yk2

, for all x 2 C and y 2
TN

i=1 F (Ti),
i.e. ⌃N

i=1aiPC(I � �(I � Ti)) is quasi-nonexpansive.

Proof. (i) It easy to see that
TN

i=1 F (Ti) ✓ F (⌃N
i=1aiPC(I � �(I � Ti))). Let x 2

F (⌃N
i=1aiPC(I ��(I �Ti))) and let x

⇤ 2
TN

i=1 F (Ti) ✓ F (⌃N
i=1aiPC(I ��(I �Ti))).

Note that for every i = 1, 2, 3, ..., N we have

kPC(I � �(I � Ti))x � x
⇤k2  kx � x

⇤ � �(I � Ti)k2

= kx � x
⇤k2 � 2�hx � x

⇤
, (I � Ti)xi

+ �
2k(I � Ti)xk2

.(2.5)

Put Ai = I � Ti, for all i = 1, 2, ..., N, we have Ti = I � Ai and

kTix � Tix
⇤k2 = k(I � Ai)x � (I � Ai)x

⇤k2

= k(x � x
⇤) � Aixk2

= kx � x
⇤k2 � 2hx � x

⇤
, Aixi + kAixk2

 kx � x
⇤k2 + ik(I � Ti)x � (I � Ti)x

⇤k2 + 2hx � Tix, x
⇤ � Tix

⇤i
= kx � x

⇤k2 + ik(I � Ti)xk2
,(2.6)

which implies that

(1 � i)k(I � Ti)xk2  2hx � x
⇤
, Aixi, for all i = 1, 2, 3, ..., N



Weak and Strong Convergence of Hybrid Subgradient Method 89

From (2.5) and (2.6), we have

kPC(I � �(I � Ti))x � x
⇤k2  kx � x

⇤k2 � 2�hx � x
⇤
, (I � Ti)xi

+ �
2k(I � Ti)xk2

 kx � x
⇤k2 � �(1 � i)k(I � Ti)xk2

+ �
2k(I � Ti)xk2

= kx � x
⇤k2 � �[(1 � i) � �]k(I � Ti)xk2

 kx � x
⇤k2

,(2.7)

for all i = 1, 2, 3, . . . , N .
From the definition of x and (2.7), we have

kx � x
⇤k2 = k⌃N

i=1aiPC(I � �(I � Ti))x � x
⇤k2

= a1kPC(I � �(I � T1))x � x
⇤k2 + a2kPC(I � �(I � T2))x � x

⇤k2 + · · ·
+ aNkPC(I � �(I � TN ))x � x

⇤k2 � a1a2kPC(I � �(I � T1))x

� PC(I � �(I � T2))xk2 � a2a3kPC(I � �(I � T2))x�
PC(I � �(I � T3))xk2 � · · · � aN�1aNkPC(I � �(I � TN�1))x�
PC(I � �(I � TN ))xk2

 kx � x
⇤k2 � a1a2kPC(I � �(I � T1))x � PC(I � �(I � T2))xk2

� a2a3kPC(I � �(I � T2))x � PC(I � �(I � T3))xk2 � · · ·
� aN�1aNkPC(I � �(I � TN�1))x � PC(I � �(I � TN ))xk2

.

This implies that

PC(I � �(I � T1))x = PC(I � �(I � T2))x = · · · = PC(I � �(I � TN ))x

Since x 2 F (⌃N
i=1aiPC(I � �(I � Ti))), we get that x = PC(I � �(I � Ti))x, for all

i = 1, 2, 3, ..., N From Remark 2.5, we have x 2 F (Ti) , for all i = 1, 2, 3, ..., N. That

is x 2
TN

i=1 F (Ti). Hence F (⌃N
i=1aiPC(I � �(I � Ti))) ✓

TN
i=1 F (Ti).

(ii) Let x 2 C and y 2
TN

i=1 F (Ti) = F (⌃N
i=1aiPC(I � �(I � Ti)))

As the same argument as in (i), we can show that

kPC(I � �(I � Ti))x � yk2  kx � yk2
,(2.8)

for all i = 1, 2, 3, ..., N . Thus

k⌃N
i=1aiPC(I � �(I � Ti))x � yk2  a1kPC(I � �(I � T1))x � yk2

+ a2kPC(I � �(I � T2))x � yk2 + · · ·
+ aNkPC(I � �(I � TN ))x � yk2

 ⌃N
i=1aikx � yk2 = kx � yk2

. 2(2.9)
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Lemma 2.7.([23]) Let {an} and {bn} be two sequences of nonnegative real numbers

such that

an+1  an + bn, n � 1,

where
P1

n=0 bn < 1. Then the sequence {an} is convergent.

3. Weak Convergence Theorem

In this section, we prove weak convergence theorem for finding a common ele-
ment in the solution set of a class of pseudomonotone equilibrium problems and the
set of fixed points of a finite family of -strictly presudononspreading mappings in
a real Hilbert space.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H and

F : C ⇥ C ! R be a bifunction satisfying (A1)–(A4). Let {1, 2, ..., N} ⇢ [0, 1)
and {Ti}N

i=1 be a finite family of i-strictly pseudononspreading mappings of C into

itself such that ⌦ :=
TN

i=1 F (Ti) \ EP (F, C) 6= ;. Let x0 2 C and {xn} be a se-

quence generated by

(3.1)

8
>>><

>>>:

x0 2 C,

wn 2 @✏nF (xn, ·)xn,

un = PC(xn � ⇢nwn), ⇢n = �n
max{�n,kwnk} ,

xn+1 = ↵nxn + �n⌃N
i=1aiPC(I � �

i
n(I � Ti))xn + �nun, 8n 2 N,

where a, b, c, d, � 2 R, ai 2 (0, 1), for all i = 1, 2, ..., N with ⌃N
i=1ai = 1,

{↵n}, {�n}, {�n} ⇢ [0, 1] with ↵n + �n + �n = 1 and {�n}, {✏n},{�
i
n} ⇢ (0, 1)

satisfying the following conditions:

(i) 0 < �  �
i
n  min{1 � 1, 1 � 2, ..., 1 � N} and ⌃1

n=1�
i
n < 1 for all

i = 1, 2, ..., N ;

(ii) 0 < a < ↵n, �n, �n < b < 1;

(iii)
P1

n=0 �n = 1,
P1

n=0 �
2
n < 1, and

P1
n=0 �n✏n < 1.

Then the sequence {xn} converges weakly to x̄ 2 ⌦.

Proof. First, we will show that {xn} is bounded. Let p 2 ⌦. Then we have

kun � pk2 = kxn � pk2 � kun � xnk2 + 2hxn � un, p � uni
 kxn � pk2 + 2hxn � un, p � uni.(3.2)

Since un = PC(xn � ⇢nwn) and p 2 C, we get that

(3.3) hxn � un, p � uni  ⇢nhwn, p � uni.
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Substuting (3.3) into (3.2), we have

kun � pk2  kxn � pk2 + 2⇢nhwn, p � uni
= kxn � pk2 + 2⇢nhwn, p � xni + 2⇢nhwn, xn � uni
 kxn � pk2 + 2⇢nhwn, p � xni + 2⇢nkwnkkxn � unk
 kxn � pk2 + 2⇢nhwn, p � xni + 2�nkxn � unk.(3.4)

By using un = PC(xn � ⇢nwn) and xn 2 C again, we get

kxn � unk2 = hxn � un, xn � uni
 ⇢nhwn, xn � uni
 ⇢nkwnkkxn � unk
 �nkxn � unk,(3.5)

which implies that

(3.6) kxn � unk  �n.

By condition (iii), we have

(3.7) lim
n!1

kxn � unk = 0.

Combining (3.4) and (3.6), we obtain

(3.8) kun � pk2  kxn � pk2 + 2⇢nhwn, p � xni + 2�
2
n.

Since wn 2 @✏nF (xn, ·)xn, p 2 C and F (x, x) = 0 for each x 2 C, we obtain that

hwn, p � xni  F (xn, p) � F (xn, xn) + ✏n

= F (xn, p) + ✏n.(3.9)

Thus, it follows from (3.8) and (3.9) that

(3.10) kun � pk2  kxn � pk2 + 2⇢nF (xn, p) + 2⇢n✏n + 2�
2
n.

Form Lemma 2.6 (ii), we have

(3.11) k⌃N
i=1aiPC(I � �

i
n(I � Ti))xn � pk2  kxn � pk2

.

From (3.1), (3.10) and (3.11), we have

kxn+1 � pk2 = k↵nxn + �n⌃N
i=1aiPC(I � �

i
n(I � Ti))xn + �nun � pk2

 ↵nkxn � pk2 + �nk⌃N
i=1aiPC(I � �

i
n(I � Ti))xn � pk2

+�nkun � pk2 � ↵n�nkxn � ⌃N
i=1aiPC(I � �

i
n(I � Ti))xnk2

 ↵nkxn � pk2 + �nkxn � pk2 + �n

⇣
kxn � pk2 + 2⇢nF (xn, p)

+2⇢n✏n + 2�
2
n

⌘
� ↵n�nkxn � ⌃N

i=1aiPC(I � �
i
n(I � Ti))xnk2

= kxn � pk2 + 2�n⇢nF (xn, p) + 2�n⇢n✏n + 2�n�
2
n

�↵n�nkxn � ⌃N
i=1aiPC(I � �

i
n(I � Ti))xnk2

.(3.12)
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Since p 2 EP (F, C) and F is pseudomonotone on F with respect to p, we get that
F (xn, p)  0 for all n 2 N. Then from (3.12) it follows that

kxn+1 � pk2  kxn � pk2 + 2�n⇢n✏n + 2�n�
2
n

�↵n�nkxn � ⌃N
i=1aiPC(I � �

i
n(I � Ti))xnk2

 kxn � pk2 + 2�n⇢n✏n + 2�n�
2
n.(3.13)

Let ⌘n = 2�n⇢n✏n + 2�n�
2
n for all n � 0. From condition (ii) and (iii), we get that

⌃1
n=0⌘n = ⌃1

n=0(2�n⇢n✏n + 2�n�
2
n)  2b⌃1

n=0⇢n✏n + 2b⌃1
n=0�

2
n < +1

Now applying Lemma 2.7 to (3.13), we obtain that the lim
n!1

kxn � pk exists, i.e.

lim
n!1

kxn � pk = ā for some ā 2 C. Thus {xn} is bounded. Also, it easy to verify

that {un} and {⌃N
i=1aiPC(I � �

i
n(I � Ti))xn} are also bounded.

Next, we will show that lim sup
n!1

F (xn, p) = 0 for any p 2 ⌦. Since F is pseu-

domonotone on C and F (p, xn) � 0, we have �F (xn, p) � 0. From (3.12) and
condition (ii), we have

2�n⇢n[�F (xn, p)]  kxn � pk2 � kxn+1 � pk2

+2�n⇢n✏n + 2�n�
2
n

 kxn � pk2 � kxn+1 � pk2 + 2b⇢n✏n + 2b�
2
n.(3.14)

Summing up (3.14) for every n, we obtain

0  2
1X

n=0

�n⇢n[�F (xn, p)]

 kx0 � pk2 + 2b

1X

n=0

⇢n✏n + 2b

1X

n=0

�
2
n < +1.(3.15)

By the assumption (A4), we can find a real number w such that kwnk  w for every
n. Setting � := max{�, w}, where � is a real number such that 0 < �n < � for
every n, it follows from (ii) that

0  2a

�

1X

n=0

�n[�F (xn, p)](3.16)

 2
1X

n=0

�n⇢n[�F (xn, p)] < +1,(3.17)

which implies that

0 
1X

n=0

�n[�F (xn, p)] < +1.(3.18)
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Combining with �F (xn, p) � 0 and
P1

n=0 �n = 1, we can deduced that
lim sup

n!1
F (xn, p) = 0 as desired.

Next, we will show that !!(xn) ⇢ ⌦, where !!(xn) = {x 2 H : xni * x for
some subsequence {xni} of {xn}}. In deed since {xn} is bounded and H is reflexive,
!!(xn) is nonempty. Let x̄ 2 !!(xn). Then there exists subsequence {xni} of {xn}.
converging weakly to x̄, that is xni * x̄ as i ! 1. By the convexity, C is weakly
closed and hence x̄ 2 C. Since F (·, p) is weakly upper semicontinuous for p 2 ⌦, we
obtain

F (x̄, p) � lim sup
i!1

F (xn, p)

= lim
i!1

F (xni , p)

= lim sup
n!1

F (xn, p)

= 0.(3.19)

Since F is pseudomontone with respect to p and F (p, x̄) � 0, we obtain F (x̄, p)  0.

Thus F (x̄, p) = 0. Furthermore, by assumption (A3), we get that x̄ 2 EP (F, C).
On the other hand, from (3.13) and conditions (ii)–(iii), we have

↵n�nkxn � ⌃N
i=1aiPC(I��

i
n(I � Ti))xnk2

 kxn � pk2 � kxn+1 � pk2 + 2�n⇢n✏n + 2�n�
2
n

 kxn � pk2 � kxn+1 � pk2 + 2b⇢n✏n + 2b�
2
n

(3.20)

taking the limit as n ! 1 yields

(3.21) lim
n!1

kxn � ⌃N
i=1aiPC(I � �

i
n(I � Ti))xnk = 0.

Now, we will show that x̄ 2
TN

i=1 F (Ti). Assume that x̄ /2
TN

i=1 F (Ti). By Lemma
2.6, we have x̄ /2 F (⌃N

i=1aiPC(I � �n(I � Ti))). From the Opial’s condition, (3.21)
and condition (i), we can write

lim inf
i!1

kxni � x̄k < lim inf
i!1

kxni � ⌃N
i=1aiPC(I � �i

n(I � Ti))x̄k

 lim inf
i!1

✓
kxni � ⌃N

i=1aiPC(I � �i
n(I � Ti))xnik

+ k⌃N
i=1aiPC(I � �i

n(I � Ti))xni � ⌃N
i=1aiPC(I � �i

n(I � Ti))x̄k
◆

 lim inf
i!1

✓
kxni � x̄k + ⌃N

i=1ai�
i
nk(I � Ti)xni � (I � Ti)x̄k

◆

 lim inf
i!1

kxni � x̄k.

This is a contradiction. Then x̄ 2
TN

i=1 F (Ti). Thus x̄ 2 EP (F, C) \ F (T ) = ⌦
and so !!(xn) ⇢ ⌦.
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Finally, we prove that {xn} converge weakly to an element of ⌦. It’s su�cient
to show that !!(xn) is a single point set. Taking z1, z2 2 !!(xn) arbitrarily, and
let {xnk} and {xnm} be subsequence of {xn} such that xnk * z1 and xnm * z2

respectively. Since lim
n!1

kxn � pk exists for all p 2 ⌦ and z1, z2 2 ⌦, we get that

lim
n!1

kxn � z1k and lim
n!1

kxn � z2k exist. Now, assume that z1 6= z2, then by the

Opial’s condition,

lim
n!1

kxn � z1k = lim
k!1

kxnk � z1k

< lim
k!1

kxnk � z2k

= lim
n!1

kxn � z2k

= lim
m!1

kxnm � z2k

< lim
m!1

kxnm � z1k

= lim
n!1

kxn � z1k,(3.22)

which is a contradiction. Thus z1 = z2. This show that !!(xn) is single point set.
i.e. xn * x̄. This completes the proof. 2

If we set i = 0 for all i = 1, 2, ..., N then we get the following Corollary.

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space H and

F : C ⇥ C ! R be a bifunction satisfying (A1)–(A4). Let {Ti}N
i=1 be a finite family

of nonspreading mappings of C into itself such that ⌦ :=
TN

i=1 F (Ti)\EP (F, C) 6= ;.
Let x0 2 C and {xn} be a sequence generated by

(3.23)

8
>>><

>>>:

x0 2 C,

wn 2 @✏nF (xn, ·)xn,

un = PC(xn � ⇢nwn), ⇢n = �n
max{�n,kwnk} ,

xn+1 = ↵nxn + �n⌃N
i=1aiPC(I � �

i
n(I � Ti))xn + �nun, 8n 2 N,

where a, b, c, d, � 2 R, ai 2 (0, 1), for all i = 1, 2, ..., N with ⌃N
i=1ai = 1,

{↵n}, {�n}, {�n} ⇢ [0, 1] with ↵n + �n + �n = 1 and {�n}, {✏n},{�
i
n} ⇢ (0, 1)

satisfying the following conditions:

(i) 0 < �  �
i
n < 1 and ⌃1

n=1�
i
n < 1 for all i = 1, 2, ..., N ;

(ii) 0 < a < ↵n, �n, �n < b < 1;

(ii)
P1

n=0 �n = 1,
P1

n=0 �
2
n < 1, and

P1
n=0 �n✏n < 1.

Then the sequence {xn} converges weakly to x̄ 2 ⌦.
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4. Strong Convergence Theorem

In this section, to obtain strong convergence result, we add the control condition

lim
n!1

↵n =
1

2
, and then we get the strong convergence theorem for finding a common

element in the solution set of a class of pseudomonotone equilibrium problems and
the set of fixed points of a finite family of -strictly presudononspreading mappings
in a real Hilbert space.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H and

F : C ⇥ C ! R be a bifunction satisfying (A1)–(A4). Let {1, 2, ..., N} ⇢ [0, 1)
and {Ti}N

i=1 be a finite family of i-strictly pseudononspreading mappings of C into

itself such that ⌦ :=
TN

i=1 F (Ti) \ EP (F, C) 6= ;. Let x0 2 C and {xn} be a se-

quence generated by

(4.1)

8
>>><

>>>:

x0 2 C,

wn 2 @✏nF (xn, ·)xn,

un = PC(xn � ⇢nwn), ⇢n = �n
max{�n,kwnk} ,

xn+1 = ↵nxn + �n⌃N
i=1aiPC(I � �

i
n(I � Ti))xn + �nun, 8n 2 N,

where a, b, c, d, � 2 R, ai 2 (0, 1), for all i = 1, 2, ..., N with ⌃N
i=1ai = 1,

{↵n}, {�n}, {�n} ⇢ [0, 1] with ↵n + �n + �n = 1 and {�n}, {✏n},{�
i
n} ⇢ (0, 1)

satisfying the following conditions:

(i) 0 < �  �
i
n  min{1 � 1, 1 � 2, ..., 1 � N} and ⌃1

n=1�
i
n < 1 for all

i = 1, 2, ..., N ;

(ii) 0 < a < ↵n, �n, �n < b < 1 and lim
n!1

↵n =
1

2
;

(iii)
P1

n=0 �n = 1,
P1

n=0 �
2
n < 1, and

P1
n=0 �n✏n < 1.

Then the sequence {xn} converges strongly to x̄ 2 ⌦.

Proof. By a similar argument to the proof of Theorem 3.1 and (2.4), we have

k⌃N
i=1aiPC(I � �

i
n(I � Ti))xn � P⌦(xn)k2  k⌃N

i=1aiPC(I � �
i
n(I � Ti))xn � xnk2

�kxn � P⌦(xn)k2

and

(4.2) kun � P⌦(xn)k2  kun � xnk2 � kxn � P⌦(xn)k2
.

It follows from (4.2) and condition (ii) that
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kxn+1 � P⌦(xn+1)k2

 k↵nxn + �n⌃N
i=1aiPC(I � �

i
n(I � Ti))xn + �nun � P⌦(xn)k2

 ↵nkxn � P⌦(xn)k2 + �nk⌃N
i=1aiPC(I � �

i
n(I � Ti))xn � P⌦(xn))k2

+�nkun � P⌦(xn)k2

 ↵nkxn � P⌦(xn)k2 + �n

⇣
k⌃N

i=1aiPC(I � �
i
n(I � Ti))xn � xnk2

�kxn � P⌦(xn)k2
⌘

+ �n

⇣
kun � xnk2 � kxn � P⌦(xn)k2

⌘

= (↵n � (�n + �n))kxn � P⌦(xn)k2 + �nk⌃N
i=1aiPC(I � �

i
n(I � Ti))xn � xnk2

+�nkun � xnk2
.

 (2↵n � 1)kxn � P⌦(xn)k2 + bk⌃N
i=1aiPC(I � �

i
n(I � Ti))xn � xnk2

+bkun � xnk2
.

Combining (3.7), (3.21), conditions (ii)–(iii), and the boundedness of the sequence
{xn � P⌦(xn)}, we obtain

(4.3) lim
n!1

kxn+1 � P⌦(xn+1)k = 0

Since ⌦ is convex, for all m > n, we have 1
2 (P⌦(xm) + P⌦(xn)) 2 ⌦, and therefore

kP⌦(xm) � P⌦(xn)k2 = 2kxm � P⌦(xm)k2 + 2kxm � P⌦(xn)k2

�4kxm � 1

2
(P⌦(xm) + P⌦(xn))k2

 2kxm � P⌦(xm)k2 + 2kxm � P⌦(xn)k2

�4kxm � P⌦(xm)k2

= 2kxm � P⌦(xn)k2 � 2kxm � P⌦(xm)k2
.(4.4)

Using (3.13) with p = P⌦(xn), we have

kxm � P⌦(xn)k2  kxm�1 � P⌦(xn)k2 + ⌘m�1

 kxm�2 � P⌦(xn)k2 + ⌘m�1 + ⌘m�2

 ...

 kxn � P⌦(xn)k2 +
m�1X

j=n

⌘j ,(4.5)

where ⌘j = 2�j⇢j✏j + 2�j�
2
j . It follows from (4.4) and (4.5) that

(4.6) kP⌦(xm) � P⌦(xn)k2  2kxn � P⌦(xn)k2 + 2
m�1X

j=n

⌘j � 2kxm � P⌦(xm)k2
.
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Together with (4.3) and
P1

j=0 ⌘j < +1, this implies that {P⌦(xn)} is a Cauchy
sequence, Hence {P⌦(xn)} strongly converges to some point x

⇤ 2 ⌦. Moreover, we
obtain

(4.7) x
⇤ = lim

i!1
P⌦(xni) = P⌦(x̄) = x̄,

which implies that P⌦(xi) ! x
⇤ = x̄ 2 ⌦. Then from (4.3) and (4.7), we can

conclude that xn ! x̄. This completes the proof. 2

If we set i = 0 for all i = 1, 2, ..., N then we get the following Corollary.

Corollary 4.2. Let C be a closed convex subset of a real Hilbert space H and

F : C ⇥ C ! R be a bifunction satisfying (A1)–(A4). Let {Ti}N
i=1 be a finite family

of nonspreading mappings of C into itself such that ⌦ :=
TN

i=1 F (Ti)\EP (F, C) 6= ;.
Let x0 2 C and {xn} be a sequence generated by

(4.8)

8
>>><

>>>:

x0 2 C,

wn 2 @✏nF (xn, ·)xn,

un = PC(xn � ⇢nwn), ⇢n = �n
max{�n,kwnk} ,

xn+1 = ↵nxn + �n⌃N
i=1aiPC(I � �

i
n(I � Ti))xn + �nun, 8n 2 N,

where a, b, c, d, � 2 R, ai 2 (0, 1), for all i = 1, 2, ..., N with ⌃N
i=1ai = 1,

{↵n}, {�n}, {�n} ⇢ [0, 1] with ↵n + �n + �n = 1 and {�n}, {✏n},{�
i
n} ⇢ (0, 1)

satisfying the following conditions:

(i) 0 < �  �
i
n < 1 and ⌃1

n=1�
i
n < 1 for all i = 1, 2, ..., N ;

(ii) 0 < a < ↵n, �n, �n < b < 1 and lim
n!1

↵n =
1

2
;

(iii)
P1

n=0 �n = 1,
P1

n=0 �
2
n < 1, and

P1
n=0 �n✏n < 1.

Then the sequence {xn} converges weakly to x̄ 2 ⌦.
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Abstract
In this research article, a new mathematical model for the transmission dynamics of
vector-borne diseases with vertical transmission and cure is developed. The
non-negative solutions of the model are shown. To understand the dynamical
behavior of the epidemic model, the theory of basic reproduction number is used. As
this number increases, the disease invades the population and vice versa. The effect
of vertical transmission and cure rate on the basic reproduction number is shown.
The disease-free and endemic equilibria of the model are found and both their local
and global stabilities are presented. Finally, numerical simulations are carried out
graphically to show the dynamical behaviors. These results show that vertical
transmission and cure have a valuable effect on the transmission dynamics of the
disease.

Keywords: Vector-borne disease; Vertical transmission; Cure; Stability; Numerical
simulation

1 Introduction
Vector-borne diseases are infectious diseases transmitted to humans and animals by
blood-feeding arthropods. Some common vector-borne diseases are West Nile virus,
dengue fever, Rift Valley fever, malaria, and viral encephalitis caused by pathogens such
as bacteria, viruses, and parasites. The arthropods are blood sucking insects and arach-
nids such as ticks, mosquitoes, biting flies, and lice called vectors [1]. The vectors re-
ceive pathogens from an infected host and transmit them to a human host, as humans
are the major host, or animals. However, direct transmissions, such as transplantation
related transmission, transfusion related transmission, and needle-stick-related transmis-
sion, are also possible [2]. In case of some diseases such as AIDS and Hepatitis B, it is
possible for the offspring of infected parents to be born infected. This type of transmis-
sion is called vertical transmission. Now it is found that vector-borne diseases can also
be transmitted vertically [3, 4]. Also new research shows that virus is transmitted from
female mosquitos to their eggs at a high rate [5], which causes vertical transmission of the
disease.

Vector-borne diseases are prevalent in hot areas, such as tropics and subtropics, and are
relatively rare in temperate zones. Vector-borne infectious diseases remain amongst the

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.
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most important cause of global health illness and are major killers, particularly of children.
The World Health Organization reports the numbers of deaths in different regions of the
world annually. Nearly 700 million people get mosquito-borne illnesses that cause about
one million deaths each year. Worldwide, malaria is the leading cause of premature mor-
tality, particularly in children under the age of five. Nearly half of the world’s population is
at risk of malaria, and every year 198 million cases (uncertainty range: 124–283 million)
and 584,000 deaths (range: 367,000–755,000) occur according to the World Malaria Re-
port 2014 [6]. According to WHO, an estimated of 3.3 billion people in 97 countries are at
risk of malaria. Currently, dengue threatens up to 40% of the world’s population, and there
may be 50–100 million infections annually [7]. More than 2.5 billion people over 40% of
the world’s population are now at risk of dengue.

From the above discussion it is clear that it is necessary to control such epidemic
diseases. Control measures for vector-borne diseases are important because most are
zoonoses. For the control measure, it is necessary to understand the dynamical features of
diseases and treat the infected hosts. Therefore, deciphering the mechanisms and mod-
eling of such diseases are of great interest. Our paper involves such an epidemic model
for the transmission dynamics of vector-borne diseases that incorporates both horizontal
and vertical transmission in the vector–host population.

Up to date, many mathematical models have been investigated to understand the mech-
anism of real world phenomena. Researchers investigate different methods to solve these
models both analytically and numerically (e.g., see [8–21]). Several models of infectious
diseases have been developed in the literature [22–27]. The model first proposed by Ross
[28] and subsequently modified by Macdonald [29] has influenced both the modeling and
the application of control strategies to a vector-borne disease. The model presented in
[30] studied the analysis of a simple vector–host epidemic model with horizontal trans-
mission. We extend their model by including vertical transmission in both vector and
host populations, and treatment class in the host population with different interaction
rates.

The structure of this paper is as follows: Section 1 represents the introductory remarks
with a brief history. Section 2 is about the derivation of SITR epidemic model and shows
the non-negative solutions of the proposed model. In Section 3, we find the disease-free
and endemic equilibria and prove their local stability. In Section 4, we use mathemati-
cal analysis to establish global stability results for the proposed model. We use Lyapunov
function theory to show global stability of both disease-free and endemic equilibria. Pa-
rameter estimation and numerical results are discussed in Section 5. Finally, we give con-
clusion.

2 Model framework
The total population sizes at time t for human hosts and vectors are denoted by N1(t)
and N2(t), respectively. The population of size N1(t) is divided into four distinct classes:
the susceptible population of size S(t), the infectious population of size I(t), the population
under treatment of size T(t), and the recovered population of size R(t). Thus N1(t) = S(t) +
I(t) + T(t) + R(t). The vector population N2(t) has the subclasses denoted by V (t) and
W (t) for the susceptible and infected classes, respectively. Thus, N2(t) = V (t) + W (t). The
mathematical model can be represented by the following nonlinear system of ordinary
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Figure 1 The flow chart represents the interactions
and transfer of a vector-borne disease in both human
and vector populations

differential equations:

dS
dt = (1 – ε1I)b1 – β1SI – β2SW – µ1S,

dI
dt = ε1b1I + β1SI + β2SW – αI – ηI – δ1I – µ1I,

dT
dt = αI – γ T – δ1T – µ1T ,

dR
dt = ηI + γ T – µ1R,

dV
dt = (1 – ε2W )b2 – β3VI – µ2V ,

dW
dt = ε2b2W + β3VI – δ2W – µ2W ,

(1)

with the initial conditions

S(0) ≥ 0, I(0) ≥ 0, T(0) ≥ 0, R(0) ≥ 0, V (0) ≥ 0, W (0) ≥ 0. (2)

The human host population is recruited at a constant birth rate b1 in which a fraction ε1
were born infected from their infected parents. β1 is the rate of direct transmission of the
disease, β2 is the vector mediated transmission rate, µ1 is the natural mortality rate of a
human. Infectious humans are treated at a rate α, recover naturally at a rate η, and suf-
fer disease-induced death at a rate δ1. Treated humans recover at a rate γ . It is assumed
that recovered individuals acquire lifelong immunity against re-infection. Similarly, b3 is
the constant recruitment rate of vector population in which the ratio ε2 are infected by
birth from their infected parents. Susceptible mosquitoes become infected by biting in-
fected human at a rate β3, µ2 is the natural mortality rate of vector population. Infectious
vectors die due to disease at a rate δ2. The complete dynamics of the proposed model is
represented by the flow chart in Figure 1.

2.1 Properties of solutions
The proposed model (1) is a system of nonlinear ordinary differential equations with the
initial conditions (2). To be epidemiologically and mathematically meaningful, it is im-
portant to prove that all the solutions with the given initial conditions will remain non-
negative and bounded for all finite time. The model shall be analyzed in a biologically
meaningful feasible region governed by a positive invariant set.
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Theorem 2.1 There exists a unique and bounded solution of the system of equations (1),
in a positively invariant set, that remains for all finite time t ≥ 0.

Proof The right-hand side of each equation is continuous in the convex domain E =
(t, S(t), I(t), T(t), R(t), V (t), W (t)) of (6 + 1)-dimensional space R6+1

+ with continuous partial
derivatives. So problem (1) has a unique solution in R6

+ which exists for a given finite time
t ∈ [0,∞) and initial conditions (2).

As the total population sizes are N1 = S + I + T + R and N2 = V + W , so from (1) we get

dN1
dt = b1 – µ1N1 – δ1(I + T) and dN2

dt = b2 – µ2Nv – δ2Iv. (3)

Then

dN1
dt ≤ b1 – µ1N1 and dN2

dt ≤ b2 – µ2Nv.

⇒ N1 ≤ N1(0)e–µ1(t) + b1
µ1

(
1 – e–µ1(t)) and

N2 ≤ N2(0)e–µ2(t) + b2
µ2

(
1 – e–µ2(t)),

which shows that

lim
t→∞

sup N1 ≤ b1
µ1

and lim
t→∞

sup N2 ≤ b2
µ2

. (4)

The given initial conditions (2) make sure that N1(0) ≥ 0 and N2(0) ≥ 0. Thus the feasible
region for system (1) is

' =
{

(S, I, T , R, V , W ) ∈ R6
+, N1 ≤ b1

µ1
, N2 ≤ b2

µ2

}
.

Thus the total populations and each population class remain bounded for all finite time
t ≥ 0. �

The above theorem shows that model (1) is well posed epidemiologically and mathemat-
ically in a positively invariant set '. We shall study the dynamics of this basic model in ',
so, all the solutions of system (1) start and remain in ' for all t ≥ 0. All the parameters and
state variables for the model should be non-negative for all time because they represent
the number of the population sizes of humans and vectors.

3 Equilibrium points
3.1 Disease-free equilibrium
The ability to invade a population is an important concern of an infectious disease. The
steady state solutions of an epidemiological model at which the population remains in the
absence of disease is called disease-free equilibrium point. In order to find the disease-free
equilibrium of the proposed model (1), we set the right-hand side of all equations equal to
zero and set I = T = 0 and W = 0. Also there is no infected recruitment in the populations,
so we put the parameters ε1 = ε2 = 0, which implies that (1 – ε1)b1 = b1 and (1 – ε2)b2 = b2
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mean that the total recruited population is only susceptible. By direct calculations, we get
the disease-free equilibrium point E1 in the feasible region ', which is given by

E1 = (S1, I1, T1, R1, V1, W1) =
( b1

µ1
, 0, 0, 0, b2

µ2
, 0

)
.

The dynamics of model (1) is analyzed by a dimensionless number called basic repro-
duction number denoted by R0, defined as “The expected number of secondary cases
produced by a typical infected individual during its entire period of infectiousness in a
completely susceptible population” [31]. Mathematically, R0 is defined as

R0 ∝
( infection

contact

)
·
(contact

time

)
·
( time

infection

)
.

More precisely,

R0 ∝ T · C · D,

where T is the transmissibility (i.e., probability of infection given contact between a sus-
ceptible individual and an infected one), C is the average rate of contact between suscepti-
ble and infected individuals, and D is the duration of infectiousness. This quantity serves
as a threshold parameter that predicts whether a disease will spread in a community or
will simply die out. It can be calculated by the method of next generation matrix given in
[32]. In the vector–host model (1), infected states are I , T , and W and uninfected states
are S, R, and V . The matrices F and V are the rate of production of new infections and
the transition rates between states, respectively, which are given by

F =




ε1b1I + β1SI + β2SW

0
0



 , V =




(α + η + δ1 + µ1)I

–αI + (γ + δ1 + µ1)T
–ε2b2W – β3VI + (δ2 + µ2)W



 .

At the disease-free equilibrium S = N1 = b1
µ1

, I = T = 0, V = N2 = b2
µ2

, and W = 0. The Jaco-
bian matrices at the disease-free equilibrium of F and V are F and V , respectively, where

F =




ε1b1 + β1N1 0 β2N1

0 0 0
0 0 0



 ,

V =




α + η + δ1 + µ1 0 0

–α γ + δ1 + µ1 0
–β3N2 0 –ε2b2 + δ2 + µ2



 .

F and V are the rates for new infections and transitions near the equilibrium. We used
MATLAB(R2010A) to find V –1 and FV –1, which gives the times spent in each state and
the total production of new infections over the course of an infection, respectively. The
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largest eigenvalue of FV –1 is the basic reproduction number R0, given by

R0 = ε1b1 + β1N1
k + β2β3N1N2

mk ,

where k = α + δ1 + µ1 + η and m = δ2 + µ2 – ε2b2. When there is no vertical transmission,
ε1 = ε2 = 0, then R0 is the basic reproductive number for the model with only horizontal
transmission. Geometrically it means that the number of new infections comes from both
direct and indirect transmission. In the presence of vertical transmission, ε1, ε2 > 0, R0 in-
creases as these vertical transmission parameters increase, because vertical transmission
directly increases the number of infectious populations. Also we can see the inverse rela-
tion of treatment strategies with R0 and the direct relation with new infections and total
population.

The basic reproduction number R0 has a significant effect on the dynamics of infection.
As we can see from the first and second equations of model (1),

dS
dt = b1 – kR0I – µ1S, dI

dt = k(R0 – 1)I. (5)

When R0 < 1, it means that each infected individual infects less than one other individ-
ual averagely by ever kind of transmission, then the change in the number of infected
population is negative, so the disease simply dies out. On the other hand, when R0 > 1,
it means that each infected individual infects more than one other individual, then the
change is positive and invasion is always possible (see the survey paper by Hethcote [33]).
For R0 = 1, it means that each infectious individual infects one other individual as a whole,
then there is no change in the infected population, so the infection constantly remains in
the population. Also the effect of R0 on the susceptible population is shown in the first
equation of (5). All these facts are shown in Figures 2 and 3.

Theorem 3.1 The disease-free equilibrium point E1 is locally asymptotically stable if R0 <
1, otherwise unstable.

Figure 2 The first figure shows that R0 decreases with increasing cure rate. The second figure shows that R0
increases as vertical transmission increases
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Figure 3 The figures show the threshold behavior of R0 and its critical value R0 = 1

Proof This can be proved by linearizing system (1) around E1, which gives the following
Jacobian matrix:

J1 =





–µ1 –ε1b1 – β1
b1
µ1

0 0 0 –β2
b1
µ1

0 ε1b1 + β1
b1
µ1

– k 0 0 0 β2
b1
µ1

0 α –l 0 0 0
0 η γ –µ1 0 0
0 –β3

b2
µ2

0 0 –µ2 –ε2b2

0 β3
b2
µ2

0 0 0 –m





,

where l = γ + δ1 + µ1.
The characteristic equation of J1 is

(x + µ1)(x + µ1)(x + µ2)(x + l)
(
c0x2 + c1x + c2

)
= 0, (6)

where

c0 = µ1µ2,

c1 = kµ1µ2 + mµ1µ2 – β1b1µ2 – b1ε1µ1µ2,

c2 = kmµ1µ2(1 – R0).

Four eigenvalues –µ1, –µ1, –µ2, and –l out of six have a negative real part. The remaining
two eigenvalues are the roots of the equation c0x2 + c1x + c2 = 0. For R0 < 1 and k + m >
β1N1 + b1ε1, we have c1 > 0 and c1c2 > 0. So, according to the Routh–Hurwitz criteria [34],
these two eigenvalues have a negative real part.

Since each eigenvalue of the characteristic equation (6) has a negative real part when
R0 < 1, according to the Routh–Hurwitz method [34], system (1) is locally asymptotically
stable at the disease-free equilibrium point E2 and unstable when R0 > 1. The dynamical
behaviors of the model at disease-free equilibrium are shown in Figure 4. �
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Figure 4 The plots show the dynamical behavior of the model at disease-free equilibrium

3.2 Endemic equilibrium
The constant presence of a disease or an infectious agent within a given geographic area
is called endemic. The endemic equilibrium state is the state where the disease cannot
be totally eradicated but remains in the population. In order to find positive solutions
of system (1), let E2 = (S2, I2, T2, R2, V2, W2) represent any arbitrary endemic equilibrium.
Setting left-hand side equal to zero and solving the equations simultaneously at steady
state, we obtain

S2 = b1 – kI2
µ1

, T2 = αI2
l , R2 = (lη + γα)I2

µ1l ,

V2 = mW2
β3I2

, W2 = µ2β3N2I2
β3(δ2 + µ2)I2 + µ2m .

Theorem 3.2 The endemic equilibrium point E2 is locally asymptotically stable if R0 > 1,
otherwise unstable.

Proof To show these results, we linearize system (1) around E2, which gives the following
Jacobian matrix:

J2 =





–Q –T 0 0 0 –β2S2
Q – µ1 T – K 0 0 0 β2S2

0 α –l 0 0 0
0 η γ –µ1 0 0
0 –β3V2 0 0 –β3I2 – µ2 –ε2b2
0 β3V2 0 0 β3I2 –m





,

where

Q = β1I2 + β2W2 + µ1, T = ε1b1 + β1S2.
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Two of the eigenvalues are –µ1 and –l. The remaining eigenvalues are the eigenvalues of
the following matrix:

J∗
2 =





–Q –T 0 –β2S2
Q – µ1 T – K 0 β2S2

0 –β3V2 –β3I2 – µ2 –ε2b2
0 β3V2 β3I2 –m




.

We make an elementary row operation for the Jacobian matrix J∗
2 to obtain the following

matrix:

J∗
2 =





–Q –T 0 –β2S2
0 µ1T

Q – K 0 µ1
Q β2S2

0 0 –µ2 –ε2b2 – m
0 0 0 –M




,

where

M = m + L + β3I2
µ2

(m + ε2b2) and L = m + µ1β2β3S2V2
µ1T – KQ .

J∗
2 is a lower triangular matrix and its eigenvalues are the elements of the main diagonal

which are given by –Q, µ1T
Q – K , –µ2, and –M. Three of the eigenvalues have a negative

real part. The second eigenvalue µ1T
Q – K has a negative real part if and only if µ1T

Q – K < 0.
Using the value of Q and T , we can rewrite this equation by rearranging it as follows:

–2β1β3K(δ2 + µ2)I2
2 +

[
β3(δ2 + µ2)µ1K(1 – R0)

]
I2 + µ2mµ1K(1 – R0). (7)

All the coefficients of this equation are negative if R0 > 1. Thus all the eigenvalues have
negative real parts, which shows that the endemic equilibrium point E2 is locally asymp-
totically stable iff R0 > 1. �

4 Global stability analysis
In this section, we study the global analysis of the disease-free and endemic equilibria using
the direct Lyapunov method which requires the construction of a function with specific
properties. In order to do this, we derive the following results.

Theorem 4.1 When R0 < 1, then the disease-free equilibrium E1 of system (1) is globally
asymptotically stable on '.

Proof To show the global stability of the disease-free equilibrium E1, we construct the
following Lyapunov function, following the method used in [35]:

U(t) = I + β2b1
mµ1

W , with time derivative U ′(t) = İ + β2b1
mµ1

Ẇ . (8)
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Then U is C1 on the interior of ', E1 is the global minimum of U on ', and U(t) = 0 at
E1. Putting the values from model (1), we obtain

U ′(t) = ε1b1I + β1SI + β2SW – αI – ηI – δ1I – µ1I

+ β2b1
mµ1

(ε2b2W + β3VI – δ2W – µ2W ),

≤ ε1b1I + β1N1I + β2N1W – kI

+ β2b1
mµ1

(β3N2I – mW ), since S ≤ N1, and V ≤ N2

= (R0 – 1)I. (9)

Equation (9) shows that U ′(t) is negative if R0 < 1. Also U ′(t) = 0 at E1. Substituting
I = T = R = W = 0 in the equations for S(t) and V (t) of model (1) shows that S(t) → b1

µ1
and V (t) → b2

µ2
as t → ∞. Similarly, substituting in the equations for T(t) and R(t)

shows that (T(t), R(t)) → (0, 0) as t → ∞. Therefore the largest compact invariant set
in {(Sh, Eh, Ih, Nh, Sv, Ev, Iv) ∈ ' : U ′(t) = 0} is the singleton disease-free equilibrium point
{Ef }. Therefore, from LaSalle’s principle [36], the disease-free equilibrium Ef is globally
asymptotically stable in '. �

Theorem 4.2 For R0 > 1, the endemic equilibrium E2 is globally asymptotically stable.

Proof For the global stability of the endemic equilibria, we construct the following Lya-
punov function:

Y (t) = 1
β1S2

(S – S2 log S) + 1
β3V2

(V – V2 log V ) + 1
β1S2

I + 1
β3V2

W . (10)

Taking the time derivative of W, we get

Y ′(t) = 1
β1S2

(S – S2)
[b1

S – ε1b1I
S – β1I – β2W – µ1

]

+ 1
β3V2

(V – V2)
[b2

V – ε2b2W
V – β3I – µ2

]

+ 1
β1S2

[β1SI + β2SW – K1I],

(11)

where K1 = α + δ1 + µ1 + η – ε1b1. Let us consider

µ1 = b1
S2

⇒ b1 = µ1S2, µ2 = b2
V2

⇒ b2 = µ2V2,

K1 = 2β1S2, and m = β2β3V2
β1

.
(12)

Rearranging equation (11), we get

Y ′(t) = –µ1
β1

( S
S2

+ S2
S – 2

)
– µ2

β3

( V
V2

+ V2
V – 2

)
. (13)
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Since

S
S2

+ S2
S ≥ 2 and V

V2
+ V2

V ≥ 2, (14)

because the arithmetic mean is greater than or equal to the geometric mean. Thus Y ′(t) ≤
0 for all (S, I, T , R, V , W ) ∈ ' and the equality (Y ′(t) = 0) holds for E2. The proof is com-
pleted as in the proof of Theorem (4.1). �

5 Numerical simulation and graphs
We collect data from different sources and use the Runge–Kutta fourth order scheme to
solve the model. Some of the parameter values are based on reality, for example, the death
rate of humans by nature, corresponding to life expectancy of a 70-year-old human, is
µ1 = 0.000039 per day, and the death rate of mosquitoes is µ2 = 0.1 per day corresponding

Figure 5 The plots show the dynamical behaviors of population sizes with increasing cure rate
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Figure 6 The plots show the dynamical behavior of population sizes with increasing vertical transmission rate

to mosquito’s average life span of 10 days. Some of the parameter values are chosen from
[25, 35]. The human’s and vector’s recruitment rates are b1 = 20 and b2 = 100 per day,
respectively. The disease-induced death rates of humans and mosquitoes are δ1 = 0.01 and
δ2 = 0.21, respectively. β1 = 0.00001 and β2 = 0.0012 are the transmission probabilities of
dengue from human to human and vector to human population, respectively, β3 = 0.001 is
the transmission probability of dengue from human to vector population. Given different
values to the treatment parameter 0 ≤ α ≤ 1 to check the treatment effects. The natural
recovery rate is η = 0.01, and the recovery rate due to treatment is γ = 0.4. We suppose the
values of ε1, ε2 and the initial population sizes. In rare cases the new offspring of infected
parents are infected so take ε1 = 0.001 and the vertical transmission rate for mosquitos
is ε2 = 0.002. For initial values, let S(0) = 100, I(0) = 30, T(0) = 25, R(0) = 10, V (0) = 600,
and W (0) = 100. After solving we draw the results graphically and show the effect of cure
rate and vertical transmission. Figure 5 shows the effect of cure rate on each population
class, and Figure 6 shows the effect of vertical transmission. Figures 7 and 8 show the
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Figure 7 The plots show the phase portrait of the susceptible human population versus the infected human
population

Figure 8 The plots show the phase portrait of the susceptible vector population versus the infected vector
population

phase portraits of susceptible population versus infected population of human and vector
populations, respectively.

6 Conclusion
The spread of different infectious diseases causes very high mortality rates in a popu-
lation. Vector-borne diseases are infectious diseases transmitted to humans and animals
through vectors. These diseases propagate from the infected to the susceptible population
in different ways. This paper formulated an epidemic model for the transmission dynamics
of vector-borne diseases with both vertical and horizontal transmissions with treatment
strategy. The equilibrium points and the basic reproduction of the model are found. The
basic reproduction number, which is a threshold quantity, has an important role in the
epidemiology of the disease. As this number increases the disease invades the population,
and as it decreases the disease simply dies out. Figure 2 shows that R0 decreases as treat-
ment strategies increase and increases as vertical transmission increases. Figure 3 shows
the threshold behavior of R0 and the critical value R0 = 1. As R0 increases, the infected
population increases with time. For R0 < 1, the number of infected population decreases;
for R0 = 1, the infected population remains constant; and for R0 > 1, the number of infected
population increases. It is also shown that when R0 < 1 the disease-free equilibrium is lo-
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cally and globally asymptotically stable; and for R0 > 1, the positive endemic equilibrium
is locally and globally asymptotically stable.

Numerical simulations are carried out graphically to show the dynamical behavior of
the diseases. Figure 5 shows the effect of cure rate on the transmission dynamics of the
disease. As treatment strategy increases, the susceptible population and the recovered
human population increase while the infected population decreases. Figure 6 shows the
effect of vertical transmission. As vertical transmission increases, the susceptible popu-
lation decreases and the infected population increases. Finally, Figures 7 and 8 show the
phase portraits of the susceptible populations versus the infected populations which move
towards the stable points.
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Abstract Malaria, one of the greatest historical killers of mankind, continues to claim
around half a million lives annually, with almost all deaths occurring in children under
the age of five living in tropical Africa. The range of this disease is limited by climate
to the warmer regions of the globe, and so anthropogenic global warming (and climate
change more broadly) now threatens to alter the geographic area for potential malaria
transmission, as both thePlasmodiummalaria parasite andAnophelesmosquito vector
have highly temperature-dependent lifecycles, while the aquatic immature Anophe-
les habitats are also strongly dependent upon rainfall and local hydrodynamics. A
wide variety of process-based (or mechanistic) mathematical models have thus been
proposed for the complex, highly nonlinear weather-driven Anopheles lifecycle and
malaria transmission dynamics, but have reached somewhat disparate conclusions as
to optimum temperatures for transmission, and the possible effect of increasing tem-
peratures upon (potential) malaria distribution, with some projecting a large increase
in the area at risk for malaria, but others predicting primarily a shift in the disease’s
geographic range. More generally, both global and local environmental changes drove
the initial emergence of P. falciparum as a major human pathogen in tropical Africa
some 10,000years ago, and the disease has a long and deep history through the present.
It is the goal of this paper to review major aspects of malaria biology, methods for
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formalizing these into mathematical forms, uncertainties and controversies in proper
modelingmethodology, and to provide a timeline of somemajormodeling efforts from
the classical works of Sir Ronald Ross and GeorgeMacdonald through recent climate-
focusedmodeling studies. Finally, we attempt to place suchmathematical workwithin
a broader historical context for the “million-murdering Death” of malaria.

Keywords Malaria · Climate change · Ross–Macdonald · Thermal-response

Mathematics Subject Classification 01-02 · 92-02 · 92B05

1 Introduction

Malaria, a potentially deadly disease caused by protozoan parasites known as Plas-
modium that infect and replicate within human blood cells, is spread between humans
via the bite of the infected female adult Anophelesmosquito, and is one of the greatest
infectious maladies to beset mankind. There are five (previously four) Plasmodium
species that commonly infect humans, namely P. falciparum, P. vivax, P. ovale, P.
malariae, and, very recently, P. knowlesi (Antinori et al. 2012). Of these, P. vivax
and P. falciparum are preeminent by far, responsible for nearly all malaria deaths in
2015 (estimated at 438,000 by the World Health Organization (WHO) (WHO 2015),
although another major estimate is appreciably higher, at 631,000 deaths (Gething
et al. 2016), and the confidence intervals for both estimates are broad). Over 90% of
all malarial mortality is attributable to P. falciparum in sub-Saharan Africa, where
children under the age of five are chiefly burdened (WHO 2015), and Fig. 1 demon-
strates the concentration of malaria risk in this region. Consequently, the focus in this
paper is almost exclusively on P. falciparum malaria in Africa.

Fig. 1 Global populations at risk of malaria, in 2013. Tropical Africa is at highest risk, with many countries
having 100%of their populations at risk;mortality is also strongly concentrated in this region.Mapgenerated
by the World Health Organization’s Malaria Mapper (http://www.worldmalariareport.org/node/68), based
on the World Malaria Report, 2015 (WHO 2015)
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The emergence of P. falciparum as a major human disease, likely dating back
to the acquisition of P. falciparum from a gorilla in Africa some 10,000years ago
(Loy et al. 2017; Carter and Mendis 2002), was directly linked to environmental
changes, namely, the end of the last ice age leading to an era of global warming and
the subsequent birth of human agricultural civilization, which, via land-use changes
and the concentration of human settlement, allowedmalaria and itsmosquito vectors to
thrive (Carter andMendis 2002;Webb 2014; Packard 2007). The parasites and vectors,
having temperature- and rainfall-dependent lifecycles, are restrained by climate to the
globe’s warmer latitude and altitude ranges (Patz et al. 1996). Thus, in the modern
era, anthropogenic global warming, driven principally by fossil fuel combustion, but
secondarily by global land-use changes (IPCC 2013) (primarily deforestation (IPCC
2013), which is in turn driven mainly by agriculture (Rudel et al. 2009; McKinley
et al. 2011)), threatens to expand the potential range, and possibly the overall burden
as well, of malarial disease. Aside from global restraints, malaria incidence follows
altitude in multiple countries, such as Zimbabwe and Kenya (Patz et al. 1996), and the
recent expansion of disease into some upland areas, notably the highlands of western
Kenya, may be at least partly attributable to warmer temperatures (Pascual et al. 2006;
Pascual and Bouma 2009).

However, the ultimate effect of climate change on malaria is far from certain, as
a wide milieu of social, biotic, and abiotic factors influence the disease in non-linear
ways, and the global burden of malaria contracted enormously over the twentieth cen-
tury in the face of modest warming (Carter and Mendis 2002; Gething et al. 2010)
(although this pattern generalizes poorly to malaria in Africa (Carter and Mendis
2002)). Over the last few decades, a number of mathematical models, typically sta-
tistical (using data and statistical approaches to correlate some climate variables with
malaria incidence) or mechanistic (accounting for the detailed dynamic nonlinear
processes involved in disease transmission, also sometimes referred to as “process-
based”), have been employed to assess the likely impact of anthropogenic climate
change on malaria transmission dynamics and control. These models have reached
divergent conclusions, with some predicting a large expansion in the continental land
area suitable for transmission (Martens et al. 1999; Caminade et al. 2014; Tanser et al.
2003) and in the number of people at risk of malaria (Martens et al. 1999; Patz et al.
1996; Pascual et al. 2006), while others predict only modest poleward (and altitudinal)
shifts in the burden of disease, with little net effect (Gething et al. 2010; Rogers and
Randolph 2000; Hay et al. 2002), and the issue remains unresolved thus far. The goal
in this paper is not to ultimately resolve this issue (laudable as it is), but to attempt to
lay a foundation to aid such a resolution.

Malaria was one of the first human diseases to be subject to mathematical inquiry.
Sir Ronald Ross, who first elucidated how Plasmodia spread via the intermediary
mosquito (Cox 2010), proposed a mechanistic transmission model including the
human host and the mosquito in the early 1900s, although it did not address the all-
important mosquito lifecycle (beyond infection of a constant population) (Smith et al.
2012). Following in Ross’s footsteps, the highly influential malariologist GeorgeMac-
donald reformulated the basic model in the early 1950s (Macdonald 1952, 1956a, b,
1957) (presented in detail in Sect. 4.2), and derived an expression for the basic repro-
duction number, R0, defined as the average number of secondary cases a single
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initial case will generate in a completely susceptible (uninfected and non-immune)
population.1 Macdonald showed thatR0 ismost sensitive to changes in adult mosquito
survival probability, thereby providing a theoretical rationale for insecticide spraying
as the foundation of malaria eradication efforts during the 1960s (Macdonald 1956b;
Nájera et al. 2011). The “Ross–Macdonald” model has been extremely influential:
Reiner et al. (2013), in a systematic reviewof 388models ofmosquito-borne pathogens
found in the literature between 1970 and 2010, determined most to be similar to the
Ross–Macdonald framework, and Macdonald’s expression for R0 has also been used
in many climate-focused (or climate-driven) mechanistic modeling studies.

Moving back to the effect of climate change, there has been significant contro-
versy as to its likely effect on human malaria (and other diseases) and this has been
informed by modeling studies. Several works in the 1990s by Martens, Lindsay and
colleagues (Martens et al. 1995a, b; Lindsay and Martens 1998; Martens et al. 1997,
1999), usingMacdonald’sR0, and drawing from several sources quantifying how par-
asite and vector lifecycle parameters might change with temperature, predicted that a
significantly expanded area of the globe could become vulnerable to epidemic malaria
under climate change. However, these conclusions did not go unchallenged.

Rogers and Randolph (2000) were critical of these process-based methods, and
instead employed a statistical method, whereby they inferred climatologic limits to
malaria based on temperature, rainfall, and saturation vapor pressure, and current
malaria distribution, and then projected how malaria suitability would change in the
future, under global climate model (or general circulation model, GCM) projections,
finding a decrease in some mainly equatorial areas and a modest poleward increase,
with little net change overall; this agrees in principle with a historical time-series anal-
ysis by Small et al. (2003). Other authors have similarly argued that climate change
is more likely to induce a geographic shift in the burden of disease, with little net
increase (Lafferty 2009). Even if true, Pascual and Bouma (2009) have pointed out
that a geographically balanced shift does not equal a population-balanced shift: high-
land regions in eastern Africa, most likely to become vulnerable to malaria under a
warming climate, are also far more populous than nearby lowland areas that could see
a decline in malaria burden.

Gething et al. (2010) also argued, essentially, that because the global burden of
malarial disease decreased dramatically from 1900 to 2007 while global mean air
temperatures increased (the average temperature increase from the 1850–1900 period
to the 1986–2005 period was 0.61 ◦C (IPCC 2014)), then non-climactic factors must
be of vastly overriding importance and that climate change will affect malaria but
little in the future. They bolstered this argument by estimating how R0 must have
changed overall since 1900 and in response to different interventions, based on a
Ross–Macdonald-style model for R0, and concluded that projected mean increases

1 For autonomous mechanistic models (i.e., models that do not incorporate explicit dependency of time
or climate variables on the right-hand sides of the equations of the model), R0 is typically computed
using standard linearization or the next generation operatormethod (Diekmann et al. 1990; Diekmann and
Heesterbeek 2000; Van den Driessche and Watmough 2002). For non-autonomous mechanistic models,
such as the weather-driven models given in Sect. 6 by Eqs. (52)–(58) and (61)–(66), R0 is numerically
approximated using the next infection operator approach, as formulated in Bacaër (2007) and Wang and
Zhao (2008).
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in R0 under future warming (Martens et al. 1997, 1999; Lindsay and Martens 1998)
are one to two orders of magnitude smaller (and, thus, likely trivial). Agricultural
practices and land-use, in particular, have been considered a human factor of greater
importance than climate change (Lafferty 2009).

A variety of newer process-based models for the transmission cycle were devel-
oped in the decade after Martens, varying in their basic construction and hypotheses
for the effects of rainfall and temperature on both vector and parasite (see, for instance,
(Hoshen and Morse 2004; Bomblies et al. 2008; Parham and Michael 2010; Alonso
et al. 2011; Ermert et al. 2011a, b; Parham et al. 2012; White et al. 2011)), but gener-
ally concluded that increasing temperatures favor malaria transmission. For example,
Parham and Michael (2010) concluded in 2010 that transmission is optimized in the
32–33 ◦C temperature range. Caminade et al. (2014) published projections for the
population at risk of malaria using five malaria models from this period, suggesting a
net increase in the global population at risk of malaria, but with high uncertainty.

Mordecai and colleagues (Mordecai et al. 2013), in an influential paper published
in 2013, used a set of unimodal functions (i.e., hump-shaped) for the relationship
between temperature and vector parameters (such as larval development rate, lar-
val survival, adult survival, biting rate, fecundity, and vector competence), as well
as the parasite development rate, in contrast to many prior works, which had used
monotonic relationships for some or all of these (temperature-dependent) parameters.
Using a newer expression for R0, based on the model by Parham and Michael (2010),
Mordecai and colleagues concluded that malaria transmission is optimized at a sig-
nificantly lower temperature range, 25–28 ◦C, and found this to better match field
measurements of the entomological inoculation rate (EIR) (the infectious biting rate).

Subsequently, Ryan et al. (2015b) used theMordecai et al. (2013) thermal-response
curves to develop a series ofmaps formalaria transmission potential acrossAfrica from
the year 2000 to 2080 under a mid-range emissions scenario (SRES A1B). Broadly
speaking, this work predicted a modest increase in the total land area at risk for any
malaria transmission, while the net area suitable for intense, year-round transmission
would decrease (especially in western coastal Africa). Furthermore, these authors
predicted increased malaria potential in the cooler southern and eastern regions of
Africa, but a decrease in the hotter western and central African regions (especially the
Democratic Republic of Congo) by 2080, and an southeasterly shift over time in the
populations most at risk of malaria, with notable increases in the Lake Victoria region
(near the Kenyan highlands) and eastern highlandMadagascar. This work is especially
laudable in its nuanced approach to malaria transmission potential, differentiating
between year-round and seasonal potential, and consideration of the populations, not
just geographic areas, at risk.

Despite its virtues, the work of Ryan et al. (2015b) did not explicitly consider
rainfall or hydrodynamics, but applied a mask that limited transmission only to those
regions with enough vegetation to be considered wet enough to support anopheline
habitat. Earlier (process-based) malaria potential maps based on temperature, e.g. that
of Craig et al. (1999), somewhat similarly restricted transmission to areas with grossly
sufficient rainfall. Indeed, most of the works reviewed thus far have focused primarily
on ambient temperature as an explanatory variable, with rainfall often a secondary, and
variously modeled, factor. Given the absolute necessity of appropriate aquatic habi-

123



862 S. E. Eikenberry, A. B. Gumel

tat to the vector lifecycle, hydrodynamics and habitat modeling at both the regional
and micro-scale represent a relatively (but not entirely) neglected factor. A variety
of relatively simple relations between rainfall and immature mosquito survival and
carrying capacity have been employed (Yé et al. 2009; White et al. 2011; Hoshen
and Morse 2004), while several more complex efforts (Paaijmans et al. 2008a, b;
Parham et al. 2012; Asare et al. 2016a, b) have physically modeled the heat and water
balance within Anopheles microhabitats, as reviewed in Sects. 5.2.5 and 5.2.6. Sev-
eral authors have additionally modeled regional hydrodynamics, e.g. (Bomblies et al.
2009; Bomblies 2012; Tompkins and Ermert 2013; Asare et al. 2016c). Of especial
note, Bomblies and colleagues have considered detailed hydrodynamics at the village
scale (Bomblies et al. 2008, 2009; Bomblies 2012), and concluded that such detailed
modeling is necessary to explain both interseasonal variation (Bomblies 2012) and
intervillage variation in vector abundance (Bomblies et al. 2009), and this modeling
formed the basis for a recent comprehensive study suggesting little effect of climate
change on malaria incidence in western Africa (Yamana et al. 2016).

While much controversy has centered on the appropriate functions relating vector
and parasite parameters to temperature (and secondarily, to rainfall) and how varia-
tions in these drive climate-related predictions,more basicmodeling choices also affect
model predictions. In particular, the population biology of theAnopheles vectors is cru-
cial to understandingmany aspects of the disease, aswell as assessing control strategies
and projecting future outcomes. Malaria models that do not incorporate the dynamics
of the juvenile stages of the mosquito are known to give results that do not generally
match observed epidemiology (Okuneye and Gumel 2017; Beck-Johnson et al. 2013),
and the vector lifecycle per se is the focus of severalmodels (Beck-Johnson et al. 2013),
most recently by Abdelrazec and Gumel (2017), who studied the effect of both tem-
perature and rainfall on the population biology of mosquitoes. Another fundamental
issue is that most vector and parasite lifecycle process times (e.g., larval development
time) are non-exponentially distributed, yet most differential equations-based disease
transmission models implicitly assume exponentially-distributed waiting times, an
assumption found to affect model dynamics unfavorably by Christiansen-Jucht et al.
(2015) and Lunde et al. (2013b).

Addressing this deeper problem of model construction, Gumel and colleagues
(Agusto et al. 2015; Okuneye and Gumel 2017), have recently developed and analyzed
several complex weather-driven mechanistic models that extend the prior studies by
incorporating a broader array of biological, ecological and epidemiological factors,
such as the dynamics of immaturemosquitoes, host age-structure (Okuneye andGumel
2017) and host immunity-boosting due to repeated exposure to malaria infection
(Agusto et al. 2015). In particular, Agusto et al. (2015), adopting the thermal-response
functions of Mordecai et al. (2013), and using a 14-dimensional mechanistic model
and weather data for numerous locations within Africa, predicted that malaria infec-
tion generally increases in the 16–28 ◦C range, but decreases beginning at temperature
values between 25 and 28 ◦C, depending on the African region (these results are com-
parable to those ofMordecai et al. (2013), butmore nuanced).Yamana et al. (2013) also
extended a prior agent-based model by Bomblies et al. (2008) to include partial immu-
nity induced by repeated infection, and predicted that immunity can damp both the
spatial and temporal variation in clinical disease in response to environmental variabil-
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ity (Yamana et al. 2013, 2017). It should be emphasized thatmany priorweather-driven
malariamodeling studies do not include immunity (or use only very simple representa-
tions of immunity), even though it is known that the uniquemalaria immune response is
fundamental tomalaria epidemiology and pathogenesis, and is itself the focus of a long
modeling tradition; see, for instance, (Dietz et al. 1974; Aron 1988; Gupta and Day
1994; Gupta et al. 1999a, b; Filipe et al. 2007; Griffin et al. 2010, 2015) and Sect. 7.1.

Another recent effort is that of Okuneye and Gumel (2017), who additionally incor-
porated age-structure (as stated earlier, age-structure is crucially important because
children under the age of five suffer the majority of the malaria burden in endemic
areas) into a mechanistic temperature- and rainfall-dependent model, finding trans-
mission to be maximized in the 21–25 ◦C temperature and 95–125 mm rainfall ranges
in the Kwa-Zulu Natal province of South Africa.

Yet another basic issue that must be mentioned is that of diurnal temperature vari-
ation, and the (time-varying) disparity between ambient air and water temperature.
Paaijmans et al. (2010) demonstrated empirically that the magnitude of temperature
fluctuation affects Anopheles development and survival in a manner not captured by
mean temperature alone. Average diurnal temperature range varies on a continental
scale (Paaijmans et al. 2010), and this therefore may be an under-appreciated param-
eter in malaria potential projections. Diurnal temperature variations have not been
considered in most models, although there are some recent exceptions, e.g. (Agusto
et al. 2015;Beck-Johnson et al. 2017). Furthermore, thewater temperature in immature
mosquito habitats generally differs from ambient air; this disparity may be captured
by physical hydrodynamic modeling, although a simple linear offset is sometimes
assumed (Agusto et al. 2015). Finally, adult anophelines are also exposed to multiple
microenvironments with varying temperatures, and often prefer to feed and/or rest
indoors, where temperatures are typically warmer on average, but also less variable
than out-of-doors (Afrane et al. 2005; Blanford et al. 2013; Singh et al. 2016).

While many malaria modeling studies have focused on the global scale (i.e., the
potential global malaria range due to climate change), studies more limited in scale
may provide better insight (Pascual andBouma 2009;Alonso et al. 2011). In particular,
a model region is the highlands of East Africa, where malaria burden was previously
rare but has become more common since the 1970s; this increase may be at least
partially attributable to global warming (Pascual and Bouma 2009). Human activity
in the Kenyan highlands is recapitulating, in some sense, the early social and climatic
changes that first gave birth to P. falciparum some 10,000years ago. Temperatures
are increasing (Pascual et al. 2006), the rain forests have recently been mostly cleared
for crops, cattle grazing, logging, and housing construction (Minakawa et al. 1999),
and the region is subject to intense population growth and human migration. Several
researchers have made this area their focus (e.g., Githeko and Ndegwa 2001; Hay et al.
2002; Zhou et al. 2004; Pascual et al. 2006, 2008; Chaves andKoenraadt 2010; Alonso
et al. 2011; Snow et al. 2015), and we suggest that a more limited geographic scope of
studymay better elucidate the competing effects of treatment, land use, migration, and
climate on malaria. Also of note, malaria is highly endemic in hotter western Africa,
an area which is also the focus of several studies, and the effect of climate change
in this region could, conversely, be to slightly reduce malaria potential (Ryan et al.
2015b; Yamana et al. 2016).
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In summary, although there is general agreement that climate change will increase
the potential for malaria transmission at more northerly and southerly latitudes (and
at higher altitudes), it is unclear if this represents a shift in malaria distribution with
little net increase (or even decrease) in malaria burden, or an expansion in burden. The
most likely scenario may be a hybrid result, with net expansion in malaria range, but
shifts in the intensity of transmission within that range, especially towards southern
and eastern Africa and highland areas. Further, the magnitude of the climate effect,
and how it compares to other anthropogenic and abiotic factors, remains uncertain.

Malaria is a complex disease, with a complex history, and the controversy just
outlined cannot be fully addressed without a broad background. The goal of this paper
is to provide the reader with at least some of the requisite background needed for
effective modeling of the disease dynamics, and to provide sufficient resources to
help the reader in beginning their own investigations. Finally, it should be noted that
mathematical models can, broadly speaking, be divided into the classifications of non-
parametric and parametric (with parametricmodels also referred to as “process-based”
or “mechanistic”), where the former attempt to inferentially draw conclusions directly
from (usually time-series) data without positing any particular mechanistic system,
while the latter posit some particular hypothesis for a system’s workings (expressed
mathematically). In this paper, our focus shall be on the latter.

This paper is organized as follows.We begin with an overview of themalaria lifecy-
cles, immunology, and epidemiologic principles to establish a basis for later sections.
To properly appreciate the role of mathematical modeling in providing deeper qual-
itative and quantitative insight on the transmission dynamics and control of malaria,
some familiarity with the historical development of modeling frameworks and con-
cepts is invaluable. To this end, we first present a historical overview of the disease in
general, and move on to quantitative malariology through the early twentieth century,
focusing on the early but deeply influential work of Ross and Macdonald. We also
touch on some important later extensions by authors including Garrett-Jones, Dietz,
and Molineaux. We then shift focus to climate, beginning with an extensive discus-
sion of the anopheline and parasite lifecycles and their relation to weather (mainly
temperature and rainfall), since these are fundamental to any predictions we care to
make. In Sect. 6, we subsequently present a partial genealogy of recent mathematical
works addressing weather and malaria transmission, and close with a brief discussion
of multi-patch meta-population modeling, which may be of especial importance in
understanding the spread of malaria between lowland and highland regions of Kenya.
Finally, we briefly discuss other aspects of the disease that are pertinent to a fully
comprehensive quantitative modeling framework (such as malaria immunity).

2 Introduction to malaria lifecycles, immunology and clinical disease

2.1 Parasite lifecycle

Plasmodium spp., the causative agent in malaria, are sexually-reproducing eukary-
otic protozoans that undergo a complex lifecycle that requires switching between
evolutionarily-distant vertebrate and invertebrate dipterian hosts. The basic evolution-

123



Mathematical modeling of climate change and malaria… 865

ary logic follows. Pre-Plasmodium parasites likely evolved from free-living sexual
protozoans to live extracellularly in the midgut of aquatic invertebrates (Carter and
Mendis 2002). Proliferative potential was then increased with the evolution of a sec-
ond parasitic intracellular asexual reproductive stage, known as schizogony, by which
a single cell may produce vast numbers of daughter cells, or spores. A minority of
these daughter spores differentiate into male and female forms, which then recombine
in a form of extracellular sexual reproduction known as sporogony (Antinori et al.
2012). The Plasmodia’s evolutionary innovation is to spatially separate the schizogo-
nic cycle and sporogonic cycle into two separate hosts, with sporogony occurring in
the mosquito.

Let us consider the particulars of human Plasmodia, where schizogony (asexual
clonal expansion of many daughter spores) occurs in the human host, and in two
phases: first in liver hepatocytes and then within red blood cells (RBCs, or erythro-
cytes). Sporogony then occurs in the mosquito midgut following a blood meal, to
ultimately yield parasitic forms infectious to humans (Antinori et al. 2012). We may
consider the cycle to begin with the bite of an infectious mosquito, who probes the
dermis and injects saliva containing nomore than 10–100 highlymotile asexual sporo-
zoites (Antinori et al. 2012). Sporozoites penetrate into blood vessels within minutes,
travel to the liver and establish infection in hepatocytes within 30min of biting (Guil-
bride et al. 2012).While the skin has traditionally been thought of as a passivewaypoint
in the infection cycle, more recent data indicates that a small number of sporozoites
remaining in skin may exploit the inherently immunoregulatory nature of this environ-
ment to suppress anti-Plasmodium immunity and induce tolerance (Crompton et al.
2014), with important implications for vaccine development (Guilbride et al. 2012).

Shifting focus, sporozoites within hepatocytes initiate the first round of shizogony,
so-called “pre-erythrocyte” shizogony, proliferating asexually to produce, in the case
ofP. falciparum, up to 30,000–40,000 asexualmerozoites (Antinori et al. 2012;Cromp-
ton et al. 2014) contained within a “tissue schizont”. Once mature, the tissue schizont,
along with the parent hepatocyte, ruptures to spill the merozoites into the bloodstream,
where they actively infect red blood cells, initiating the erythrocyte cycle of schizogony
(Antinori et al. 2012), whereby merozoites expand, via several intermediate stages,
within the erythrocyte and rupture it every 24–72 h (48 h for P. falciparum), freeing
more merozoites to repeat the cycle (Antinori et al. 2012). It should be noted that
while this is the end of the hepatic stage for P. falciparum, P. vivax and P. ovale have a
dormant liver form known as the hypnozoite (Greek “sleeping animal”) that can cause
reinfection years later (Carter and Mendis 2002).

Erythrocytes, lacking a nucleus and most typical eukaryotic organelles, are essen-
tially masses of hemoglobin, an iron-containing oxygen-carrying molecule, wrapped
in plasma membrane and suited only for passive O2 and CO2 transport. Plasmodia,
on the other hand, are “fully realized” eukaryotes, that hijack completely the ery-
throcytes they invade (Tilley et al. 2011). An invading merozoite passes through an
immature “ring” stage to become a trophozoite, a feeding form that consumes 70%
of the erythrocyte hemoglobin, converting it to the toxic byproduct hematin, which is
then detoxified to hemozoin (Baton and Ranford-Cartwright 2005; Tilley et al. 2011).
Notably, quinine antimalarial drugs act by preventing the detoxification of hematin
(Tilley et al. 2011), and artemisinin, the most effective antimalarial, is also likely
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involved in hemoglobin digestion (Tilley et al. 2011). The nourished trophozoite then
becomes a “blood schizont,” dividing asexually into 6–36 (20 on average) daughter
merozoites that are released with the host cell’s rupture (Tilley et al. 2011).

The erythrocyte cycle can continue essentially indefinitely, but it is ultimately a
reproductive dead end: the merozoite must die with the man. To escape the human host
and live on, a subset of blood schizonts commit their merozoite offspring to becom-
ing gametocytes, sexually differentiated male and female parasite forms; all progeny
of a schizont become either male, female, or asexual (the most typical fate). Sexu-
ally committed merozoites proceed as others, by invading an erythrocyte to become a
feeding trophozoite, but then form either a single macrogametocyte (female) or sin-
gle microgametocyte (male) (Baton and Ranford-Cartwright 2005). Committing to
gametocytogenesis is risky, for terminally differentiated gametocytes cannot repro-
duce further in the blood of man. Gametocytogenesis in Plasmodia does not occur
after a fixed number of erythrocyte cycles, as it does in some related parasites, and
the decision to commit to gametocytogenesis remains poorly understood (Baton and
Ranford-Cartwright 2005).

When taken up in a blood meal, the gametocytes rapidly initiate the sporogonic
cycle. Upon arrival at the mosquito midgut the macrogametocyte dissolves its erythro-
cyte host within minutes and becomes spherical and immotile. The microgametocyte,
on the other hand, undergoes the dramatic process of exflagellation, whereby eight
daughter genomes are produced that attach to long writhing flagella, and break free to
become highly motile wrigglers that find and fuse with a macrogametocyte to form the
zygote (Baton and Ranford-Cartwright 2005; Antinori et al. 2012). The zygote in turn
transforms into a banana-shaped ookinete (Greek “moving egg”), which penetrates
both through the peritrophic matrix, a chitinous matrix extruded by the mosquito gut
to sequester the blood meal, and then through the epithelial cells lining the gut wall.
Next, it transforms into an oocyst, producing thousands of daughter sporozoites by
nuclear division (Antinori et al. 2012). Eventually, the mature oocyst ruptures into the
mosquito’s hemocoelic cavity (Baton and Ranford-Cartwright 2005), and sporozoites
travel through the hemolymph to infect the salivary glands where, after about one day,
they are reprogrammed to be highly infectious to humans (Antinori et al. 2012), and
the cycle can begin again. The cycle is depicted in its entirety in Fig. 2.

The complex within-host dynamics of human Plasmodium infection, how these
affect the efficacy of treatment and control measures, and their interaction with the
immune response, have been the focus of multiple modeling works, e.g. (Teboh-
Ewungkem et al. 2010; Li et al. 2011; Gurarie et al. 2012; Eckhoff 2012; Demasse and
Ducrot 2013; Childs and Buckee 2015; Childs and Prosper 2017; Tabo et al. 2017).
However, to our knowledge no climate-focused models have focused deeply upon
these within-host dynamics, although it is likely that such work is needed to fully
elucidate how climate change might affect malaria epidemiology and control efforts
in the future (see also Sect. 7.3).

2.2 Vector characteristics and lifecycle

Malaria is transmitted by adult female Anopheles mosquitoes, yet of the more than
450 known anopheline species, only about 60 can serve as actual vectors (Cohuet et al.
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Fig. 2 The Plasmodium lifecycle. The right side depicts schizogony in man, where sporozoites from an
infectious bite invade hepatocytes in the liver, undergo a round of replication, and then enter, as merozoites,
into the erythrocyte cycle in blood. A minority of blood trophozoites differentiate to male and female
gametocytes that are taken up by a bitingmosquito to initiate sporogony, as depicted on the left side, whereby
ookinetes penetrate the peritrophic matrix and gut epithelium to form oocysts, eventually rupturing to yield
sporozoites that travel to the salivary glands. Further details are given in the text

2010),with 41 consideredmajor vectors (Sinka et al. 2010), andmost of these are rather
inefficient at transmitting the disease. To effectively transmit disease, the mosquito
must be susceptible to infection (many are completely refractory to Plasmodium),
must habitually bite man (many mosquitoes strongly prefer other animals), and must
live long enough for the sporogenic cycle to reach completion (Cohuet et al. 2010).

In Africa, three anopheline species are preeminent, namely A. gambiae, A. arabi-
ensis, and A. funestus, with A. gambiae likely the single most important species (Sinka
et al. 2010), and the focus of most modeling studies. A point of terminology to avoid
confusion in the literature is in order here: the A. gambiae complex is a collection of
seven morphologically indistinguishable species later recognized to be distinct, and
includes A. gambiae sensu stricto (Latin “in the strict sense”) which is the species
referred to by the unqualified term A. gambiae, and A. arabiensis (Sinka et al. 2010).
A. gambiae sensu lato (Latin “in the general sense”) refers to the species complex. The
existence of multiple distinct species, including the important vector A. arabiensis,
within the A. gambiae complex clearly complicates matters, from both a modeling and
malaria control standpoint, and these vectors vary, for example, in their susceptibility
to insecticide-treated bednets (Kitau et al. 2012).

Briefly, the lifecycle of the Anopheles mosquito, while simpler than that of its
Plasmodium parasite, is not trivial, with mosquitoes passing through three immature,
aquatic stages (egg, larva, pupa), and a final adult stage. The adult female mosquito
lifecycle is centered around the gonotrophic cycle: the taking of a blood meal to
fuel egg development, which takes several days and is highly temperature dependent
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(with higher temperatures decreasing the time for larval development), followed by
oviposition of eggs in a suitable aquatic habitat, only to repeat until inevitable death
(Detinova 1962). Typical bloodmeal size is 2–3µL, andA. gambaiemay lay anywhere
between about 10 and 150 eggs per gonotrophic cycle (this is the “fecundity”) (Takken
et al. 1998; Afrane et al. 2005), but more typically between about 40 and 85 under field
conditions (Afrane et al. 2005).Most eggs hatchwithin 2–3 days (Yaro et al. 2006), but
time to hatching is modestly temperature dependent (Bayoh and Lindsay 2003). Eggs
hatch to become larvae and actively feed upon algae and bacteria, growing through four
moltings, and are thus divided into four stages known as instars (conceptually, first- and
second-instars are lumped as “early,” with third- and fourth- “late-instars”);Anopheles
larvae also lie parallel to thewater surface to obtain oxygen. Finally, fourth instar larvae
become nonfeeding pupae that undergometamorphosis to adult mosquitoes. Immature
stage development rate and survival are both strongly temperature-dependent (Bayoh
and Lindsay 2003), and the complete lifecycle is given in schema in Fig. 3.

Anophelines have varying habitat preferences, and are widely adapted to different
environmental niches (Sinka et al. 2010), but theA. gambiae complex tends, unsurpris-
ingly, to prefer conditions associatedwith anthropogenic alteration of the environment.
Specifically, A. gambiae and A. arabiensis larvae prefer small, temporary, sunlit pools,
with little vegetation (Minakawa et al. 1999, 2004), the kind created by deforestation,
construction, and livestock, e.g. hoofprints. These pools are warmer, support more
algae (the major larval food source), and have fewer predators than natural water bod-
ies (Minakawa et al. 1999). A series of studies by Afrane and colleagues (Afrane et al.
2005, 2007, 2008) confirm that deforestation in Kenyan highlands creates habitat that
strongly supportsA. gambiae proliferation.A. funestus, the othermajor African vector,

Fig. 3 Anopheles mosquito lifecycle. Immature mosquitoes pass through aquatic egg, larvae, and pupae
stages, with the actively feeding larvae divided into four instar stages. Adult femalemosquitoes pass through
the gonotrophic cycle, by which bloodmeals nourish the development of new eggs, with further details in
the text
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is also aided by deforestation, but tends to prefer larger permanent or semipermanent
habitats with established vegetation (Minakawa et al. 2005).

Anophelines can further be characterized along several axes that affect transmission
potential and the efficacy of various control efforts (Sinka et al. 2010): (1) anthro-
pophilia versus zoophilia, or the preference for taking blood meals from humans or
non-human animals, respectively, with the anthropophilic index defined as the frac-
tion of blood meals taken from man, (2) endophagic versus exophagic, referring to a
preference for feeding indoors or out-of-doors, respectively, and (3) endophilic versus
exophilic, meaning the favored location for resting between blood meals (this may
differ pre-feeding and post-feeding). The highly efficient malaria vectors, such as
A. gambiae, tend to be highly anthropophilic with anthropophilic indices approach-
ing one, but as reviewed by Sinka et al. (2010), even these vectors are likely very
opportunistic, and apparent anthropophilia may simply be a (partial) result of host
availability; preferences along the other axes may also have been overstated in past
studies, and anophelines are quite adaptable in general (Sinka et al. 2010).

Briefly, A. gambiae feeds late at night, has typically been reported as endophagic
and endophilic, but this likely varies, and Odiere et al. (2007), working in western
Kenya, found no preference. The closely related A. arabiensis also feeds at night, and
may show an exophagic and exophilic preference in comparison to A. gambiae (Sinka
et al. 2010). Behaviorally, the adult A. funestus is extremely similar to A. gambiae
(Sinka et al. 2010).

Finally, not only do the innate characteristics of certain anophelines favor malaria
spread, but there is even some evidence that mosquito behavior may also bemodulated
by Plasmodium infection to enhance transmission, a notion termed the “manipulation
hypothesis” by Cator et al. (2012). When carrying the infectious sporozoite para-
site stage, various Anopheles may take more frequent bloodmeals with more probing
attempts per meal, may be more likely to feed from multiple hosts, and bloodmeal
volumemay be smaller. In contrast, when burdened by the non-infectious oocyst stage,
mosquitoes seem less attracted to hosts and less persistent in bloodmeal attempts, a
behavioral response that could decrease pre-infectious mortality by avoiding risky
biting attempts (Cator et al. 2012; Nguyen et al. 2017), and the overall effect of such
manipulations on malaria transmission could be quite significant, as suggested by
mathematical analysis byCator et al. (2014).However,most evidence for suchmanipu-
lation comes from lab studies using a variety of vector-host combinations (Cator et al.
2012), and it is also unclear if such behavioral changes represent specific parasitic
manipulations or more generic responses to infection (Cator et al. 2013). Moreover,
several recent studies using field isolates of P. falciparum and anthropophilic Anophe-
les found no evidence that infection altered host-seeking behavior (Vantaux et al. 2015;
Nguyen et al. 2017).

2.3 Immunity and clinical disease

In areas of intense P. falciparum transmission, young children are exposed to hun-
dreds of infectious bites per year, and yet, unlike many viral diseases where a single
exposure can be sufficient to imbue robust, lifelong immunity, immunity to malaria is
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gained only slowly and incompletely over the course of years (Crompton et al. 2014).
Characteristically, children under the age of five are susceptible to the most severe,
life-threatening forms of the disease, such as severe malarial anemia and cerebral
malaria, the disease transitions to an uncomplicated febrile disease through adoles-
cence, and by adulthood it only rarely manifests clinically, with asymptomatic disease
common (Crompton et al. 2014) (and a possible Plasmodium reservoir complicating
eradication efforts). This hard-won immunity is short-lived: when adults from endemic
areas move, they become vulnerable to severe disease within a few years, although
they may retain protection against the worst manifestations of disease (Filipe et al.
2007). This dynamic is especially salient to malaria elimination efforts, and there is
very real danger when the disease is eliminated locally but may be reintroduced to
now non-immune populations (Webb 2014; Snow 2015), and even control measures,
such as bednets or intermittent preventive (drug) therapy, while initially beneficial,
have the potential to increase disease burden later in time, as they induce a decrease
in population-level immunity (Ghani et al. 2009).

Thus, it is clear that there is a distinct disparity between clinical immunity against
P. falciparum malaria (protection against clinical disease and severe symptoms) and
infectious immunity (protection against infection, per se, by blood-stage parasites).
Immunity to the most severe forms of disease may be also differ fundamentally from
immunity to uncomplicated disease, with perhaps only several infections (and pos-
sibly as few as one) needed to confer long-lasting protection (Gupta et al. 1999a, b).
The pathogenesis of clinical disease is primarily related to (1) sequestration of par-
asitized erythrocytes in organs such as the brain (this sequestration allows parasites
to avoid the spleen, where they could be destroyed by macrophages), and (2) the sys-
temic inflammatory response (Crompton et al. 2014). With respect to the former, the
P. falciparum erythrocyte membrane protein-1 (PfEMP1), expressed on the surface
of infected cells, facilitates sequestration. It is also encoded on the var gene, of which
there are about 60 distinct versions, each clonally expressed and encoding an antigeni-
cally distinct PfEMP1. This antigenic variation, and the extreme genetic diversity of
P. falciparum in general, help to explain why effective immunity requires so many
exposures (Crompton et al. 2014).

It is worth noting that all actively clinical disease takes place during the erythrocyte
stage of infection, with the skin and hepatocyte stages clinically silent. This may
be at least partly related to the very different orders of magnitude involved at the
different stages. Generally, fewer than 100 sporozoites infect the skin, and only tens of
hepatocytes are infected. These numbers may simply be too small to initiate immunity,
or, they may even induce immune tolerance, especially in the skin (Guilbride et al.
2012). In severe infections, on the other hand, total body trophozoite burden may
number in the hundreds of billions (Trape et al. 1994).

2.4 Epidemiologic classification

P. falciparum transmission intensity in endemic zones varies across orders of magni-
tude, from one infectious bite per person per year, to more than one per day in many
holoendemic areas (Rodriguez-Barraquer et al. 2016), and partly as a consequence of
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its unique immunology, different malaria transmission intensities give differing age-
distributions of parasitemia, clinical disease, and serious disease (Aron 1988; Snow
2015). It must be emphasized that endemic and epidemic malaria are very different
beasts (Snow 2015; Hay et al. 2008): endemic (from Greek meaning “in the people”)
disease is constantly present in a population, whereas an epidemic (Greek “upon the
people”) is a temporary disease flare out of proportion to the past. Populations living
with endemic malaria have varying degrees of immunity, but epidemic malaria can be
calamitous when it tears through previously unexposed groups, or more perniciously,
groups transiently protected bymalaria control programs that lapse, leaving the people
newly vulnerable after the waning of prior immunity (Snow 2015; Webb 2014).

Themost commonclassification for endemicity is nowbasedupon the fractionof the
population that has parasites detectable in their peripheral blood, the so-called “parasite
rate” (PR), and furthermore uses the parasite rate in the 2–10year agegroup,Pf PR2−10,
with zones classified as holoendemic (Pf PR2−10 > 75%), hyperendemic (Pf PR2−10
50–75%),mesoendemic (Pf PR10 10–50%), and hypoendemic (Pf PR10 1–10%) (Snow
2015). In the hypoendemic and extreme hypoendemic (< 1%) range, transmission
becomes unstable (Snow 2015), and populations with very low burdens of malaria are
vulnerable to epidemics of severe disease. Indeed, the venerableMacdonald considered
the stable/unstable classification axis to be the more legitimate on a fundamental basis
(Snow 2015).

The age-distributionof clinical disease varies across endemic zones. In holoendemic
zones, most severe disease occurs in the first few years of life, rapidly tapering off by
adolescence (Aron 1988;Gupta andDay 1994; Filipe et al. 2007;Crompton et al. 2014;
Snow 2015), with the burden of severe disease dropping in absolute terms and shifting
towards older age groups as the level of endemicity decreases, as demonstrated in
Fig. 4. In holoendemic areas, the PR peaks later than does clinical disease (Trape et al.
1994; Rodriguez-Barraquer et al. 2016), and remains relatively high even into middle
and old age, when clinical disease is rare. However, although the PR remains high,
the parasite burden continues to decline with age (Trape et al. 1994), as also shown in
Fig. 4. These observations have motivated many mathematical models attempting to
elucidate the dynamics of immunity acquisition.

3 General historical background

3.1 Overview

The history of malaria, and its emergence as a major human pathogen over the last
several 10,000years, is intimately linked to the evolution of human agricultural civ-
ilization and the profound changes in both human populations and the environment
that this engendered. This was directly coupled to global climate, as climate change
following the end of the last ice age and the onset of the holocene era was fundamental
to agriculture, and also allowed the wider spread of mosquito vectors in a warmer
world (Carter and Mendis 2002). For the interested reader, scholarly histories of the
disease include those by Webb (2014) and Packard (2007).
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Fig. 4 The left panel gives the qualitative shape of severe disease incidence by age through adolescence
under holo-, hyper-, meso-, and hypoendemic transmission conditions, based on Aron (1988), Snow (2015).
The right panel shows overall parasite rate in the holoendemic village of Dielmo, Senegal (Trape et al. 1994),
subdivided by the actual density of trophozoites in the peripheral blood. While PR in the youngest is only
about twice that of those over 40, children under four suffered clinical malaria attacks at a rate 40-fold
higher (Trape et al. 1994). Note that the broad plateau in PR from roughly age two to 15 in the face of
dramatically falling serious disease incidence has been observed elsewhere (Gupta and Day 1994)

The clearing of forests for agriculture creates myriad microenvironments for
anopheline mosquitoes, and concentrated human settlements are capable of support-
ing the virulent P. falciparum, which only emerged within the last 10,000years, while
a warmer climate supports its mosquito vectors (Webb 2014; Packard 2007). Malaria
has also helped shape human biological evolution: in pre-agricultural Africa Duffy
antigen (an erythrocyte membrane chemokine) negativity spread through the African
heart to confer complete resistance to P. vivax, at no apparent cost, while the more
recent advent of P. falciparum selected for a variety of far less benign genetic anemias,
the best known being the sickle cell trait, which protects against severe disease in the
heterozygous form, but causes crippling sickle cell disease in homozygotes (Carter
and Mendis 2002). Following its earlier evolution in Africa, malaria, especially P.
vivax, escaped that continent and into much of the rest of the world, its spread strongly
associated with agricultural expansion and population movements (Packard 2007).

It was not until the end of the nineteenth century that the microbiological basis
of the disease was discerned. This coincided with the onset of the colonial era, or
“Scramble for Africa” spanning roughly 1879 through 1914, and during which vari-
ous European powers conquered and carved up the African continent (Webb 2014).
Thus, early “scientific” malaria control efforts in Africa were inescapably linked to
colonial medicine, a primary focus of which was protecting Europeans and preserv-
ing the productivity of subservient African laborers, with less regard for the general
African populace (Webb 2014). Lasting from 1955–1969, theWorld Health Organiza-
tion’sMalaria Eradication Programme saw significant mixed successes, but ultimately
failed to eliminate the disease. In Africa, widespread chloroquine treatment during the
1970s was a primary cause of lowering malaria burden, but the spread of chloroquine
resistance across the continent in subsequent years, the HIV/AIDS epidemic, agricul-
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tural expansion, and devastating wars among many newly independent African states
fueled a malaria resurgence. New global efforts since about 2000, largely centered on
insecticide-treated bednets (ITNs) and treatment with the new artimisinin compounds
have seen significant success (Bhatt et al. 2015), but it remains to be seen whether
these gains will continue or even be maintained (Webb 2014).

In the following sections, we discuss more extensively the early origins of malaria,
its link to agriculture and human activity, and then review in greater depth the era
since the late nineteenth century. Our focus in the latter is on tropical Africa and P.
falciparum, and a working theme is that P. falciparum differs qualitatively from the
other human Plasmodia, representing a unique burden on African populations.

3.2 Origins and evolution

The Plasmodia are ancient parasites belonging to the order haemosporidia—single-
celled parasites which alternate between a wide variety of vertebrate hosts and blood-
sucking arthropods—and mammal-specific Plasmodia have coexisted with mammals
formuch if not all their evolutionary history,with one recent estimate dating their origin
between 64 and 120 million years ago (Silva et al. 2015). Haemosporidia burdened
animals even earlier, likely since almost the first appearance of Diptera insects (flies
and mosquitoes) 150–200 million years ago (Carter and Mendis 2002).

Early studies found P. falciparum and a very closely related chimpanzee Plas-
modium, P. reichenowi, to differ substantially in morphology and lifecycle from P.
malariae, P. ovale, and P. vivax, and hence the former were categorized as a separate
subgenus, Laverania (Loy et al. 2017). Later molecular studies confirmed that the
Laverania diverged from the other mammalian Plasmodia on the order of 100 million
years ago (Carter and Mendis 2002; Silva et al. 2015).

Moving forward in time, the evolutionary origins of modern human Plasmodia
within the last 100,000 years, mainly P. vivax and P. falciparum, have been of some
controversy, but the weight of the evidence supports, in our view, an out-of-Africa
origin for all modern human malaria (see Loy et al. (2017) for a recent review). Under
pre-agricultural conditions, scattered mobile populations of low density were unlikely
to support intense transmission rates, and the overall malaria burdenwas probably low.
Under these poor transmission conditions,P. malariae, which can cause a chronic low-
grade infection lasting decades, andP. vivax andP. ovale, both ofwhich have a dormant
liver stage that can lead to reinfection and transmission years after initial infection, are
much more competitive than the highly virulent and short-lived P. falciparum (Carter
and Mendis 2002).

A powerful piece of circumstantial evidence supports the existence of relatively
longstanding P. vivax infection in pre-agricultural Africa: Duffy antigen negativity.
The Duffy antigen is a chemokine expressed on RBC membranes, and also happens
to be an essential receptor for P. vivax merozoite entry into RBCs (Carter and Mendis
2002). Homozygotes for Duffy negativity are thus completely immune to P. vivax, and
moreover appear to suffer no ill health-effects. In native populations, Duffy negativity
prevalence is almost 100% in most west and central Africa (Culleton and Carter
2012), likely the ancestral seat of malaria and the areas of the most intense malaria
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transmission today, while Duffy negativity is highly prevalent throughout the rest
of the continent. Since homozygosity is required for significant benefit, one may
that expect tens of thousands of years are necessary for Duffy negativity to become
fixed in a population (Carter and Mendis 2002), and Hamblin and Rienzo (2000)
estimated a selective sweep may have occurred 33,000 years ago (95% CI 65,000–
97,200 years ago). Thanks to Duffy negativity, P. vivax was likely driven nearly to
extinction in Africa, but escaped into Asia and the larger world (Liu et al. 2014),
perhaps around 10,000 years ago, where populations have had insufficient time to
evolve Duffy negativity (Culleton and Carter 2012).

About 10,000 years ago, African proto-agriculture led to more sedentary, larger
human settlements that could sustain more virulent, short-lived infections (Carter and
Mendis 2002). It was around this time that P. falciparum in gorillas may have crossed
over into humans, according to a recent hypothesis (Loy et al. 2017). Even if the gorilla
hypothesis is false, it is clear that P. falciparum did not become a significant human
disease until between 5000 and 10,000 years ago, and that its rise was related to that
of agriculture (Carter and Mendis 2002; Webb 2014). Malaria, both P. vivax and P.
falciparum, likely spread through most of the inhabited world during early histori-
cal times (i.e. before the common era), although P. vivax mainly affected the more
northerly regions, given its dormant phase and better cold tolerance versus P. falci-
parum (Packard 2007); malaria was rapidly introduced to the New World following
its discovery by Europeans.

In the nineteenth century, malaria reached its global zenith, with most of the globe’s
population at risk (Carter and Mendis 2002), but then declined into extinction in most
of Europe and the Americas by the mid-twentieth century, its retreat primarily caused
by agricultural modernization and changing living conditions that discouraged trans-
mission, and aided by later eradication programs (Packard 2007; Carter and Mendis
2002). This, however, was not the experience of tropical Africa, and from here out we
will restrict our attention to this continent.

3.3 The colonial era, Africa, and modern malariology

With tears and toiling breath I find thy
cunning seeds, O million-murdering
Death. I know this little thing a myriad
men will save.

Ronald Ross, fragment from In Exile,
Reply - What Ails the Solitude

In the late 1800s, spurred largely by the discoveries of Koch and Pasteur, the search
was on for bacterial causes of many diseases, and in 1880, Charles Laveran, an obscure
French army officer stationed in Algeria (a French colony at the time, having been
subdued in a bloody war of conquest spanning 1830–1847, and that killed as much as
a third of the native population (Kiernan 2007)), observed a variety of strange writhing
forms within the erythrocytes of malaria victims, which he would come to identify
as a protozoan parasite that he named Oscillaria malariae. It was the first protozoan
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discovered to infect man, and Laveran would receive the Nobel Prize in 1907 for this
discovery (Cox 2010).

It fell chiefly to Ronald Ross, a British physician, to elucidate the vector by which
the malarious protozoan was transmitted, the female anopheline mosquito, which he
showed in birds in 1897, and in humans in Freetown, Sierra Leone, in 1899 (Cox
2010). Note that while to modern ears, the idea of a mosquito transmitting a disease
is entirely natural, at that time it was a truly novel notion (Cox 2010). Sierra Leone
had been established as a British colony in 1787, and due to the high malaria burden
came to be known as the “White Man’s Grave” (Bockarie et al. 1999), and indeed,
malaria has been credited by some historians as protecting the interior of Africa from
the depredations of European colonialism during the slave era (Webb 2014). The
discovery of infected anopheline vectors A. gambiae and A. funestus, along with their
breeding sites in myriad small pools, by Ross and his colleagues during their 1899
expedition led to vector control measures including bednets, window screens, and
larval control via oiling of pools (Bockarie et al. 1999; Webb 2014).

Ross also recommended segregating European and African populations to protect
the Europeans (Bockarie et al. 1999); this too would be a feature, although varying in
degree by time and place, of colonial malaria control efforts (Webb 2014).

In Sierra Leone and elsewhere, subsequent efforts included draining or oiling pools,
and removing household receptacles that could support breeding. Other anti-larval
efforts, of which Ross was a champion, included treating pools with a highly toxic
copper-based compound known as Paris Green, stocking with larvivorous fish, and,
by World War II, treating with oils containing the pesticide DDT (dichloro-diphenyl-
trichloroethane) (Bockarie et al. 1999; Webb 2014). While sometimes effective,
anti-larval measures required ongoing action, were labor-intensive, and dependent
upon funding. A common pattern was concentrating malaria control efforts in urban
areas, and in commercial areas where European interests desired a healthy indigenous
workforce, but with European health as a priority. There was also legitimate concern
that measures decreasing malaria prevalence among native populations could reduce
immunity, rendering them vulnerable to epidemic malaria (Webb 2014).

DDT, first used against malaria by the US Army inWorldWar II, has a long-lasting
residual effect, such that a dwelling need be sprayed only infrequently to have a toxic
effect onmosquitoes. Thus, the 1940s and 50s ushered in the pesticide era, with indoor
residual spraying (IRS) increasingly usedbynational control programmes (Nájera et al.
2011). Macdonald’s mathematical model (Macdonald 1957) (discussed in Sect. 4.2)
provided a powerful theoretical basis for increasing adult mortality as the linchpin
of control (Nájera et al. 2011), and furthermore, the strategy of spraying was viewed
as general and inexpensive, compared to expensive quinine treatment or labor- and
capital-intensive environmental engineering and larvaciding (Webb2014).Against this
background, the WHO launched its Global Malaria Eradication Programme (GMEP)
in 1955, based on spraying with DDT and related compounds supplemented by mass
drug treatment, and efforts were geared toward eradication over control, with malaria
control viewed with contempt by the program’s architects (Nájera et al. 2011). The
GMEP coordinated with national control programmes, and launched a number of pilot
projects, the most famous and well-done being the Garki Project, which motivated the
Garki mathematical model, by Dietz et al. (1974) (Sect. 4.4).
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A deeply unfortunate effect of the GMEP was the undermining of the specialized
field of malariology (why study malaria if all one need do is spray DDT, regardless
of the particular vector, geography, socially, biology, etc.?) (Nájera et al. 2011; Webb
2014), as well as the (temporary) abandonment of many control measures other than
IRS (Nájera et al. 2011). Despite very meaningful successes, including the eradication
of malaria from many countries (especially outside of Africa), the GMEP was beset
by setbacks, and in 1969 it was acknowledged that eradication was not a realistic
short-term goal in many regions, marking the end of the programme (Nájera et al.
2011).

Beginning in the 1960s, the synthetic anti-malarial chloroquine became widely and
inexpensively available on the African continent, with dramatically positive health
consequences, being chiefly responsible for marked reductions in child and malaria-
specific mortality through the 1960s and 70s (Carter and Mendis 2002; Webb 2014).
However, malaria began a resurgence throughout Africa beginning in the late 1970s
and 1980s, largely attributable to the evolution and spread of chloroquine-resistant
P. falciparum (Carter and Mendis 2002). However, financial- and debt-crises borne
by the recently independent African states, reductions in public health spending,
widespread and large-scale political violence and chaos, the HIV/AIDS epidemic, and
thewidespread expansion of rural agriculture into west and central African rainforests,
where deforestation created new habitat for anopheline vectors, all played roles (Webb
2014). It was also revealed in this era that prior concerns that “protecting” popula-
tions in endemic zoneswhere eliminationwas infeasible could dangerously undermine
immunity were well-founded, as deadly epidemics swept through many such regions,
most notably in the highlands of Madagascar in 1986 (Carter and Mendis 2002; Webb
2014).

In the face of devastating infectious disease across the Global South, the WHO and
several other organizations founded the Roll Back Malaria Partnership in 1998, while
the WHO’s “Global Fund to Fight AIDS, Tuberculosis and Malaria” was established
in 2002, and in 2007, the Bill and Melinda Gates Foundation announced a campaign
to eradicate malaria (Webb 2014). New tools became available, mainly insecticide-
treated bednets (ITNs), and the burden of chloroquine resistance was relieved with
newer artemisinin-based combination therapy. These campaigns have enjoyed appar-
ent success, with a 57% decrease in African malaria mortality (per 10,000) from 2000
to 2015 (Gething et al. 2016); Bhatt et al. (2015) estimated that 68% of avoidedmalaria
cases in Africa (from 2000 to 2015) could be attributed to ITNs.

Whether these gains will be maintained has yet to be seen. Malaria eradication and
control programs have historically seen their greatest success in the first few years
(Webb 2014), not all countries have experienced similar improvements under sim-
ilar control programs (Snow et al. 2015), malaria incidence has recently increased
locally in some areas, e.g. coastal Kenya (Snow et al. 2015), Plasmodium artemisin
resistance has emerged in southeast Asia (Webb 2014), and perhaps even more worri-
some, widespread pyrethroid resistance (the insecticide in ITNs) is evolving in vectors
across Africa (Hemingway et al. 2016), although the impact of these developments
in resistance is yet to be proven. Furthermore, a general dynamic of increased control
of a childhood illness is an early drop in disease transmission, and a consequent shift
in disease burden from younger to older ages that generates a rebound increase in
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incidence after a few years (Griffin et al. 2016). In the context of malaria, an in-depth
modeling study by Griffin et al. (2016) suggested that merely sustaining current con-
trol efforts, even absent new vector or parasite resistance, will lead to increases in
malaria incidence and mortality by 2020. And finally, climate change continues in its
insidious trajectory, with uncertain consequences.

4 Early mathematical models of malaria

4.1 Sir Ronald Ross, a pioneer of quantitative epidemiology

Ross proposed several mathematical models for malaria transmission in the early
1900s that were analyzed and modified by others, including Alfred J. Lotka (Smith
et al. 2012). These were extended by Macdonald and other investigators in the 1950s,
and this work, which focused heavily on R0 and mosquito eradication for malaria
control, would prove to be very influential in guiding the ultimately failed GMEP
(1955–1969). Smith and colleagues, who expertly reviewed the early history of Ross
and Macdonald (Smith et al. 2012), have argued that there is no single or canonical
“Ross–Macdonald” model, and that it is more instructive to understand this as a family
of models characterized by a set of broadly shared assumptions and key entomolog-
ical and epidemiologic parameters, whose estimation was historically motivated by
quantitative models. Note, however, there is a clear “Macdonald” model, as presented
in Macdonald (1957).

Ross’s original 1908 model is of purely historical interest, so we will skip to the
1911 model (which was solved and extensively analyzed by Lotka) given as (Smith
et al. 2012)

dX
dt

= mabz(H − X) − r X, (1)

dZ
dt

= acx(M − Z) − gZ , (2)

where H is the total human population with X the infected component, M and Z are
similarly the total and infected mosquito populations,m is M/H (mosquitoes/man), a
is the mosquito biting rate (bites/mosquito/day), z is the infectious mosquito fraction
(Z/M), r is the human recovery rate (day−1), b is the probability of human infection
after an infectious bite (omitted and implicitly 1 in Ross’s original model, we include it
for clarity), c is the probability of a human infecting amosquito upon biting, x = X/H
is the parasite rate, and g is the mosquito death rate (day−1).

Sharpe and Lotka extended this model, as reviewed by Smith et al. (2012), to
include latency between inoculation and infectivity in both man and mosquito, but
because their model failed to consider mosquito mortality during latency, biological
conclusions were flawed.
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4.2 Ross–Macdonald

In a series of works in the early 1950s, Macdonald formulated a highly influential
model, based on Ross’s basic model. The major mathematical innovations intro-
duced by Macdonald over Ross were accounting for the delay to infectiousness in
mosquitoes, and superinfection, where multiple malarial strains can coinfect a host
and are independently cleared, thus altering the recovery rate from the infected to
recovered/susceptible category. Unfortunately, this concept was incorrectly translated
into mathematics by Macdonald, apparently due to a miscommunication (Smith et al.
2012). The correct formwas described byWalton in 1947 (per Dietz et al. (1974)), and
was incorporated into the influential “Garki” model devised by Dietz et al. in 1974
(Dietz et al. 1974). We have, using x(t) as the proportion of infected humans (the
“parasite rate”), Macdonald’s model (Macdonald 1957; MacDonald et al. 1968)

dx
dt

= h(1 − x) − ρ(r, h)x, (3)

where h is the inoculation rate and r is the first-order rate of recovery from each
infecting malarial strain, each of which is assumed to be cleared independently; the
overall rate of recovery, ρ(r, h), is a function of the inoculation rate and strain-specific
recovery rate. Now, inoculation is given as

h = ma2bcpnx
ax − ln(p)

= ma2bcx
ax + g

exp(−ng), (4)

where n is the duration of the sporogonic cycle, p is the daily probability of survival,
implying p = exp(− g) and that exp(− ng) is the fraction of mosquitoes surviving
from the time of exposure to infectivity; other parameters are as in the Ross model (c
was assumed to be unity byMacdonald (1957), but we have included it for generality).
In his 1957 book (Macdonald 1957), Macdonald derives this expression as

h = mabcs, (5)

where s is the sporozoite rate (i.e. the fraction of mosquitoes with sporozoites in their
salivary glands) which in turn is derived as follows. We have, from the exponential
distribution, that the expected (mean) lifetime of any mosquito is

1
g
= 1

− ln(p)
. (6)

We then have that the total mosquito-days spent in a potentially infectious state, i.e.
they have survived at least n days (duration of the sporogonic cycle), is

pn

− ln(p)
. (7)
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To determine the sporozoite rate, we need know what fraction of such potentially
infectious mosquitoes actually are infectious. We have that the average number of
infectious feeds in a day is ax , and so the probability of taking no infectious feeds in
a day is exp(−ax), and the chances of both surviving and taking no infectious feeds
is p exp(−ax). It follows (again from the exponential distribution) that the expected
life taking no infectious feeds is

1
− ln (p exp(−ax))

= 1
ax − ln(p)

, (8)

and the total mosquito-days spent in the potentially but non-infectious state is

pn

ax − ln(p)
. (9)

We finally arrive at the sporozoite rate (i.e. fraction of mosquitoes in an infectious
state) as

s = (7) − (9)
(6)

= pnax
ax − ln(p)

. (10)

This expression can also be derived by applying a quasi-steady-state assumption to a
delay-differential version of Ross’s model,

dx(t)
dt

= mabz(t)(1 − x(t)) − ρ(r, h)x(t), (11)

dz(t)
dt

= acx(t − n)(1 − z(t − n)) exp(−ng) − gz(t). (12)

That is, setting dz/dt = 0 (assuming x(t − n) = x(t)) and solving for z. Moving on,
the recovery rate, ρ(r, h), takes the form

ρ(r, h) =
{
r − h, h < r
0, h ≥ r

, (13)

but this implies no recovery ever occurs when inoculation exceeds the strain-specific
recovery rate (clearly an error). The correct form, given by Dietz et al. (1974), is

ρ(r, h) = h

exp
( h
r

)
− 1

. (14)

Finally, from Macdonald’s model, we can derive the following expression for R0:

R0 =
ma2bcpn

−r ln(p)
= ma2bc exp(−ng)

rg
. (15)

The key conclusion from this expression is that daily mosquito survival, p, appears
in both the numerator and the denominator, such that decreasing it lowers R0 loga-
rithmically (Macdonald’s R0, as a function of several different parameters of the first
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Fig. 5 Change in Macdonald’s R0 as a function of each major parameter (except b and c, which have a
straightforward linear effect). Daily mosquito survival, p, is the most sensitive parameter, and R0 is also
given as a function of expected mosquito life, 1/ ln(p)

equality in Eq. (15), is depicted in Fig. 5). This suggests targeting the adult mosquito
vector as the most efficacious strategy for malaria control, and indeed, this was the
basic approach of the GMEP, which relied principally upon indoor residual spraying
with DDT (and other pesticides) to achieve this end, as discussed already in Sect. 3.3.

While R0 in Eq. (15) suggests targeting mosquito daily survival, p, over mosquito
density, m, it is obvious from the basic ecology that these are not independent param-
eters. Nor, indeed, is a, the biting rate, since biting provides blood needed to nourish
the mosquito’s eggs. Both Ross andMacdonald were pioneering thinkers, but it seems
clear that a more robust model framework that more fully accounts for the vector
lifecycle is necessary for us to be confident in any conclusions. We shall explore some
of these issues in detail in Sect. 6.

4.3 Vectorial capacity

In 1964, Garrett-Jones (1964) proposed an alternative metric, contraR0, for assessing
and motivating vector control, namely the vectorial capacity (VC). It was defined
qualitatively, for a vector population, as “the average number of inoculations, ...,
originating from one case of malaria in unit time [typically in days], that the [vector]
population would distribute to the human host if all female adult mosquitoes biting the
human host became infected” (Garrett-Jones 1964). In other words, it is the number
of new malaria cases (i.e. infectious bites, assuming all such bites result in infection)
originating from a single case in a single day. Garrett-Jones (1964) formally defined
it as the product of (1) the man-biting rate (total bites/person/day), which is the total
number of mosquitoes infected from a single case in a single day, (2) the expectation
of infective life, and (3) the man-biting habit, the number of bites on the human host
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per day per individual mosquito. Using the Ross–Macdonald parameters, the vectorial
capacity is given by Garrett-Jones and Shidrawi (1969)

VC = ma2cpn

− ln(p)
= ma2c exp(−ng)

g
. (16)

Note that the original form implicitly assumed c = 1, but we have included it for
generality. The vectorial capacity is very similar to the concept of R0, but is simply
considering the number of new cases (assuming 100% infectiousness of bites) that
result in the first unit of time from the original case, rather than over the lifetime of
the first case. Where R0 has units of cases, VC has units cases/day, and the two terms
relate (again, under Macdonald’s model) as

R0 = VC× b︸︷︷︸
probability that man is infected by a bite

× 1
r︸︷︷︸

Expected time that first case is infectious

. (17)

The concept of vectorial capacity was used in a number of subsequent quantitative
studies, such as Garrett-Jones and Shidrawi (1969), Dietz et al. (1974), Molineaux
et al. (1978), and it is also noteworthy that VC is the component of R0 that is most
directly affected by weather parameters (Craig et al. 1999).

4.4 Developments post-Ross–Macdonald

The next majormathematical modeling contribution tomalaria transmission dynamics
was by Dietz et al. (1974) and entailed the inclusion, into the basic Ross–Macdonald
framework, of a kind of slowly-acquired immunity that results in a non-infectious
parasitemia following inoculation that is cleared relatively rapidly. Non-immune hosts
are assumed to manifest infectious clinical disease that transitions to a non-infectious
parasitemia that is cleared slowly. The model was fit to data for two villages in the
Garki district of Nigeria, where data on the parasite and sporozoite rate had been
collected by age. A follow-up work by Molineaux et al. (1978) in 1978 compared
the model against several other datasets, where vectorial capacity was estimated from
entomologic parameters and observed host-biting rates.

Many of the major modeling contributions following this work concern the proper
or realistic modeling of immunity, especially the distinction between anti-disease
(resistance against the harmful clinical manifestations of parasite infection, such as
fever, anemia, etc.) and anti-parasite immunity (resistance against the actual Plas-
modium infection), and how these are induced with infection and lost with time. Since
climate, and not immunity, per se, is our primary focus, we defer a brief discussion
of this model genealogy to Sect. 7.1. Moreover, most climate-focused models have
only included fairly rudimentary descriptions of immunity, if it is addressed at all (but
see (Yamana et al. 2013, 2017) for exceptions), and the hybridization of these two
modeling traditions is a major future challenge.
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5 Quantifying the relationships between weather and the parasite and
vector lifecycles

Understanding the quantitative relationships between weather, primarily temperature
and rainfall (and to a lesser degree, relative humidity), and the malaria parasite and
vector lifecycles is critical to a realistic and meaningful assessment of the impact of
current and projected climate change on malaria transmission dynamics. We review
some of the most widely used quantitative relationships and the data they are based
here, but it shouldbeunderstood that these data are drawn fromavariety ofPlasmodium
and Anopheles species, and the widely used formula of Moshkovsky for sporogonic
and gonotrophic durations, for example, is based on data from the 1930s obtained
in the European vector A. maculipennis (Detinova 1962). Moreover, there is some
suggestion that thermal sensitivities may vary between laboratory and field strains
of P. falciparum, which may be more adapted to local conditions, although Lyons
et al. (2012) observed similar thermal tolerances between laboratory and wild strains
A. arabiensis and A. funestus. While still poorly understood in general, short- and
long-term adaptations in both vector and parasite to local temperature ranges and shifts
could limit the ultimate generalizability of model inferences made assuming thermal
response functions uniform throughout space and time (Sternberg and Thomas 2014).

Furthermore, while only a single thermal response function for a given process
is typically considered in models, major vectors may differ importantly in how they
respond to both mean and fluctuating temperatures, with Lyons et al. (2013) observing
survival and development in the three major African vectors, A. gambiae, A. arabi-
ensis, and A. funestus to vary both in response to mean temperature and temperature
fluctuations, with A. funestus in particular muchmore sensitive to temperature fluctua-
tions thanA. arabiensis. Moreover, mostmodels use thermal response functions drawn
from multiple species, and thus how explicit consideration of the varying responses
to weather between relevant vectors may affect model conclusions remains an open
question.

5.1 Parasite

The sporogonic cycle of Plasmodia, i.e. infection and sexual reproduction in the
mosquito midgut to ultimately yield infectious saliva sporozoites, is very clearly
directly influenced by climate, with warmer temperatures (at least to a point), leading
to more rapid parasite development (decreasing n, under the Ross–Macdonald frame-
work), and this has been the focus ofmost mathematical works.We also note, however,
that temperature may affect infectivity to both mosquito (c, per Ross–Macdonald) and
man (b). Temperatures above about 30 ◦C may decrease P. falciparum survival in the
mosquito midgut, and hence decrease c (Eling et al. 2001; Okech et al. 2004a), and
Paaijmans et al. (2012) (in a rodent model) found increasing temperatures to decrease
the prevalence of sporozoites in infected mosquitoes, and hence decrease b. How-
ever, these factors are less frequently accounted for in models, and we restrict further
attention to the sporogonic cycle and n.
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5.1.1 Sporogonic cycle and temperature

The classical formula of Moshkovsky It has long been recognized that the duration of
the sporogonic (extrinsic) cycle in mosquito, denoted by n, is hyperbolically related to
temperature. That is, given a constant D, measured in degree-days (the “sum of heat,”
as elaborated below), a minimum temperature, Tmin , and mean ambient temperature,
T > Tmin (in ◦C), we have

n = D
T − Tmin

. (18)

This relation is based on a now obscure 1935 work in Russian by Nikolaev (1935),
who, as related byDetinova (see pp. 122–150 ofDetinova (1962)), gathered data on the
duration of sporogony in the A. maculipennis mosquito, the historic vector of malaria
in Europe and the Middle East (Djadid et al. 2007), and one that has recently been
found to be expanding its range northeasterly into Eurasia, likely as a consequence
of global warming (Novikov and Vaulin 2014). Nikolaev (1935) determined that P.
falciparum sporogony ceases below 18 ◦C (16 ◦C for P. vivax), and his data was
used by later authors (Moshkovsky in particular) to estimate the natural length of the
sporogonic cycle.

Briefly, the Moshkovsky method (as given in Detinova (1962)) assumes the “sum
of heat” hypothesis that a fixed amount of heat—which can be measured in degree-
days calculated beyond the minimum temperature required for sporogony to progress
at all—is required to complete the cycle. This “sum of effective temperatures” was
estimated at 105 ◦C-days for P. vivax, 111 ◦C-days for P. falciparum, and 144 ◦C-
days for P. malariae. Given daily mean diurnal temperature, the time to completion of
sporogony can be straightforwardly calculated for any day of the year. The formula of
Moshkovsky has been used inmanymoremodern works (Molineaux et al. 1978; Craig
et al. 1999; Hoshen and Morse 2004; Parham and Michael 2010). It should, however,
be emphasized that, even in the early days, it was observed that temperatures above
32 ◦C were lethal to developing parasites, blocking sporogony (Macdonald 1957).
Sporogonic duration as a function of constant temperature is given in Fig. 6.

Recent developmentsMore recent studies are consistent with lower temperatures pro-
longing sporogony, but several laboratory works suggested (constant) temperatures of
only 30 ◦C could significantly impede early P. falciparum sporogony in A. stephensi
(a vector commonly found in the Indian subcontinent) (Noden et al. 1995; Eling et al.
2001). This finding’s generality was challenged, however, by work by Okech and col-
leagues (Okech et al. 2004a, b) who used wild P. falciparum strains in western Kenya.
They found that naturally fluctuating field temperatures, up to 33 ◦C maximum, did
not interrupt parasite development in A. gambiae (Okech et al. 2004b), and under lab-
oratory conditions constant exposure to 32 ◦C decreased, but did not eliminate, early
P. falciparum survival in mosquito midgut and infectivity (Okech et al. 2004a). These
results indicate that wild P. falciparum typically exposed to hotter conditions is more
thermally adapted than lab-raised strains, and thus it seems likely that theMoshkovsky
formula amended by sporogonic arrest around 32–34 ◦C is a reasonable description for
wild P. falciparum, although mosquito infectivity may decrease at 30–32 ◦C (Okech
et al. 2004a). Alternatively, several authors (Paaijmans et al. 2009; Mordecai et al.
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Fig. 6 Duration (left panel) and rate (right panel) of the sporogonic cycle as a function of constant tem-
perature, per Moshkovsky’s formula for P. falciparum (D = 111, Tmin = 16) and P. vivax (D = 105, Tmin =
14.5) (Detinova 1962), and assuming sporogony ceases above about 33 ◦C. Curves calculated from Briere’s
formula, using parameter values from Mordecai et al. (2013), are also given for comparison

2013) have more recently used a general unimodal functional form given by Briere
et al. (1999),

r(T ) = cT (T − T0)(Tm − T )
1
2 , (19)

with Mordecai et al. (2013), for example, using c = 0.000111, Tm = 34.4 ◦C, and
T0 = 14.7 ◦C. Such a formulation gives developmental rates qualitatively similar to
those under amended versions of Moshovsky’s formula, as shown in Fig. 6.

5.2 Vector

5.2.1 Gonotrophic cycle, oviposition, and biting rates

Adult femaleAnophelesmosquitoes take bloodmeals from human hosts almost exclu-
sively to provide energy and nutrients for their eggs, and the gonotrophic cycle (defined
as the time between blood meals) is classically divided into the following three stages
(Detinova 1962):

1. Search for host and attack.
2. Digestion of blood meal and egg maturation. This stage is highly temperature-

dependent.
3. Search for body of water and oviposition. This stage is dependent upon the avail-

ability of suitable standing waters, itself a function of recent rainfall (except for
those vectors that breed in more permanent bodies of water).

The terminology around gonotrophy is sometimes abused, with either stage II (blood
meal digestion) or stages II and III (blood meal digestion and oviposition) together
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sometimes conflated with the gonotrophic cycle as a whole. Gonotrophic cycle dura-
tion is important because, firstly, it partially determines mosquito population levels.
Second, it has been traditionally assumed that mosquitoes take only a single blood
meal between ovipositions (Scott and Takken 2012), implying that the duration of the
gonotrophic cycle is identical to the biting interval. There is a biochemical basis for this
assumption, with mosquito host-seeking behavior inhibited following a blood meal
via two mechanisms that act in sequence (Takken et al. 2001). First, gastric distention
in the period immediately following feeding activates inhibitory mechanoreceptors.
Second, blood digestion and adequate nutritional status seem to stimulate neuropep-
tides that decrease the sensitivity of olfactory receptors in the antennae (Takken et al.
2001). Evolutionarily, avoiding unnecessary blood meals has obvious potential bene-
fits, as biting requires energy to seek out hosts who, as wemight expect, are then rather
hostile to blood-sucking insects (Klowden and Briegel 1994), although as a nocturnal
feeder biting somnolent hosts, A. gambiaemay have faced less such selective pressure
(Klowden and Briegel 1994).

Multiple blood feeding The assumption of one blood meal per gonotrophic cycle is
clearly violated for at least a subset ofA. gambiaemosquitoes, namely newly-emerged
adult females with insufficient nutritional reserves to fuel a gonotrophic cycle from
a single blood meal (Scott and Takken 2012). These mosquitoes, whose ovaries do
not progress beyond Christophers’ stage II (an early stage in ovary development) after
their first blood meal are termed “pre-gravid,” and typically take a second blood meal
within 24h to stimulate egg development (Scott and Takken 2012). Unsurprisingly,
it is smaller mosquitoes that appear to be more nutritionally deficient, requiring two
blood meals to complete their first gonotrophic cycle, with the first blood meal appar-
ently devoted mainly to shoring up nutritional reserves, while larger individuals can
successfully complete oogenesis with a single blood meal (Takken et al. 1998). After
this early transient phase, surviving small and large adult mosquitoes may behave
similarly, but with smaller mosquitoes now more likely to be infected by Plasmodium
(Takken et al. 1998). Emerging adult mosquito size is dependent on larval conditions,
with higher densities, higher temperatures (which increase the rate of larval develop-
ment), and poor nutrition favoring smaller adult sizes (Smith et al. 2012). It should
then be noted that temperature could have a subtle second-order effect on malaria
transmission by increasing the proportion of smaller adult female mosquitoes more
likely to engage in multiple biting behavior. Further, most “extra” bites would occur
early in life before the completion of sporogony.

Whether multiple blood feeding is common among anophelines outside of this
context is unclear. Klowden and Briegel (1994) observed laboratory A. gambiae to
strongly seek human hosts every 24 h following a bloodmeal, corresponding to regular
nocturnal feeding behavior and suggesting no inhibition of host-seeking. In direct
contrast, however, in laboratory-raised A. gambiae of uniform size (thus avoiding
contamination by smaller pre-gravidmosquitoes), Takken et al. (2001) observed blood
meals to strongly inhibit host seeking up to 72 h following a blood meal (at 27 ◦C),
with this interval corresponding to egg maturation or oviposition in most individuals.
Despite its potential importance to malaria epidemiology, the pre-gravid anopheline is
typically neglected in mathematical models, although Depinay et al. (2004) took the
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probability of taking multiple bloodmeals to be a function of both mosquito weight
and parity.

Quantifying the gonotrophic cycle Leaving the complications of possible multiple
blood feedings aside, let us now review quantifications of the gonotrophic cycle
duration, or (typically) equivalently, biting rate. The classic works of Macdonald
(Macdonald 1956b, 1957) and other derived works (e.g., (Molineaux et al. 1978))
have generally assumed a constant biting interval of about two days for A. gambiae
(Molineaux et al. (1978) chose two days on the basis of the distribution of abdominal
stages in sprayed mosquitoes collected in the Garki Project), although some older
field studies suggested three days as more likely (Takken et al. 2001). However, it has
been well-understood since at least the 1950s that stage II varies greatly in inverse
proportion to temperature (Macdonald 1957).

Duration of stage II Detinova (1962), in his influential work, presented data on the
duration of stage II, which also followed the basic form of Moshkovsky’s degree-day
formula, but the constants varied with relative humidity (RH), such that this stage
is quicker under more humid conditions; curves and formula constants are given in
Fig. 7. More recent studies include (Ra et al. 2005; Afrane et al. 2005; Lardeux
et al. 2008; Mala et al. 2014). Probably most notable is a 2008 laboratory study
(Lardeux et al. 2008) on A. pseudopunctipennis, a major South American vector, who
studied the duration of stage II/III (i.e. blood meal to oviposition) under a range of
temperatures, and used the following general function, adopted from Lactin et al.
(1995) (based in turn on Logan et al. (1976)) for development rate, r(T ), assumed to
be the reciprocal of the mean time to oviposition (i.e., it is assumed that gonotrophic
duration is exponentially distributed):

r(T ) = exp(ρT ) − exp
(

ρTm − (Tm − T )
∆

)
+ λ, (20)

where Tm is the “thermal maximum,” or lethal temperature,∆ is the temperature range
over which the development rate begins to fall from a maximum to zero (“temperature
boundary layer”), ρ determines the increase in development rate with temperature and,
per Logan et al. (1976), can be “interpreted as a composite value for critical enzyme-
catalysed biochemical reactions,” and lastly, λ gives r(T )when T = Tm . Development
time reached its nadir at 31 ◦C, and there was no oviposition at 37 ◦C, as all mosquitoes
suffered mortality before they could oviposit.

Now, a subtlety here is that a single development rate does not fully describe the
data, and becausemosquitoes lay their eggs only at night, the actual time to oviposition
clusters at intervals of 24h. For example, the overall mean time to oviposition at 35 ◦C
was 2.3 days, but roughly 70% of mosquitoes oviposited on night two, and 30% on
night three. The lower the temperature, the longer the mean time, and oviposition
events are spread over more nights; this is shown in Fig. 7, where simulated cohorts
of ovipositing mosquitoes are generated using parameters fit to Eq. (20) as reported
in Lardeux et al. (2008). It is obvious from this data that time to oviposition is not
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exponentially distributed, and the epidemiological implications could be addressed
with some future model.

Duration of stages I and III Work byDetinova (1962) from 1953 onA. maculipennis in
the USSR, in which the contraction of ovarioles (which begins following oviposition)
was determined in dissected mosquitoes, suggested that a majority of mosquitoes take
a blood meal within 8h of oviposition, and over two-thirds of mosquitoes have taken
a blood meal within 24h of oviposition. With respect to the third stage, this author
also determined that oviposition usually occurs within 24h of egg maturation. Thus,
it is reasonable to assume that the third and first phase take, together, around 24 h (but
occasionally up to 48h), while the second phase is highly temperature-dependent.
Note, however, that low availability of oviposition sites (related, say, to low rainfall)
could significantly prolong search time, as studied in a simple model by Gu et al.
(2006).

Overall duration The overall duration of the gonotrophic cycle can be reasonably
estimated as 24h for stage I and III combined, plus a temperature dependent term for
stage II, either Moshkovsky’s formula, or a relation derived from other data, such as
that of Lardeux et al. (2008). These two options (and using several relative humidities
for Moshkovsky’s formula) are compared in the right panel of Fig. 7.

Time to first bloodmeal We finally note that the there is a small delay, on the order
of 1–3 days, between emergence from pupal stage to the first bloodmeal (“pre-
bloodmeal period”) and the start of the gonotrophic cycle proper (Paaijmans et al.

Fig. 7 The left panel shows simulated proportions of mosquitoes that oviposit, as a function of time, at
different ambient temperatures based on the experiments of Lardeux et al. (2008). Oviposition is spread
over several nights, with the number of nights increasing as mean time to oviposition increases. The blue
histograms show simulated time to oviposition if all events occur on a single night (curve is scaled down
for clarity). The right panel compares the duration of the gonotrophic cycle as measured by Lardeux et al.
(2008), and as calculated by Moshkovsky’s formula plus an additional day for stages I and III, and using,
per Detinova (1962), D = 65.4, Tmin = 4.5; D = 36.5, Tmin = 9.9; and D = 37.1, Tmin = 7.7, for
relative humidities (RH) of 30–40%, 60–70%, and 90–100%, respectively
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2013a). Furthermore, Paaijmans et al. (2013a) found this pre-bloodmeal period to be
temperature-dependent in An stephensi, being about three days at 18 ◦C but just one
day at either 26 or 32 ◦C.

Thus, we have the pre-bloodmeal period as an additional adult stage that is typ-
ically disregarded in models, but acts to delay time to first infection and infectivity
in a temperature-dependent manner. This phenonemon may slightly narrow the tem-
perature range over which malaria is effectively transmitted (Paaijmans et al. 2013a),
and moreover, will shift infectivity to older mosquito age classes, which could in turn
interact with age-dependent temperature-mediated mortality (see Sect. 5.2.2).

5.2.2 Daily mosquito survival

Age, Plasmodium infection, and temperature all influence mosquito survival. Classi-
cally, it has been assumed that randommortality events such as predation, etc. account
for most mosquitoes deaths, such that senescence can be disregarded and death mod-
eled as a Poisson process, i.e. survival times are exponentially distributed (this is also
the implicit assumption of those mathematical models that employ first-order death
kinetics in differential equations), and daily survival probability is typically assumed
to be around 0.90–0.95 (Macdonald 1956a; MacDonald et al. 1968). Nevertheless,
mosquito death hazard clearly increases with age (Clements and Paterson 1981; Okech
et al. 2003; Dawes et al. 2009; Christiansen-Jucht et al. 2014), with this most con-
vincingly demonstrated in laboratory studies (e.g., Bayoh 2001; Christiansen-Jucht
et al. 2014), although Clements and Paterson (1981) found evidence of age-dependent
mortality in wild populations as early as 1981, and recent analysis by Ryan et al.
(2015a) also suggested senescence occurs in wild mosquitos, despite high extrinsic
mortality rates. Survival is often described by the Gompertzian distribution (Clements
and Paterson 1981; Bayoh 2001; Christiansen-Jucht et al. 2014; Ryan et al. 2015a),
given as

S(t; λ, θ) = exp
(

λ

θ
(1 − exp(θ t))

)
, (21)

with the model essentially positing exponentially increasing mortality with age,
although other mathematical descriptions (e.g., double exponential model, quadratic
model) can also describe age-dependent mortality increases (Clements and Paterson
1981), and one especially useful description is the gamma distribution, which may be
straightforwardly implemented in an ordinary differential equations (ODE) setting, as
discussed further in Sect. 6.3.5.

Laboratory mortality is straightforward to measure; wild mosquito survival can be
estimated by means of mark-release-recapture (MRR) experiments. Survival time is,
in this case, often fit to an exponential model, as in, e.g. (Midega et al. 2007; Olayemi
and Ande 2008), but see Ryan et al. (2015a) for a recent example of applying the
Gompertz distribution to wild populations.

Temperature and humidity dependence Temperature strongly affects mosquito sur-
vival, with (age-dependent) death rates increasing above about 23 ◦C, and death via
thermal stress occurs rapidly by 40 ◦C (A. gambiae survival also tends to increase at
higher relative humidity). Several works have relied on a simple survival curve-fit by
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Fig. 8 Adult A. gambiae survival data adapted from Bayoh (2001). The top left panel gives reported mean
female survival as a function of temperature and relative humidity (adapted fromTable 6.1 of Bayoh (2001)),
while the top right shows this transformed into daily survival probability, assuming exponentially distributed
survival times (this was in turn used to inform daily survival in Mordecai et al. (2013)); note that these
curves are not greatly dissimilar to Martens’ survival fit (Fig. 14). The bottom left shows survival curves
at 80% RH, adapted from Figure 6.4 of Bayoh (2001). The bottom right shows that while a Gompertzian
survival function gives an excellent fit to the data (curves shown for 10, 20, and 30 ◦C), an exponential
distribution fits rather poorly

Martens et al. (1995b) to three data points from 1949 (see Fig. 14), but better data is
now available. Bayoh, in a 2001 dissertation (Bayoh 2001), presented data on adult
A. gambiae survival in conditions between 5 and 45 ◦C, at relative humidities of 40,
60, 80, and 100%, as given in Fig. 8. This data has been used in a number of mod-
els, beginning with Mordecai et al. (2013), but these generally assume exponentially
distributed survival, which is not actually consistent with the data, as also seen in
Fig. 8.

Most recently, Christiansen-Jucht et al. (2014) reared A. gambiae larvae under four
different temperatures (23, 27, 31, and 35 ◦C), recorded their survival, and then exam-
ined the survival curves for adults from these cohorts under the same temperature
regimes (no larvae survived at 35 ◦C, so this was excluded from adult experiments).
Higher temperatures reduced survival of either mosquito stage in general, and adult
attrition was exacerbated by a disconnect between larval and adult temperatures. For
example, mosquitoes subjected to 31 ◦C as adults were protected somewhat by higher
larval temperatures, while adult mosquitoes kept at 23 or 27 ◦C suffered noticeably
higher attrition if they emerged from 31 ◦C conditions. Overall, survival was rea-
sonably well-described by a Gompertz distribution, with Gompertz parameters as a
function of larval (TL ) and adult temperatures (TA), given in Fig. 9.

Blood meal dependence Seeking a host and taking a blood meal are much riskier
endeavors than resting to digest blood, and therefore Lindsay and Birley (1996) sug-
gested that survival may be relatively constant per gonotrophic cycle (at about 50%
per cycle), regardless of cycle length, and Dawes et al. (2009) also observed a spike in
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Fig. 9 Gompertzian survival distributions fit from Christiansen-Jucht et al. (2014), who recorded adult
A. gambiae survival at different temperatures following larval maturation at various temperatures

mortality after feeding A. stephensi even under experimental conditions. The notion
of constant mortality per blood meal was incorporated into a vector lifecycle model
by Hoshen and Morse (2004). As a late-night feeding species, A. gambiae may be
less likely to suffer attrition when feeding than many other mosquitoes (Klowden and
Briegel 1994).

Infection dependence Dawes et al. (2009) observed the survival of A. stephensi-fed
Plasmodium-infected blood to decrease with increasing parasite load (as ookinetes),
and as reviewed, infection with a higher number of oocytes also seems to incur
a survival cost. An older meta-analysis by Ferguson and Read (2002) also con-
cluded thatPlasmodium infection decreasesmosquito survival, and intriguingly, Pollitt
et al. (2013) more recently observed that infection with higher oocyst densities both
decreased vector survival and, perhaps via increased competition among parasites for
nutrients or a more robust immune response, also decreased the number of infec-
tious sporozoites resulting from infection. In sum, infection is not benign in the adult
mosquito, but this has been rarely, if ever, incorporated into malaria transmission
models.

5.2.3 Temperature and immature development and survival

Both development time andmortality of aquatic stage anophelines are clearly and non-
linearly related to temperature, although some models (e.g., Craig et al. 1999; Hoshen
and Morse 2004; Parham and Michael 2010) have only considered development time
as a decreasing function of temperature with mortality temperature-independent. Sev-
eral works (Craig et al. 1999; Hoshen and Morse 2004; Parham and Michael 2010;
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Alonso et al. 2011) have used a relation derived from a 1947 work by Jepson et al.
(1947), who reported the development rate of A. gambiae as a function of mean tem-
perature at 11 natural breeding sites in Mauritius, with the larval duration time (in
days), l(T ), reported by Craig et al. (1999) as

l(T ) = 1
0.00554T − 0.06737

. (22)

More recently, Bayoh and Lindsay (2003, 2004) determined A. gambiae larval devel-
opment and survival as a function of temperature under laboratory conditions, at
constant temperatures between 10 and 40 ◦C. Now, in Bayoh and Lindsay (2003),
development time from egg to adult generally decreased with temperature from 18
to 26 ◦C, while leveling off at about 10 days from 26 to 32 ◦C, as shown in Fig. 10.
Below 18 ◦C and above 32 ◦C, no eggs survived to adulthood, presumably because of
high attrition rates, rather than altered development time. Overall development rate,
r(T ), was described by the authors using the function

r(T ) = a + bT + ceT + de−T . (23)

In a secondwork, Bayoh andLindsay (2004) describe temperature-dependent larval
survival time and the fraction surviving to adulthood, as shown inFig. 10. It is important
to note that survival did not follow an exponential distribution. That is, life expectancy
was highly correlated with age, with the age-life expectancy curve shifted by ambient
temperature, such that for a given temperature, most larvae live a similar lifespan.
Therefore, as with adult survival (Sect. 5.2.2), a simple differential equation assuming
first-order death kinetics is not a true representation of the biology.

5.2.4 Larval density and immature development and survival

Larval population density negatively affects anopheline larval survival and other life
history traits, primarily development time and adult size, as demonstrated in several
laboratory and semi-natural artificial breeding site experiments (Lyimo et al. 1992;
Schneider et al. 2000;Gimnig et al. 2002; Jannat andRoitberg 2013;Muriu et al. 2013),
although the exact relationships between density and life history vary somewhat with
experimental setting. Rainfall and other climate variables strongly determine the size
and availability of aquatic habitats, especially the small temporary pools preferred by
A. gambiae (Minakawa et al. 1999), and thus, understanding larval density-dependence
is necessary for a full accounting of weather and the anopheline lifecycle.

For various mosquitoes, it had generally been found that crowding leads to longer
development times, lower survival, and smaller adults, but this was not tested in
anophelines until 1992, when Lyimo et al. (1992) raised A. gambiae in the lab in
plastic trays at either 24, 27, or 30 ◦C, at densities of 0.5, 1.0, or 2.0 larvae/cm2. Yet,
their results were rather curious, suggesting increased mortality with increasing den-
sity at 24 or 30 ◦C, but the opposite at 27 ◦C, while higher densities actually seemed
to slightly reduce development time. Schneider et al. (2000) performed similar exper-
iments upon populations of A. gambiae and A. arabiensis at 27 ◦C, again at densities
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Fig. 10 The left panel gives immature A. gambiae development time as a function of temperature, from
Bayoh and Lindsay (2003), and the fit to Eq. (23) (a = −.05, b = 0.005, c = −2.139 × 10−16; d =
−281357.656), while the right panel gives overall survival time and the percentage of immature mosquitoes
surviving to adulthood (from Bayoh and Lindsay (2004)). Note that the peaks of the survival duration and
survival to adulthood curves are offset as a consequence of temperature-dependent development. That is,
while there is a penalty to absolute survival duration within the 20–30 ◦C range, immature development
time also falls over this temperature range. Thus, up to about 25 ◦C, the faster development time outweighs
the mortality cost, such that overall survival to adulthood is maximized at higher temperature values than
absolute survival time

of 0.5, 1.0, or 2.0 larvae/cm2, and observed the highest density to reduce survival,
while the density effect on development time was equivocal.

In sharp contradistinction, three more recent studies (Gimnig et al. 2002; Muriu
et al. 2013; Jannat and Roitberg 2013) that used lower larval density ranges showed a
very clear negative relationship between density and both development time and adult
mosquito weight. Gimnig et al. (2002) raised A. gambiae larvae in outdoor artificial
habitats mimicking typical field conditions in west Kenya (essentially dried mud pits),
each containing about 1 L of water and 600 cm2 of water surface area, and examined
life history parameters across a range of densities, from 0.0333–0.333 larvae/cm2:
the development and weight trends were very clear. Furthermore, while survival did
decrease with density, this was not significant under statistical analysis. Muriu et al.
(2013) performed similar outdoor experiments in coastalKenya (density range0.0333–
0.5322 larvae/cm2), published density-dependent survival and development curves,
and found development rate, survival, and weight to uniformly decrease with density.

Finally, Jannat and Roitberg (2013) most recently attempted to separate the effects
of competition for food from crowding per se in A. gambiae, by raising larvae at
different densities with food at either a fixed per capita level or at a fixed total level
(and at 30±2 ◦C, 75–80 %RH). Even with adequate food per larvae, crowding led to
higher mortality, smaller adults, and a skewed male:female ratio favoring females. A
possible mechanism for the latter is that male larvae are smaller and thus may be more
vulnerable to crowding stresses. Under fixed total food resources, time to adulthood
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was additionally prolonged, and larvae similarly suffered increased mortality and
smaller size. Note that crowding, by itself, did not lead to prolonged development
time, which may therefore be a consequence solely of nutritional stress.

Given the divergent results of the lower (Gimnig et al. 2002; Muriu et al. 2013;
Jannat and Roitberg 2013) and higher density (Lyimo et al. 1992; Schneider et al.
2000) studies, we must then ask, what larval densities are typically encountered in the
field? Early field studies performed and reviewed by Service (1971), using 100 mL
dippers with a 9.5 cm diameter, gave 0.5–2 fourth-instar larvae per dip. Since about
5% of all larvae were fourth-instar in these studies, this suggests an overall density of
0.035–0.14 larvae/cm2, and is congruent with mark-release-recapture experiments in
five pools (Service 1971) that suggested 0.04–0.10 larvae/cm2 (again assuming 5% of
larvae are fourth-instar).

Much more recently, Kweka et al. (2012) sampled 51 aquatic habitats in western
Kenya over 85weeks, and found about 6 A. gambaie larvae per 350 mL dipper in
hoofprints and swamps. Supposing, say, a circular right angle geometry for hoofprints
with a generous depth of 10–25 cm, then this translates into no more than 0.05–0.15
larvae/cm2.

Considering all the aforementioned collectively, it seems likely that, at low to mod-
erately high densities that are within the range typically encountered in the field,
the dominant effect of increasing density is nutrient competition, in turn resulting
in delayed development, smaller adult sizes, and increased mortality. Developmental
effects may plateau around 0.5 larvae/cm2, and at very high densities crowding may
directly stress larvae to reduce survival. Survival seems to be affected across density
ranges, but the exact relationship varies significantly among studies. Development
time as a function of larval density from the studies reviewed above are compared
graphically in Fig. 11, along with survival curves adapted from Muriu et al. (2013).
In conclusion, those lab/semi-field studies employing lower densities are much more
realistic and relevant, and thus we may expect density to deleteriously affect both sur-
vival and development rates, although often only the former is considered in models,
but see, e.g., Lunde et al. (2013b) for an exception.

5.2.5 Rainfall: simple models for carrying capacity, oviposition, and survival

Modeling of rainfall’s effect on the vector lifecycle is more variable than that of
temperature in published works, and it is more uncertain. By determining the quantity
of habitat available, rainfall affects both oviposition and density-dependent larval
development and survival. Excessive rainfall also can increase immature mosquito
attrition via washout of habitats, and this has been modeled as well. We review several
of these phenomena and basic modeling approaches here, while we explore more
complex physical modeling of the anopheline microhabitat in the next section.

Simple carrying capacity models Perhaps the most straightforward way to model this
notion is to have the carrying capacity of larval habitats, K , be a function of recent
rainfall. Yé et al. (2009) modeled growth of the adult mosquito population very simply
using a logistic growth term, with K linearly proportional to the prior week’s summed
rainfall (under the assumption that several days’ worth of rain contribute to breeding
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pools); the larval compartment was not modeled. Several other recent works used a
‘quasi-logistic” term to describe the larval death rate (White et al. 2011; Christiansen-
Jucht et al. 2015). This was incorporated into a simple mosquito lifecycle model by
White et al. (2011) as

dE
dt

= βM − 1
dE

E − µE0E
(
1+ E + L

K (t)

)
, (24)

dL
dt

= 1
dE

E − 1
dL

L − µL0L
(
1+ γ

E + L
K (t)

)
, (25)

dP
dt

= 1
dL

L − 1
dP

P − µP P, (26)

dM
dt

= 1
2

P
dP

− µMM, (27)

where E and L are the number of early and late larval instars, respectively, P is pupae
count, and M is the adult female mosquito count; di is the mean duration of stage i ,
and the 1/2 factor in Eq. (27) accounts for the emerging adult male:female sex ratio.
The larval “carrying capacity”, K (t) (in units larvae), was modeled as a convolution
of recent rainfall with some weighting function, either a constant, linearly decreasing,
or exponentially decreasing function; the latter is given as

K (t) = λ
1

τ
(
1 − exp

(−t
τ

))
∫ t

0
exp

(−(t − t́)
τ

)
rain(t́)dt́, (28)

Fig. 11 The left panel gives the relationship between larval density (per unit surface area) and mean
development time, with data extracted from five studies (Gimnig et al. 2002; Muriu et al. 2013; Jannat
and Roitberg 2013; Lyimo et al. 1992; Schneider et al. 2000). Curves are labeled with the approximate
experimental mean temperature, and there are three such curves from Lyimo et al. (1992). Note that mean
development time for Muriu et al. (2013) was extracted from the survival curves given on the right of the
figure, where the top gives cumulative portion of larvae surviving to pupation, and the bottom shows time
to pupation for those that survived to pupation
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where 2τ is the mean of the exponential distribution, rain(t) is daily rainfall, and λ is a
free scalar. In other terminology, K (t) is given by passing rainfall through a low-pass
filter, with one option (the exponential filter) a leaky integrator.

It is important to point out that, under this formulation, K (t) is not actually a carrying
capacity. It is, rather, the inverse of a density-dependent death term, as expanding
Eq. (25), for example, gives

dE
dt

= βM − 1
dE

E − µE0E − µE0

E2

K (t)
− µE0E

L
K (t)

. (29)

The actual carrying capacity is a complex function of K (t), β, and the other model
parameters. One can see this should be true by analogy to the simpler Verhulst equation
(Vogels et al. 1975) for population growth, which imagines death to increase with the
square of population as

dy
dt

= ay − by2, (30)

which can be rearranged to the “ecological” logistic equation as

dy
dt

= r y
(
1 − y

K

)
, (31)

with r = a and K = a/b the “carrying capacity”. Thus, carrying capacity here is
not independent, but is a function of other more fundamental model parameters. It is
important that claims concerning the biological meaning of mathematical terms are
internally consistent, otherwise serious errors could be introduced, say, when parame-
terizing a “carrying capacity” from experimental data or in the interpretation of model
output. Several othermodels (such asAgusto et al. (2015),Okuneye andGumel (2017))
have used the logistic term to model the birth rate of immature mosquitoes (although
without explicit dependence of the carrying capacity on rainfall, but see Depinay et al.
(2004) for an exception), a setting where it more properly imposes a well-defined limit
to larval population size.

Oviposition Oviposition is affected by both the raw availability of breeding habitat,
and the density of larvae within potential positing sites (Sumba et al. 2008). Hoshen
and Morse (2004) modeled this very simply, by assuming that each oviposition event
yields γ Rd eggs, where Rd is the dekadal (i.e., sum of the prior ten days) rainfall in
mm, and γ was 1 egg/mm. It is reasonable that rainfall over the recent past should
be integrated, as it is the sum of standing water that provides habitat, but this simple
linear relation is probably not supported.

Sumba et al. (2008) studied experimentally how the presence of larvae in aquatic
habitat either encouraged or discouraged A. gambiae oviposition. Interestingly, they
found that while pre-existing larvae uniformly discouraged oviposition when distilled
water was used, when natural anophelene pool water was used, low densities of lar-
vae actually encouraged oviposition with a shift to deterrence only at high density.
Additionally, the larger late instars were more of a deterrent, while the presence of
one-day old eggs had no effect either way. As illustrated in Fig. 12, the experimental
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Fig. 12 Oviposition index in A. gambiae as a function of larval count (in 20 mL of liquid) in the test pool,
when larvae are either early (left panel) or late (right panel) instars, as determined by the experiments of
Sumba et al. (2008) where water was taken for natural anophelene pools (the presence of larvae uniformly
deterred oviposition when distilled water was used). Curves are fits to OI = a exp(−b(x − c)2)− d, where
x is the number of larvae, and for early instars a = 1.037, b = 0.015, c = 6.34, d = 0.616; for late instars
a = 1.1136, b = 0.00315, c = 6.42, d = 0.9524

assay offered gravid mosquitoes a choice between two pools (2 cm deep, 4 cm diam-
eter, 12.57 cm2 SA, 20 mL liquid volume), one containing between 1 and 40 early
or late instars (test), the other empty (control). Pool preference was quantified by the
oviposition index (OI), defined as

OI = Nt − Ns

Nt + Ns
, (32)

where Nt is the number of eggs laid in the test pool and Ns the number in the control
pool. The OI ranges from −1 to +1, with positive values indicating a preference for
the test pool, and Sumba et al. (2008) fit oviposition data using the functional form

OI = a exp
(
−b(x − c)2

)
− d, (33)

where x is the number of larvae and a, b, and c are free parameters; results for early
and late instars are given in Fig. 12. Now, these experiments used extraordinarily high
larval densities, as field studies reviewed previously (Service 1971; Kweka et al. 2012)
suggest less than 0.02 larvae/mL ismore common, and therefore, within plausible field
densities larval density likely has no or a slightly positive effect on oviposition.

These results were incorporated into a model by Parham et al. (2012), who recast
Sumba et al.’s curve fits for OI to depend upon density, not larval count, with density
calculated from total habitat volume, itself determined according to a hydrodynamics
model (presented in part below), and then assumed that the fraction of eggs a gravid
female lays, ft , is

ft =
Nt

Ns + Nt
= 1

2
(OI+ 1). (34)

While this relation has an empirical basis, it is unclear if only half of eggs should
be laid at an OI of 0, which simply implies no preference for empty over already

123



Mathematical modeling of climate change and malaria… 897

occupied pools, or, more generally, that a preference rank for unoccupied pools in a
simple forced choice experiment translates linearly to overall oviposition likelihood
in a general environment.

Rainfall-dependent mortality A widely-cited 2007 experiment by Paaijmans et al.
(2007) placed either first- or fourth-instar A. gambiae larvae in outdoor artificial basin
habitats in western Kenya over the course of the rainy season, and observed signifi-
cantly increased rates of both flushing losses and larvae mortality during rainy nights,
with the younger first-instar larvae’s suffering greater, in absolute terms. On this basis,
several models have posited different functional forms for increased mortality from
rainfall, with Parham andMichael (2010), for example, giving a unimodal relationship
between egg survival and rainfall (see Sect. 6.2.2), and Tompkins and Ermert (2013)
took larval mortality to increase with precipitation.

5.2.6 Rainfall, hydrodynamics, and the microhabitat

Several more complex, but more realistic, physical descriptions of the microhabitat
geometry and heat and water balance have been proposed (Paaijmans et al. 2008a, b;
Parham et al. 2012; Asare et al. 2016a, b, c); models for regional-scale hydrology have
also been applied to estimating malaria transmission (Bomblies et al. 2008, 2009;
Bomblies 2012; Tompkins and Ermert 2013; Asare et al. 2016c), but we restrict our
attention here to microscale dynamics. Detailed microscale models have multiple
advantages over the simpler approaches discussed above. First, rainfall can directly
inform habitat volume and surface area, yielding a time-dependent immature carrying
capacity (broadly defined) from basic physical principles and geometric parameters.
Second, such models relate water temperature to ambient air temperature in a physi-
cally realistic and non-constant manner. Finally, one may generate predictions on how
local variations in habitat geometry, such as shading, interact with more global param-
eters, such as ambient temperature. In this section, we review the basic construction
of a comprehensive microhabitat model. Figure 13 summarizes the key parameters
describing habitat geometry, and the major mechanisms for heat and water volume
loss/gain.

Before continuing,we also note that for any hydrodynamicmodel describing habitat
volume and/or surface area, suchmetrics must be translated into some kind of carrying
capacity or density-dependent death term, etc. in the mosquito population dynamics
model, and several authors have assumed a biomass carrying capacity for anopheline
ponds to be about 300 mg m−2, with fourth stage instars weighing 0.45 mg (Depinay
et al. 2004; Bomblies et al. 2008; Tompkins and Ermert 2013). A separate method is
that of Lunde et al. (2013b), who calculated an immature anopheline carrying capacity
at a relatively high spatial scale as a composite function of soil moisture and potential
river length, with the latter determined from the HydroSHEDS database, which in turn
gives water accumulation potential based upon the Earth’s topology.

Basic geometryTomodel anAnophelesmicrohabitat, onemust prescribe some volume
(V )-area (A)-depth (h) relationship, with one popular option a simple set of equations
developed by Hayashi and colleagues (Hayashi and Van der Kamp 2000; Brooks
and Hayashi 2002), that describe small topographic depressions in terms of three
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Fig. 13 General schematic for a single Anopheles breeding site microhabitat, and the coupled mechanisms
determining the overall heat and water balance

empirical parameters: maximum surface area Amax , maximum depth, hmax , and a
dimensionless shape parameter p, such that p < 1 and p > 1 indicate concave and
convex geometries, respectively. If depth, h, is known, A and V are determined as

A = Amax

(
h

hmax

) 2
p

(35)

V = Amax hmax

1+ 2
p

(
h

hmax

)1+ 2
p
. (36)

If volume, V , is prescribed instead, it is straightforward to rearrange the equations to
solve for h and A. Alternatively, Parham et al. (2012) employed a simple right-angle
cone as a microhabitat geometry.

Heat-balance The heat and water volume balance within a microhabitat are linked,
and, generally speaking, we have the change in heat, dQ/dt (in W), as

dQ
dt

= A(Rn − λE − H − G)+ PQ − IQ (37)

where Rn is net radiation per unit area (W m−2), λE is latent heat flux (W m−2), H
is sensible heat flux (W m−2), G is heat flux through the surrounding soil (W m−2)
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(Allen et al. 1998; Asare et al. 2016b), while heat is also contained in the water gained
via precipitation and runoff, PQ , and lost via infiltration, IQ . We briefly examine each
component of Eq. (37). First, net radiation, Rn , decomposes as the sum of incoming
shortwave radiation, Rs , and incoming and outgoing longwave radiation, Lin and Lout ,
respectively,

Rn = Rs − Lout + Lin, (38)

Shortwave radiation is the fraction of the global horizontal irradiance (GHI) that is
not reflected or blocked by shade,

Rs = GHI(1 − a)(1 − SF), (39)

where a is the albedo of water and SF is a shade factor. The longwave radiation
balance can be determined from the relatively simple relations,

Lout = εwσT 4
w(K ), (40)

Lin = εaσT 4
a(K )(1 − SF), (41)

where εw ≈ 0.98 the emissivity of water (Paaijmans et al. 2008b), σ = 5.67× 108 W
m−2 K−4 the Stefan-Boltzmann constant, Tw(K ) and Ta(K ) are water and air tempera-
tures in Kelvin, and finally, εa is either the clear-sky emissivity, or the cloud-corrected
atmospheric emissivity. A variety of algorithms exist to estimate εa , as reviewed
by Flerchinger et al. (2009), with one simple option for clear-sky emissivity due
to Ångström (Flerchinger et al. 2009) given as

εa =
(
.83 − .18 × 10−.067ea

)
, (42)

where ea is saturation pressure (kPa).
Latent heat flux, λE , determined from the mass of water evaporated per unit time,

E (kg day−1), and the latent heat of evaporation, λ, equal to 2.45 MJ kg−1 at 20 ◦C
(Allen et al. 1998), is a relatively complex phenomenon, as it involves both storage of
heat into the latent form of water vapor at the water surface, and the removal of this
vapor from the surface. In general, with lower vapor pressure at the water surface and
faster wind speed, both processes (water vapor formation and removal) are accelerated.
These qualitative notions can be simply formalized to model evaporation (i.e. water
mass loss) as a bulk transfer process (Sene et al. 1991; Paaijmans et al. 2008a; Asare
et al. 2016b)

E = Cu(esw − ea), (43)

where C is the mass transfer coefficient, u (m s−1) is wind speed at reference height,
esw is the vapor pressure at saturation for the water surface temperature, and ea is
the atmospheric vapor pressure at reference height. An alternative method is to use
the Penman-Monteith equation, or a variation thereof, derived from the simultaneous
solution of equations for energy balance and mass transfer as (Finch and Hall 2001)
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E = 1
λ




∆Λ + ρcp(es−ea)

ra

∆ + γ
(
1+ rs

ra

)



 (44)

where Λ is the available energy (typically taken as Rn − G (Allen et al. 1998)), ∆ is
slope of the vapor pressure curve (kPa ◦C −1), es is the saturation vapor pressure, ea
is the actual vapor pressure, ρa is the density of air, cp is the specific heat of air, γ is
the psychrometric constant, defined as

γ = cp P
ελ

, (45)

where P is the atmospheric pressure and ε = 0.622 is the ratio of the molecular
weight of water vapor to dry air. Furthermore, in this formulation, water vapor mass
transfer is governed by two resistances in series, first a “bulk” surface resistance, rs ,
which is a sum measure of the resistance to vapor flow from soil and vegetation and
may be set to zero over open water, and a second aerodynamic resistance, ra , which is
inversely proportional to wind speed (see Finch and Hall (2001) or Allen et al. (1998)).
Parham et al. (2012) employed the FAO, or modified, Penman-Monteith equation for
transevaporative flux from a vegetated surface to describe water loss from anopheline
habitat; further details may be found in Parham et al. (2012) and Allen et al. (1998).

Similar to Eq. (43), sensible heat flux, H , may be given as (Asare et al. 2016b)

H = ρacpCu(Tw − Ta), (46)

and G is typically taken as some small fraction, f , of Rn , perhaps 0.15 (Asare et al.
2016b; Paaijmans et al. 2008a), i.e.

G = f Rn . (47)

Finally, the heat contained in precipitation and infiltration water (PQ and IQ respec-
tively) is simply determined from the density and specific heat of water, and using the
volume-balance principles presented next.

Volume-balance The change in water volume, dV/dt , may be approximated as a func-
tion of an imposed precipitation time-series, P(t) (m day−1 or m s−1 if appropriate),
and loss to evaporation (E) and infiltration (I ), as

dV
dt

= P(t)(A + R f rac(Acatch − A)) − A(E + I ), (48)

where Acatch is the catchment area for precipitation runoff, R f rac is that fraction of
runoff water within the catchment area that makes it to the habitat, and Eq. (48) is
also subject to the constraint that V not exceed Vmax . Evaporation, E , is determined
as above. Infiltration of water in sandy pools in the Sahel region proceeds in a roughly
biphasic manner, where water is initially lost rapidly to the porous sandy soil, but
low permeability clay that collects at the bottom creates a “clogged” zone, in which
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infiltration slows dramatically (Desconnets et al. 1997; Porphyre et al. 2005). This
phenomenon was simply modeled by Asare et al. (2016a), who gave I as

I = Imax

(
A

Amax

)
, (49)

where Imax (m day−1) is the maximum infiltration rate. A more comprehensive model
could also incorporate overflow and washout of immature anophelines during heavy
rains.

Water versus air temperatureWater and air temperatures in open anopheline habitats
are likely to vary by 3–6 ◦C or more (Parham et al. 2012), and such a disparity could
strongly affect optimal ambient temperatures formalaria transmission. Paaijmans et al.
(2008b) observed mean water temperatures to be several degrees Celsius above the
surrounding air in artificial habitats, with the difference greatest during the day, when
solar gain into pools is high. The difference between maximum air and water temper-
atures could exceed 10 ◦C, and, unsurprisingly, there was greater thermal stability in
larger pools (see also Paaijmans et al. (2008a)). Such an air-water temperature dispar-
ity is also observed in simulations of the theoretical microhabitat framework presented
above. Thus, while many works assume a constant air-water temperature difference
(often zero), this is probably overly simplistic.

6 A partial genealogy of recent weather-driven malaria models

It is well beyond our scope to review all malaria mathematical models that incorporate
weather, and we must omit any discussion of many excellent works (a partial list of
works not considered further here includes (Depinay et al. 2004; Lou and Zhao 2010;
Cailly et al. 2012; Dembele et al. 2009; Bomblies et al. 2009; Eckhoff 2011; White
et al. 2011; Lunde et al. 2013a, b; Tompkins and Ermert 2013; Nikolov et al. 2016)).
We restrict our attention to process-based, mechanistic models, and among these focus
on several influential lines of work from the past two decades, beginning with widely
cited works from the 1990s byMartens and colleagues which suggested a significantly
increased malaria range with global warming, and moving through a 2013 paper by
Mordecai et al. (2013), who concluded prior works had significantly overstated the
optimum temperature range for transmission. Beyond that work, we highlight several
recent efforts with slightly different focuses, namely immunity (Agusto et al. 2015;
Yamana et al. 2013, 2017), host age-structure (Okuneye and Gumel 2017), and age-
dependent vector survival (Christiansen-Jucht et al. 2015). Recently, the importance
of daily and seasonal temperature fluctuations in determining malaria potential has
recognized, and we discuss several recent works which make this their focus (Paai-
jmans et al. 2009, 2010, 2013b; Blanford et al. 2013; Beck-Johnson et al. 2017).
All models are informed by the empirical vector/parasite-weather relations covered in
the prior section, and many directly employ the Ross–Macdonald model framework.
We close this section with a discussion of host mobility in multi-patch geometries,
which heretofore has not been incorporated in weather-driven malaria models, but is
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of potentially great value in studying the possible combined roles of climate change
and human mobility in the spread of malaria into highland Kenya.

6.1 Epidemic potential models (1995–1999)

Several works byMartens and others (Martens et al. 1995a, b, 1997, 1999), published
in the late 1990s, used the notion of “epidemic potential” (EP), defined to be the
inverse of the critical vector density, mc (units mosquitoes/man), in turn derived from
the Macdonald model by setting R0 = 1 (see Eq. (15)) and solving for m, giving

mc = k1
− ln(p)
a2 pn

,EP = 1
mc

, (50)

where k1 is a constant, and equal to r/(bc) for Macdonald’s model. The parameters
n (sporogonic duration), a (daily biting rate), and p (daily mosquito survival) were
determined as a function of temperature, with n determined viaMoshkovsky’s formula
(D = 111 and Tmin = 16 − 19), a assumed to be proportional to the length of the
gonotrophic cycle and similarly determined from Moshkovsky’s formula (Eq. (18),
with D = 36.5 and Tmin = 9.9), and p determined via a trinomial fit to three data
points from a 1949 work, such that

p(T ) = exp
( −1

−4.4+ 1.31T − .03T 2

)
. (51)

These parameters, and the resulting EP, are graphed as functions of temperature
in Fig. 14. Using geographical data from GCMs, these authors then concluded that
global warming could cause overall epidemic potential to increase by 12–27% in 2050
(Martens et al. 1997). The idea of EP is primarily applicable to areas not currently
endemic for malaria: it is meant to elucidate what regions may become vulnerable in
the future. However, Rogers and Randolph (2000) pointed out that, in areas where
R0 < 1 (and, thus, not vulnerable to epidemics), an increase in EP does not mean that
R0 increases above 1. Thus, the EP notion can overestimate the effect of temperature
changes. Even considering that criticalmosquito densitiesmaydecreasewithwarming,
this is a very incomplete picture, as it merely gives a threshold mosquito density
necessary to spark an epidemic, while failing to predict how mosquito densities will
change under climate change. This is key: we cannot assume that altering major
anopheline lifecycle parameters will affect disease transmission but not the Anopheles
population itself.

The relations reported by Martens et al. (1995b) helped inform a widely cited
effort by Craig et al. (1999) (see also Snow et al. (1999)) that used “fuzzy logic” to
derive maps of climatic suitability for malaria transmission in Africa. These authors
determined that, when rainfall is not limiting, yearly mean temperatures above 22 ◦C
lead to perennial infection, 18 ◦C is too cold for stable transmission but does allow
epidemics in warmer years, while 15 ◦C is prohibitory.
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A later 2011work byGething et al. (2011) also used similar temperature-dependent
terms and the notion of vector capacity to map global temperature constraints on
P.falciparum and P.vivax transmission.

6.2 More complex models through Mordecai et al. (2013)

6.2.1 Hoshen and Morse model (2004), reformulation and extensions (2011)

In 2004, Hoshen and Morse (2004) developed a more comprehensive model of the
mosquito lifecycle, explicitly including temperature dependent progression through
the immature (egg, larvae, pupae) mosquito stages (considered as one), coupled with
the temperature-dependent gonotrophic cycle of adult female mosquitoes, by which
a blood meal is taken to yield oviposition of new eggs (the number of eggs laid is
dependent upon the sum of the prior ten day’s rainfall), along with a sporogonic cycle
and a basic susceptible-exposed-infected-susceptible (SEIS) model for human infec-
tion. Note that the sporogonic cycle in infected mosquitoes advances independently
of the gonotrophic cycle, and the overall model architecture is schematized in Fig. 15.
Immature mosquitoes progress through physiologic time (as opposed to chronological
time) at a rate, m(T ) (1/day), determined as the inverse of the sum of the duration
of all larval stages (note that the immature mosquito class is still considered as one
by Hoshen and Morse (2004)), with these durations determined from Jepson et al.
(1947) (Eq. (22) of Sect. 5.2.3), which gives a hyperbolic relationship between total
time in the immature stage and temperature. Death occurs daily, independent of tem-

Fig. 14 Temperature dependence of vector and parasite parameters as per Martens et al. (1995b), Martens
et al. (1997). The top panels show the duration of the sporogonic and gonotrophic cycles as functions of
mean temperature, according to the formula of Moshkovsky using D = 111 and Tmin = 16 and D = 36.5
and Tmin = 9.9, respectively. The bottom shows adult mosquito survival per the relation derived byMartens
et al. (1995b), and the normalized epidemic potential (see Eq. (50)), assuming the inverse of the biting rate
(1/a) is equal to the gonotrophic duration
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Fig. 15 A schematic for the essential elements of the Hoshen and Morse model. Note that this schematic
represents our particular interpretation of the original difference equation-based model

perature, with an assumed daily survival of 90%. The model follows previous work
in using Moshkovsky’s hyperbolic formula for sporogonic, SC , and gonotrophic, GC ,
durations (see Eq. (18) and Sects. 5.1.1 and 5.2.1).

At the end of each gonotrophic cycle, the (adult female) mosquito takes a blood
meal, surviving the risky adventure with probability α ≈ 0.5, and thus daily survival
probability is α1/GC , giving an overall per-capita death rate of− ln(α1/GC ) (denotedµ
in themodel equations below).Note that adult survival is therefore indirectly coupled to
temperature, and no other mechanism for death is considered. After each gonotrophic
cycle, mosquitoes lay γ Rd eggs, where Rd is the sum of the prior ten days of rainfall
in mm, and γ was 1 egg/mm, thus coupling oviposition to habitat created by rain. The
fraction of blood meals taken on humans is B, and mosquitoes contract malaria from
infected humans with probability χ . If a mosquito is infected, then the sporogonic
cycle initiates, taking 111 degree days.

Finally, the humancomponent is a simple susceptible-exposed-infectious-susceptible
(SEIS) model with a 14 day delay from exposure to infectivity, with no superinfection
or immunity included. A small influx of infected individuals is included, presumably
from migration. A small, constant influx of mosquitoes is also included in the model.
The model was formulated by Hoshen andMorse as a fairly extensive difference equa-
tion, which we do not repeat here, but the general model framework can be translated
into continuous time, a more mathematically popular setting. Now, there are three
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major continuous-time forms common among malaria models: ordinary-differential
equations (ODEs), delay-differential equations (DDEs), and age-structured advection
partial-differential equations (PDEs), where the latter describes the movement of pop-
ulations through infinite-dimensional time and age (age is analogous to space in a
traditional advection equation). The simpler ODE version, which is not a “direct”
translation (it is not generally possible to directly translate from a continuous age-
structured model to an ODE model of finite dimension) can be written as

dL
dt

= γ Rd
1

GC (T )
(SM + EM + IM ) − m(T )L − σ L , (52)

dSM
dt

= m(T )L + λM − χB
1

GC (T )
SM

IH
N

− µSM , (53)

dEM

dt
= χB

1
GC (T )

SM
IH
N

− 1
SC (T )

EM − µEM (54)

d IM
dt

= 1
SC (T )

EM − µIM , (55)

dSH
dt

= −βBIM
1

GC (T )
SH
N

+ ρ IH , (56)

dEH

dt
= βBIM

1
GC (T )

SH
N

− 1
14

EH , (57)

d IH
dt

= 1
14

EH − ρ IH + λH , (58)

where
µ = − ln

(
α1/GC (T )

)
, (59)

and where L is the lumped larval stage; SM , EM , and IM are the susceptible, exposed,
and infectious adult mosquito populations; SH , EH , and IH are similarly susceptible,
exposed, and infectious host populations,with N = IH + EH + IH . Latency from
exposure to infection is a fixed 14 days in humans, β is the probably an infectious
bite infects, ρ is the rate at which infected recover (with no immunity), λM and λH
are respectively the influxes of adult mosquitoes and infected humans frommigration,
and it assumed that there is no mortality in the human population. Other parame-
ters are as above. Now, to make this translation from Hoshen and Morse’s discretely
age-structured model, we have assumed exponentially waiting times in every stage,
but as intimated throughout Sect. 5, and addressed more directly with a model by
Christiansen-Jucht et al. (2015), this is not generally a valid assumption.

Staying truer to the original work, it is also possible to write the model as a set of
either age-structured advection equations, or, equivalently, a delay-differential equa-
tion, with that caveat that it necessary to cast the model in physiologic, rather than
chronological, time. The translation from ODE to either of these settings is relatively
straightforward, but requires care with the boundary conditions.

At this point, with the Hoshen and Morse work, we have a fairly realistic model for
the mosquito lifecycle, explicitly including dependence upon blood meals for repro-
duction, and monotonically increasing relationships between temperature and larval
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development, sporogony, gonotrophy (and, hence, biting rate), while daily mosquito
survival decreases monotonically (as a consequence of mortality occuring during bit-
ing, which increases with temperature).

The model of Hoshen and Morse, also referred to as the Liverpool Malaria Model
(LMM), was revised modestly by Ermert and colleagues (Ermert et al. 2011a, b),
who also performed a more thorough literature review for parameter values, and also
applied the model to West African field data (Ermert et al. 2011b). While Hoshen
and Morse present their model as being valid only for predicting zones of epidemic
malaria (e.g., mesoendemic or hypoendemic area), given that it does not account for
immunity, Ermert et al. (2011a) argue that their updated version can apply to endemic
zones as well, but the original authors’ claim seems biologically well-founded. In any
case, it is extremely likely that without explicitly incorporating the effects of immunity
in a robust manner, predictions concerning climate change or other interventions on
malaria in endemic zones will be suspect, given the fundamental importance of the
immune dynamic to the history and epidemiology of the disease (see Sects. 7.1 and
3.3).

6.2.2 Parham and Michael model (2010)

The next major effort we discuss is that of Parham and Michael (2010), a delay dif-
ferential equation that couples an SEI model for mosquito dynamics with an SIR
model for the human population, and directly adopts the temperature-dependent rela-
tions for adult mosquito survival, sporogonic duration, and gonotrophic duration from
Martens et al. (1995b) (Sect. 6.1), the larval maturity relation from Jepson et al. (1947)
(Eq. (22)), and finally adds an assumed nonlinear relation between rainfall and daily
egg survival probability, pE (R),

pE (R) =
4pME

R2
LE

R(RLE − R), (60)

where RLE is the threshold beyond which no eggs survive due to washout, and pME is
the maximum daily survival fraction. The model governing equations for susceptible,
SM , exposed, EM , and infectious, IM mosquito populations, and similarly named
human populations (including recovered, RH , and total human population, N ), with
time-dependence suppressed except for delay-terms, is given by

dSM
dt

= λ(R, T ) − a(T )b1SM
IH
N

− µ(T )SM , (61)

dEM

dt
= a(T )b1SM

IH
N

− µ(T )EM − a(T )b1SM (t − τM (T ))lM (T )
IH (t − τM (T ))

N
, (62)

d IM
dt

= a(T )b1SM (t − τM (T ))lM (T )
IH (t − τM (T ))

N
− µ(T )IM , (63)

dSH
dt

= − a(T )b2 IM
SH
N

, (64)
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d IH
dt

= a(T )b2 IM
SH
N

− γ IH , (65)

dRH

dt
= γ IH . (66)

The adult mosquito influx term, λ(R, T ), is given as

λ(R, T ) = BpE (R)pL(T )pP (R)
τE + τL(T )+ τP

, (67)

with B here the number of eggs per oviposition per adult, pi the daily survival of
immature stage i (i = E , L , and P for eggs, larvae, and pupae, respectively), and τi the
development time for stage i (note that while λ(R, T ) is independent of the total adult
mosquito population in thismodel, these parameters shouldmore generally be coupled
for maximum fidelity to the underlying biology); also note that the governing equation
for EM may technically be omitted, as it is uncoupled from the rest of the model. Rain-
fall affects egg survival, pE (R), per Eq. (60), and larval development hyperbolically
per Eq. (22) (Jepson et al. 1947). As above, other temperature-dependent parameters
assume the relations of Martens et al. (1995b) given in Sect. 6.1.

The overall model framework is thus similar to the ODE version of Hoshen and
Morse’smodel, as related inEqs. (52)–(58), but it incorporates rainfall differently, does
not directly couple the gonotrophic cycle to oviposition or death, anddoes not explicitly
consider the immature mosquito life stage. Note that, while biting is temperature-
dependent, oviposition is not coupled to biting directly.

Parham and Michael (2010) also take recovery refractory to further infection in
humans to be an absorbing state, which is unrealistic for malaria in general, but reason-
able as an approximation for a single epidemic in a previously unexposed population.
Thus, the model is an extension of the ideas contained in the simpler works of Martens
et al. and Craig et al. (1999) to design a continuous, delay differential equation SEIR
framework that is more amenable to explicit (rigorous) analysis than the original
difference equation formulation of Hoshen and Morse (2004), but one that has some
minor mathematical infidelities to the underlying biology. Parham andMichael (2010)
derived several complex expressions for R0 under different simplifying assumptions,
and arrived at their key prediction:malaria transmission ismaximized, both in endemic
and epidemic areas, in the 32–33 ◦C temperature range.

These authors and several colleagues also published a 2012 work (Parham et al.
2012) that considered the vector lifecycle in detail, developing a hydrodynamicsmodel
relating rainfall to habitat volume. This allows a calculation of immature mosquito
density, and hence several detailed expressions for density-dependent oviposition and
density-dependent larval mortality.

6.2.3 Alonso et al. model (2011)

Alonso et al. (2011) developed another ordinary differential equations based model
for a highland tea plantation in Kenya. Larval maturity rate and daily mosquito sur-
vival follow the monotonic Jepson (Eq. (22)) and Martens et al. relations (Sect. 6.1),
respectively, as in the prior models, with sporogonic duration also hyperbolically
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related to temperature. The model was novel compared to earlier works for including
symptomatic and asymptomatic carriers of infection, superinfection of asymptomatic
carriers to the symptomatic state, and clinical treatment of symptomatic sufferers.
These authors also introduce a new aquatic stage death term, given as the sum of a
constant background, temperature-dependent, and rainfall dependent term:

δL = δ0 + δL(T )+ δL(R). (68)

For temperature dependence, δL (T ), Alonso et al. (2011) fit a rather complex piecewise
defined function to much more modern data than previously used, namely laboratory
A. gambiae survival under different temperatures, by Bayoh and Lindsay (2004).
However, a fourth-order polynomial also provides a satisfactory fit, and this data is
reviewed in Sect. 5.2.3. Rainfall dependence is given by the assumed function

δL(R) = δRΘ(R − 〈R〉12), (69)

where δR is a constant, Θ(x) is x if x > 0 and 0 else, and 〈R〉12 is a 12-month rainfall
moving average. This function is intended to capture washout mortality from heavy
rains. As in other works, the biting rate is assumed to be equal to the inverse of the
gonotrophic duration, which, in a departure from the Moshkovsky formula (Eq. (18)),
is determined from data collected by Afrane et al. (2005) as

ta = 1
0.091678T − 1.7982

, (70)

although this preserves the same basic hyperbolic relationship between temperature
and gonotrophy. Finally, it is assumed that each oviposition event yields 66 eggs on
average.

The application of this model is rather novel, compared to much of the literature,
in that it has as its relatively narrow focus a malarious tea plantation under fairly
constant conditions over multiple decades, which experienced rising temperatures
since the 1970s, and for which detailed time-series data of clinical malaria cases was
available dating from that time. The model was trained using data up to 1985, and was
then used to generate counterfactual time-series for more recent malaria burden (with
confidence intervals), one where the observed warming did occur, and another where
temperature in the 1990s remained “similar” to the 1970s. Themodel clearly predicted
that actually observed cases (which were in the range projected with warming), would
have been very unlikely without warming, supporting a clear role for temperature in
increasing malaria burden in at least one specific area.

6.3 Some recent works (2013–2017)

6.3.1 Beck-Johnson et al. (2013) model

Beck-Johnson et al. (2013) also developed a delay-differential model for immature
mosquito development through egg, larva, and pupa, with development time inversely
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proportional to temperature (according to a power law, based on Lardeux et al. (2008)),
but with survival at each immature (and adult) stage, determined according to a
Gaussian function of temperature, such that survival is maximized at intermediate
temperatures. The mathematical difficulties of non-constant delays in development of
each stage were resolved by re-scaling the model to physiologic, instead of chrono-
logical, time, and density-dependent larval mortality was also included.

Anticipating Mordecai et al. (2013) somewhat, the model suggested that adult
mosquito prevalence is maximized around 20–30 ◦C, while the potentially infectious
mosquito population (i.e. that fraction of the adult population that survives long enough
for at least one temperature-dependent sporogonic cycle to elapse), is maximized at
a slightly higher range (24–30 ◦C), but both populations abruptly decline beyond 32
◦C.

6.3.2 The Mordecai et al. response (2013)

In 2013, Mordecai et al. (2013) aggregated an updated collection of data to derive
functions relating vector and parasite parameters to temperature that were uniformly
unimodal (i.e. with a peak at some intermediate temperate), rather than monotonic, as
in most of the previous works discussed. Based on this, and using a formula for R0
derived partly from Parham and Michael (2010),

R0 =
(
a(T )2bc(T ) exp(−µ(T )/PDR(T ))EFD(T )pE A(T )MDR(T )

Nrµ(T )3

) 1
2

, (71)

where N is human density, µ(T ) is the adult mosquito death rate, PDR(T ) is the
sporogonic rate, MDR(T ) is the larval development rate, pE A(T ) is probability of
survival to adulthood, a(T ) is the biting rate, and bc(T ) is vector competence, these
authors concluded that previous works had dramatically overestimated the optimum
temperature range formalaria transmission, concluding that transmission ismaximized
at 25 ◦C.

It is important to examine in some detail the thermal response functions used by
Mordecai et al. (2013) and their sources. All are graphically illustrated in Fig. 16,
with data sources summarized in the caption. Functions are given as either a quadratic
polynomial, or according to a three-parameter (c, Tm , T0) unimodal function developed
by Briere et al. (1999) to describe arthropod development rates:

r(T ) = cT (T − T0)(Tm − T )
1
2 . (72)

One problem with collating these thermal-response curves from different data
sources is that the parameters considered are not necessarily independent. For example,
larval development is supposed to cease by 34 ◦C, yet this may represent a conflation
of mortality with development: obviously no larvae complete development if temper-
atures prohibit survival, but the development rate per se does not necessarily go to
zero. As survival and larval development compound multiplicatively in Mordecai et
al.’s expression for R0, this could bias the optimal temperature range downward. A
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Fig. 16 Unimodal thermal-response curves for vector and parasite parameters used by Mordecai et al.
(2013); parameters also used by Martens et al. (1997) are also shown in gray. Egg-to-adult survivorship
and development rates were fit to Bayoh and Lindsay (2003), adult mortality was estimated from Bayoh
(2001), assuming exponentially distributed survival times, and bite rate was estimated from gonotrophic
cycle duration data by Lardeux et al. (2008). Vector competence, b×c, (which should be< 1) was estimated
from a 1940 work. The rate of the sporogonic cycle was also estimated from several older works, and a
newer work by Eling et al. (2001). Fecundity (eggs/female/day) was determined from a work on Aedes
albopictus (Delatte et al. 2009), a dengue vector, and is obviously not coupled to the biting rate

similar argument applies to sporogonic cycle duration, and several other parameters,
such as biting rate and eggs laid per day, are also not independent. This basic problem
is not unique to the 2013 Mordecai et al. work, and applies deeply to the foundational
Ross–Macdonald models.

Lunde et al. (2013a), using an ODE model for malaria transmission, compared six
different temperature-dependent adult mosquito death rates, including that of Martens
et al. (1997), Ermert et al. (2011a), Parham et al. (2012), Mordecai et al. (2013), and
a separate work by Lunde et al. (2013b), all of which, except those due to Martens et
al., were determined from data by Bayoh (2001), and all, except an early polynomial
also due to Martens et al., similarly suggested transmission to be optimal in the 24–27
◦C range.

6.3.3 Ryan et al. (2015): Malaria mapping under Mordecai’s curves

In an interesting follow-up, Ryan et al. (2015b) developed a series of malaria potential
maps across Africa under current conditions and under projected warming through
2080 (under a mid-range emissions scenario, SRES A1), using the thermal-response
functions and R0 expression of Mordecai et al. (2013) (Equation 71). This work
was novel in that it considered both year-round and seasonal malaria potential, and
considered the populations, not just land area, at risk. Furthermore, although this
work focused on temperature only, while many prior similar mapping efforts have
filtered results geographically by applying a minimum rainfall threshold for malaria
transmission (e.g. Craig et al. (1999)), Ryan et al. (2015b) applied an aridity mask
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on the basis of the normalized Normalized Difference Vegetation Index (NDVI), an
index determined from satellite measurements of the radiation reflected by a surface,
and calculated from the difference in reflectance in the visible light and near-infrared
spectrum bands. Values above 0.2 quantify vegetation greenness (Baeza et al. 2011),
and at mid- and low latitudes, NDVI correlates with wetness (Suzuki et al. 2006);
NDVI has an advantage over rainfall in that it may capture areas of low rainfall still
suitable for anophelines due to irrigation, rivers, or other permanent water sources
(Baeza et al. 2011; Ryan et al. 2015b).

Ryan et al. (2015b) predicted that, as the globe warms, the areas most suitable for
intense, year-round transmission will shift southeasterly from western coastal Africa,
with the new peak in transmission potential importantly centered around heavily pop-
ulated areas such as western Uganda, northern Tanzania, the Lake Victoria region near
the Kenyan highlands, and highland Madagascar. They also concluded that, while the
total area at any risk for malaria may increase slightly, the area at the highest risk will
drop. Of note, this work did not consider daily temperature variations (see Gething
et al. (2011) for an example of a mapping effort which does this), and did not consider
more detailed hydrodynamics.

6.3.4 Synthesis models with partial immunity and age-structure

Recently, Agusto et al. (2015) proposed a fairly comprehensive ODE model that
includes the larval vector stage, with density-limited growth (via a logistic growth
term), adapts the temperature-dependent lifecycle parameters from Mordecai et al.
(2013), and extended a basic SEIR module for human infection to include three addi-
tional recovered states, each representing a boost in immunity (which is then lost to
lower recovered echelons and then to the base susceptible compartment via first-order
kinetics), based on Niger and Gumel (2008). Additionally, the model considered sea-
sonally varying temperature profiles for different regions of sub-Saharan Africa. They
predicted malaria burden (as measured in terms of the total number of new cases of
infection) to increase with temperature in the range 16–28 ◦C, but to decrease for
temperature values above 28◦C in West Africa, 27 ◦C in Central Africa, 26 ◦C in
East Africa and 25 ◦C in South Africa. They also found that omitting either immature
mosquito dynamics or temperature variability could significantly affect predictions,
but the immunity-boosting module had little effect on infection incidence.

A similar effort by Okuneye and Gumel (2017) included partial resistance after
infection, but also subdivided the human population into those under five (which bear,
by far, the brunt of disease) and those over, and considered rainfall (adopted from
Parham and Michael (2010)) in addition to temperature. This work found, for the
Kwa-Zulu Natal province of South Africa, an increase in malaria burden with increas-
ing mean monthly temperature and rainfall in the ranges 17–25 ◦C and 32–110 mm,
respectively, and that malaria transmission is maximized for mean monthly tempera-
ture and rainfall in the ranges 21–25 ◦C and 95–125 mm. This model demonstrated
dynamics only marginally affected by the inclusion of immunity and age-structure,
in terms of infection incidence. While the notion that infection per se is minimally
affected by age-structure and immunity is reasonably congruent with epidemiologic
data, e.g. Trape et al. (1994), elucidating the effect of climate on serious clinical

123



912 S. E. Eikenberry, A. B. Gumel

disease incidence (i.e., that disease which is severe enough to present clinically, as
opposed to simply the acquisition of new infection, which may be asymptomatic
among immunes) should be a future modeling goal. It should also be noted that, as in
Mordecai et al. (2013), these works treat some interdependent processes as indepen-
dent, e.g. the temperature-dependent biting and oviposition rates.

A parallel series of works by Yamana, Bomblies, and colleagues (Bomblies et al.
2008;Yamana et al. 2013, 2016), founded upon the agent-basedHYDREMATSmodel
developed by Bomblies et al. (2008) incorporated detailed hydrodynamic modeling at
the village scale, and in a 2013 work (Yamana et al. 2013), the model framework was
extended to include the gradual acquisition of partial immunity in humans, whereby
repeated infections both reduced the probability of infection and increased the infection
clearing rate, and concluded that, via immunity, large differences in infectious biting
rate did not, in two highly malarious villages, translate into comparable differences
in infection. This framework was also applied in a later (Yamana et al. 2016) model-
driven effort that concluded climate change is unlikely to appreciably affect malaria
burden in Western Africa.

6.3.5 Christiansen-Jucht model (2015) and age-dependent survival

It has frequently been observed that neither larval nor adult survival times are expo-
nentially distributed (see Sects. 5.2.3 and 5.2.2), and this fact was incorporated into
an age-structured vector lifecycle model by Lunde et al. (2013b), but the formulation
was rather complex; note that delay-differential models and those with multiple age
compartments (e.g., for larvae) also yield at least some non-exponential survival times.

We focus here on a more recent and easily digestible effort by Christiansen-Jucht
et al. (2015) that included age-dependent survival at both the larval and adult stages (in
addition to temperature-dependent survival),with data andmodel linkedvia the gamma
distribution. The model entails an ODE framework with larval and adult populations
divided intomultiple age categories, with first-order transitions through categories and
the final category terminating in death, as depicted in Fig. 17. We subdivide into four
model combinations: (1) Baseline model without age-dependent survival, (2) Baseline
+ Larval age-dependent survival, (3) Baseline + Adult age-dependent survival, and (4)
Larval and adult age-dependence.

Fortuitously, mosquito (and other age-dependent) survival data can be reasonably
well-described by the two-parameter gamma distribution, with α the shape parameter
and β the rate parameter, and it so happens that an ODE with α age compartments
that are traversed at rate β yields an overall gamma-distributed survival time (Wearing
et al. 2005) (obviously α must be an integer for this to hold); this basic fact also facili-
tates ODEmodeling of other non-Poisson time-dependent processes, such as infection
clearance (Wearing et al. 2005). Note that if α = 1, then we reduce to exponentially
distributed survival times. If yi (t) is the number of mosquitoes in compartment i , we
have simply

dy1
dt

= −βy1, (73)
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dyi
dt

= βyi−1 − βyi , (74)

and the total number of surviving mosquitoes at any time is

α∑

i=1

yi (t). (75)

An example of a single cohort of adult mosquitoes is given in Fig. 18, using α = 7 and
β as fitted to adult survival data at 20 and 30 ◦C extracted from Bayoh (2001).

Now, using the framework given in Fig. 17, α and temperature-dependent β param-
eters were fit for larvae and adults (α = 7 for larvae, α = 3 for adults), other
temperature-dependent survival and larval development rates were adapted from
Parham et al. (2012), and larval density-dependent death with carrying capacity a
function of rainfall as adapted from White et al. (2011), Christiansen-Jucht et al.
(2015) compared the ability of the four model permutations to fit mosquito abundance
data from The Gambia, finding thatModels 3 and 4 (adult age-dependent survival with
and without larval age-dependent survival, respectively) gave nearly identical fits that
were superior to either Model 1 or 2 (baseline or larval age-dependence only), sug-
gesting that non-exponential death rates in adult mosquitoes are important for model
fidelity to data.

6.3.6 Temperature variability and extreme weather

Whilemostmodelingworks have considered ambient temperature as a single constant,
in the last few years there has been increasing experimental and theoretical interest
in the role of temperature variability, especially diurnal variation, on vector survival

Fig. 17 Generic technique for modeling age-dependent events in any population (left) and 2015
Christiansen-Jucht et al. model framework (right) employing this technique for the A. gambiae lifecycle,
with age-dependent survival in both larval and adult populations
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and development and malaria transmission potential (Paaijmans et al. 2009, 2010;
Gething et al. 2011; Paaijmans et al. 2013b; Blanford et al. 2013; Lyons et al. 2013;
Murdock et al. 2016; Beck-Johnson et al. 2017). For any given mean temperature
point, survival and development rates do not generally change symmetrically with
temperature excursions in either direction (given the non-linear nature of the related
thermal-response functions), and thus we may expect exposure to fluctuating temper-
atures (as experienced in the field) to have a fundamentally different effect on vectors
and parasites than exposure to a constant temperature.

This was first addressed in a theoretical context by Paaijmans et al. (2009), who
showed that, using a unimodalBriere function (seeEq. (72)) for thePlasmodium sporo-
gonic duration, fluctuations about relatively low temperatures enhanced development
and hence malaria potential, relative to a constant temperature, while fluctuations at
higher temperatures had the opposite effect, suggesting that most existing theoretical
works may have systematically under- and overestimated malaria potential at cool and
high temperatures, respectively. This pattern was subsequently observed experimen-
tally in a rodentmalariamodel (Paaijmans et al. 2010), andBlanford et al. (2013) scaled
these results up geographically to Kenya, predicting the cooler highlands to be rela-
tively more vulnerable to malaria once diurnal temperature variation is accounted for;
similar predictions were made at a continental scale as well. Paaijmans et al. (2013b)
also found temperature fluctuations to enhance and inhibit A. stephensi development
and survival at low and high temperatures, respectively, and similar results have been
obtained for other ectotherms, e.g. Bayu et al. (2017).

Fig. 18 Age-dependent death modeled using a multi-compartment model with α compartments and tran-
sition rate β, yielding a Gamma (α,β) distributed survival curve. A seven-compartment model, i.e. α = 7,
with β fit to adult A. gambiae survival data from Bayoh (2001) at different temperatures. The left panels
show how the distribution among age-compartments shifts over time, co-plotted with overall model survival
and data, using β for 20 and 30 ◦C. The right panel gives β as a function of temperature across the full
data’s full temperature range
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The aforementioned works focused either on the sporgonic cycle (Paaijmans et al.
2009, 2010; Blanford et al. 2013) or Anopheles development (Paaijmans et al. 2013b)
in isolation, but very recently, Beck-Johnson et al. (2017) explored daily and annual
temperature variations under their previously discussed 2013 model (Beck-Johnson
et al. 2013) (Sect. 6.3.1). This work suggests more subtle effects of temperature varia-
tion on both total adultmosquito and potentially infectious adultmosquito populations.
Of particular interest, increasing the daily temperature range narrowed the mean tem-
perature range over which both such populations could exist, by decreasing mosquito
abundance at both higher and lower temperatures. That is, while the works above,
which focused on a single aspect of the malaria transmission cycle suggested that
temperature fluctuations asymmetrically favor transmission at low temperatures, the
more complete model of Beck-Johnson et al. (2017) contradicts this notion to some
degree. However, further complicating the picture, greater annual temperature vari-
ation tended to increase both the range of the infectious mosquito population (i.e.
there were more times with both fewer and greater numbers of mosquitoes) and the
mean at lower temperatures, while also decreasing the infectious population at the
high temperature range. Thus, temperature fluctuations at different scales may affect
malaria transmission in a variety of subtle ways that are not predictable from isolated
components of the malaria lifecycle.

Several other models have incorporated seasonal temperature variability, e.g.
Agusto et al. (2015), although this was not their primary focus. Also of note, Gething
et al. (2011) using a Ross–Macdonald-style expression for vector potential, developed
global maps for malaria suitability by temperature that was novel in that it super-
imposed diurnal sinusoidal temperature variations onto monthly temperature trends
drawn from the WorldClim database, while a similar effort by Garske et al. (2013)
inferred air temperatures from land temperature data and also imposed diurnal temper-
ature variation on a Ross–Macdonald-like formulation for malaria potential. We sug-
gest that comparing the predicted malaria maps using more complex models with and
without such temperature variations would be a valuable contribution to the literature.

It should be mentioned that the works reviewed here have generally considered
ambient air temperature only. Yet, as already discussed, the temperature in aquatic
anopheline habitats may differ appreciably from the air, and, depending upon the
habitat size and thermal stability, temperature variations in water may be smaller or
greater than in air, and how this complexity might further alter the predicted role
of temperature fluctuations, both current and as anticipated under climate change, is
an open question. Notably, the work by Blanford et al. (2013) did consider indoor
temperatures, which tend to be slightly higher but less variable than ambient (Singh
et al. 2016; Blanford et al. 2013), and the indoor/outdoor temperature difference has
been almost uniformly neglected in modeling works (but see Singh et al. (2016) for a
recent exception), despite the indoor preference seen in many anophelines.

Finally, climate change is likely to increase weather extremes, including drought,
extreme rainfall events, and heat waves, which may be expected to affect the lifecycles
of a range of ectotherms, independent of average weather conditions (Ma et al. 2015).
Southern Africa, especially, may be vulnerable to greater frequency of extreme rainfall
events (Engelbrecht et al. 2013). While a potential increase in immature Anopheles
mortality due to heavy rainfall is sometimes accounted for (Paaijmans et al. 2007)
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to our knowledge no mathematical work has more explicitly examined how weather
extremes under climate change, and especially extreme high temperatures,might affect
malaria epidemiology.

6.4 Towards a meta-population model for the Kenyan highlands

Recall that the Kenyan highlands have seenmalaria incidence increase since the 1970s
in conjunctionwith increasing temperatures and broad changes in the populace, includ-
ing rapid population growth and deforestation,making this amodel region for studying
the impact of current and projected climate change onmalaria transmission (Minakawa
et al. 1999; Pascual et al. 2006; Chaves and Koenraadt 2010). Human mobility can
link regions with varying local transmission dynamics (e.g. as a result of climate), and
while no climate-focused models have accounted for this thus far, we present basic
mathematical frameworks by which this might be studied in the future. Any geogra-
phy may be conceptually divided into multiple patches, each with its own sub-model
describing local disease dynamics, andwithmovement of hosts and/or vectors between
patches occurring at prescribed rates; thus movement of Plasmodium reservoirs from
one patch to another may spread disease. A natural division is to consider highland
and lowland areas as two separate patches, but any two-patch model easily generalizes
to an n-patch model.

It is necessary to distinguish between two forms of mobility: (1) migration, repre-
senting permanent resettling in a new area, and (2) visitation, or transient excursions
with no permanent change of address (Mandal et al. 2011). Both are salient, as large-
scale migration into the Kenyan highlands has occurred over the past few decades
(Minakawa et al. 1999), while small-scale and circulatory movements between com-
munities are also common. Indeed, transient mobility also interacts with age because,
in many parts of rural Africa, mothers from rural areas tend to take their infants and
young children (not of school-going age) on a short trip (usually for a day or two)
to conduct businesses at open markets in neighbouring urban communities, thereby
exposing them to malaria infection, especially if this trip is from highland areas of low
endemicity to lowland areas of high malaria burden. In a multi-patch model, perma-
nent migration is represented, in analogy to fluid dynamics, by the classical Eulerian
approach, whereas transient mobility with a home patch is captured by the Lagrangian
approach (Castillo-Chavez et al. 2016).

Mathematically, Eulerian migration resembles a diffusion process, and we define
k ji to be the first-order rate-constant for movement from patch j to i . A very simple
Ross-style model with Eulerian migration among human hosts, with Hi the total
human population and Xi the infected population in patch i (and Mi and Zi the total
and infected mosquito populations), is

dHi

dt
=

Φ∑

j=1, j (=i

k ji Hj −
Φ∑

j=1, j (=i

ki j Hi , (76)
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dXi

dt
= ab

(
Zi

Hi

)
(Hi − Xi ) − r Xi +

Φ∑

j=1, j (=i

k ji X j −
Φ∑

j=1, j (=i

ki j Xi , (77)

dZi

dt
= ac

(
Xi

Hi

)
(Mi − Zi ) − gZi , (78)

where Φ is the total number of patches. In other words, it is simply the standard
model augmented by migration terms among the hosts. The Lagrangian formulation
is slightly less obvious. We have pi j as the fraction of time that individuals from patch

i spend in patch j , subject to the constraint that
∑Φ

j=1
pi j = 1. We also have that

the effective population of patch i is
∑Φ

k=1
pki Hk . A Ross model with Lagrangian

motility, between an arbitrary number of patches, is therefore given by

dXi

dt
= ab

Φ∑

j=1





pi j Z j
Φ∑

k=1

(pkj Hk)




(Hi − Xi ) − r Xi , (79)

dZi

dt
= ac

Φ∑

j=1

(
p ji X j

p ji Hj

)
(Mi − Zi ) − gZi . (80)

Note that hosts do notmove between home patches, but the effective population of each
patch is modulated by the time fraction every other patch population spends within it.
The two mobility modes can easily be combined into a single model, essentially by
augmenting Eqs. (79)–(80) with the Eulerian mobility terms.

Multiple authors have studied multi-patch Ross–Macdonald style models (Torres-
Sorando and Rodríguez 1997; Auger et al. 2008; Cosner et al. 2009; Prosper et al.
2012; Ruktanonchai et al. 2016), beginning with Eulerian mobility in Torres-Sorando
and Rodríguez (1997) and Lagrangan mobility in Cosner et al. (2009); see also Agusto
(2014) for a brief review.Agusto (2014) recently studied amore complex (but weather-
independent) multi-patch malaria model that also included the vector lifecycle, and
moreover, focused on the spread of drug-sensitive and drug-resistance Plasmodium
strains under Eulerianmigration; to our knowledge,mobility has not been incorporated
into a weather-driven model using the patch framework, and we suggest it as an
important extension of current models. Additionally, we offer our speculation that a
multi-patch model at very local scales with mobility among vectors, in addition to (or
in lieu of) hosts, could help elucidate how the presence of varied microenvironments
across a fine spatial scale might alter transmission dynamics.
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7 Other modeling challenges: immunity, treatment, within-host disease,
and other abiotic factors

In this section, we briefly touch on some other malaria modeling challenges and
traditions, including immunity and within-host dynamics, treatment, resistance, and
socioeconomic factors. While there is insufficient space do any of these topics justice,
we believe that incorporatingmany of these aspects of disease in climate-drivenmodel
frameworks is a fundamental challenge for the future, and hope to at least make the
reader aware of these issues and some useful references.

7.1 Malaria immunity

Numerous studies have attempted to quantify the acquisition of protection against
clinical malaria with repeated infection, beginning as early as the Garki model of Dietz
et al. (1974) (Sect. 4.4), and include (Aron 1983, 1988; Gupta and Day 1994; Gupta
et al. 1999a, b; Filipe et al. 2007; Griffin et al. 2010, 2015). Filipe et al. (2007), for
example, concluded that a short-term, primarily clinical, immunity strongly coupled
to cumulative exposures and a longer-term, primarily anti-parasitic, immunity more
weakly coupled to exposure are both necessary to best fit epidemiologic data. These
authors modeled infection using an age-structured model, where exposed persons
eithermanifest clinical disease or asymptomatic disease,with the probability of clinical
disease modulated by an underlying level of immunity, Is , which increases in direct
proportion to EIR, and decays exponentially with a decay half-life of about 5 years.
The probability of clinical (versus asymptomatic) disease, φ, decreases according to a
sigmoid function of Is . Additionally, asymptomatic infection is assumed to clear at an
exponential rate that increases with age, given that some exposure has occurred, but
otherwise independent of cumulative exposure; the half-life of this parasitic immunity
was determined to be at least 20 years. A similar approach was also used recently by
Griffin et al. (2010) and Griffin et al. (2015).

This model-based conclusions is concordance with clinical data per Rodriguez-
Barraquer et al. (2016), who performed an analysis of detailed longitudinal data of 93
children over the first 5years of life in a holoendemic region of Uganda, who under-
went surveillance for both clinical disease and (microscopy-detected) asymptomatic
parasitemia. Infection was modeled essentially as a Poisson process, with individual
infection hazard varying according to a Gamma distribution.

This study suggested a binary effect of age, with increasing age a risk factor for
infection, but also independently protective againstmalaria, given infection (regardless
of infection history). The models suggested a 6% decrease in malaria given infection
per year of age, and a 2% decrease in malaria per infection. Note, however, that
there were 5.33 episodes of malaria per person-year (and 0.588 asymptomatic para-
sitemias per person-year), suggesting that infectious history was dominant over age in
conferring protection. A further finding was that clinical immunity developed faster
in children treated with artemether-lumefantrine (AL) versus dihydroartemisinin-
piperaquine (DP). The latter drug confers longer-lasting post-treatment protection
against infection.
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As already alluded to multiple times, given its apparent historical and epidemio-
logic importance, further mathematical investigations incorporating immunity with
climate factors are essential. Towards that end, several recent climate-focused works
have included relatively simple representations of partial immunity (Agusto et al.
2015; Yamana et al. 2013, 2016, 2017), although they have not generally consid-
ered the disparity between anti-disease and anti-parasite immunity. In particular, work
by Yamana et al. (2013, 2017) represents important steps towards understanding the
interplay between environment and immunity.

7.2 Treatment, control measures, and resistance

There was a large drop in the African malaria burden in the 1960s and 70s, largely
attributable to widespread pharmacologic treatment with chloroquine, but this was
undermined by the evolution and spread of chloroquine resistanceP. falciparum strains
(Carter andMendis 2002). Artemisinin compounds are now highly effective, but resis-
tance has already been detected in southeast Asia, and it seems that the basic biology
dictates that it is only a matter of time before resistance reaches Africa (Webb 2014).
A wide variety of mathematical models have addressed the evolution of drug resis-
tance in both infectious disease and cancer. Some works focused on modeling drug
resistance in malaria include (Hastings 1997, 2003; Yeung et al. 2004; Pongtavorn-
pinyo et al. 2009; Saralamba et al. 2011; Agusto 2014; Forouzannia and Gumel 2015),
and Hastings and Watkins (2005) provide an excellent review of the main concepts
involved in modeling resistance. These are only a few examples from the literature,
but any deeper review of these works is unfortunately beyond our scope.

We also note that numerous models have focused on other control efforts, such as
ITNs, (most classically we have Macdonald’s prediction that adult mosquito survival
should be targeted, motivating insecticide-based control), with some recent efforts
including Smith et al. (2009), Griffin et al. (2010) and Nikolov et al. (2016), and
finally, a recent and broad review of the evolutionary principles underlying resistance
is given by Huijben and Paaijmans (2017).

7.3 Within-host disease dynamics

Coupling an explicit model for the within-host dynamics of malaria (principally the
within-host immune response) to its epidemiology is a fundamental challenge. Indeed,
even describing the within-host dynamics mathematically in a way the reproduces the
qualitative dynamics of long-term infection has proven most difficult, and this issue
has its own extensive literature that it is beyond the scope of this paper, although a
very partial reference list includes Teboh-Ewungkem et al. (2010), Li et al. (2011),
Saralamba et al. (2011), Gurarie et al. (2012), Eckhoff (2012), Demasse and Ducrot
(2013), Childs and Buckee (2015), Childs and Prosper (2017), Tabo et al. (2017), and
a recent work by Childs and Buckee (2015) highlights the problems of accurately
modeling within-host dynamics in some depth. Since these dynamics may interact in
unexpected ways with malaria epidemiology (Childs and Buckee 2015), a complete
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understanding of climate and malaria will likely necessitate a deeper consideration of
the in-host stages than has heretofore been attempted.

7.4 Other abiotic factors

Broad changes in socioeconomic conditions, e.g.widespread urbanization and increas-
ing material standards of living, and agricultural modernization played fundamental
roles in the retreat of malaria from most of the world outside tropical Africa (Webb
2014; Packard 2007). Socioeconomic conditions also determine access to medical
treatment and effective antimalarials (Webb 2014), and rural populations suffer a
higher malarial burden than do urban populations (Rodriguez-Barraquer et al. 2016),
partly because urban land-use patterns support fewer vectors and partly because con-
trol efforts have historically focused on urban over rural areas (Webb 2014). Land-use
changes, driven by social or economic imperatives, strongly affect anopheline habitat,
e.g. deforestation in the Kenyan highlands (Afrane et al. 2005). Incorporating social
factors directly into models is a challenge, but can probably be expected to affect
biophysical parameters in somewhat predictable downstream ways; see also Mandal
et al. (2011) for a brief review of models relating socioeconomics to malaria.

8 Conclusions

Of the historical human Plasmodia, P. falciparum is evolutionarily distant from the
others (Silva et al. 2015), and uniquely virulent. While in the West, the so-called
diseases of civilization are generally thought of as those cardiovascular ailments, dia-
betes, and obesity that tend to accompany high-energy diets and sedentary lifestyles,
P. falciparum malaria was perhaps the first true disease of civilization, ushered in by
global warming, anthropogenic alteration of the environment, and concentrated human
settlement. Malaria has been subject, more than most diseases, to mathematical inves-
tigations, and these efforts, mainly the pioneering works of Ross and Macdonald, had
real influence on malaria control efforts through the twentieth century. It is likely,
then, that the mathematician can play a central role in informing an understanding
and mitigation of global warming’s future impact of malaria. Malaria, however, is a
complex diseasewith its own particular history, and sowe take the view thatmathemat-
ical efforts are best informed by history, and to that end have attempted a reasonably
thorough historical review of the disease.

Globally, malaria retreated dramatically over the course of the twentieth century,
most markedly in post-World War II Southeast Asia (Carter and Mendis 2002). This
drop occurred in the face of very modest global warming (about 0.6 ◦C) (IPCC 2013;
Gething et al. 2010), and is almost certainly attributable to a variety of non-climatic
changes, especially economic and agricultural modernization, urbanization, and broad
increases in population health and health services (Chaves and Koenraadt 2010; Webb
2014). While this would seem to suggest climate change as a minor, at best, factor
in future transmission scenarios, the consensus view of the IPCC is that risks from
climate change are not likely to be strongly felt until the global temperature anomaly
exceeds at least 1 ◦C, with impacts increasing dramatically above 2 ◦C (IPCC 2014);
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the temperature anomaly is virtually guaranteed to reach 1.5 ◦C by the end of the
twenty-first century, and may well exceed 5 ◦C (IPCC 2014).

TropicalAfrica never saw the deep reductions inmalariamortality that other regions
did and, while it enjoyed a transient drop in deaths in the 1960s and 70s, malaria re-
surged in the later 1970s, an era correspondingwithwidespread chloroquine resistance,
other broad socioeconomic changes (Carter and Mendis 2002; Webb 2014), and the
acceleration of global warming (IPCC 2014). While recent control efforts have been
reasonably successful, with malaria mortality in Africa now at an historical nadir, their
sustainability is threatened on multiple fronts (see Sect. 3.3), and future temperature
increases in Africa are likely to exceed the global mean (Niang et al. 2014), where
global warming may negatively affect agricultural output, food security, economic
development and overall health, and may displace populations (Niang et al. 2014), all
developments likely to increase populations’ vulnerability to malaria. Thus, it seems
likely that future warming will interact with malaria (and other infectious disease) in a
nonlinear manner. Therefore, we must be cautious in extrapolating from past climate
and malaria trends to the future, and a mechanistic framework for the disease and
climate, based on the many excellent works reviewed in this paper, may help to guide
us.

There are perhaps five major challenges to mechanistically modeling the relation-
ship between climate change and malaria: (1) thermal-response functions linking
temperature and vector/lifecycle parameters; (2) the relationship between weather
(mainly rainfall) and anopheline habitat availability, and further, the effect of habitat
size on the vector; (3) temperature variability, at both a diurnal and seasonal scale, and
in the differentmicroenvironments involved in theAnopheles lifecycle; (4) the incorpo-
ration of essential non-climatic factors, especiallymalaria immunity, but also treatment
and other control interventions, host mobility across zones of varying endemicities,
resistance, and broad socioeconomic factors; and finally (5) basic model construction,
i.e. the general choice of biologic actors and their interactions. Most controversy has
more explicitly centered on the first two, especially thermal-response functions, and
to that end we have presented a detailed summary of experimental data to inform the
modeler (Sect. 5), as well as a partial genealogy of the work informing this contro-
versy. Box 1 provides a summary of some of the most important, at least in our view,
modeling challenges moving forward.
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Box 1: Major climate-related future modeling challenges
We suggest the following as the most pressing future modeling issues with

respect to climate and malaria:

• Fully defining the effects of different thermal response functions on vector
and parasite ecology and malaria epidemiology under climate change, at
both the gross qualitative scale (e.g. monotonic vs. unimodal) and under
smaller quantitative variations representing local variations due to adaption
or short-term evolution.

• Refining (and enhancing the realism of) the mathematical description of
habitat availability, rainfall, and the effects of these factors upon immature
anophelines.

• A full accounting of temperature variability, both at a diurnal and seasonal
scale, and across the microenvironments to which anophelines are regu-
larly exposed (aquatic, outdoor, and indoor environments). Accounting for
disparities between air and water temperatures may be of particular import.

• Assessing the combined impact of host (and vector) mobility and climate
change (as in theEastAfrican highlands), aswell as the interaction of climate
with large-scale local population growth (both urban and rural).

• A hybridization of two modeling traditions, namely the climate-focused
literature reviewed here, and the rich tradition focusing upon the unique
immunology of malaria.

• Finally, and most broadly, an exploration of the interaction between climate
and the myriad other factors influencing this disease, including treatment
and other control interventions, resistance, and changing socioeconomic
conditions.

While the earlier works of Martens and colleagues (e.g. Martens et al. (1999))
suggested a significant global increase in potential malaria burden with global warm-
ing, these efforts were informed by thermal-response functions that fail to capture the
deleterious effects of high temperatures on both vector and parasite. The unimodal
thermal-response functions of Mordecai et al. (2013) suggest a lower temperature
range for optimal transmission (25–28 vs. 32–33 ◦C), but also view some inter-
connected components of the vector lifecycle as independent, e.g. biting rate and
oviposition, and death prior to larval development may be conflated with arrested
development. Mechanistic models have properly captured these lifecycle interdepen-
dencies to lesser and greater degrees (e.g. Hoshen and Morse 2004; Parham and
Michael 2010), and while several later works employing the Mordecai et al. rela-
tions in more complex mechanistic models (Agusto et al. 2015; Okuneye and Gumel
2017), have reached conclusions generally congruent with Mordecai et al. (2013),
these too view certain dependent processes as independent. Therefore, more careful
inclusion of thermal-response functions in mechanistic frameworks should be a goal
of future work.

Relating rainfall to the vector lifecycle is less prominent in this modeling tradition,
and when it has not been ignored entirely, its presumed effect is more variable and
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ad hoc across models. Nevertheless, precipitation patterns are likely to change across
Africa with climate change, and rainfall patterns often drive interannual malaria vari-
ability (Pascual et al. 2008). More realistic hydrodynamic models are likely to be
informative, and we suggest the hydrodynamic models of, for example, Bomblies
et al. (2008), Parham et al. (2012) and Asare et al. (2016a) as a starting point; some
of these models’ basic features and construction are reviewed in Sect. 5.2.5.

Basic model construction, including weather-independent components, is clearly
fundamental, with published models encompassing a wide range of biological detail
and realism. Mechanistic works have demonstrated that greater mathematical fidelity
to the details of the vector lifecycle, e.g. via the inclusion of immature larval
stages (Agusto et al. 2015; Beck-Johnson et al. 2013) or age-dependent survival
(Christiansen-Jucht et al. 2015), significantly improves model predictions in rela-
tion to data. Thus, it is important to elucidate how such deeper model construction
choices affect predictions, in conjunction with various thermal- and rainfall-response
functions. Furthermore, malaria immunity is fundamental to its epidemiology, and
while largely neglected in climate-focused works, there is a large body of immune-
focused models, and several recent works have demonstrated that immunity interacts
importantly with environment (Yamana et al. 2013, 2017).

Human mobility, both via long-termmigration and shorter-term circulation of indi-
viduals between areas of low and high malaria burden, may affect malaria incidence,
but it is unknown as yet how this mobility dynamic interacts with climate, and we
suggest that a multi-patch model that takes into account the detailed lifecycles of vec-
tor and parasite, temperature variability and the physics of anopheline habitat, along
with the host phenomena of immunity, superinfection, and asymptomatic infection
would entail a somewhat unified framework for studying malaria spread from lowland
to highland regions. We further suggest that this more limited geographic scope may
better elucidate the effect of climate change on malaria transmission than global scale
models. Nevertheless, the development of a new family of malaria potential maps,
employing a variety of more recent malaria models, temperature variability, and IPCC
climate projections, may be highly instructive in determining the robustness of past
authors’ conclusions and sensitivity to modeling choices. Towards such an end, the
recent works of Ryan et al. (2015b) and Yamana et al. (2016) can serve as excellent
guides.

Additionally, making the primary focus of malaria mapping upon populations at
risk, both current and projected, rather than land area, is likely of import, especially
since most population in Africa is currently concentrated in relatively warm Western
coastal Africa, where malaria is highly endemic and the effect of climate change upon
malaria may be equivocal, and in cooler areas of Eastern Africa, mainly Ethiopia and
the region surrounding Lake Victoria, where global warming may be more likely to
increase disease potential. Dramatic population growth is projected throughout sub-
Saharan Africa, and Nigeria, already the most populous African nation and one with
a high malaria burden, may see its population more than double by 2050 (United
Nations 2017). Urban environments also are less malarious than the countryside, and
so the urban versus rural divide is also important to consider (as done in Ryan et al.
(2015b)).
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There aremultiplemodeling traditionswithin thefield ofmathematicalmalariology,
and we have been restricted by space to focus primarily on only one; we have very
briefly touched on these traditions in Sect. 7, and we also refer the reader to other
useful reviews, including Mandal et al. (2011), Smith et al. (2012) and Reiner et al.
(2013). Malaria immunity, abiotic factors including land use, and control efforts have
all proven fundamental to the epidemiology of the disease, and unifying weather-
driven models with these biologic and social phenomena is a fundamental task for the
future.
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Abstract—In this article we present a new algebraic approach to the greatest common divisor
(GCD) computation of two polynomials based on Bezout’s identity. This approach is based on the
solution of system of linear equations. Also we introduce the dmod operation for polynomials. This
operation on polynomials f, g is used to reduce the degree of the larger polynomial f in a finite field
Fp. This operation saves GCD(f, g). Also we present some ideas how to reduce spurious factors
that arise at the procedure.
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1. INTRODUCTION

Polynomials have been studying for a very long time. A whole series of objects is connected with
polynomials: zero, negative, complex numbers, the emergence of the theory of groups as a section of
mathematics and the allocation of classes of special functions in analysis. More applications are found
for polynomials of one variable.

Computation of greatest common divisor (GCD) of polynomials of one variable can be implemented
like as the GCD computation for integer numbers by the Euclid GCD algorithm using operation of
division at long integers. The polynomial GCD has specific properties that make it a fundamental notion
in various areas of algebra. Often the roots of GCD of two polynomials are common roots of the two
polynomials, and this allows us to get information of the roots without computing them. Some results
concerning theory of polynomials can be found in [1–3, 6]. Computation of GCD of two polynomials
can be used in cryptography (public key cryptography by the means of elliptic curves), finite fields,
computer algebra, coding theory (cyclic redundancy codes and BCH codes). In particular it can be
used in polynomial factorisation problem.

In this article we present a new algebraic approach to the GCD computation of two polynomials
of one variable based on Bezout’s identity. This approach is based on the solution of system of linear
equations. So, we turn from the problem of GCD computation to the problem of solving a system of
linear equations. Also we present the dmod operation on polynomials f, g, which is used to reduce the
degree of the larger polynomial f in a finite field Fp. Also we present some ideas how to reduce spurious
factors that arise at the procedure.

*E-mail: Dolgov.kfu@gmail.com
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2. GCD OF TWO POLYNOMIALS
In this section we present results about GCD of two polynomials and rank of the Sylvester matrix,

for example theorem 4 from [3].
We consider a field k. The set of all polynomials with coefficients in k is denoted by k[x]. Here and

below we consider polynomials in one variable x. We have two polynomials f(x), g(x) 2 k[x]:

f(x) = f0x
n + f1x

n�1 + ... + fn =
nX

i=0

fix
n�i

, f0, ..., fn 2 k,

g(x) = g0x
m + g1x

m�1 + ... + gm =
mX

z=0

gzx
m�z

, g0, ..., gm 2 k.

If polynomial f has leading coefficient 1 then f is called monic.
Definition 1. Let f and g be two polynomials in k[x] with one of them non-zero. The greatest

common divisor of f and g is the unique polynomial d = GCD(f, g) with the following properties:
1) d divides f and g; 2) c divides f and g implies c divides d.

In this article we consider polynomials with integer coefficients. We have Bezout’s identity [1]:
there exist two polynomials u and v such that GCD(f, g) = d = uf + vg, where deg(u) = s, deg(v) =
t, d(x) = d0x

r + d1x
r�1 + ... + dr is polynomial of the smallest degree, which can be represented in the

this form.
Theorem 1. deg(u) < deg(g) � deg(d), deg(v) < deg(f) � deg(d).
Proof. We divide Bezout’s identity by d(x). So, we have

(f �
0x

n�r + ... + f
�
n�r)(u0x

s + ... + us) + (g�
0x

m�r + ... + g
�
m�r)(v0x

t + ...) = 1,

f
�
i , g

�
i are coefficients. They are not zeros. We multiply the brackets. Degrees at new polynomials must

be the same. So,
n � r + s = m � r + t ⌘ n � r � t + s = m � r, (1)

f(x) 6= g(x), r < min{deg(f(x)), deg(g(x)} = min{n,m},m � r > 0, n � r > 0. We seek to find the
polynomial with smallest coefficients. So, we choose n � r � t > 0 ⌘ t < n � r and m � r � s > 0 ⌘
s < m � r. 2

The maximum possible degree for s is m � r � 1. It‘s for t is n � r � 1. It‘s possible for (1) identity.
For Bezout’s identity we take in abundance s = m � 1 and t = n � 1. As a result we have the same
degrees after multiplication of the brackets. After that we equate degrees and obtain system of equations;
q = n + m � 1, f

��
1 = q � f

�
1, f

��
2 = q � f

�
2, g

��
1 = q � g

�
1, g

��
2 = q � g

�
2:

rX

f �
1=0

af �
1
x

f ��
1 +

n+m�1X

f �
2=r+1

af �
2
x

f ��
2 +

rX

g�
1=0

ag�
1
x

g��
1 +

n+m�1X

g�
2=r+1

ag�
2
x

g��
2 =

rX

d=0

adx
q�d

. (2)

System can be present in the matrix representation: Syln,m(f, g)UV
T = d. Let Syln,m(f, g) is a

coefficient matrix (called Sylvester matrix), deg(f) = n, deg(g) = m, n > m. Size of matrix A is
(n + m) � (n + m). Each line consists of coefficients of corresponding degree. dk(l) is denoted the
coefficient of degree x

l. UV is a vector, which consist of coefficients of the u and v polynomials. We
define it as a system

�

����������������

f0 0 · · · 0 g0 0 · · · 0

f1 f0 · · · 0 g1 g0 · · · 0

f2 f1 · · · 0 g2 g1 · · · 0
...

...
...

...
...

fm fm�1 · · · f1 gm gm�1 · · · 0
...

...
...

...

0 · · · 0 fn 0 0 · · · gm

�

����������������

�

����������������

u0

u1
...

um�1

v0
...

vn�1

�

����������������

=

�

����������������

d0(n + m � 1)

d1(n + m � 2)
...

dm�1(n)

dm(n � 1)
...

dn+m�1(0)

�

����������������

. (3)
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Theorem 2. If d(x) = 1, then rank(Syln,m(f, g)) = deg(f) + deg(g), where f 6= g.
Proof. Assume the contrary, that it‘s false. Let n = deg(f),m = deg(g), n > m. At first we choose

1 or m + 1 column (let it be m + 1 column) and express another columns. As a result we have remainder
of dividing one polynomial into another and first row has one 1 and n + m � 1 zeros. At first step we
choose second column, because due to the Euclidean GCD we have GCD(f, g) = GCD(g, f mod g).
So at first column we have new remainder. Also at the m + 2 column we have remainder f mod g, which
was at first step in the first column. We repeat this procedure until n step. 2

Theorem 3. If d(x) 6= 1, then max{deg(f), deg(g)} < rank(Syln,m(f, g)) < deg(f) + deg(g),
where f 6= g.

Proof. The second part of the inequality follows from Theorem 1. We prove the first part. Assume the
contrary, that it‘s false. Let n = deg(f), m = deg(g), n > m, ai,j is a value of the matrix Syln,m(f, g)
at i-th row and j-th column. We consider k-th row, where m < k < n, because am,0, ..., am,m�1 are
zeros.

Let ak,2m =
Pk�1

i=m ↵iai,2m, ak,m =
Pk�1

i=m ↵
�
iai,m. If ak,m = ak,2m, then ↵i = ↵

�
i. We consider

next elements: ak,m�1, ak,2m�1. At j-th step we have ak,2m�j =
Pk�1

i=m�j ↵iai,2m�j , ak,m�j =
Pk�1

i=m�j ↵
�
iai,m�j , ak,m�j 6= ak,2m�j , so ↵i 6= ↵

�
i. Contradiction. 2

Also determinant of the Syln,m(f, g) is equals to 0, if GCD(f, g) 6= 1.
Theorem 4. deg(d) = deg(f) + deg(g) � rank(Syln,m(f, g)).
Proof. Arithmetic operations over the rows, row interchange does not change the corank of the

matrix. In particular, we may replace f by the remainder r obtained when dividing f by g. Let
f(x) = q(x)g(x) + r(x). So, rank(Syln,m(f, g)) = rank(Syln,m(f � qg, g)) = rank(Syln,m(r, g)).
Then deg(r) < m  n and the first row of Syln,m(f, g) has a single non-zero element g0 in row m + 1.
We may thus delete the first row and the (m + 1)-th column without changing the corank, and this
yields Syln�1,m(f, g). Repeating, we see that if r 6= 0 and k = deg(r), then Syln,m(f, g) has the same
corank as Sylk,m(r, g) and Sylm,k(g, r). We repeat from the start, by dividing g by r and so on; this
yields the Euclidean algorithm for finding the GCD d, and we finally end up with the Sylvester matrix
Sylk,l(0, d), for some k > 0 and l = deg(d), which evidently has corank l since the first l columns
are 0 and the last k are independent. At the end we have k � k minor, which is triangular. So,
corank(Syln,m(f, g)) = corank(Sylk,l(0, d)) = deg(d) ) deg(d) = n + m � rank(Syln,m(f, g)). 2

Corollary 1. The number of linearly independent rows includes all first zero rows and the first
row containing the coefficient of d(x).

Proof. Let it‘s false. So, number of linearly independent rows does not contain a row with the
first coefficient of d(x). So, we have 2 ways. If it contains more rows with coefficients of d(x), then
n + m � rank((Syln,m(f, g)) < deg(d). If it doesn‘t contain any row with coefficient of d(x), then
n + m � rank((Syln,m(f, g)) > deg(d). Contradiction. 2

We can use rank operation to coprimality testing of two polynomials, where one of them is
normalized: if rank((Syln,m(f, g)) = n + m, so two polynomials are mutually simple.

3. DMOD OPERATION FOR POLYNOMIALS

In this section we generalize the dmod operation to polynomials. Before now the dmod operation was
defined only for numbers. Operation was used in the main loop of k-ary GCD to adjust input numbers u

and v so that they are roughly the same size when the k-ary reduction is performed [4, 5].
The dmod operation for polynomials can used to create new polynomial, which contains GCD of two

polynomials. Polynomials over a finite field are considered.
If polynomial in a ring Z[x] then we can‘t find multiplicative inversion from any polynomial. In Z[x]

we have 2 invertible constant polynomials: 1, �1.
Let Fp is a field of p elements, where p is a prime number. Here and below of this chapter, we

consider polynomials with coefficients in the finite field Fp. Fp[x] is a polynomial ring over the field
Fp. Invertible elements of Fp[x] are nonzero constant polynomials (polynomials of degree 0), that is,
polynomials 1, 2, p � 1 2 Fp[x]. The reducibility and irreducibility of polynomials depends on whether
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in which ring or over which field we are considering it. Here and below of this chapter we consider
polynomials f(x), g(x). For brevity, we denote them f, g.

Definition 2. Difference of degrees of polynomials is function, which equals ⇢(f, g) = deg(f) �
deg(g) + 1.

Here and below we denote irreducible polynomial of degree ⇢(f, g) in the Fp as irr(⇢(f, g)).

Definition 3. The dmod operation is defined as d mod(f, g)
def
= f�(f/g mod irr(�(f,g)))g

irr(�(f,g)) .

Theorem 5. The dmod operation is unsolvable in the Z[x].
Proof. Z[x] is a ring of all polynomials with coefficients in Z. In general deg(g) > 0, so we can‘t

find multiplcative inverse of g polynomial in numerator. So, we can not integer divide f polynomial by
irr(⇢(f, g)) and reduce the order of original polynomial. 2

Theorem 6. The dmod operation preserves GCD.
Proof. Numerator can be presented as f � qg, where q 2 Fp[x]/irr(⇢(f, g)), irr(⇢(f, g)) is an

irreducible polynomial in a Fp[x] with prime p. 2

Theorem 7. In the dmod operation the remainder from the division the numerator by the
denominator is equals to 0.

Proof. Let it‘s false. So, f � (f/g mod irr(⇢(f, g)))g = q(x)irr(⇢(f, g)) + c(x) for some k(x), c(x)
with coefficients in Fp. Let‘s consider the numerator by the modulo irr(⇢(f, g)):

f mod irr(⇢(f, g)) = (f/g mod irr(⇢(f, g)))(g mod irr(⇢(f, g)) = f mod irr(⇢(f, g)).

Contradiction. 2

Corollary 2. The dmod operation gives polynomial, which consists d(x) = GCD(f, g), if
max{deg(f), deg(g)} � ⇢(f, g) = deg(d).

Proof. It‘s true due to Theorems 6, 7 and condition of the theorem. 2

Is it possible to single-valued compare arithmetic properties of sum or product of polynomials in the
dmod operation compared with sum or multiplication of dmod terms? No. Since we are looking for an
inverse polynomial, we can not know anything about the degree of the inverse polynomial, and therefore
the right side of the dmod expression.

4. A DESCRIPTION OF THE POLYNOMIAL GCD ALGORITHM

In this section we describe a new algebraic approach to a polynomial GCD computation. Although
our point of view is sequential, ideas presented here apply to parallel versions of the algorithm as well.
We begin by presenting solution of system of linear equations. Then we describe a new polynomial GCD
algorithm and new minimisation criteria.

4.1. Solution of System of Linear Equations

The main problem of system (3) is selection of vector UV . We propose method, which imply usage
solving of linear equations.

To solve the system of AUV = d we can take first k rows from A and equate them to zero, see
algorithm 1 in Section 4.2. It‘s true, because first rows of d is zero, see (2). Ak is a matrix, which
consists of the first k rows of matrix A. Due to Corollary 1 we take k = rank(Syln,m(f, g)) � 1 and
solve system AkX = �. Number of equations is lesser than number of variables. We can find result
vector X by solving next of linear equations AkX = �, x0 is a non-zero solution of the system of linear
equations.

Rank of Sylvester matrix is calculated using the Gaussian algorithm. During reduction of the matrix
to a stepped form we there is an accumulation of rounding errors. In the main error increases during the
forward stroke, when the leading s-th line is multiplied by the coefficients ai,s/as,s, i = s + 1, ..., n + m.
If the coefficients are greater than 1, then errors obtained in the previous steps are accumulated. To
avoid this, a modification of the Gauss method with selection of the main element is applied. At each
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step, selection of the maximum element by column is added to the usual scheme. During the elimination
of variables system of equations is obtained:

xi +
n+mX

j=i+1

a
i
ijxj = b

i
i, i = 1, ..., s � 1;

n+mX

j=s

a
s�1
ij xj = b

s�1
j , i = s, ..., n + m.

Let find l: |as�1
l,s | = max |as�1

j,s |, j = s, ..., n + m. After that we swap s-th and l-th rows. In many
cases such transformation significantly reduces sensitivity of solution to rounding errors in calculations.

Another approach to compute rank of the matrix was proposed in [7]. This algorithm is based on
the fast Cholesky factorization of Syl

T
Syl or HSyl

T
HSyl and relies on the stabilized version of the

generalized Schur algorithm for matrices with displacement structure. Syl is the Sylvester matrix, HSyl

is the Hankel variation of the Sylvester matrix Syl. They introduced HSyl in order to complete the fast
Cholesky factorization without pivoting. The generalized Schur algorithm applied to compute the fast
Cholesky factorization of Syl

T
Syl may break down during the first r steps due to the loss of positive

definiteness of the r � r leading principal submatrix of Syl
T
Syl,

HSyl(f, g) =

�

����������������������

0 · · · 0 0 f0 0 0 · · · 0 0 g0

0 · · · 0 f0 f1 0 0 · · · 0 g0 g1

0 · · · f0 f1 f2 0 0 · · · g0 g1 g2
...

...
...

...
...

...
...

...
...

f0 · · · fn�3 fn�2 fn�1 g0 g1 · · · gm · · · 0

f1 · · · fn�2 fn�1 fn g1 g2 · · · 0 · · · 0

f2 · · · fn�1 fn 0 g2 g3 · · · 0 · · · 0
...

...
...

...
...

...

fn 0 · · · 0 0 0 · · · · · · · · · · · · 0

�

����������������������

.

The generalized Schur algorithm uses three matrices (G, J,Z). G is a generator, which construct
from Syl

T
Syl (or HSyl

T
HSyl) and Euclidean 2-norm of columns of Syl(f, g) (or HSyl(f, g)), see

Theorem 1 or Theorem 3 in [7]. Z is a lower shift triangular matrix. Z can be constructed from 2 lower

shift triangular matrices, Z = diag(Zm, Zn). J is a signature matrix of the form J =

�

�Ip� 0

0 �Iq�

�

� ,

p
� + q

� = ↵. We pass from rank of the Sylvester matrix to apply the generalized Schur factorization of
the system �T = T � ZTZ

T = GJG
T , where T = Syl

T
Syl or T = HSyl

T
HSyl, ↵ is a diplacement

rank of T . In [7] authors introduced the new algorithm for rank constatation (called “HSylRRA”), which
is a modification of the generalized Schur algorithm. At each step authors compute Schur complement
Ŝi+1 for i � 1. If ||Ŝr+1|| < �, then terminate the Schur algorithm and return r as a rank, � is a tolerance
for the Cholesky process.

4.2. Performance of the Polynomial GCD Algorithm

Before running algorithm 1 we have Sylvester matrix with coefficient of two polynomials f, g. If we
don‘t have a matrix, we construct it. At second step we calculate rank of Sylvester matrix. For Gauss
method it takes O((n + m)3), for modified generalized Schur algorithm it takes O((n + m)2). After
that we compute part of X vector. If d(x) = g(x) and ⇢(f, g) = 1, so it takes O(n + m). After that we
compute vector B. If rank(Syln,m(f, g)) = (n + m)/2, so size(X) = (n + m)/2 � 1, so computation
of vector B takes (n+m

2 � 1)2 � O((n + m)2). Depending on the choice of free variables in the vector X,
we must start accurate GCD like Euclidean GCD between input number and output to get clean result
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Algorithm 1. GCD of two polynomials

1. B = [0...0]

2. z = n + m � rank(Syln,m(f, g)) + 1

for i = n + m; i > z; � � i do

X [i] = random()

for i = n + m; i > z; � � i do

for j = n + m; j > z; � � i do

B[i] = B[i] � Syln,m(f, g)[i][j]X [j]

3. Solve the new system AX = B, where matrix A is obtained by randomly chosen z � 1 variables

and construct B array by transferring last z � 1 members of the equation to the B vector.

return Syln,m(f, g)X

at the end. General assessment of the method: O((n + m)2) + O(nm) + O(n + m) ⌘ O((n + m)2).
Without loss of generality we take asymptotic estimate of Euclidean GCD as O(nm), although it should
be less, because we use polynomials of smaller length. If we choose Gauss method to compute numerical
rank, general assessment will be O((n + m)3).

If we have 2 monic polynomials we can equate w = rank(Syln,m(f, g)) + 1 row to 1, because GCD

polynomial is monic too. In this case we obtain an additional condition regarding the choice of variable
and clean GCD without using Euclidean GCD algotithm. This idea can be generalized to non-monic
polynomials. Indeed if we know that GCD of two polynomials is not monic, so the first coefficient of
GCD (d0) is contained in the GCD of the first coefficients (f0, g0) of the original polynomials. So we
also can equate w-th row to the GCD(f0, g0). In this case, we also get a clean GCD without calling the
Euclidean algorithm.

Example. f(x) = (x � 1)2, g(x) = (x � 1)(x � 3). Syl2,2(f, g) :
�

�������

1 0 1 0

�2 1 �4 1

1 �2 3 �4

0 1 0 3

�

�������

�

�������

x0

x1

x2

x3

�

�������
=

�

�������

0

0

d0

d1

�

�������
.

Rank of matrix is equals to 3, k = rank � 1 = 2. We have next system: x1 + x3 = 0, �2x1 + x2 � 4x3 +
x4 = 0. Let x3 = �1, x4 = 2, so X = [1,�4,�1, 2] and Syl2,2(f, g)X = d = [0, 0,�2, 2]T . So, result is
�2x + 2. But we have 2 monic polynomials. So, we can equate (k + 1)-th row to 1. So, we will be able
to choose the exact solution: X = [�0.5, 2, 0.5,�1]. 2

Is it possible to reduce the number of free variables? Yes. We must see to the k-th row with the
first coefficient of d(x) and we choose deg(d) variables. We want to nullify component of free variables
in the k-th row. In some cases it will reduce the value of the final result.

Pn+m
i=t+1 at,ixi = 0, where

Syln,m(f, g) = (ai,j), t = [k, ..., n + m � 1], k = rank(Syln,m(f, g)); parameter t doesn’t fixed. So, we
have n + m � 1 � k = deg(d) � 1 equations and deg(d) variables. All equations depend of only one
variable. It’s called minimization criteria.

In the example above we have new equation 3x3 � 4x4 = 0. For x3 = 1 we have X = [�1, 1.25, 1,
0.75] and d

�(x) = �3.5x + 3.5. For x3 = 0.5 we have X = [�0.5, 5/8, 0.5, 3/8] and d
�(x) = �1.75x +

1.75.
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5. CONCLUSION

In this article we presented the new polynomial GCD algorithm based on Bezout’s identity. Asymp-
totics of the algorithm is O((n + m)2). Also we introduced the dmod operation, which can reduce degree
of the largest polynomial and save GCD. This operation is available for polynomials over finite fields. Also
we need to analyze the GCD of many polynomials. In the future it is necessary to obtain a condition
for the minimization criterion, which can find an exact polynomial GCD without using the Euclidean
algorithm to reduce spirious factor.

Next work is related to the algorithm parallelization. Firstly we need good parallel algorithm which
solves system of linear equations. Besides it we need to analyze this algorithm over finite fields. Now
it works only in Z[x]. Also in the future we need to modify this algorithm to test big polynomials for
co-primality and construct extended version of algorithm.
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Abstract Computing the determinant of a matrix with the univariate and multivariate polynomial

entries arises frequently in the scientific computing and engineering fields. This paper proposes an

e�ective algorithm to compute the determinant of a matrix with polynomial entries using hybrid sym-

bolic and numerical computation. The algorithm relies on the Newton’s interpolation method with

error control for solving Vandermonde systems. The authors also present the degree matrix to estimate

the degree of variables in a matrix with polynomial entries, and the degree homomorphism method for

dimension reduction. Furthermore, the parallelization of the method arises naturally.

Keywords Approximate interpolation, dimension reduction, error controllable algorithm, symbolic

determinant, Vandermonde systems.

1 Introduction

In the scientific computing and engineering fields, such as computing multipolynomial

resultants[1], computing the implicit equation of a rational plane algebraic curve given by its

parametric equations[2], computing Jacobian determinant in multi-domain unified modeling[3],

computing the determinant of a matrix with polynomial entries (also called symbolic de-

terminant) is inevitable. Therefore, computing symbolic determinants is an active area of

research[4�12]. There are several techniques for calculating the determinant of a matrix with
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polynomial entries, such as expansion by minors[8], Gaussian elimination over the integers[9, 10],

computing the characteristic polynomial of a matrix[11], and the evaluation and interpolation

method[5�7]. The first three algorithms belong to symbolic computations. As is well known,

symbolic computations are principally exact and stable. However, they have the disadvantage

of intermediate expression swell. The last one is the interpolation method, which as an e�cient

numerical method has been widely used to compute resultants and determinants. In fact, it is

not approximate numerical computations but big number computations, which are also exact

computations and only improve intermediate expression swell problem. Furthermore, Chen, et

al.[12] presented new conditioners to reduce matrix problems to the computation of minimum

polynomials on linear algebra problems over finite fields. Therefore, it is particularly suited to

the handling of large sparse or structured matrices over finite fields. In this paper, we propose

an e�cient approximate interpolation approach to remedy these drawbacks.

Hybrid symbolic-numerical computation is a novel method for solving large scale problems,

which applies both numerical and symbolic methods in its algorithms and provides a new per-

spective of them. The approximate interpolation methods are still used to get the approximate

results[13]. In order to obtain exact results, one usually applies exact interpolation methods to

improve the intermediate expression swell problem arising from symbolic computations[5–7, 13].

Although the underlying floating-point methods in principle allow for numerical approximations

of arbitrary precision, the computed results will never be exact. Recently, the exact computa-

tion by intermediate of floating-point arithmetic in symbolic computations has been an active

area of research[14�18]. The nice feature of the work is as follows: The initial status and final

results are accurate, whereas the intermediate of computation is approximate. The aim of this

paper is to provide a rigorous and e�cient algorithm to compute symbolic determinants by

approximate interpolation. In this paper, we restrict our study to a non-singular square matrix

with polynomial entries and the coe�cients of polynomial over the integers.

Our main contributions in this paper are the following: Based on the Chio’s expansion

technique, we construct the degree matrix for estimating the degree of variables in a matrix

with the univariate and multivariate polynomial entries, and propose the degree homomorphism

method for dimension reduction. We also give the Newton’s interpolation method with error

control for solving Vandermonde systems. The parallelization of the method arises naturally.

Moreover, a real application example is presented.

The rest of this paper is organized as follows. Section 2 first constructs the degree matrix

of symbolic determinant on variables and gives Theorem 2.5 to estimate the upper bounds de-

gree of variables, and then analyzes the error controlling for solving Vandermonde systems of

equations by Newton’s interpolation method, finally proposes the reducing dimension method

based on degree homomorphism. Section 3 proposes a novel approach for estimating the upper

bound on degree of variables in symbolic determinant, and then presents algorithms of dimen-

sion reduction and lifting variables and gives a detailed example. Section 4 gives a practical

application and some experimental results. Section 5 makes conclusions.
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2 Preliminary Results

Throughout this paper, Z and R denote the set of the integers and reals, respectively. There

are v variables named xi, for i = 1 to v. Denote the highest degree of each xi by di. Denoted

by �m,n(F) the set of all m by n matrices over field F = R, and abbreviate �n,n(F) to �n(F).

2.1 Estimating Degree of Variables

In this subsection, a brief description to Chio’s expansion is proposed. We also give Theo-

rem 2.5 for estimating the upper bound on degree of variables in symbolic determinant.

Lemma 2.1 (see [19]) Let A = [aij ] be an n ⇥ n matrix and suppose a11 6= 0. Let K

denote the matrix obtained by replacing each element aij in A by

������

a11 a1j

ai1 aij

������
.

Then |A| = |K|/a
n�2
11 . That is,

|A| =
1

a
n�2
11

������������������������

������
a11 a12

a21 a22

������

������
a11 a13

a21 a23

������
· · ·

������
a11 a1n

a21 a2n

������

������

a11 a12

a31 a32

������

������

a11 a13

a31 a33

������
· · ·

������

a11 a1n

a31 a3n

������
.
.
.

.

.

.
. . .

.

.

.������
a11 a12

an1 an2

������

������
a11 a13

an1 an3

������
· · ·

������
a11 a1n

an1 ann

������

������������������������

.

Remark 2.2 The proof of Lemma 2.1 is clear. Multiply each row of A by a11 except the

first, and then perform the elementary row operations, denote Op(2 � a21 · 1), Op(3 � a31 · 1),

· · · , Op(n � an1 · 1), where ‘1’, ‘2’, · · · , ‘n’ represent for the row index. We can get

a
n�1
11 |A| =

������������

a11 a12 · · · a1n

a11a21 a11a22 · · · a11a2n

...
...

. . .
...

a11an1 a11an2 · · · a11ann

������������

=

������������������

a11 a12 a13 · · · a1n

0

������
a11 a12

a21 a22

������

������
a11 a13

a21 a23

������
· · ·

������
a11 a1n

a21 a2n

������
...

...
...

. . .
...

0

������
a11 a12

an1 an2

������

������
a11 a13

an1 an3

������
· · ·

������
a11 a1n

an1 ann

������

������������������

= a11|K|.
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We observe that K is (n � 1) ⇥ (n � 1) matrix, then the above procedure can be repeated until

the K is 2⇥2 matrix. It is a simple and straightforward method for calculating the determinant

of a numerical matrix.

Lemma 2.3 Given two polynomials f(x1) and g(x1), the degree of the product of two

polynomials is the sum of their degrees, i.e.,

deg(f(x1) · g(x1), x1) = deg(f(x1), x1) + deg(g(x1), x1).

The degree of the sum (or di�erence) of two polynomials is equal to or less than the greater of

their degrees, i.e.,

deg(f(x1) ± g(x1), x1)  max{deg(f(x1), x1), deg(g(x1), x1)},

where f(x1) and g(x1) are the univariate polynomials over field F, and deg(f(x1), x1) represents

the highest degree of x1 in f(x1).

Definition 2.4 Let M = [Mij ] be an n ⇥ n matrix and suppose Mij is a polynomial

with integer coe�cients consisting of variables [x1, x2, · · · , xv], where the order of M is n � 2.

Without loss of generality, we call it the degree matrix �1 = (�ij) † for x1 defined as:

�ij =

8
<

:
highest degree of x1 appears in the element Mij , i.e., deg(Mij , x1),

0, if x1 does not occur in Mij .

Then we can construct the degree matrices �i from M for each xi, 2  i  v, respectively.

Theorem 2.5 M is the same as Definition 2.4. Suppose that the 2⇥ 2 degree matrix can

be obtained from M for each xi (1  i  v), denotes

�i =

�

� �
(n�2)
(n�1)(n�1) �

(n�2)
(n�1)n

�
(n�2)
n(n�1) �

(n�2)
nn

�

� ,

then

max deg = max
�

�
(n�2)
(n�1)(n�1) + �

(n�2)
nn , �

(n�2)
(n�1)n + �

(n�2)
n(n�1)

�
.

That is, the highest degree of variable is no more than

maxdeg �
nX

i=3

(i � 2)�(n�i)
(n�i+1)(n�i+1),

where �
(n�2)
(n�1)(n�1) = deg(M (n�2)

(n�1)(n�1), xi)‡
, M

(n�2)
(n�1)(n�1) refers to the following proof.

Proof Considering the order n of symbolic determinant

|M | =

������������

M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

. . .
...

Mn1 Mn2 · · · Mnn

������������

,

†�1,�2, · · · , �v denote the degree matrix of [x1, x2, · · · , xv], respectively.
‡�

(·)
ij is defined by the same way for the rest of this paper.
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by Chio’s expansion from Remark 2.2, then

|M | =
1

M
n�2
11

������������

M
(1)
22 M

(1)
23 · · · M

(1)
2n

M
(1)
32 M

(1)
33 · · · M

(1)
3n

...
...

. . .
...

M
(1)
n2 M

(1)
n3 · · · M

(1)
nn

������������
= · · ·

=
1

M
n�2
11

1

M
(1)
22

n�3 · · · 1

M
(n�3)
(n�2)(n�2)

������

M
(n�2)
(n�1)(n�1) M

(n�2)
(n�1)n

M
(n�2)
n(n�1) M

(n�2)
nn

������
,

where

M
(1)
22 = M11M22�M12M21, M

(1)
32 = M11M32�M12M31, · · · , M

(1)
nn = M11Mnn�M1nMn1.

By Lemma 2.3, for each xi, we can get

deg(|M |, xi)  max
�
�

(n�2)
(n�1)(n�1) + �

(n�2)
nn , �

(n�2)
(n�1)n + �

(n�2)
n(n�1)

�

�(n � 2)�11 � (n � 3)�(1)
22 � · · · � �

(n�3)
(n�2)(n�2)

= max deg �
nX

i=3

(i � 2)�(n�i)
(n�i+1)(n�i+1),

where

max deg = max
�

�
(n�2)
(n�1)(n�1) + �

(n�2)
nn , �

(n�2)
(n�1)n + �

(n�2)
n(n�1)

�
.

The proof of Theorem 2.5 is completed.

Remark 2.6 We present a direct method to estimate the upper bound on degrees of

variables by computation of the degree matrices. Our method only needs the simple recursive

arithmetic operations of addition and subtraction. In fact, in many cases, we can obtain the

exact degrees of all variables in symbolic determinant.

2.2 Newton’s Interpolation with Error Control

Let M be defined as above. Without loss of generality, we consider the determinant of a

matrix with bivariate polynomial entries, and then generalize the results to the univariate or

multivariate polynomial. A good introduction to the theory of interpolation can be seen in [20].

Definition 2.7 The Kronecker product of A = [ai,j ] 2 �m,n(F) and B = [bij ] 2 �p,q(F)

is denoted by A � B and is defined to the block matrix

A � B =

�

�������

a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

�

�������
2 Mmp,nq(F). (1)

Notice that A � B 6= B � A in general.
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Definition 2.8 With each matrix A = [aij ] 2 �m,n(F), we associate the vector vec(A) 2
Fmn defined by

vec(A) ⌘ [a11, a21, · · ·am1, a12, a22, · · · , am2, · · · , a1n, a2n, · · · , amn]T,

where T denotes the transpose of matrix or vector.

Let the determinant of M be f(x1, x2) =
P

i,j aijx
i
1x

j
2 that is a polynomial with integer

coe�cients, and d1, d2
§ be the bounds on the highest degree of f(x1, x2) with x1, x2, respectively.

We choose the distinct scalars (x1i, x2j) (i = 0, 1, · · · , d1; j = 0, 1, · · · , d2), and obtain the values

of f(x1, x2), denoted by fij 2 R (i = 0, 1, · · · , d1; j = 0, 1, · · · , d2). The set of monomials is

ordered as follows:

[1, x1, x
2
1, · · · , x

d1
1 ] ⇥ [1, x2, x

2
2, · · · , x

d2
2 ]

and the distinct scalars in the corresponding order is as follows:

[x10, x11, · · · , x1d1 ] ⇥ [x20, x21, · · · , x2d2 ].

Based on the bivariate interpolate polynomial technique, which is essential to solve the

following linear system:

(Vx1 � Vx2)vec(a) = vec(F ), (2)

where the coe�cients Vx1 and Vx2 are Vandermonde matrices:

Vx1 =

�

�������

1 x10 x
2
10 · · · x

d1
10

1 x11 x
2
11 · · · x

d1
11

...
...

...
. . .

...

1 x1d1 x
2
1d1

· · · x
1d1
d1

�

�������
, Vx2 =

�

�������

1 x20 x
2
20 · · · x

d2
20

1 x21 x
2
21 · · · x

d2
21

...
...

...
. . .

...

1 x2d2 x
2
2d2

· · · x
d2
2d2

�

�������
,

and

a =

�

�������

a00 a01 · · · a0d2

a10 a11 · · · a1d2

...
...

. . .
...

ad10 ad11 · · · ad1d2

�

�������
, F =

�

�������

f00 f01 · · · f0d2

f10 f11 · · · f1d2

...
...

. . .
...

fd10 fd11 · · · fd1d2

�

�������
.

Marco and Mart́ınez[5] have proved in this way that the interpolation problem has a unique

solution. This means that Vx1 and Vx2 are nonsingular and V = Vx1 � Vx2 , then the coe�cient

matrix of the linear system (2) is nonsingular. The following lemma shows us how to solve the

system (2).

Lemma 2.9 (see [21]) Let F denote a field. Matrices A 2 �m,n(F), B 2 �q,p(F), and

C 2 �m,q(F) are given and assume X 2 �n,p(F) to be unknown. Then, the following equation:

(B � A)vec(X) = vec(C) (3)

§d1, d2 are defined by the same way for the rest of this paper.



514 QIN XIAOLIN, et al.

is equivalent to matrix equation:

AXB
T = C. (4)

Obviously, Equation (4) is equivalent to the system of equations
8
<

:
AY = C,

BX
T = Y

T
.

(5)

We notice that the coe�cients of System (2) are Vandermonde matrices. Here we give a

progressive algorithm, which is significantly more e�cient than previous available methods in

O(d2
1) arithmetic operations by the Newton’s interpolation method[22] in Algorithm 1.

Algorithm 1 (Björck and Pereyra algorithm)

Input: A set of distinct scalars (xi, fi), 0  i  d1;

Output: The solution of coe�cients a0, a1, · · · , ad1 .

Step 1: c
(0)
i := fi, i = 0, 1, · · · , d1

for k = 0 to d1 � 1 do

c
(k+1)
i :=

c(k)
i �c(k)

i�1

xi�xi�k�1
, i = d1, d1 � 1, · · · , k + 1

end for

Step 2: a
(d1)
i := c

(d1)
i , i = 0, 1, · · · , d1

for k = d1 � 1 to 0 by �1 do

a
(k)
i := a

(k+1)
i � xka

(k+1)
i+1 , i = k, k + 1, · · · , d1 � 1

end for

Step 3: Return ai := a
(0)
i , i = 0, 1, · · · , d1.

In general, we can compute the equation (2) after choosing d1+1 distinct scalars [x10, x11, · · · ,

x1d1 ] and d2 + 1 distinct scalars [x20, x21, · · · , x2d2 ], then obtain their corresponding exact

values [f00, f01, · · · , f0d2 , · · · , f10, f11, · · · , f1d2 , · · · , fd10, fd11, · · · , fd1d2 ]. However, in order to

improve intermediate expression swell problem arising from symbolic computations and avoid

big integer computation, we can get the approximate values of f(x1, x2), denoted by [ �f00,
�f01,

· · · , �f0d2 ,
�f10,

�f11, · · · , �f1d2 ,
�fd10,

�fd11, · · · , �fd1d2 ].

Based on Algorithm 1, together with Lemma 2.9 we can obtain the approximate solution

�a = [�aij ] (i = 0, 1, · · · , d1; j = 0, 1, · · · , d2). Therefore, an approximate bivariate polynomial
�f(x1, x2) =

P
i,j �aijx

i
1x

j
2 is only produced. However, we usually need the exact results in

practice. Next, our main task is to bound the error between approximate coe�cients and exact

values, and discuss the controlling error � in Algorithm 1. Feng, et al.[16] gave a preliminary

result of this problem. Here, we present a necessary condition on error controlling � in floating-

point arithmetic. In Step 1 of Algorithm 1, it is the standard method for evaluating divided

di↵erences (c(k)
k = f [x0, x1, · · · , xk]). We consider the relation on the fij � �fij with aij � �aij

and the propagation of rounding errors in divided di↵erence schemes. We have the following

theorem to answer the above question.
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Lemma 2.10 ci and fi are defined as in Algorithm 1, and �ci,
�fi are their approximate

values by approximate interpolation, � = min{|x1i � x1j | : i 6= j} (0 < � < 1). Then

|ci � �ci| 
⇣ 2

�

⌘d1

max{|fi � �fi|}.

Proof From Algorithm 1, we observe that Step 1 is recurrences for c
(k+1)
i (k = 0, 1, · · · , d1�

1, i = d1, d1 � 1, · · · , k + 1), whose form is as follows:

c
(d1)
i =

1

�
(c(d1�1)

i � c
(d1�1)
i�1 ).

However, when we operate the floating-point arithmetic in Algorithm 1, which is recurrences

for �c(k+1)
i , which form is as follows:

�c(d1)
i =

1

�
(�c(d1�1)

i � �c(d1�1)
i�1 ).

Therefore,

|c(d1)
i � �c(d1)

i | =
1

�
|c(d1�1)

i � �c(d1�1)
i + �c(d1�1)

i�1 � c
(d1�1)
i�1 |

 1

�
(|c(d1�1)

i � �c(d1�1)
i | + |c(d1�1)

i�1 � �c(d1�1)
i�1 |).

The bounds are defined by the following recurrences,

|c(d1)
i � �c(d1)

i |  2

�
|c(d1�1)

i�1 � �c(d1�1)
i�1 |  · · · 

⇣ 2

�

⌘d1

max{|fi � �fi|}.

This completes the proof of the lemma.

Theorem 2.11 Let � = max{|fij � �fij |}, � = min{|x1i � x1j |, |x2i � x2j | : i 6= j} (0 <

� < 1). Then

max{|aij � �aij |} 
⇣ 2

�

⌘d1
⇣ 2

�

⌘d2

�.

Proof From Equation (2), it holds that

V · vec(�a � a) = vec( �F � F ),

where V = Vx1 �Vx2 . By Lemma 2.9, the above equation is equivalent to the following equation:

Vx2 · (�a � a) · V
T
x1

= �F � F.

Thus, it is equivalent to

Vx2 · z = �F � F, (6a)

Vx1 · (�a � a)T = z
T
, (6b)

where z = [zij ]. Matrix equation (6a) is equivalent to

Vx2 · z.i = �Fi. � Fi., i = 1, 2, · · ·d2 + 1, (7)
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where z.i stands for the i-th column of z and Fi. stands for the i-th row of matrix F .

From Lemma 2.10 and Algorithm 1, it holds that

d2
max
j=0

|zji| <

⇣ 2

�

⌘d2

|fi· � �fi·|, for each i.

Hence, we conclude that

max
i,j

|zji| <

⇣ 2

�

⌘d2

|fi· � �fi·|.

Let � = ( 2
�)d2 |fi· � �fi·|, argue Equation (6b) in the same technique as do above, we deduce

that

max
i,j

|aij � �aij | 
⇣ 2

�

⌘d1
⇣ 2

�

⌘d2

�.

The proof is finished.

In order to avoid the di�culty of computations, we restrict our study to the coe�cients of

polynomial over Z. Therefore, we only require to solving the Vandermonde system and taking

the nearest integer to each component of the solution. The less degree of bounds on variables

we obtain, the less the amount of computation is for obtaining approximate multivariate poly-

nomial. Once an upper bound d1 and d2 are gotten, we choose (d1 + 1) · (d2 + 1) interpolate

nodes and calculate

� = 0.5
⇣

�

2

⌘d1+d2

. (8)

Then, compute the values �fij � f(x1i, x2j) for i = 0, 1, · · · , d1, j = 0, 1, · · · , d2 with an error

less than �. By interpolation method, we compute the approximate interpolation polynomial
�f(x1, x2) with coe�cient error less than 0.5.

As for the generalization of the algorithm to the case v > 2, we can say that the situation

is completely analogous to the bivariate case. It comes down to solving the following system:

(Vx1 � Vx2 · · · � Vxv )� �� �
v

vec(a) = vec(F ). (9)

Of course, we can reduce the multivariate polynomial entries to bivariate ones on symbolic

determinant. For more details refer to Subsection 2.3.

We can analyze the computational complexity of the derivation of above algorithm. For the

analysis of floating-point arithmetic operations, the result is similar with the exact interpolation

situation[5]. However, our method can enable the practical processing of symbolic computations

in applications.

Remark 2.12 Our result is superior to the literature[16]. Here we make full use of ad-

vantage of arbitrary precision of floating-point arithmetic operations on modern computer and

symbolic computation platform, such as Maple. In general, it seems as if at least some prob-

lems connected with Vandermonde systems, which traditionally have been considered too ill-

conditioned to be attached, actually can be solved with good precision.
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2.3 Reducing Dimension Method

As the variables increased, the storage of computations expands severely when calculated

high order on symbolic determinant. Moenck[23] proposed a practical method to map the

multivariate problem into a univariate one. For the general case, the validity of the method is

established by the following lemma.

Lemma 2.13 (see [23]) In the polynomial ring R[x1, x2, · · · , xv], v > 2. The mapping:

� : R[x1, x2, · · · , xv] ! R[x1],

� : xi �! x
ni
1 , 1  i  v,

where nv > nv�1 > · · · > n1 = 1 is a homomorphism of rings.

Let di(f(x1, x2, · · · , xv)) be the highest degree of the polynomial f(x1, x2, · · · , xv) with xi.

The following lemma relates the ni of the mapping to di and establishes the validity of the

inverse mapping.

Lemma 2.14 (see [23]) Let � be the homomorphism of free R-modules defined by:

� : R[x1] ! R[x1, x2, · · · , xv],

� : x
k
1 �!

8
<

:
1, if k = 0,

�(xr
1) · xq

i , otherwise,

where ni+1 > k � ni, k = q · ni + r, 0  r < ni and nv > nv�1 > · · · > n1 = 1. Then for all

f(x1, x2, · · · , xv) 2 R[x1, x2, · · · , xv], �(�(f)) = f , and for all i if and only if

iX

j=1

dj(f)nj < ni+1, 1  i < v. (10)

Remark 2.15 We apply the degree homomorphism method to reduce dimension for com-

puting the determinant of a matrix with multivariate polynomial entries, which is distinguished

from the practical fast polynomial multiplication[23]. We note that relation (10) satisfying is

isomorphic to their univariate images. Therefore, any polynomial ring operation on entries of

symbolic determinant, giving results in the determinant, will be preserved by the isomorphism.

In this sense � behaves like a ring isomorphism on the symbolic determinant of polynomials.

Another way to view the mapping given in the theorems is

� : xi �! x
ni
i�1, 2  i  v.

3 Derivation of the Algorithm

Following our preliminary results in Section 2, the aim of this section is to describe a

novel algorithm for estimating the degree of variables on symbolic determinant, and the degree

homomorphism method for dimension reduction.
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3.1 Description of Algorithm

Algorithm 2 is to estimate the degree of variables on symbolic determinant by computation

of the degree matrix, and Algorithms 3 and 4 are applied to reduce dimension and lift variables.

Algorithm 2 (Estimating degree of variables algorithm)

Input: Given the order n of symbolic determinant M , list of variables vars = [x1, x2, · · · , xv];

Output: The exact degrees or upper bounds on degree of variables.

Step 1: Select variable from vars and repeat the following steps

1: loop

2: Obtain the degree matrix � = (�ij) from M by Definition 2.4, 1  i, j  n;

3: if order(�)=2 then

4: maxdeg := max{�11 + �22, �12 + �21}
5: else

6: for i = 1 to n � 1 do

7: for j = 1 to n � 1 do

8: temp := �i1 + �1j

9: �ij := max{�ij + �11, temp}
10: end for

11: end for

12: end if

13: for i = 1 to n � 2 do

14: maxdeg := maxdeg � �11

15: end for

15: Return maxdeg

16: end loop

Theorem 3.1 Algorithm 2 works correctly as specified and its complexity is O(n2), where

n is the order of symbolic determinant.

Proof Correctness of the algorithm follows from Theorem 2.5. The number of arithmetic

operations needs to execute (n � 1) ⇥ (n � 1) additions and simultaneous comparisons, and

remains n � 2 substructions and one comparison by using degree matrix. Therefore, the total

arithmetic operations are n
2 � n, that is, O(n2).
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Algorithm 3 (Reducing dimension algorithm)

Input: Given the order n of symbolic determinant M , list of variables vars = [x1, x2, · · · , xv];

Output: The order n of symbolic determinant M
� with bivariate polynomial entries.

Step 1: Call Algorithm 2 to evaluate the bounds on degree of the variables in M , denoted

by di, 1  i  v.

Step 2: Reducing dimension

1: Divide the vars into the partitions: [x1, x2, · · · , xt], [xt+1, xt+2, · · · , xv];

2: for i = t � 1 to 1 by �1 do

3: Di :=
�t

j=i+1(dj + 1), xi := x
Di
t

4: end for

5: for i = v � 1 to t + 1 by �1 do

6: Di :=
�v

j=i+1(dj + 1), xi := x
Di
v

7: end for

Step 3: Obtain the symbolic determinant M
� with [xt, xv] of polynomial entries.

Step 4: Return M
�.

Remark 3.2 The beauty of reducing dimension algorithm is a substitution trick. In

Algorithm 3, t = ceil(n
2 ), where ceil(·) is a function that returns the smallest following integer.

We note that the lexicographic order xv � xv�1 � · · · � x1 and divide the [x1, x2, · · · , xv] into

two parts. Then the symbolic determinant can be translated into the entries with bivariate

polynomial. The reducing dimension algorithm can be used for highly parallel computation

when the number of variables is more than three.

Remark 3.3 Based on Algorithm 2, we can estimate the bounds on degree of variables.

Then we can reduce dimension for multivariate case to bivariate one by using Algorithm 3.

We can solve the Vandermonde coe�cient matrix of linear equations with error controlling by

using Algorithm 1, and finally lift variables to recover the multivariate polynomial by using

Algorithm 4.

In this paper, we consider the general symbolic determinant, which is not sparse. Applying

the substitutions to the matrix entries as described above and assuming the monomial exists

in the determinant then the bivariate form of unknown polynomial is a highest degree of

D =

ceil( n
2 )X

i=1

�
di ·

ceil( n
2 )�

k=i+1

(dk + 1)

�
. (11)

While this upper bound on degree of variable is often much larger than needed, which is the

worst case and thus is suitable to all cases.
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Algorithm 4 (Lifting variables algorithm)

Input: Given the set of monomial with [xt, xv] in L;

Output: The determinant of a matrix with [x1, x2, · · · , xv] of polynomial entries.

Step 1: Obtain the corresponding power set with [xt, xv], respectively.

Step 2: Lifting variables

1: Call Algorithm 3, extract the power Di, 1  i  t � 1, t + 1  i  v � 1;

2: while nops(L)6= NULL do

3: temp := deg(xt)

4: for i = 1 to t � 1 by 1 do

5: di := iquo(temp, Di), temp := irem(temp, Di)

6: end for

7: di := temp, temp := deg(xv)

8: for i = t + 1 to v � 1 by 1 do

9: di := iquo(temp, Di), temp := irem(temp, Di)

10: end for

11: di := temp

12: end while

Step 3: Obtain the new set of monomial L
� with [x1, x2, · · · , xv]c;

Step 4: Return L
�.

3.2 A Small Example in Detail

Example 3.4 For convenience and space-saving purposes, we choose the symbolic deter-

minant is three variables and order 2 as follows:

|M | =

������

5x
2
1 � 3x1x2 + 2x

2
3 �9x1 � 3x

2
2 � x

2
3

�x1 + x2 + 3x2x3 x3 � 4x
2
2

������
,

At first, based on Algorithm 2 we estimate the degree on x1, x2, x3. For the variable x1, we get

�1 =

�

� 2 1

1 0

�

� .

Then

max{2 + 0, 1 + 1} = 2.

Therefore, the maximum degree of the variable x1 is 2. As the same technique for x2, x3, we

can get 3 and 3.

Call Algorithm 3, by substituting x1 = x
4
2, we get

|M �| =

������
5x

8
2 � 3x

5
2 + 2x

2
3 �9x

4
2 � 3x

2
2 � x

2
3

�x
4
2 + x2 + 3x2x3 x3 � 4x

2
2

������
.
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Then, based on Algorithm 2 we again estimate the degree on x2, x3 for [10, 3].

Based on the derivation of algorithm in Subsection 3.1 and Algorithm 1, computing exact

polynomial f(x2, x3) as follows: Choose the di↵erent floating-point interpolation nodes by using

the distance between two points 0.5; � = 0.5, compute � = 0.745 ⇥ 10�8 from Theorem 2.11.

Compute the approximate interpolate datum �fij such that |fij � �fij| < �. We get the following

approximate bivariate polynomial:

4.99995826234x
8
2x3 � 20.0000018736x

10
2 + 24.0010598569x

5
2x3 + 12.0025760656x

7
2

+2.00000000000x
3
3 � 8.00094828634x

2
2x

2
3 � 9.00045331720x

8
2 + 9.01977448800x

5
2

�3.00897542075x
6
2 + 3.02270681750x

3
2 + 9.00076124850x

3
2x3 � 1.00207248277x

4
2x

2
3

+1.00018098282x2x
2
3 + 2.99986559933x2x

3
3.

Next, based on Algorithm 4 we lift the variables to obtain the following multivariate polynomial:

4.99995826234x
2
1x3 � 20.0000018736x

2
2x

2
1 + 24.0010598569x1x2x3 + 12.0025760656x

3
2x1

+2.00000000000x
3
3 � 8.00094828634x

2
2x

2
3 � 9.00045331720x

2
1 + 9.01977448800x1x2

�3.00897542075x
2
2x1 + 3.02270681750x

3
2 + 9.00076124850x

3
2x3 � 1.00207248277x1x

2
3

+1.00018098282x2x
2
3 + 2.99986559933x2x

3
3.

Finally, we easily recover the integer coe�cients of above approximate polynomial to the nearest

values as follows:

5x
2
1x3 � 20x

2
1x

2
2 + 24x1x2x3 + 12x1x

3
2 + 2x

3
3 � 8x

2
3x

2
2

�9x
2
1 + 9x1x2 � 3x

2
2x1 + 3x

3
2 + 9x

3
2x3 � x

2
3x1 + x

2
3x2 + 3x

3
3x2.

4 Experimental Results

Our algorithms are implemented in Maple 15. Example 4.1 is a practical application to

selective harmonic elimination in power electronics. In Figures 2 and 3, we present the running

time (Time) and memory usage (RAM) of computing for symbolic determinants to compare

our method with symbolic method (det, see Maple’s help), and exact interpolation method[5–7].

The following examples run in the same platform of Maple 15 under Windows and amd Athlon

(tm) 2.70 Ghz, 2.00 GB of main memory.

Example 4.1 Consider a practical switching angles in a multilevel converter example

from [24], see Figure 1.

In Figure 1, the Fourier series expansion of the output voltage waveform is as follows:

V (!t) =
4Vdc

�

1X

n=1,3,5,···

1

n
⇥ (cos(n�1) + cos(n�2) + · · · + cos(n�s)) sin(n!t), (12)

where s is the number of dc sources. The goal is to choose the switching angles 0  �1 < �2 <

· · · < �s  �/2 so as to make the first harmonic equal to the given desired fundamental voltage
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V1 and the specific higher harmonics of V (!t) equal to zero. In particular, in the case of s = 5

dc sources, the mathematical statement of Equation (12) for a three-phase system is

4Vdc

�
(cos(�1) + cos(�2) + · · · + cos(�5)) = V1,

cos(5�1) + cos(5�2) + · · · + cos(5�5) = 0,

cos(7�1) + cos(7�2) + · · · + cos(7�5) = 0,

cos(11�1) + cos(11�2) + · · · + cos(11�5) = 0,

cos(13�1) + cos(13�2) + · · · + cos(13�5) = 0.

�
>>>>>>>>>�

>>>>>>>>>�

(13)

Here, it is a system of five transcendental equations in the five unknowns [�1, �2, · · · , �5]. The

goal is to determine when the equations of (13) have a solution. Since a Chebyshev expansion

is related to a Fourier cosine series, define xi = cos �i (i = 1, 2, · · · , 5), we can transform the

equations (13) into the nonlinear polynomial systems as follows:

f1 =
5X

i=1

(xi) � V1/(4Vdc/�),

f2 =
5X

i=1

(16x
5
i � 20x

3
i + 5xi),

f3 =
5X

i=1

(64x
7
i � 112x

5
i + 56x

3
i � 7xi),

f4 =
5X

i=1

(1024x
11
i � 2816x

9
i + 2816x

7
i � 1232x

5
i + 220x

3
i � 11xi),

f5 =
5X

i=1

(�364x
3
i + 2912x

5
i + 13xi � 9984x

7
i � 13312x

11
i + 16640x

9
i + 4096x

13
i ),

�
>>>>>>>>>>>>>>>>>>>>>>�

>>>>>>>>>>>>>>>>>>>>>>�

(14)

where m = V1/(4Vdc/�). Following the approach described in [24], the system of Equations (14)

is symmetric polynomials. For five variables, define the elementary symmetric polynomials as

follows:

s1 =
X

1�i�5

xi, s2 =
X

1�i<j�5

xixj , s3 =
X

1�i<j<k�5

xixjxk, · · · , s5 =
5�

i=1

xi. (15)

Therefore, we can rewrite the system of Equation (14) as new expressions with s1, s2, · · · , s5,

the information of which is in Table 1.
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Figure 1 Output waveform of an 11-level cascade multilevel inverter

Table 1 The basic information of the system of equations

equation variable term
degree

deg s1 deg s2 deg s3 deg s4 deg s5

f1 s1, m 2 1 0 0 0 0

f2 s1, s2, · · · , s5 11 5 2 1 1 1

f3 s1, s2, · · · , s5 24 7 3 2 1 1

f4 s1, s2, · · · , s5 84 11 5 3 2 2

f5 s1, s2, · · · , s5 141 13 6 4 3 2

Since the system of Equation (14) has the specific structure f1 = s1 � m, we can replace

s1 with m. From Table 2, we can get much less than the highest degrees of original system

of Equation (14). Here we apply a novel Dixon resultant elimination method to compute the

new system of polynomials with s1, s2, · · · , s5. First, we can get five Dixon resultant matrices

from [25] in Table 2. Following our Algorithms 2, 3 and 4, we obtain the results of Dixon

resultant matrices in Table 2.

Table 2 The results of matrices with polynomial entries

eliminated variable univariate polynomial Dixon resultant matrix
results

degree term

s3, s4, s5 s2 18 � 18 17 512

s2, s4, s5 s3 25 � 25 11 398

s2, s3, s5 s4 35 � 35 9 507

s2, s3, s4 s5 42 � 42 9 464

Remark 4.2 Our result is consistent with the existing method, which of result is using

the Sylvester resultant[24]. However, we only need to compute the elimination procedure once.
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The existing approach needs 6 times to obtain the same result. In general, we can know that

the time of elimination procedure is C
2
n from the system of multivariate polynomial equations

to a univariate polynomial based on Sylvester resultant, where n is the number of equations.

In Figure 2, we compare the running time of our method with that of two other algorithms.

In Figure 3, we compare the memory consumption of our method with that of two other

algorithms, where the order of x-coordinate represents for the order of symbolic determinants.
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Figure 2 Computing time for symbolic determinant with di�erent algorithms
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Figure 3 Computing memory for symbolic determinant with di�erent algorithms

From Figures 2 and 3, we have the observations as follows:

1) In general, the Time and RAM of algorithm det are reasonable when the order is less

than nine, and two indicators increase very rapidly when the order is to nine. However, two

indicators of interpolation algorithm is steady growth.

2) Compared with the exact interpolation method, the approximate interpolation algorithm

has the obvious advantages on the Time and RAM when the order is more than eight.
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Remark 4.3 All examples are randomly generated using the command of Maple. The

symbolic method has the advantage of the low order or sparse symbolic determinants, such

as expansion by minors, Gaussian elimination over the integers. However, a purely symbolic

algorithm is powerless for many scientific computing problems, such as resultants computing,

Jacobian determinants and some practical engineering always involving high-order symbolic de-

terminants. Therefore, it is necessary to introduce numerical methods to improve intermediate

expression swell problem arising from symbolic computations.

5 Conclusions

In this paper, we propose a hybrid symbolic-numerical method to compute the symbolic

determinants. Meanwhile, we also present a novel approach for estimating the bounds on degree

of variables by the extended numerical determinant technique, and introduce the reducing

dimension algorithm. Combined with these methods, our algorithm is more e�cient than exact

interpolation algorithm for computing the high order symbolic determinants. It can be applied

in scientific computing and engineering fields, such as computing Jacobian determinants in

particular. Thus we can take fully advantage of approximate methods to solve large scale

symbolic computation problems.
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Abstract We address the problem of factoring a large RSA modulus N = pq with
p and q sharing a portion of bits in the middle. New polynomial time algorithms for
computing the prime decomposition of N under certain conditions are presented. As
an application, several attacks against RSA system using this class of moduli with
low public exponent are described. Our results suggest that such integers are not
appropriate for cryptographic purposes.
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1 Introduction

Factoring integers is a major issue in number theory and cryptography. The security of
many cryptosystems such as RSA [16] is based on its presumed intractability. Fermat
factoring method, see e.g. [7], is efficient when the integer is a product of two primes
that are close to one another. In 1931, the continued fractionmethod [9]was discovered.
Some decades later, J. Pollard published the p − 1 [12] and ρ [13] algorithms. The
success of the former hinges on p − 1 having small factors for some prime divisor
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p of N . The latter applies a cycle finding process. With the advent of public key
cryptography, integer factorization problem receives much research interest. This has
leaded to more developed techniques such as the quadratic sieve [14] and the elliptic
curve factoring algorithm [11]. Themost sophisticatedmethod up to date is the general
number field sieve [10, p. 103]. It was conceived by J. Pollard and allows to factor
integers with more than 110 digits.

There are several results about integer factorization when given extra information
about the prime factors. In 1985, Rivest and Shamir [15] proved that for an RSA

modulus N = pq, the knowledge of
1
3
log N of the bits of p or q enables us to factor

N . Later, Coppermsith ameliorates the result to
1
4
log N in 1997 [6]. To achieve this

purpose, he applied a lattice based method to find small roots of bivariate integer
polynomials. Boneh, Durfee and Frankel [5] showed, that for a short public exponent
RSA, only a quarter of the bits of the secret key d suffices to reconstruct the whole
value of d, and thus to factor the public modulus. They obtained similar results for
larger values of e as well, under some conditions.

It is well known that one can factor N = pq in an almost instantaneous time by
using Fermat’s method, see e.g. [7], provided that the primes p and q share a sufficient

amount ofmost significant bits, namely
1
4
log N . Furthermore, in [7], the author proved

that a modulus with a small difference of its factors is unsafe in an RSA system using
short private keys. The security of an RSA system with primes sharing low-order bits
was investigated in [17] and [18]. In [18], the authors proposed an efficient method
to recover the prime decomposition of N when p and q have in common more that
1
4
log N least significant bits. The paper extended the partial key exposure attacks

initially presented in [5]. Some improvements of the attacks depicted in [17] and [18]
were given in [20]. In [22], it was shown that such RSA protocol with small private
exponent is more vulnerable to the lattice based attack of Boneh–Durfee [2,3], than the
original RSA scheme. The Boneh–Durfee’s work [2,3], has ameliorated the Wiener’s
continued fraction technique [21] published in 1990. The results of [22] were further
improved in [19].

Our work is devoted to the factorization of RSA moduli N = pq when the primes
p and q share bits in the middle. To the best of our knowledge, this class of integers has
never been studied before. We present new algorithms for factoring N under certain
conditions. In particular, our results improve the Coppersmith’s “factoring with a hint”
[6] and Fermat method, see e.g. [7], for this kind of integers. Furthermore, new attacks
against RSA system using such moduli with low public exponent are described.

The paper is organized as follows. In Sect. 2, we give our main results. In Sect. 3,
we study the security of an RSA system with the new class of moduli. Finally, we
conclude in Sect. 4.

Throughout the sequel,N andZ are the sets of natural numbers and integers respec-
tively, and N∗ = N− {0}. For integers a, b and c, we write a ≡ b (mod c) if c divides
the difference a − b, and a = b mod c if a is the remainder in the division of b
by c. We denote by φ(.) the Euler phi function. Let n be a natural number. Then,
Zn = {0, 1, 2, . . . , n − 1}. Moreover, Z∗

n is the set of all the elements of Zn that are
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invertible modulo n. If x is a real number, then $x% and &x' are respectively the floor
and the ceiling of x . All the logarithms should be interpreted as logarithms to the
base 2.

We start by showing how to factor N = pq when p and q share some bits in the
middle.

2 Factoring the RSA modulus

In this section, we establish sufficient conditions for factoring a large RSA modulus
N = pq when the primes p and q share bits in the middle. But first, we need some
necessary preliminaries. In particular, we provide tools for solving modular equations
of the form x2 ≡ a (mod 2t ) where a and t are given integers and x is the unknown
variable. When a is odd, the next lemma holds:

Lemma 1 ([1, p. 192]) Let t ≥ 3 be a natural number.

(a) Element a is a square modulo 2t if and only if a ≡ 1 (mod 8).
(b) If x2 ≡ a (mod 2t ), then the square roots of a modulo 2t are ±x,±x + 2t−1.
(c) A square root of a modulo 2t can be computed in O(t2) bit operations.

Proof See [1, Ex. 7.9.38, p. 192]. )*
When a is even, the equation x2 ≡ a (mod 2t )was studied in [18], and the authors

proved the following assertions:

Lemma 2 ([18]) The set of solutions inZ2t to the modular equation x2 ≡ a (mod 2t )
is summarised as follows. Let a = 2αb where b is an odd integer and α ∈ N∗.

(a) If t ≤ α, there are 2$ t
2 % solutions x ≡ 0 (mod 2& t

2 ').
(b) If t > α, there are no solutions if α is odd, and three subcases if α is even.

(b.1) If t = α + 1, there are 2
α
2 solutions x ≡ 2

α
2 (mod 2

α
2+1).

(b.2) If t = α+2, there are 2
α
2+1 solutions x ≡ ±2

α
2 (mod 2

α
2+2) if b ≡ 1 (mod 4)

and none if not.
(b.3) If t ≥ α + 3, there are 2

α
2+2 solutions of the form x ≡ 2

α
2 (±s + δ.2t−α−1)

(mod 2t−
α
2 ) with δ ∈ {0, 1} if b ≡ 1 (mod 8), and no solutions if b -≡ 1

(mod 8). Here s is any solution to x2 ≡ b (mod 2t−α).

Proof See [18]. )*
Coppersmith [6], using a lattice based method, proved that it is possible to factor

an RSA modulus N = pq when
1
4
log N least or most significant bits of one of its

prime divisors are revealed.

Theorem 1 ([6]) In polynomial time, we can find the factorization of N = pq, where

p and q are primes of the same bit-size, if we know the low or high-order
1
4
log N bits

of p.

Proof See [6]. )*
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From now on, we denote by T1(N ) the polynomial running time indicated in Theo-
rem 1. Assume that p and q have the same bits in the middle. In our following lemma,
we show that it is possible to compute the least significant bits of the prime factors of
N when given access to an oracle that outputs a part of |p − q|.

Lemma 3 Let N = pq be an RSA modulus where p and q share bits from position t1
to t2, for given t1 and t2. We denote by α the multiplicity of 2 in p + q. If there exists
an oracle that outputs |p − q| mod 2t1 , then there exist O(2min(α−1, t22 )) candidates
for the t2 least significant bits of p, and each one of them can be computed in time
O((log N )2).

Proof As the primes p and q share bits from position t1 to t2, they are expressed as
p = p22t2 + r2t1 + p0 and q = q22t2 + r2t1 + q0. Reducing N = pq modulo 2t2 , it
follows that N ≡ (r2t1 + p0)(r2t1 +q0) (mod 2t2). This entails N ≡ (r2t1)2+ (p0+
q0)r2t1 + p0q0 (mod 2t2). By completing the square, we get

(
r2t1 + p0 + q0

2

)2

≡

N +
(
p0 − q0

2

)2

(mod 2t2). Both p0 and q0 are odd integers, so the quantities

p0 ± q0
2

are well defined. Without loss of generality, assume that q0 < p0. As p

mod 2t2 = r2t1 + p0 < 2t2 , we obtain r2t1 + p0 + q0
2

< 2t2 . We are given |p − q|

mod 2t1 . So, we can determine |p0 − q0|. Set X = r2t1 + p0 + q0
2

. Therefore, X is a

square root of a = N +
(
p0 − q0

2

)2

modulo 2t2 .

We first handle the case when N ≡ 1 (mod 4). Clearly, p ≡ q (mod 4). Using

the fact that
(
p + q
2

)2

≡ a (mod 2t2), we deduce that a is odd. By b) and c) of

Lemma 1, there are four square roots of a modulo 2t2 , and they can be computed in
time O((log N )2). One of them equals X modulo 2t2 . Inequality p0, q0 < 2t1 leads
to p0 + q0 = 2(X mod 2t1). Moreover, we know the difference p0 − q0, so we are

able to determine p0 and q0. On another hand, X = r2t1 + p0 + q0
2

, so it is possible

to recover the value of r . We compute r2t1 + p0 which reveals the t2 least significant
bits of p.

Suppose now that N ≡ 3 (mod 4). It is not difficult to see that a = N +
(
p0 − q0

2

)2

is even.Write p+q = s2α where s is an odd integer andα ∈ N∗. Since
(
p + q
2

)2

≡ a

(mod 2t2), if 2(α − 1) ≥ t2, then N +
(
p0 − q0

2

)2

≡ 0 (mod 2t2). By a) of Lemma

2, X ≡ 0 (mod 2& t2
2 '). There are $ t2

2
% missing bits of X . Hence, we have 2$ t2

2 %

candidates for X .
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When 2(α − 1) < t2, we use part b) of Lemma 2 to compute the square roots

of N +
(
p0 − q0

2

)2

modulo 2t2 . If t2 = 2α − 1 or t2 = 2α, then there are 2α−1

or 2α possible values of X respectively. Otherwise, there are at most four candidates

for λ, that can be computed in time O((log N )2), such that r2t1 + p0 + q0
2

≡ λ

(mod 2t2−(α−1)). It remains to find α − 1 bits. So, we have 2α+1 candidates for X .
The knowledge of X enables us to compute p0 and r . Thus, the t2 least significant bits
of p are obtained from r2t1 + p0. )*

From Lemma 3, we prove the following theorem:

Theorem 2 Let N = pq be an RSA modulus where p and q are primes of the same

bit-size. Assume that p and q share bits from position t1 to t2 such that t2 ≥ 1
4
log N,

for given t1 and t2. We denote by α the multiplicity of 2 in p + q. If there exists
an oracle that outputs |p − q| mod 2t1 , then we can factor N in time T2(N ) =
O(2min(α−1, t22 )(T1(N )+ (log N )2)).

Proof We set l = p mod 2t2 . By Lemma 3, given |p − q| mod 2t1 , it is possi-
ble to find O(2min(α−1, t22 )) candidates for l. For each one, we apply Theorem 1 of

Coppersmith. By hypothesis, t2 ≥ 1
4
log N . So, the true guess of l yields the prime

decomposition of N in time T1(N ). )*

Example 1 We illustrate Theorem 2 through two examples. The numerical computa-
tions were done using Maple software.

Consider the following 128-bit RSA modulus:

N = 202914989268620230739444582780476305109.

By an oracle, we know that the prime factors p and q share the bits from position
t1 = 11 to t2 = 37, and |p − q| mod 2t1 = 908.

We have N mod 4 = 1, so we are in the first case of Lemma 3. The absolute value
of p0 − q0 is either |p − q| mod 2t1 or −(|p − q| mod 2t1) mod 2t1 . Suppose that

|p0 − q0| = |p − q| mod 2t1 and set a = N +
( |p − q| mod 2t1

2

)2

mod 2t2 =
13773755385. Next, we solve x2 ≡ a (mod 2t2)where x is the unknown.We get four
solutions:

{48786752181, 19932724555, 88652201291, 117506228917}.

Among the roots of the previous modular equation, there is one that equals r2t1 +
p0 + q0

2
. Assuming that r2t1 + p0 + q0

2
= x with x = 19932724555, it follows that

p0 + q0 = 2(x mod 2t1) = 2710. Since |p0 − q0| = |p − q| mod 2t1 , we obtain

p0 = 1809 and q0 = 901. Moreover, r = 9732775 as r2t1 + p0 + q0
2

= x .
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Finally, we get the t2 least significant bits of p from r2t1 + p0 = 19932725009.
This information is sufficient to recover the factorization of N using Copper-

smith’s method since t2 ≥ log N
4

. So, p = 15764252793534496529 and q =
12871843145768582021.

Now, consider the following 128-bit RSA modulus:

N = 281158159401182057324315156925939510931.

Furthermore, we are given the following hints. The primes p and q have in common the
bloc of bits from t1 = 11 to t2 = 37, and |p−q| mod 2t1 = 1650.Weare in the second
situation of Lemma 3 as N mod 4 = 3. The absolute value of p0−q0 is either |p−q|
mod 2t1 or−(|p−q| mod 2t1) mod 2t1 .Assume that |p0−q0| = |p−q| mod 2t1 . It

follows that the solutions of x2 ≡ a (mod 2t2), where a = N+
( |p − q| mod 2t1

2

)2

mod 2t2 = 59950977348, are :

{100485641234, 71313050606, 2593573870, 134845379602, 31766164498,
105672788974, 66125902866, 36953312238}

One of these 2
α
2+2 elements, with α = 2, equals r2t1 + p0 + q0

2
. Suppose that

r2t1+ p0 + q0
2

= x with x = 105672788974. Then p0+q0 = 2(x mod 2t1) = 2012.

Using the fact that |p0 − q0| = 1650, we deduce that p0 = 1831 and q0 = 181. From

r2t1+ p0 + q0
2

= x , we find that r = 51598041. So, the t2 least significant bits of p are

obtained from r2t1 + p0 = 105672789799. By Coppersmith’s method, as t2 ≥ log N
2

,

the factors of N are p = 16884512291466694439 and q = 16651837763965339829.

When the hypothesis t2 ≥ log N
4

is not satisfied, we obtain a weaker result.

Proposition 1 Let N = pq be an RSA modulus where p and q are primes of the same

bit-size. Assume that p and q share bits from position t1 to t2 such that t2 <
log N
4

,

for given t1 and t2. We denote by α the multiplicity of 2 in p + q. If there exists
an oracle that outputs |p − q| mod 2t1 , then we can factor N in time T3(N ) =
O(2

log N
4 −t2+min(α−1, t22 )(T1(N )+ (log N )2)).

Proof Weput l = p mod 2& log N
4 '. UsingLemma3, there areO(2

log N
4 −t2+min(α−1, t22 ))

possible values for l. By Theorem 1 of Coppersmith, once we have the true value of
l, we can factor N which ends the proof. )*

Fromour Theorem 2 and Proposition 1 , we derive an improvement of the “factoring
with a hint” [6] result when applied to RSA moduli N = pq such that p and q share
a block of bits in the middle. In this case, the number of low-order bits required to be
known is reduced. More precisely:
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Corollary 1 Let N = pq be an RSA modulus where p and q are primes of the same
bit-size. Assume that p and q share bits from position t1 to t2, for given t1 and t2. If
we know the t1 least significant bits of p, then N can be factored in time T2(N ) if

t2 ≥ 1
4
log N and T3(N ) otherwise.

Proof Let N be an RSAmodulus satisfying the hypothesis of the above statement. As
we have access to the t1 least significant bits of p, we easily compute the corresponding
low-order bits of q. Thus, it is possible to compute |p−q| mod 2t1 . The result follows
immediately from Theorem 2 and Proposition 1. )*

Let N = pq be an RSAmodulus where p and q are unknowns. Fermat method, see
e.g. [8, p. 144] or [7], is efficient for factoring a product of two integers that are close
one to another. In particular, in [7] was proved that if |p − q| < cN

1
4 for a certain

positive constant c, then one can find the prime decomposition of N in at most
1
4
c2

iterations. In the next statement, we show that the Fermat technique can be improved,
when p and q have in common bits in the middle.

Proposition 2 Let N = pq be an RSA modulus such that p and q share bits from
position t1 to t2, for given t1 and t2. We denote by α the multiplicity of 2 in p + q.

Suppose that |p − q| < 2
c+log N

4 where c is a positive constant such that c ≤ 2t2. If
there exists an oracle that outputs |p − q| mod 2t1 , then we can factor N in time
T4(N ) = O(2min(α−1, t22 ) (log N )2).

Proof Let N = pq be the RSAmodulus to be factored. In the Fermat method, see e.g.
[7], we look for two integers a and b such that a2 − b2 = 4N . We try a = &2

√
N',

&2
√
N'+1, &2

√
N'+2, . . . , until a2−4N is a perfect square. Having computed a and

b, the factors of N are p = 1
2
(a+ b) and q = 1

2
(a − b). The proof of our proposition

is based on a slight modification of this technique as depicted in [8, p. 144]. We have(
p + q
2

)2

−
(
p − q
2

)2

= N . So, we search x = p + q
2

and y = p − q
2

respectively

instead of a = p + q and b = p − q. In such case, we must try x = $
√
N% + 1,

$
√
N%+2, . . . , until x2 − N is a square. In other words, there exists a positive integer

j that verifies ($
√
N%+ 1+ j)2 −

(
p − q
2

)2

= N . We started with $
√
N%+ 1 since

√
N <

p + q
2

, [7]. As p and q share bits from t1 to t2, p = p22t2 + r2t1 + p0 and

q = q22t2 + r2t1 + q0. Thus ($
√
N% + 1+ j)2 ≡ N +

(
p0 − q0

2

)2

(mod 2t2) for

some j ∈ N. Set X = $
√
N% + 1 + j . Since |p − q| mod 2t1 is given, we are left

with the task of solving a quadratic modular equation. We proceed as in the proof of
Lemma 3.
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If N ≡ 1 (mod 4), then N +
(
p0 − q0

2

)2

is odd. So, using Lemma 1, we efficiently

compute the four square roots of N +
(
p0 − q0

2

)2

modulo 2t2 . Hence, we find ( j

mod 2t2) in time O((log N )2).

If N ≡ 3 (mod 4), then the quantity N+
(
p0 − q0

2

)2

is even.We have
(
p + q
2

)2

≡

N +
(
p0 − q0

2

)2

(mod 2t2). Writing p + q = s2α for some odd number s and

α ∈ N∗, we see that N +
(
p0 − q0

2

)2

≡ 0 (mod 2t2) whenever 2(α − 1) ≥ t2. By

part a) of Lemma 2, X ≡ 0 (mod 2& t2
2 '). We find the $ t2

2
% missing bits in at most

2$ t2
2 % trials. If 2(α − 1) < t2, then we make use of part b) of Lemma 2 to solve the

quadratic equation. If t2 = 2α−1 or t2 = 2α, we have 2α−1 or 2α possible choices for
X mod 2t2 respectively. Otherwise, there are at most four candidates for λ, that can
be computed in time O((log N )2), such that X ≡ λ (mod 2t2−(α−1)). The remaining
α − 1 bits are exhaustively searched in 2α−1 steps. So, we recover ( j mod 2t2) in
time O(2α+1(log N )2).

The number of iterations is j such that j + $
√
N% + 1 = p + q

2
, and so j =

p + q
2

− $
√
N% − 1. It was established in the lemma of Sect. 2 of [7] that p + q −

2
√
N <

(p − q)2

4
√
N

. We deduce that j <
(p − q)2

8
√
N

. In particular, this means that if

(p − q)2

8
√
N

≤ 2t2 , then it is possible to recover the entire value of j . By hypothesis,

|p − q| < 2
c+log N

4 where c is a positive constant. Thus, it suffices that c ≤ 2t2 + 6, so

the condition
(p − q)2

8
√
N

≤ 2t2 holds. The knowledge of j reveals the factorization of

N which ends the proof. )*

The next corollary ensues from Proposition 2:

Corollary 2 Let N = pq be an RSA modulus such that p and q share bits from

position t1 to t2, for given t1 and t2. Suppose that |p − q| < 2
c+log N

4 where c is a
positive constant such that c ≤ 2t2. If there exists an oracle that outputs the t1 least
significant bits of p, then we can factor N in time T4(N ).

Proof By division, given the t1 least significant bits of p, one can determine the t1
low-order bits of q. We then have |p − q| mod 2t1 . By Proposition 2, we compute
the factors of N in time T4(N ). )*

Let N = pq be an RSA modulus where p and q have the same block of bits from
t1 to t2. It is worth noting that, given the t1 least significant bits of p, computing the
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prime decomposition of N by using Theorem 1 of Coppersmith requires an exhaustive

search of all the bits from t1 to
log N
2

. We denote by α the multiplicity of 2 in p + q.
Our Theorem 2 and Corollary 2 yield polynomial time algorithms for factoring

N provided that N ≡ 1 (mod 4) and t2 ≥ log N
4

. When N ≡ 3 (mod 4) and

t2 > max(2(α − 1),
log N
4

), we must have α = O(log log N ) in order to get similar
efficient results.

Moreover, Proposition 2 andCorollary 2 improve the Fermat technique for this class
of integers N such that N ≡ 1 (mod 4). If N ≡ 3 (mod 4) and t2 > 2(α − 1), the
methods derived from both statements enable to factor N once that α = O(log log N ).

On another hand, for the sake of simplicity, we have assumed so far that t1 and t2
are known parameters. Actually, this condition can be omitted. Since t1, t2 < log N ,
one can apply our statements with all possible candidates for t1 and t2 in a polynomial
running time.

In the next section, we investigate the security of an RSA system with the new class
of moduli N .

3 Cryptanalysis of the RSA system

The aimof this section is to analyse the security of anRSAsystemwithmoduli N = pq
such that p and q share a block of bits in the middle. In [5], Boneh, Durfee and Frankel
presented the partial key exposure attacks. They showed that only a fraction of bits in
the secret exponent d suffices to reconstruct all of d. Their paper was later revised in
[4]. In 2004, in [18], the authors extended the results presented in [5]. Our following
theorem examines the aforementioned attacks when applied to a particular class of
RSA moduli.

Theorem 3 Let N = pq be an RSA modulus where p and q are primes of the
same bit-size. Assume that p and q share bits from position t1 to t2 such that t2 ≥
1
4
log N, for given t1 and t2. We denote by α and β the multiplicities of 2 in p + q

and p − q respectively. Let (e, d) ∈ Z × Z∗
φ(N ) be the public-key/secret-key pair

satisfying ed ≡ 1 (mod φ(N )). Suppose that e ≤ 2t1−3. If there exists an oracle
that outputs the t1 least significant bits of d, then we can factor N in time T (N ) =
O(2min(α−1, t22 )+β e log e (T1(N )+ (log N )2)).

Proof We first look for the value of |p − q| mod 2t1 , then we apply Theorem 2 to
get the factorization of the public modulus. Our proof is inspired by the method used
in [5] and [18]. The RSA key equation is ed ≡ 1 (mod φ(N )). Hence, there exists an
integer k such that ed = 1+ kφ(N ) and so ed −1 = k(N − (p+q)+1). By hypoth-
esis, the t1 least significant bits of d are provided. That is, d0 = d mod 2t1 is known.

Working modulo 2t1 , it results that
ed0 − 1

2
≡ k(

N + 1
2

− p + q
2

) (mod 2t1−1).

Since k = ed − 1
φ(N )

and d < φ(N ), k < e. For each candidate for k, we apply the
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following process. Write k = w2µk where w is an odd integer and µk ∈ N. As

ed ≡ 1 (mod φ(N )), ed ≡ 1 (mod 2µk+1) and so
p + q
2

≡ N + 1
2

− w−1 ed0 − 1
2µk+1

(mod 2t1−µk−1). Substituting
(
p + q
2

)2

=
(
p − q
2

)2

+ N into the last formula, it

ensues that
(
p − q
2

)2

≡
(
w−1 ed0 − 1

2µk+1 − N + 1
2

)2

− N (mod 2t1−µk−1). For the

sake of simplicity, put a(k) =
[(

w−1 ed0 − 1
2µk+1 − N + 1

2

)2

− N

]

mod 2t1−µk−1.

Obviously,
|p − q|

2
is a square root of a(k) modulo 2t1−µk−1. Without loss of gener-

ality, suppose that q < p. Let p − q = u2β for some odd integer u and β ∈ N∗.
Assume that N ≡ 1 (mod 4). Clearly, β > 1. If 2(β−1) ≥ t1−µk−1, then a(k) ≡ 0
(mod 2t1−µk−1) and any candidate k that does not satisfy the last criterion must be

rejected. Using part a) of Lemma 2,
p − q
2

≡ 0 (mod 2& t1−µk−1
2 '). So, we know the

& t1 − µk + 1
2

' least significant bits of p − q. The remaining $ t1 + µk − 1
2

% bits will

be found exhaustively and this requires at most 2$ t1+µk−1
2 % trials.

If 2(β − 1) < t1 − µk − 1, then the multiplicity of 2 in a(k) is 2(β − 1). So, we
must eliminate any k that does not fulfill this condition. If t1 − µk − 1 = 2β − 1 or
t1 − µk − 1 = 2β, then from parts b.1) and b.2) of Lemma 2, we have 2µk+β−1 or
2µk+β possible values for the t1 bits of p − q respectively. Otherwise, by part b) of
Lemma 2, we compute, in time O((log N )2), at most four candidates for λ such that
p − q
2

≡ λ (mod 2t1−µk−1−(β−1)). So, the t1 − µk − β + 1 least significant bits of

p−q are revealed.We have to try at most 2µk+β−1 possible choices in order to find the
µk + β − 1 missing bits. For all candidates for k, the number of tries needed is upper

boundedby2µk+β+1. In [18], the authors observed that
e−1∑

i=1

2µi ≤ &log e'2&log e'. Then,

we apply Theorem 2 to recover the factors of N . Therefore, the whole complexity is
O(2β e log e (T1(N )+ (log N )2)).
Let us now turn to the case when N ≡ 3 (mod 4). In this case, β = 1. Since by
hypothesis e < 2t1−3, it is straightforward that 3 ≤ t1 − µk − 1. We use parts b) and
c) of Lemma 1 to find the solutions to the equation x2 ≡ a(k) (mod 2t1−µk−1). There
are at most four candidates for λ, that can be computed in time O((log N )2), such that
p − q
2

≡ λ (mod 2t1−µk−1). The remainingµk bits of p−q are exhaustively searched

in at most 2µk trials. By Theorem 2, we are able to factor N . Hence, the complexity
is O(2α−1 e log e (T1(N ) + (log N )2)) if t2 > 2(α − 1) and O(2

t2
2 e log e (T1(N ) +

(log N )2)) if not, which ends the proof. )*

Let the public exponent e be upper bounded by a polynomial in log N .When N ≡ 1
(mod 4), the attack depicted in the previous theorem is feasible ifβ = O(log log N ). If
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N ≡ 3 (mod 4) and t2 > 2(α−1), we get an efficient algorithm if α = O(log log N ).
In our next result, the CRT-RSA system is treated.

Theorem 4 Let N = pq be an RSA modulus where p and q are primes of the same

bit-size. Assume that p and q share bits from position t1 to t2 such that t2 ≥ 1
4
log N,

for given t1 and t2. We denote by α the multiplicity of 2 in p + q. Let e be the public-
key and dp satisfy edp ≡ 1 (mod p − 1). Suppose that e ≤ 2t1−3. If there exists
an oracle that outputs the t1 least significant bits of d, then we can factor N in time
T (N ) = O((2min(α−1, t22 ) e log e (T1(N )+ (log N )2)).

Proof From the RSA key equation, we have edp ≡ 1 (mod p − 1). Hence, there
exists an integer k such that edp = 1 + k(p − 1). Taking the last formula modulo
2t1 , we get edp ≡ 1 + k(p − 1) (mod 2t1). For each candidate for k, we perform
the following steps. By hypothesis, d0 = dp mod 2t1 is given. Writing k = w2µk

where w is odd and µk ∈ N, we obtain w−1 ed0 − 1
2µk

+ 1 ≡ p (mod 2t1−µk ). Since

k < e
dp

p − 1
and e ≤ 2t1−3, µk < t1. We have so far computed the t1 − µk least

significant bits of p. The µk missing bits are recovered in at most 2µk tries. Once the
t1 low-order bits of p are known, we factor N by applying Corollary 1. The complexity

is O(T2(N )
∑e−1

i=1
2µi ) and using the fact that

∑e−1

i=1
2µi ≤ &log e'2&log e', the result

follows. )*
It is noteworthy that unlikeTheorem3,when N ≡ 1 (mod 4), themethoddescribed

in Theorem 4 is always efficient for low public exponent.
Let N = pq where p and q have in common some bits from position t1 to t2

(t1 < t2). In the next result, we show that if there exists a partial key exposure attack
using the t2 least significant bits of the secret exponent d, then it is possible to build a
factoring algorithm with only the t1 low-order bits of p.

Proposition 3 Let N = pq be an RSA modulus where p and q are primes of the
same bit-size. Assume that p and q share bits from position t1 to t2, for given t1 and
t2. We denote by α the multiplicity of 2 in p + q. Let (e, d) ∈ Z × Z∗

φ(N ) be the
public-key/secret-key pair satisfying ed ≡ 1 (mod φ(N )). Suppose that there exists
an algorithm A that, given (N , e, d0) where d0 consists of the t2 least significant
bits of d, factors N in time TA(N ). Then there exists an algorithm B that, given
(N , e, p0) where p0 consists of the t1 least significant bits of p, factors N in time
TB(N ) = O(2min(α−1, t22 ) e(TA(N )+ (log N )2)).

Proof Let N = pq such that p = p22t2 + r2t1 + p0 and q = q22t2 + r2t1 + q0.
As p0 is given, we can find q0 by division. In the proof of Lemma 3, it was shown
that O(2min(α−1, t22 )) candidates for r can be found by studying the modular equation(
r2t1 + p0 + q0

2

)2

≡ N +
(
p0 − q0

2

)2

(mod 2t2). Using the RSA key equation,

there exists an integer k such that ed = 1 + kφ(N ). Therefore ed ≡ 1 + k(N −
2r2t1 − (p0 + q0) + 1) (mod 2t2). Since d < φ(N ) and k = ed − 1

φ(N )
, k < e. For
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each candidate for k, we compute d0 = e−1[1 + k(N − 2r2t1 − (p0 + q0) + 1)]
mod 2t2 . The public exponent e is odd, so the inverse of e modulo 2t2 is well defined.
Hence, one can apply algorithm A with inputs (N , e, d0) to get the factors of N .
The whole running time is TB(N ) = O(e(TA(N ) + (log N )2)) if N ≡ 1 (mod 4).
When N ≡ 3 (mod 4), TB = O(2α−1 e(TA(N ) + (log N )2)) if t2 > 2(α − 1) and
TB = O(2

t2
2 e(TA(N )+ (log N )2)) otherwise. Our statement is then proved. )*

Consider an RSA modulus N = pq such that p and q share bits from t1 to t2. The
following theorem establishes that we can factor N if the cryptosystem leaks both the
t1 bits of p and the bits in the middle of the secret exponent d from position t2 to
log N
4

.

Theorem 5 Let N = pq be an RSA modulus where p and q are primes of the same
bit-size. Assume that p and q share bits from position t1 to t2, for given t1 and t2.
We denote by α and β the multiplicities of 2 in p + q and p − q respectively. Let
(e, d) ∈ Z × Z∗

φ(N ) be the public-key/secret-key pair satisfying ed ≡ 1 (mod φ(N )).

Suppose that e ≤ N
1
4

8
. If there exists an oracle that outputs the t1 least significant

bits of p and the bits of d from position t2 to
log N
4

, then we can factor N in time

T (N ) = O(2min(α−1, t22 )+β e log e (T1(N )+ (log N )2)).

Proof By hypothesis, p = p22t2 + r2t1 + p0 and q = q22t2 + r2t1 + q0. As p0 is
given, it is possible to find q0 by division. We proceed as in the proof of Lemma 3 in

order to retrieve the value of r by solving
(
r2t1 + p0 + q0

2

)2

≡ N +
(
p0 − q0

2

)2

(mod 2t2). From theRSAkey equation, ed = 1+k(N−(p+q)+1)where k is an inte-
ger. The number k ranges over the set {1, 2, . . . , e− 1}. Reducing modulo 2t2 , we get
ed ≡ 1+ k(N − 2r2t1 − (p0+q0)+ 1) (mod 2t2). The public exponent e is odd. So,
for each candidate for k, d mod 2t2 = e−1[1 + k(N − 2r2t1 − (p0 + q0) + 1)]
mod 2t2 . The oracle outputs the bits of d from t2 to

log N
4

. Hence, d0 = d

mod 2& log N
4 ' is determined. We are left with a classical partial key exposure attack

as in [5] and [18]. To estimate the complexity of the algorithm, the details are

provided. We compute the
log N
4

least significant bits of p in order to get the fac-

torization of N by applying Theorem 1 of Coppersmith. Set k = w2µk where
w is an odd integer and µk ∈ N. The prime p is a root of the modular con-

gruence
(
x − p + q

2

)2

≡
(
p − q
2

)2

(mod 2& log N
4 '−µk−1). However,

p + q
2

≡

N + 1
2

− w−1 ed0 − 1
2µk+1 (mod 2& log N

4 '−µk−1) and
(
p − q
2

)2

=
(
p + q
2

)2

− N .

For convenience, set a(k) =
(
w−1 ed0 − 1

2µk+1 − N + 1
2

)2

− N (mod 2& log N
4 '−µk−1).
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Then, we have
(
x + w−1 ed0 − 1

2µk+1 − N + 1
2

)2

≡ a(k) (mod 2& log N
4 '−µk−1). Let

|p − q| = v2β where v is an odd integer and β ∈ N∗.

If N ≡ 1 (mod 4), then β > 1. The multiplicity of 2 in
(
p − q
2

)2

is 2(β −1). When

2(β − 1) ≥ & log N
4

' − µk − 1, a(k) ≡ 0 (mod 2& log N
4 '−µk−1). By a) of Lemma 2,

(
x + w−1 ed0 − 1

2µk+1 − N + 1
2

)
≡ 0 (mod 2& log N

8 −µk+1
2 '). Thus, at most 2& log N

8 +µk+3
2 '

tries suffice to obtain the
log N
4

low-order bits of p.

If 2(β − 1) < & log N
4

' − µk − 1, then according to the part b) of Lemma 2, there

are three sub-cases. If & log N
4

'−µk −1 = 2β −1 or & log N
4

'−µk −1 = 2β, then we

have 2µk+β or 2µk+β+1 candidates for the & log N
4

' bits of p respectively. Otherwise,

there are at most four candidate for λ, that can be computed in time O((log N )2),

such that
(
x + w−1 ed0 − 1

2µk+1 − N + 1
2

)
≡ λ (mod 2& log N

4 '−1−µk−(β−1)). It remains

to perform an exhaustive search for theµk+β missing bits. Each time that 2(β −1) ≥
& log N

4
' − µk − 1, the inequality 2& log N

8 +µk+3
2 ' ≤ 2µk+β+2 holds. It was seen that

∑e−1
i=1 2

µi ≤ &log e'2&log e'. Hence, the whole complexity is O(2β e log e (T1(N ) +
(log N )2)).
Suppose that N ≡ 3 (mod 4). The quadratic modular equation(
x + w−1 ed0 − 1

2µk+1 − N + 1
2

)2

≡ a(k) (mod 2& log N
4 '−µk−1) can be solved in time

O((log N )2) by using Lemma 1. However, we still have to find the µk + 1 remaining
bits. The whole running time follows.

It should be noted that if t2 ≥ log N
4

, we come back to the scenario of Corollary 1.
)*

Now we prove another result for the CRT-RSA system. More precisely:

Theorem 6 Let N = pq be an RSA modulus where p and q are primes of the same
bit-size. Assume that p and q share bits from position t1 to t2, for given t1 and t2. We
denote by α the multiplicity of 2 in p + q. Let e be the public-key and let dp satisfy

edp ≡ 1 (mod p − 1). Suppose that e ≤ N
1
4

8
. If there exists an oracle that outputs

the t1 least significant bits of p and the bits of dp from position t2 to
log N
4

, then we

can factor N in time T (N ) = O(2min(α−1, t22 ) e log e (T1(N )+ (log N )2)).

Proof By hypothesis, p = p22t2+r2t1+ p0 and q = q22t2+r2t1+q0. The value of q0
is easily found by division as p0 is known. We recover the value of r by following the
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proof ofLemma3.TheRSAkeyequationgives edp = 1+k(p−1)where k is an integer
with k ∈ {1, 2, . . . , e− 1}. Working modulo 2t2 , we have edp ≡ 1+ k(r2t1 + p0 − 1)
(mod 2t2). So, for each candidate for k, dp mod 2t2 = e−1(1 + k(r2t1 + p0 − 1))

mod 2t2 as e is odd. Given the bits in middle of dp from position t2 to
log N
4

, it is

easy to determine d0 = dp mod 2& log N
4 '. Let k = w2µk where w is an odd integer

and µk ∈ N. Then p ≡ w−1 ed0 − 1
2µk

+ 1 (mod 2& log N
4 '−µk ). At most 2µk tries are

sufficient to find p mod 2& log N
4 '. By Coppersmith’s result in Theorem 1, we compute

the prime divisors of N in polynomial time T1(N ) since
log N
4

least significant bits

of p are revealed. We have seen that
e−1∑

i=1

2µi ≤ &log e'2&log e'. For each possible value

for k, the described steps are performed. The running time follows.

Note that the case where t2 ≥ log N
4

was previously treated in Corollary 1. )*

4 Conclusion

In this paper, we studied the factorization of large RSA moduli N = pq with p and
q sharing bits in the middle. In particular, we presented polynomial time algorithms
for computing the prime divisors of N under certain conditions. As a consequence,
new partial key exposure attacks with such class of integers were depicted. Our results
suggest that these numbers N should be used with care.
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Abstract This article proposes the application of Laplace
transform–homotopy perturbation method with variable

coefficients, in order to find analytical approximate solu-

tions for nonlinear differential equations with variable
coefficients. As case study, we present the oxygen diffusion

problem in a spherical cell including nonlinear Michaelis–

Menten uptake kinetics. It is noteworthy that this important
problem introduces the Robin boundary conditions as an

additional difficulty. In fact, after comparing figures be-

tween approximate and exact solutions, we will see that the
proposed solutions are highly accurate. What is more, we

will see that the square residual error of our solutions

is 1.808511632 9 10-7 and 2.560574954 9 10-10 which
confirms the accuracy of the proposed method, taking into

account that we will just keep the first-order
approximation.

Keywords Homotopy perturbation method ! Nonlinear
differential equation ! Approximate solutions ! Laplace
transform ! Laplace transform–homotopy perturbation

method ! Oxygen cell ! Diffusion

List of symbols
x Radial distance

y Oxygen concentration

a Maximum reaction rate
K Michaelis constant

H Permeability of the cell membrane

1 Introduction

Laplace transform (L.T.) has played an important role in

mathematics, because its application allows solving, in a

simple fashion, many problems in science and engineering [1].
As it is well known that the L.T. is useful for solving linear

ordinary differential equations (ODEs) with constant coeffi-

cients and initial conditions, also it is useful in some cases of
differential equations with variable coefficients and partial

differential equations [1]. The applications of L.T. for non-

linear ODEs mainly focus on finding approximate solutions;
thus, in [2] was reported a combination of homotopy pertur-

bation method (HPM) and L.T. methods (LT–HPM), in order

to solve approximately nonlinear problems with initial condi-
tions [2, 3]. On the other hand, LT–HPMwas adopted in order

to apply it to the case of nonlinear problems with boundary

conditions defined on finite intervals [4–6]. This work pro-
poses the Laplace transform–homotopy perturbation method

with variable coefficients (VCLT–HPM), as an extension of
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Laplace transform–homotopy perturbation method seen, from

several points of view. First, the proposedmethodwill follow a
strategy which introduces an initial trial function and proposes

to cancel the residual error in several points of the interest

interval. We will see that the above approach will accelerate
the convergence of the proposed solution. Later on, we will

apply the method for the case of nonlinear problems with

variable coefficients. As case study, we present the problem of
finding an analytical approximate solution for the steady-state

reaction–diffusion nonlinear differential equation representing
the oxygen diffusion in a spherical cell, including nonlinear

Michaelis–Menten uptake kinetics [7, 8]. The importance of

this model is that it was originally proposed in order to rep-
resent the distribution of oxygen inside a cell [9].

We will extend the proposed methodology to problems

with Robin boundary conditions, which are indeed difficult to
model [7]. Our results will show the potential of VCLT–

HPM in the search for analytical approximate solutions for

ODEs under the mentioned conditions. A relevant point of
our proposal is its contribution to the search for solutions to

nonlinear problems. As it is well known that the importance

of research on nonlinear differential equations relies on the
fact that many phenomena, practical or theoretical, are of

nonlinear nature. For the same reason, several methods

focused on finding approximate solutions to nonlinear dif-
ferential equations have been reported, such as those based

on variational approaches [10–13], tanh method [14], exp-

function [15, 16], Adomian’s decomposition method (ADM)
[17–20], parameter expansion [21], homotopy perturbation

method (HPM) [2–6, 22–41], homotopy analysis method

(HAM) [42–46], series method [47–50], group method of
data handling (GMDH) [51], differential transform method

and the Padé approximation (DTM–Padé technique) [52, 53],

and perturbation method (P.M.) [54, 55] among many others.
The rest of this work is organized as follows. In Sect. 2,

we introduce the basic idea of standard HPM. Section 3

presents a review of LT–HPM, although above all explain
the VCLT–HPM, emphasizing in the modifications men-

tioned above. Additionally, Sect. 4 presents the interesting

case study of the oxygen diffusion in a spherical cell. In
addition, a discussion on the results is presented in Sect. 5.

Finally, a brief conclusion is given in Sect. 6.

2 Standard HPM

The standard homotopy perturbation method (HPM) was

proposed by Ji Huan He, and it was introduced to approach

various kinds of nonlinear problems. The HPM is consid-
ered as a combination of the classical perturbation tech-

nique and the homotopy (whose origin is in the topology),

but it is not restricted to small parameters as occurred with
traditional perturbation methods [23, 24].

To figure out how HPM works, consider a general

nonlinear differential equation in the form

AðuÞ $ f ðrÞ ¼ 0; r 2 X; ð1Þ

with the following boundary conditions

Bðu; ou=onÞ ¼ 0; r 2 C; ð2Þ

where A is a general differential operator, B is a boundary

operator, f ðrÞ is a known analytical function, and C is the
domain boundary for X. A can be divided into two opera-

tors, L and N, where L is linear and N nonlinear, so that (1)

can be rewritten as

LðuÞ þ NðuÞ $ f ðrÞ ¼ 0: ð3Þ

Generally, a homotopy can be constructed as [23, 24]

HðU;pÞ ¼ ð1$ pÞ½LðUÞ $ Lðu0Þ( þ p½LðUÞ þNðUÞ $ f ðrÞ(
¼ 0; p 2 ½0;1(; r 2 X: ð4Þ

or

HðU; pÞ ¼ LðUÞ $ Lðu0Þ þ p½Lðu0Þ þ NðUÞ $ f ðrÞ(
¼ 0; p 2 ½0; 1(; r 2 X; ð5Þ

where p is a homotopy parameter, whose values are within

the range of 0 and 1 and u0 is the first approximation for the
solution of (3) that satisfies the boundary conditions.

Assume that solution for (4) or (5) can be written as a

power series of p as

U ¼ v0 þ v1pþ v2p
2 þ ! ! ! ð6Þ

Substituting (6) into (5) and equating identical powers of p

terms, values for the sequence m0; m1; m2; … can be found.
When p ! 1, it yields the approximate solution for (1)

in the form

U ¼ v0 þ v1 þ v2 þ v3 ! ! ! ð7Þ

3 Description of VCLT–HPM

The objective of this section is to show how VCLT–HPM

can be employed to find analytical approximate solutions

for ODEs such as (3), but with variable coefficients and
Robin boundary conditions. We start introducing the basic

idea of LT–HPM [4].

3.1 Basic idea of the method LT–HPM

LT–HPM follows the same steps of standard HPM until
(5); next we apply L.T. on both sides of homotopy Eq. (5),

to obtain [1–6, 22]

= LðUÞ $ Lðu0Þ þ p½Lðu0Þ þ NðUÞ $ f ðrÞ(f g ¼ 0; ð8Þ

and using the differential property (49) of L.T., we have [1]:
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sn= Uf g$ sn$1Uð0Þ $ sn$2U0ð0Þ $ ! ! ! $ Uðn$1Þð0Þ
¼ = Lðu0Þ $ pLðu0Þ þ p $NðUÞ þ f ðrÞ½ (f g ð9Þ

or

=ðUÞ ¼ 1

sn

! "
sn$1Uð0Þ þ sn$2U0ð0Þ þ ! ! ! þ Uðn$1Þð0Þ
n o

þ 1

sn

! "
= Lðu0Þ $ pLðu0Þ þ p $NðUÞ þ f ðrÞ½ (f g

ð10Þ

Applying inverse L.T. to both sides of (10), we obtain

U ¼=$1 1

sn

! "
sn$1Uð0Þþ sn$2U0ð0Þþ ! ! !þUðn$1Þð0Þ
n o#

þ 1

sn

! "
= Lðu0Þ$ pLðu0Þþ p $NðUÞþ f ðrÞ½ (f g

$

ð11Þ

Assume that the solutions of (3) can be expressed as a

power series of p

U ¼
X1

n¼0

pnvn: ð12Þ

Then substituting (12) into (11), we get

and comparing coefficients of p with the same power leads

to

p0 : m0 ¼ =$1 1

sn

! "
sn$1Uð0Þ þ sn$2U0ð0Þ þ ! ! !
%#

þ Uðn$1Þð0ÞÞ þ = Lðu0Þf g
&o

;

p1 : m1 ¼ =$1 1

sn

! "
= $Nðm0Þ $ L u0ð Þ þ f ðrÞf gð Þ

# $
;

p2 : m2 ¼ =$1 1

sn

! "
= $Nðm0; m1Þf g

# $
;

p3 : m3 ¼ =$1 1

sn

! "
= $Nðm0; m1; m2Þf g

# $
; ð14Þ

…

p j : mj ¼ =$1 1

sn

! "
= $Nðm0; m1; m2; . . .; mj$1Þ
' (# $

;

…
Assume that Uð0Þ ¼ u0 ¼ a0; U0ð0Þ ¼ a1; . . .;Un$1ð0Þ

¼ an$1; the exact solution may be obtained as follows

u ¼ lim
p!1

U ¼ m0 þ m1 þ m2 þ ! ! ! ð15Þ

3.2 VCLT–HPM

To obtain (9), we assumed that the coefficient of LðUÞ is
one. In this work, we will consider the case where the

mentioned coefficient is a positive whole power of r; thus,
we rewrite explicitly (8) for this case as

= rmLðUÞ $ rmwðrÞð Þ þ p½rmwðrÞ þ NðUÞ $ f ðrÞf g ¼ 0;

ð16Þ

where m is a positive integer, and employing the versatility
and freedom of homotopy formulation, we have substituted

Lðu0Þ for an arbitrary functionwðrÞ. An adequate guide for the
kind of problems proposed in this work would be to choose
wðrÞ as a polynomial trial function provided with some

unknownparametersA;B;C; :: to bedetermined (seeSect. 5).

Using the properties (49) and (50), we have [1]

ð$1Þm
dm sn= Uf g$ sn$1Uð0Þ $ sn$2U0ð0Þ $ ! ! ! $ Uðn$1Þð0Þ
) *

dsm

¼ = rmwðrÞ þ p $wðrÞrm $ NðUÞ þ f ðrÞ½ (f g

ð17Þ

and after integrating m times, we obtain

sn= Uf g$ sn$1Uð0Þ $ sn$2U0ð0Þ $ ! ! ! $ Uðn$1Þð0Þ

¼ ð$1Þm
Z Z

! ! !
Z

= rmwðrÞ þ p $wðrÞrm½f

$NðUÞ þ f ðrÞ(gdsds0 ! ! ! ds00 ðm-timesÞ
ð18Þ

or

X1

n¼0

pnmn ¼ =$1

1

sn

! "
sn$1Uð0Þ þ sn$2U0ð0Þ þ ! ! ! þ Uðn$1Þð0Þ
n o

þ 1

sn

! "
= Lðu0Þ $ pLðu0Þ þ p $N

X1

n¼0

pnmn

 !

þ f ðrÞ

" #( )

8
>>>><

>>>>:

9
>>>>=

>>>>;

; ð13Þ
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U ¼ =:$1

#
1

sn
sn$1Uð0Þ þ sn$2U0ð0Þ þ . . .þ Uðn$1Þð0Þ
n

:

þ ð$1Þm
Z Z

! ! !
Z

= rmwðrÞ þ p $wðrÞrm $ NðUÞ½f

þ f ðrÞ(gdsds0 ! ! ! ds00
o$

ð19Þ

Assume also that the solutions of the ODE to solve can

be expressed as a power series of p

U ¼
X1

n¼0

pnvn: ð20Þ

Then substituting (20) into (19), we get

and comparing coefficients of p; with the same power leads

to

p0 : m0 ¼ =$1 1

sn

! "
sn$1Uð0Þ þ sn$2U0ð0Þ þ ! ! !
%#

þ Uðn$1Þð0ÞÞ þ $1ð Þm
Z Z

! ! !
Z

= rmwðrÞf gdsds0 ! ! ! ds00
"$

;

p1 : m1 ¼ =$1 1

sn

! "
$1ð Þm

Z Z
! ! !
Z

= $Nðm0Þfð
#

$rmw rð Þ þ f ðrÞgÞdsds0 ! ! ! ds00
$
;

p2 : m2 ¼ =$1 1

sn

! "
$1ð Þm

Z Z
! ! !

#

Z
= $Nðm0; m1Þf gð Þdsds0 ! ! ! ds00

$
;

p3 : m3 ¼ =$1 1

sn

! "
$1ð Þm

Z Z
! ! !

#

Z
= $Nðm0; m1; m2Þf gð Þdsds0 ! ! ! ds00

$
; ð22Þ

…

p j : mj ¼ =$1 1

sn

! "
$1ð Þm

Z Z
! ! !

#

Z
= $Nðm0; m1; m2; ::mj$1Þ
' (% +

dsds0 ! ! ! ds00
$
;

…

Assume that Uð0Þ ¼ u0 ¼ a0;U0ð0Þ ¼ a1; . . .;Un$1ð0Þ
¼ an$1; then an approximate solution may be obtained as
follows

u ¼ lim
p!1

U ¼ m0 þ m1 þ m2 þ ! ! ! ð23Þ

For boundary value problems, it is expected that some of

the initial conditions mentioned above are initially
unknown; therefore, (23) can be expressed as

u ¼ uðr;A;B;C; . . .; aiÞ ð24Þ

In order to calculate adequately the values for

A;B;C; . . .; ai, we will deduce an algebraic system for
them, in the following way

1. It is required that (24) satisfies the Robin boundary

conditions at the endpoint of the interval.

2. In order to find the values of the total number of
parameters, we will require adding more algebraic

equations to those found in (1), until obtaining as many

equations as parameters to determine. If they are
required, let us say j additional equations, then a

convenient possibility is to incorporate the following j

equations R r1;A;B;C; . . .; aið Þ ¼ R r2;A;B;C; . . .; aið Þ
¼ ! ! ! ¼ R rj;A;B;C; . . .; ai

% +
¼ 0 [25], where the

residual value is defined by the substitution of (24)

into (3), to obtain R r;A;B;C; . . .; aið Þ ¼
rmL uðr;A;B;C; . . .;ð aiÞÞ þ N uðr;A;B;C; . . .; aiÞð Þ $
f ðrÞ (we have considered the case of ODEs with

variable coefficients). The above points r1; r2; r3; ::; rj
belong to the interest interval, and it is assumed that

uðr;A;B;C; ::; aiÞ is the approximate solution of (3)
given by (24).

For m ¼ 1, the above procedure involves only one

integration. For the case of second-order ODEs, where
y0ð0Þ ¼ A 6¼ 0, it is possible to show that the term con-

taining y0ðxÞ may give rise to an inappropriate term

=$1 LnðsÞ
s2

n o
. To avoid this problem, we perform an ade-

quate transformation in order to express our differential

equation in its normal form [56]. As it is known, this

normal form does not contain the offending term y0ðxÞ and

X1

n¼0

pnmn ¼ =$1

1

sn

! "
sn$1Uð0Þ þ sn$2U0ð0Þ þ ! ! ! þ Uðn$1Þð0Þ
n o

þ ð$1Þm

sn

! " Z Z
! ! !
Z

= rmwðrÞ þ p $rmwðrÞ $ N
X1

n¼0

pnmn

 !

þ f ðrÞ

" #( )

dsds0 ! ! ! ds00

8
>>>><

>>>>:

9
>>>>=

>>>>;

; ð21Þ
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therefore allows applying VCLT–HPM algorithm in

accordance with the above procedure.
It is worthwhile to mention that this procedure can be

employed in a similar manner for the case of nonlinear

differential equations with variable coefficients defined
with Dirichlet, mixed and Neumann boundary conditions.

From the above, we see that there are several points to

highlight LT–HPM, with respect to HPM.

1. While LT–HPM calculates the solutions of the differ-

ent orders in a systematic way using basic Laplace
transforms, the HPM generates a cumbersome set of

coupled differential equations to calculate the solutions

of the different orders arising from its iterative process.
2. Unlike the standard HPM, which incorporates from the

beginning the boundary conditions of the problem,

LT–HPM incorporates also one of such conditions
from the start, while the other one, to the end of the

process, i.e., to the final approximate solution, stem-
ming from LT–HPM algorithm.

3. Unlike HPM standard, LT–HPM (also VCLT–HPM)

may incorporate some adjustment parameters whose
values are adequately determined in order to get handy

and accurate analytical approximate solutions.

4. In particular, VCLT–HPM is a suitable method for
solving ODEs with variable coefficients, while the

standard formulation HPM could be inadequate if the

differential equations of its iterative process have
singular points in the domain of study.

We summarize the key points of this proposal as

follows:

(a) First, VCLT–HPM requires that the coefficient of

LðUÞ is a power whole of r. If such function was
constant, then LT–HPM would be adequate.

(b) Next, we apply the homotopy formulation given by

(16), but substitute Lðu0Þ for a trial function
containing some parameters.

(c) Then, we apply the VCLT–HPM algorithm described

above. Since the proposed method is iterative, we
assume that the sought solution can be expressed as a

power series of p (20).

It is worthwhile to mention that VCLT–HPM, unlike
HPM and LT–HPM, calculates the different orders,

in terms of elementary integrals of the lower orders,

previously calculated.
(d) Once we get a series solution (23), we determine

adequately the above-mentioned quantities in

(b) through a system of algebraic equations, requir-
ing that proposed solution satisfies some boundary

conditions, and by residual error cancelation in some
points of the interest interval.

(e) Our final approximate solution is obtained by substi-

tuting the calculated coefficients from step (d), into

(23).

4 Case study

The objective of this section is to employ VCLT–HPM, to

find an analytical approximate solution for the nonlinear
singular boundary value problem in the Lane–Emden form,

given in dimensionless form as [7].

y00ðxÞ þ 2y0ðxÞ
x

¼ a
yðxÞ

K þ y xð Þ
0\ x ) 1; ð25Þ

where radius of the cell corresponds to x ¼ 1 and the
boundary conditions y0ð0Þ ¼ 0, y0ð1Þ þ Hyð1Þ ¼ H (Robin

boundary condition).

The above differential equation describes the oxygen
diffusion in a spherical cell with Michaelis–Menten uptake

kinetics, given at the right-hand side of (25) [7].

In order to obtain an approximate analytical solution, we
rewrite (25) as

Kxy00 þ xyy00 þ 2Ky0 þ 2yy0 $ axy ¼ 0; ð26Þ

where prime denotes differentiation with respect to x:
We identify terms:

LðyÞ ¼ Kxy00; ð27Þ

NðyÞ ¼ xyy00 þ 2Ky0 þ 2yy0 $ axy: ð28Þ

Next we construct a homotopy as follows

ð1$ pÞðKxy00 $ KxAÞ þ p Kxy00 þ xyy00 þ 2Ky0 þ 2yy0 $ axy½ ( ¼ 0;

ð29Þ

where we have chosen as a polynomial trial function
wðxÞ ¼ A (where A is a constant; see (16) and following

comments).

Next we rewrite homotopy Eq. (29) as

Kxy00 ¼ KxAþ p $KxA$ xyy00 $ 2Ky0 $ 2yy0 þ axy½ (:
ð30Þ

Applying L.T. algorithm, we get

= Kxy00f g¼= KxAþp $KxA$ xyy00$2Ky0$2yy0þaxy½ (f g:
ð31Þ

As it is explained in [1], it is possible to rewrite (31) as (50)

$ K
d s2YðsÞ $ sBð Þ

ds

¼ = KxAþ p $KxA$ xyy00 $ 2Ky0 $ 2yy0 þ axy½ (f g: ð32Þ

After integrating (32), we obtain
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YðsÞ ¼ B

s
þ $1

Ks2

! " Z
= KxAþ p $KxA$ xyy00½f

$ 2Ky0 $ 2yy0 þ axy(gds;

where we defined B ¼ yð0Þ and employed the condition

y0ð0Þ ¼ 0:

After applying =$1 to the previous integral expression,
we get

yðxÞ ¼ =$1 B

s
þ $1

Ks2

! " Z
= KxAþ p $KxA$ xyy00½f

#

$ 2Ky0 $ 2yy0 þ axy(gds
$

ð33Þ

Next, we assume a series solution for yðxÞ, in the form

yðxÞ ¼
X1

n¼0

pnmn; ð34Þ

Substituting (34) into (33), we get

On comparing the coefficients of identical powers of p; and
after performing the indicated operations, we have

p0 : m0 ¼ =$1 B

s
þ $1

Ks2

! "Z
= KxAf gds

# $
; ð36Þ

p1 : m1 ¼ =$1 $1

Ks2

! "Z
= $KxA$ xm0m000 $ 2Km00
)'#

$2m0m00 þ axm0
*(
ds

$
; ð37Þ

…
Solving the above operations for m0ðxÞ and m1ðxÞ; we

obtain

p0 : m0ðxÞ ¼ Bþ A

2
x2; ð38Þ

p1 : m1ðxÞ ¼ $A

2
x2 þ $2KA$ 3ABþ aBð Þ

2K
x2

þ aA$ 3A2

24K
x4;

ð39Þ

…
and so on.

By substituting solutions (38) and (39) into (34) and

calculating the limit when p ! 1, it results in a handy first-
order approximation.

yðxÞ ¼ Bþ $2KA$ 3ABþ aBð Þ
2K

x2 þ aA$ 3A2

24K
x4: ð40Þ

In accordance with VCLT–HPM algorithm (Sect. 3.2),
we will calculate the values of A and B; through a system

of algebraic equations, as follows:

1. The first equation for A and B is obtained, requiring
that (40) satisfies the Robin boundary condition

y0ð1Þ þ Hyð1Þ ¼ H:
2. On the other hand, a second equation is obtained by

substituting (40) into (26) and evaluating the expres-

sion obtained for some value, let us say x ¼ 1=5, which
lies into the interval under study 0) x) 1 (see

discussion below).

3. Finally, we solve the above system of algebraic
equations.

Considering the case study: a ¼ 1; K ¼ 10; H ¼ 4; and

a ¼ 0:1; K ¼ 5; H ¼ 4; we obtain the following values

A ¼ 0:02968850376; B ¼ 0:9775229350; ð41Þ

and

A ¼ 0:005536482514; B ¼ 0:9958404758; ð42Þ

respectively.
After substituting (41) into (40), we obtain a first-order

approximation

yðxÞ ¼ 0:9775229350þ 0:01483446399x2

þ 0:0001126845083x4; ð43Þ

and in the same way, the substitution of (42) into (40) leads

to the following handy first-order approximation.

yðxÞ ¼ 0:9958404758þ 0:002767886230x2

þ 0:000003847419462x4: ð44Þ

5 Discussion

In order to use a pure numerical solution as reference, we

utilized the scheme based on trapezoid combined with
Richardson extrapolation from the built-in numerical

X1

n¼0

pnmn ¼ =$1 B

s
þ $1

Ks2

! " Z
= KxAþ p

$KxA$ x
P1

m¼0

P1

n¼0

pmpnmmm00n $ 2K
P1

n¼0

pnm0n

$2
P1

m¼0

P1

n¼0

pmpnmmm0n þ ax
P1

n¼0

pnmn

2

664

3

775

8
>><

>>:

9
>>=

>>;
ds

8
>><

>>:

9
>>=

>>;
ð35Þ
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routines provided by Maple 15. Moreover, the command

was set up with an absolute error (A.E.) tolerance of

1* 10$12.

This article generalizes what has been published in [4],
since it considers the solution of nonlinear differential

equations with singular points; as it was noted, these

problems can be rewritten in terms of a differential equa-
tion with variable coefficients. Therefore, this paper pro-

poses the VCLT–HPM in order to find approximate

solutions to these problems. An important fact is to men-
tion that the methodology is based on the systematic use of

basic operations on the L.T. which can be found in many

references and textbooks [1] [see also ‘‘Appendix’’; it is
easy to verify from our case study that the proposed pro-

cedure relies heavily on the use of the simpler results (47),

(48), (49), (50)]. VCLT–HPM expresses the problem to be
solved in terms of a differential equation for L.T. YðsÞ, but
unlike the original nonlinear differential equation to solve,

this is easily separable [see (17–19)]. Once YðsÞ is
expressed in terms of yðxÞ after applying Laplace inverse

transform =$1, we assume a series solution for yðxÞ in the

form (20), and from here on, VCLT–HPM calculates the
different approximate orders in a similar fashion as LT–

HPM [4], but unlike this, its nth iterative process is

expressed in terms of integrals of the lower-order approx-
imations which are previously calculated [compare (14)

and (22)]. On the other hand, since some boundary value

problems entail serious difficulties, even to get approxi-
mate solutions, this proposed article exploits the freedom

of VCLT–HPM, explained in Sect. 3.2, in order to obtain a

highly accurate solution to the proposed nonlinear problem.
LT–HPM has been employed successfully to solve non-

linear problems defined for both initial and finite boundary

conditions [2–6, 22, 40, 41]; however, those works fol-
lowed one assumption from original HPM, which avoids

LT–HPM to have a better performance. In accordance with

HPM, u0 is the first approximation for the solution of (3)
that satisfies the boundary conditions, which results too

restrictive, since HPM admits in principle the validity of

homotopy formulation (5) for any choosing of the afore-
mentioned function.

On the other hand, [4–6] showed that the searching for

polynomial solutions of nonlinear problems with finite
boundary conditions is a possibility with high potential;

therefore, VCLT–HPM substitutes Lðu0Þ as it was origi-

nally defined, for polynomial functions wðrÞ, provided with
unknown parameters A;B;C. . .; which have to be ade-

quately determined through an algebraic system of equa-

tions in order to obtain analytical approximate solutions,
following the procedure explained in Sect. 3.2. We high-

light that these equations were obtained, in the one hand
requiring that the residual becomes zero, for several points

distributed along the interest interval, and on the other hand

applying the Robin boundary condition. We note that one
of the important features of VCLT–HPM is that the high

complexity of problems with singular points and Robin

boundary conditions was effectively handled by this tech-
nique and for the same reason, the proposed method is

considered a generalization of [4] where LT–HPM was

used to find approximate solutions for nonlinear problems
with Dirichlet, mixed, and Neumann boundary conditions.

Unlike [4], this work presents the important case study of
the oxygen diffusion in a spherical cell, with a Robin right

boundary condition. This kind of boundaries (also called

third-type boundary condition) are considered as a com-
bination of Dirichlet and Neumann conditions and are often

used to solve problems of Sturm–Liouville that appear in

science and engineering.
As it is well known from literature, modeling the closer

region to the unknown endpoints of an interval turns out to

be sometimes indeed, very difficult [54] (such as occurred
with the case of Robin boundary conditions). Indeed, the

problem studied in this work turns out to be particularly

complicated because of the presence of singular points and
because the endpoints are not given from start.

Figures 1 and 2 show the comparison between numeri-

cal solution of (25) and VCLT–HPM first-order approxi-
mations (43) and (44). From these figures, it is clear that

(40) provides a good approximation to the solution to (25).

In more precise terms, it is possible to verify the accuracy
of our results by calculating the square residual error

(S.R.E) of (43) and (44) defined as
Rb

a

R2 uðrÞð Þdr, where a

and b are the end points, the residual RðuðrÞÞ, which

already was defined in Sect. 3, and uðrÞ is an approximate
solution to the equation to be solved, in our case (25) [25].

As it can be seen, the square residual error (S.R.E.) is in

general terms a positive number, which is representative of
the total error committed, by using the approximate solu-

tion uðrÞ. S.R.E will be zero only for the case where uðrÞ is

Fig. 1 Comparison between numerical solution of (25) and VCLT–
HPM first-order approximation (43)
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the exact solution for the differential equation under study.

The resulting values were of 1:808511632* 10$7 and

2:560574954* 10$10, respectively, which confirm the

accuracy of the proposed method. If more accuracy has to
be required, one must consider higher-order approxima-

tions [remember that (40) is just a first-order approximation

of (25)]. Another possibility would be to use a higher-order
polynomial than wðxÞ ¼ A (A constant), since it would

contain more adjustment parameters, whereby it is expec-
ted to get a better approximation; what is more could be

employed both strategies for better results. We note that

residual is other useful manner to show the accuracy of an
approximate analytical solution. From Fig. 3, we conclude

the high precision of the proposed solutions (43) and (44).

Should be mentioned that this problem has been suc-
cessfully studied for several authors, although most of them

have proposed just numerical approximations [9, 57]. Rach

et al. [7] proposed an analytical approximate solution for
(25), and its methodology consisted in expressing the

resulting equation (25), first in terms of a Volterra integral

equation, and then the last one in an equivalent Fredholm–
Volterra integral form. Finally the Adomian decomposition

method is employed in order to solve the mentioned

Fredholm–Volterra integral representation of (25). Unlike
this methodology, the method proposed in this paper is not

restricted only to this kind of problems, but it can be

extended in principle to other problems with singular

points [see (16) and Sect. 3.2]. On the other hand, it is
necessary to comment that the above procedure is much

more complicated than the one introduced by this work for

the solution of nonlinear problems like (25), since VCLT–
HPM is handy and given that it is based on both elementary

Laplace transforms and integrals (see ‘‘Appendix’’), mak-

ing it an ideal tool for practical applications (it is known
that although Adomian is a powerful technique, the process

of obtaining its polynomial solutions is not straightforward
for practical applications). In the same way, it is expected

that the proposed method will contribute to overcoming

some problems that face other semi-analytic techniques.
Unlike VCLT–HPM, perturbation method depends on a

parameter assumed small, which is considered as a disad-

vantage of P.M. On the other hand, HAM is accurate and
powerful, but sometimes its approximate solutions turn out

to be long and cumbersome, and for the same reason, they

are not adequate for practical applications, while LT–HPM
[it is expected that also VCLT–HPM; see (40)] has already

reported handy accurate analytical solutions, by using

polynomial with only a few terms [4–6, 40, 41].
The advantages of LT–HPM and VCLT–HPM, with

respect to HPM, were already discussed in detail in

Sect. 3.2.
Emphasizing the general characteristics of the method

VCLT–HPM, it is an iterative method which is based on

elementary L.T. properties [1] and simple algebraic steps
which make it an ideal technique for practical applications.

In particular, for the case of boundary value problems, the

proposed method expresses the problem of solving a non-
linear differential equation in terms of the resolution of a

system of algebraic equations for some unknown initial

conditions and some unknown parameters. The calculation
of these quantities is made so that the solutions arising

from the proposed method are accurate and practical.

From the aforementioned discussion, it is expected that
LT–HPM (VCLT–HPM for nonlinear ODEs with variable

coefficients) can be applied to other areas of the knowledge

like fluids.

Fig. 2 Comparison between numerical solution of (25) and VCLT–
HPM first-order approximation (44)

Fig. 3 Residual for VCLT–HPM approximations (43) and (44), a and b, respectively
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In fact, LT–HPM was successfully applied in order to

find an approximate solution for the problem of an
axisymmetric Newtonian fluid squeezed between two large

parallel plates [5].

In the same manner, Hossein [22] employed LT–HPM
in order to find an approximate solution to the Blasius

nonlinear differential equation that describes the boundary

layer of a two-dimensional viscous laminar flow over a
semi-infinite flat plate. We noted that applications for

boundary layer problems for more general conditions (for
instance, for a coupled set of nonlinear ordinary differential

equations [45]) may require a generalization of the pro-

posed method, which could be useful for the solution of
problems in other areas of knowledge.

6 Conclusions

This work introduced VCLT–HPM as a novel modifica-
tion of LT–HPM in order to find analytical approximate

solutions for nonlinear ordinary differential equations

defined on finite intervals with singular points (as it was
noted, these problems can be rewritten in terms of a dif-

ferential equation with variable coefficients) and Robin

boundary conditions. Keeping the benefits of LT–HPM
[4], the proposed method exploits the flexibility of

homotopy formulation, in order to obtain initially

unknown parameters, which are adequately determined, in
order to obtain highly accurate analytical approximate

solutions to nonlinear problems. This is accomplished

through the solution of an algebraic system of equations
which is derivative, demanding in the one hand that Robin

condition is satisfied at the right end of the interval, and on

the other hand by canceling the residual error in several
points of the interval of interest. Our case study, the

important problem of the oxygen diffusion in a spherical

cell, showed that VCLT–HPM is a method with potential
to accelerate the convergence of the solution for a given

nonlinear problem including the region close to unknown

endpoints. Despite the fact that we only employed the
first-order approximation, we obtained a handy precise

solution.
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Appendix

Laplace transform of FðtÞ is denoted by = FðtÞf g and is
defined by the integral [1]

= FðtÞf g ¼ f ðsÞ ¼
Z1

0

e$stFðtÞdt: ð45Þ

Linearity of L.T. is an important property, which is
expressed as

= c1F1ðtÞ þ c2F2ðTÞf g ¼ c1f1ðsÞ þ c2f2ðsÞ; ð46Þ

where c1 and c2 are constants, and we have denoted:

= F1ðtÞf g ¼ f1ðsÞ, = F2ðtÞf g ¼ f2ðsÞ.
Some known properties of L.T. widely employed in this

study are

1: = 1f g ¼ 1

s
ðs[ 0Þ ð47Þ

2: = tnf g ¼ n!

snþ1
ðs[ 0Þ ð48Þ

3: = FðnÞðtÞ
n o

¼ snf ðsÞ $ sn$1Fð0Þ $ sn$2F0ð0Þ $ ! ! !

$ Fðn$1Þð0Þ; ð49Þ

where FðnÞðtÞ denotes the nth derivative of FðtÞ and

= FðtÞf g ¼ f ðsÞ:

4: = tnFðtÞf g ¼ ð$1Þn d
nf ðsÞ
dtn

;

n denotes a positive integer:
ð50Þ

If L.T. of FðtÞ is f ðsÞ, then FðtÞ is called the inverse L.T.
of f ðsÞ and is expressed by FðtÞ ¼ =$1 f ðsÞf g, where =$1

is called the inverse L.T. operator.

From Eqs. (47) and (48), it is clear that

1 ¼ =$1 1

s

! "
; ð51Þ

tn ¼ =$1 n!

snþ1

! "
; ð52Þ

and so on.
The following important result is obtained from (46) and

denotes the linearity property of =$1

=$1 c1f1ðsÞ þ c2f2ðsÞf g ¼ c1F1ðtÞ þ c2F2ðTÞ: ð53Þ
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1. INTRODUCTION

The theory of differential equations dates back to the work of Isaac Newton, whose celebrated
anagram

“6accdae13eff7i3l9n4o4qrr4s8t12ux”

can be solved as
“Data aequatione quotcunque fluentes quantitates involvente
fluxiones invenire et vice versa,”

which means

“it is useful to solve differential equations.”

However, it had shortly turned out that far from all of differential equations can be “solved,” i.e.,
have a solution which can be written in terms of integrals of elementary functions. In particular, the
solution of Liouville’s equation y

� = y
2 � x cannot be written in this form. Therefore, it was required

to find different approaches to the study of differential equations. One of the possible approaches was
proposed by Sophus Lie, who became the founder of the geometric theory of differential equations and
first applied geometric ideas and constructions to study differential equations. In the 1970s, due to
the effort of V. V. Lychagin, I. S. Krasil’shchik, A. M. Vinogradov, and other mathematicians, these
ideas transformed into a unified harmonious theory with incredibly deep results and wide possibilities for
applications. In particular, the theory of differential invariants, which is a differential-geometric analog
of the classical algebraic invariant theory, has been developed. The theory of differential invariants has
made it possible to solve previously unapproachable problems related to differential equations. For
example, in the framework of this theory, Kruglikov [1] solved the problem of point classification of
second-order ordinary differential equations, which was being tackled by many outstanding mathe-
maticians during the whole twentieth century (see, e.g., [2]–[6]), Dubrov constructed a series of relative
contact differential invariants (see [7], [8]), which has made it possible to solve the so-called trivialization
problem for ordinary differential equations (i.e., the problem of reducing such equations to the form

*E-mail: tsdtp4u@proc.ru
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y
(n) = 0 by a change of variables), and Kushner [9] completed the classification of the Monge–Ampère

equations, which include virtually all equations of mathematical physics (see also [10]). A detailed survey
of results of this theory can be found in [11] and [12].

In the recent paper [13], the author solved Lie’s problem of point classification of ODEs of the form
y

�� = F (x, y) (see also [14] and [15]). Therefore, it is natural to consider a larger class of second-order
ODEs. Note that the largest class of equations not fitting into Kruglikov’s classification [1] has the form

y
�� = a3(x, y)(y�)3 + a2(x, y)(y�)2 + a1(x, y)(y�) + a0(x, y).

Such equations are closely related to projective geometry (see [16], [17]) and have been extensively
studied. A final classification of generic equations of this form was obtained by Yumaguzhin in [18].
However, equations of the form y

�� = F (x, y) do not fit into Yumaguzhin’s classification and, therefore,
must be studied separately.

Another class of equations, which do not fit Yumaguzhin’s classification either, is formed by equations
of the form y

�� = A(x, y)y� + B(x, y). This paper is devoted to a point classification of equations of this
type. We calculate a group of point symmetries preserving the class of such equations and the field of
differential invariants of the action of this group on the coefficients A and B of our equations; finally,
using these invariants, we obtain a criterion for the local equivalence of two generic equations of the
form y

�� = A(x, y)y� + B(x, y) with rational coefficients on the right-hand side.

2. THE FIELD OF DIFFERENTIAL INVARIANTS

In this section, we give computational results related to the problem of point classification of ODEs
of the form y

�� = A(x, y)y� + B(x, y) needed in what follows; namely, we find a point symmetry group G

preserving the class of such equations, obtain the explicit form of its action on the coefficients A and B,
determine the transcendence degrees of the fields of differential invariants of fixed order for this action,
and, finally, calculate all fields of differential invariants. We begin by recalling the necessary definitions
and facts of the geometric theory of differential equations and the theory of differential invariants (see [11]
and [12] for more details).

2.1. The Necessary Definitions and Facts

Let J
2(C) denote the space of 2-jets of germs of holomorphic functions f : C ! C with coordinates

(x, y, p1, p2). Then to each differential equation of the form

y
�� = A(x, y)y� + B(x, y)

we can assign the hypersurface

E = {p2 = A(x, y)p1 + B(x, y)} ⇢ J
2(C)

in the space of 2-jets. Thus, by a differential equation we mean a hypersurface E in the 2-jet space
J

2(C).

Now, consider the point pseudogroup of germs of holomorphic transformations of the plane (x, y).
The action of this pseudogroup is naturally lifted to an action on the 2-jet space J

2(C):

x �! X = X(x, y), y �! Y = Y (x, y), p1 �! P1 =
DY

DX
, p2 �! P2 =

DP1

DX

(here D = d/dx = @x + p1 @y + p2 @p1 + · · · is the total differentiation operator).

Our immediate goal is to find a subgroup of the point pseudogroup that preserves the class of
equations of the form y

�� = A(x, y)y� + B(x, y), i.e., speaking the language of geometry, a subgroup G

such that, for each equation E ⇢ J
2(C) of the form specified above and any element g 2 G, the equation

g � E has the same form.
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2.2. The Symmetry Group G

The following assertion is valid.

Proposition 1. The group G of symmetries of equations of the form y
�� = A(x, y)y� + B(x, y)

consists of the germs of holomorphic transformations of the form

x �! X(x), y �! Y1(x)y + Y2(x).

The Lie algebra g of G consists of the germs of vector fields of the form

X = �(x) @x + (⌘(x)y + �(x)) @y.

Proof. It is convenient to prove this proposition in the infinitesimal language of vector fields. Namely, a
vector field X is an element of the Lie algebra g of the symmetry group G if and only if

LX(p2 � (A(x, y)p1 + B(x, y)))|p2=A(x,y)p1+B(x,y) = �A(x, y)p1 + �B(x, y)

for any functions A and B (the functions �A and �B are uniquely determined by A and B). This condition
is a system of differential equations for the unknown components ↵(x, y) and �(x, y) of the vector field
X = ↵(x, y) @x + �(x, y) @y . Solving this system by using the Maple software, which was developed by
I. Anderson, we obtain the form of X specified in the statement of the proposition. After that, it is easy
to find the transformations which form the group G itself.

Thus, we have found the point symmetry group G of the class of differential equations under
consideration. The group G and the algebra g act on these equations and, thereby, induce an action
on the coefficients A and B. In coordinates, the action of the group G on the coefficients A and B can be
written as

A �! Y
2
1

X �3 A +
2Y �

1X
� � Y1X

��

X �3 ,

B �! Y1

X �2 B + AY1
Y

�
1y + Y

�
2

X �3 +
Y

��
1 X

� � Y
�
1X

�

X �3 y +
Y

��
2 X

� � Y
�
2X

��

X �3 .

(2.1)

We denote the corresponding transformation group by �G. Its Lie algebra �g consists of vector fields of the
form

�X = �(x) @x + (⌘(x)y + �(x)) @y + (��
�(x)A + 2⌘�(x) � �

��(x)) @A

+
�
�Ay⌘

�(x) + B⌘(x) + y⌘
��(x) � 2��(x)B � A�

�(x) + �
��(x)

�
@B . (2.2)

Thus, we have reduced the problem to classifying the orbits of the action of �G on the space of pairs
(A,B) of rational functions. To solve this problem, we apply the technique of differential invariants.

2.3. The Transcendence Degree of Fields of Differential Invariants

We denote the space of k-jets of pairs of germs of functions (A,B) : C2 ! C2 by Jk. The coordinates
in this space are denoted by (x, y, a, b, a10, a01, b10, b01, . . . ). The actions (2.1) and (2.2) of the
pseudogroup �G and the Lie algebra �g on the space J0 extend canonically to an action on the k-jet
space for any k and to an action on the space J� := lim��Jk of infinite jets. We denote the extensions

of vector fields �X 2 �g by �X(k), the extension of the entire Lie algebra �g by �g(k), and the extension of the
pseudogroup �G by �G(k).

We recall the following definition.
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Definition 1. (1) A differential invariant of order  k of the action of �G on the space Jk is a rational
function I constant along all vector fields �X(k) 2 �g(k), i.e., such that

�X(k)(I) = 0.

(2) An invariant derivation is a derivation � with rational coefficients on the space of functions on
J� which commutes with the action of the Lie algebra �g(�):

� � �X(�) = �X(�) � � for all fields �X(�) 2 �g(�)
.

Remark 1. According to the Lie–Tresse theorem, the algebra of differential invariants is locally
generated by a finite set of differential invariants and invariant derivations. In [19], it was proved that,
under certain assumptions, this assertion holds not only locally but also globally. It is also valid for the
action of the symmetry group �G on the space J� of infinite jets (see Theorem 2).

Let Ik be the set of all differential invariants of pure order k. Clearly, the entire field I of differential
invariants is the union of the sets Ik:

I =
�

k

Ik.

The first main result of this paper gives the transcendence degree tk := tr deg Ik of Ik, i.e., the
number of independent differential invariants of pure order k, for each k.

Theorem 1. The transcendence degrees tk of the sets Ik of differential invariants are given in the
table.

Table

Order k of invariants  2 3 4 5 . . . k

Transcendence degree tk 0 5 7 9 . . . 2k � 1

Proof. To calculate the number of independent differential invariants, we employ a construction which
has already been used to solve similar problems, namely, the point classification problem for various
classes of second-order ODEs [1], [13], [14] and the problem of point classification of smooth functions
on the 1-jet space [20].

Consider the natural projections �i,i�1 : Ji ! Ji�1, a sequence of generic jets �i each of which is
projected on the preceding one (i.e., such that �i,i�1(�i) = �i�1), and the fiber V�k�1

of the projection
�k,k�1 over the jet �k�1.

Let �g�k�1
⇢ �g(k) be the isotropy subalgebra, which consists of all vector fields �X(k) 2 �g(k) vanishing

at �k�1:

�g�k�1
= { �X(k) 2 �g(k) : �X(k�1)

�k�1
= 0}.

The isotropy subalgebra �g�k�1
acts on the fiber V�k�1

. The transcendence degree tk of the field Ik of
differential invariants is equal to the codimension of a generic orbit of this action.

The dimension of the fiber V�k�1
equals 2(k + 1). Therefore, to find the codimension of a generic orbit,

it suffices to explicitly calculate all isotropy subalgebras. It follows from (2.2) that the vector fields in the
isotropy subalgebra �g�k�1

depend on the quantities

�i := �
(i)(a), ⌘j := ⌘

(j)(a), �m := �
(m)(a),

where i,m  k + 3, j  k + 2, and a = �k,0(�k), and have the forms

�g�0 =

�
[��2a0,0 + 2⌘2 � �3 � 2�1a1,0 � a0,1�1] @a1,0 � [a0,1(�1 + ⌘0)] @a0,1
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+

�
�3

2
�2b0,0 � 3

2
b0,0�1a0,0 � a

2
0,0�1 + a0,0b0,0⌘0 + �3 � a1,0�1

+ b1,0⌘0 � 3�1b1,0 � b0,1�1

�
@b1,0

+

�
�1

2
�2a0,0 � 1

2
�1a

2
0,0 + ⌘2 � a0,1�1 � 2b0,1�1

�
@b0,1

�
,

�g�1 =

��
��1a

3
0,0 + 2a0,0�1a1,0 � 2a0,0a0,1�1 � 4a0,0b0,1�1 + 2⌘3 � �4 � 3�2a1,0

� 3a0,1�1b0,0 � 2a1,1�1 � 3�1a2,0
�
@a2,0

+

�
�3

2
�2a0,1 � 1

2
a0,1�1a0,0 � �1a1,1 � a0,2�1

�
@a1,1 + [a0,2�1] @a0,2

+
�
�4b0,0�1a

2
0,0 � 2b0,0�1a1,0 � 3a0,0a1,0�1 � b0,0�2a0,0 � 3a0,0�1b1,0

� b0,0a0,1�1 � 9b0,0b0,1�1 � 2a0,0b0,1�1 � 4�2b1,0 � a2,0�1

� 2b1,1�1 � 5�1b2,0 + �4 � a
3
0,0�1

�
@b2,0

+

�
�1

2
�2a

2
0,0 � 1

2
�1a

3
0,0 � 2a0,0a0,1�1 � 2a0,0b0,1�1 + ⌘3 � 3a0,1�1b0,0 � 2b0,1�2

� 1

2
�2a1,0 � 1

2
a0,0�1a1,0 � a1,1�1 � 3�1b1,1 � b0,2�1

�
@b1,1

+ [��2a0,1 � a0,1�1a0,0 � a0,2�1 � �1b0,2] @b0,2

�
,

�g�k�1
= {[2⌘k+1 � �k+2] @ak,0 + [�k+2] @bk,0

+ [⌘k+1] @bk�1,1
}

(here k � 3; for convenience, the coefficients multiplying vectors are enclosed in brackets).
Thus, the codimension of the orbits of the action of the isotropy algebra �g�k�1

equals 0 for k  2,
and 2k � 1 for k � 3, as required.

Remark 2. The proof of Theorem 1 also provides a description of singular k-jets (i.e., those k-jets for
which the dimension of the orbits of the action of the isotropy subalgebras�g�k�1

is not maximal). Namely,
singular jets are those projected on one of the sets

{a0,1 = 0}, {a0,2 = 0}.

The right-hand sides of the ODEs y
�� = A(x, y)y� + B(x, y) in these singular cases are

A(x, y) = C0(x) and A(x, y) = C0(x)y + C1(x).

2.4. The Structure of the Field of Differential Invariants
Now we are ready to describe the field I =

�
k Ik of differential invariants.

Theorem 2. 1. The field I of differential invariants of the action of the group �G on the space J�

of infinite jets is generated by the five differential invariants

J1 = a0,1a0,3/a
2
0,2,

J2 =
�
�2a0,0a

2
0,1a0,3 + (3a0,0a

2
0,2 + a0,2a1,2 � a0,3(3b0,2 � 2a1,1))a0,1

+ 4a2
0,2(b0,2 � a1,1)

�
/a0,2a

3
0,1,

J3 =
�
�4a0,0a

4
0,1a0,2 + ((4a1,1 � 6b0,2)a0,2 + 4a2

0,0a0,3)a
3
0,1

+ ((�6a2
0,0 + 3b0,1 � a1,0)a

2
0,2 � 4a0,0a0,2a1,2 + 4a0,0a0,3(3b0,2 � 2a1,1))a

2
0,1

+
�
a

3
0,2b0,0 + (a2,1 + 17a1,1a0,0 � 18a0,0b0,2)a

2
0,2 � 2a1,2(3b0,2 � 2a1,1)a0,2
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+ a0,3(3b0,2 � 2a1,1)
2
�
a0,1 � 12a2

0,2(b0,2 � a1,1)
2
�
/a

6
0,1,

J4 =
�
�2a0,0a

2
0,1a0,3 + (3a0,0a

2
0,2 + b0,3a0,2 � a0,3(3b0,2 � 2a1,1))a0,1

+ 3a2
0,2(b0,2 � a1,1)

�
/a

3
0,1a0,2,

J5 =
�
�4a0,0a

4
0,1a0,2 + ((�6b0,2 + 4a1,1)a0,2 + 4a2

0,0a0,3)a
3
0,1

+ ((�6a2
0,0 + 2b0,1)a

2
0,2 � 2a0,0a0,2(b0,3 + a1,2 + 4a0,0a0,3(3b0,2 � 2a1,1)))a

2
0,1

+
�
a

3
0,2b0,0 + (�15a0,0b0,2 + 14a0,0a1,1 + b1,2)a

2
0,2

� a0,2(b0,3 + a1,2)(3b0,2 � 2a1,1) + a0,3(3b0,2 � 2a1,1)
2
�
a0,1

� 8a2
0,2(b0,2 � a1,1)

2
�
/a

6
0,1

of order 3 and the two invariant derivations

�1 =
a0,1

a0,2
· d

dy
and �2 =

1

a
2
0,1

�
a0,2 · d

dx
� (2a0,0a0,1 � 2a1,1 + 3b0,2) · d

dy

�
.

2. The sets Ik of differential invariants of pure order k are generated by the differential
invariants

J
(p,q)
1 , J

(p,q)
4 , J

(0,k�3)
2 , J

(0,k�3)
3 , J

(0,k�3)
5 , where p + q = k � 3

(here J
(p,q)
i = �p

1�
q
2Ji) and separate the �G-orbits of nonsingular k-jets.

Proof. First, the invariance of the functions J1, . . . , J5 and the derivations �1 and �2 is verified by
straightforward calculations with Maple.

Next, we prove assertion 2 of the theorem, which, in turn, implies assertion 1. To this end, it suffices
to calculate the symbols of the invariants specified in assertion 2. Let ↵

i
1↵

j
2 denote the symbol of the

function ai,j , and let �
i
1�

j
2 denote the symbol of bi,j . Then, up to constants, the symbols of our invariants

are

�(J (p,q)
1 ) = ↵

k
2 + ↵1↵

k�1
2 + · · · + ↵

q
1↵

p+3
2 ,

�(J (p,q)
4 ) = ↵

k
2 + ↵1↵

k�1
2 + · · · + ↵

q
1↵

p+3
2 + �

k
2 + �1�

k�1
2 + · · · + �

q
1�

p+3
2 ,

�(J (0,k�3)
2 ) = ↵

k
2 + ↵1↵

k�1
2 + · · · + ↵

k�2
1 ↵

2
2,

�(J (0,k�3)
3 ) = ↵

k
2 + ↵1↵

k�1
2 + · · · + ↵

k�2
1 ↵

2
2 + ↵

k�1
1 ↵2,

�(J (0,k�3)
5 ) = ↵

k
2 + ↵1↵

k�1
2 + · · · + ↵

k�2
1 ↵

2
2 + �

k
2 + �1�

k�1
2 + · · · + �

k�2
1 �

2
2 .

It is seen that all these symbols are linearly independent; therefore, the invariants themselves are
(functionally) independent. Moreover, all these invariants are affine along the fibers of the projection �.
According to Rosenlicht’s theorem (see [21], [22]), the invariants

J
(p,q)
1 , J

(p,q)
4 , J

(0,i)
2 , J

(0,i)
3 , J

(0,i)
5 , where i, p + q  k � 3,

generate the entire field
�

j�k Ik of rational differential invariants of order  k.
Therefore, the differential invariants J1, . . . , J5 and the invariant derivations �1 and �2 generate the

entire field I =
�

k Ik of differential invariants, as required.

3. CLASSIFICATION THEOREM

We proceed to the classification of differential equations of the form

y
�� = A(x, y)y� + B(x, y)

with respect to the action of the symmetry group G, or, equivalently, the classification of pairs of functions
(A,B) with respect to the action of the group �G. We begin with the following definition.
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Definition 2. We say that a pair of functions (A,B) is regular if both functions are rational in the
variables x and y, the restrictions of the invariants J1, . . . , J5 to this pair are defined, and the restrictions
of the invariant derivations �1 and �2 are linearly independent in a Zariski open subset of the plane C2.

Consider a regular pair of functions (A,B) and the set of basis differential invariants of orders 3 and 4.
The restrictions of these invariants to our pair of functions form a set of rational functions of x and y in
the plane C2. This set determines the rational morphism

�(A,B) : C2 ! C12
, �(A,B)(a) = (J1([A,B]4a), J2([A,B])4a, . . . ).

Let C(A,B) denote the closure of the image of �(A,B) in the Zariski topology. Then C(A,B) is an algebraic
variety. Its zero ideal D(A,B) is the ideal of polynomial dependences between the rational functions

J1([A,B]4a), J2([A,B]4a), . . . .

The following theorem is valid.

Theorem 3. 1. Two regular pairs of functions (A,B) and ( �A, �B ) are �G-equivalent if and only if
C(A,B) = C( �A, �B ).

2. Two regular pairs of functions (A,B) and ( �A, �B ) are �G-equivalent if and only if
D(A,B) = D( �A, �B ).

Remark 3. We emphasize that the equivalence criterion given by this theorem is effective, i.e., can be
verified in finite time on a computer. Namely, the ideal D(A,B) can be calculated by using the apparatus
of Gröbner bases (see, e.g., [23]).

Proof of Theorem 3. First, note that an affine algebraic variety is uniquely determined by its zero ideal
(see, e.g., [21]); therefore, the conditions

C(A,B) = C( �A, �B ) and D(A,B) = D( �A, �B )

are equivalent. We use these conditions interchangeably, depending on the situation.
Obviously, the equivalence of pairs of functions implies the coincidence of the corresponding vari-

eties C and ideals D . Let us prove the converse. We set

C(A,B) = C( �A, �B ) =: C and D(A,B) = D( �A, �B ) =: D .

The condition C(A,B) = C( �A, �B ) implies that, for any generic point a1 = (x0, y0) 2 C2, there exists a point

a2 2 C2 for which

�(A,B)(a1) = �( �A, �B )(a2).

This means that the values of all basis differential invariants of order at most 4 at the 4-jets [A,B]4a1

and [ �A, �B ]4a2
coincide. According to Theorem 2, these jets are �G(4)-equivalent, i.e., there exists an

element g
4
(a1,a2) 2 �G(4)

(a1,a2)
for which

g
4
(a1,a2) � [A,B]4a1

= [ �A, �B ]4a2

(here �G(4)
(a1,a2) ⇢ �G(4) is the subgroup of �G(4) consisting of the 4-extensions of those transformations

in �G which take a1 to a2).
Differentiating the relations in the ideal D by using the invariant derivations �1 and �2, we obtain

relations in which the basis differential invariants of order 5 occur linearly. Hence the values of
their restrictions to the pair (A,B) are uniquely determined by the restrictions to (A,B) of the basis
invariants of order at most 4. Therefore, the values of basis invariants of order 5 at the 5-jets [A,B]4a1
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and [ �A, �B ]5a2
coincide. According to Theorem 2, these jets are �G(5)-equivalent, i.e., there exists an

element g
5
(a1,a2) 2 �G(5)

(a1,a2)
for which

g
5
(a1,a2)

� [A,B]5a1
= [ �A, �B ]5a2

.

A completely similar argument proves that, for any k � 5, the k-jets [A,B]ka1
and [ �A, �B ]ka2

are
�G(k)-equivalent, i.e., there exists an element g

k
(a1,a2)

2 �G(k)
(a1,a2) for which

g
k
(a1,a2)

� [A,B]ka1
= [ �A, �B ]ka2

.

Now consider the infinite jet

g
�
(a1,a2) = {gk

(a1,a2)} 2 G
(�)
(a1,a2).

We have g
�
(a1,a2) � [A,B]�a1

= [ �A, �B ]�a2
, i.e., the pairs (A,B) and ( �A, �B ) are equivalent at the formal level.

Our objective is to prove their �G-equivalence, i.e., the existence of an element g 2 �G for which

g � (A,B) = ( �A, �B ).

We use an idea of Lychagin that appears in [24] and which has already worked for similar problems
(see, e.g., [13]–[15]). Namely, consider the pair of functions

g � (A,B) � ( �A, �B ) = (F1, F2) = (0, 0).

We obtain the system of ordinary differential equations

F1|y=y0 = F2|y=y0 = (F1)y|y=y0 = (F2)y|y=y0 = 0

with unknown functions X, Y1, and Y2 included in g (see (2.1)). This system is consistent, because the
1-jets of the pairs [A,B]1a1

and [ �A, �B ]1a2
are �G(1)-equivalent. Therefore, the above system of differential

equations has a solution, which determines an element g 2 �G for which

[g]1 � [A,B]1a1
= [ �A, �B ]1a2

,

i.e.,

Fi|y=y0 = (Fi)y|y=y0 = 0.

Since the infinite jets [A,B]�a1
and [ �A, �B ]�a2

are �G(�)-equivalent, it follows that

[g]� � [A,B]�a1
= [ �A, �B ]�a2

.

Therefore, all partial derivatives of the functions F1 and F2 vanish at y = y0. It remains to note that these
functions are analytic in y; hence F1 = F2 = 0, which means that g � (A,B) = ( �A, �B ), as required.
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